state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
A B : Set E
a : π
r : β
x : E
hpr : p x < r
β’ Absorbent π (closedBall p x r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
|
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
|
Mathlib.Analysis.Seminorm.1067_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
A B : Set E
a : π
r : β
x : E
hpr : p x < r
y : E
hy : y β closedBall p 0 (r - p x)
β’ y β closedBall p x r
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
|
rw [p.mem_closedBall_zero] at hy
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
|
Mathlib.Analysis.Seminorm.1067_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
A B : Set E
a : π
r : β
x : E
hpr : p x < r
y : E
hy : p y β€ r - p x
β’ y β closedBall p x r
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
|
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
|
Mathlib.Analysis.Seminorm.1067_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
pβ : Seminorm π E
A B : Set E
aβ : π
rβ : β
x : E
p : Seminorm π E
y : E
r : β
a : π
ha : a β 0
xβ : E
β’ xβ β (fun x => a β’ x) β»ΒΉ' ball p y r β xβ β ball p (aβ»ΒΉ β’ y) (r / βaβ)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
|
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
|
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
|
Mathlib.Analysis.Seminorm.1074_0.ywwMCgoKeIFKDZ3
|
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : SMul β E
instβ : IsScalarTower β π E
p : Seminorm π E
β’ ConvexOn β univ βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
|
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
|
Mathlib.Analysis.Seminorm.1092_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : SMul β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
xβΒ² : x β univ
y : E
xβΒΉ : y β univ
a b : β
ha : 0 β€ a
hb : 0 β€ b
xβ : a + b = 1
β’ p (a β’ x + b β’ y) β€ a β’ p x + b β’ p y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
|
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
|
Mathlib.Analysis.Seminorm.1092_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : SMul β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
xβΒ² : x β univ
y : E
xβΒΉ : y β univ
a b : β
ha : 0 β€ a
hb : 0 β€ b
xβ : a + b = 1
β’ p (a β’ x) + p (b β’ y) = βa β’ 1β * p x + βb β’ 1β * p y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
|
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
|
Mathlib.Analysis.Seminorm.1092_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : SMul β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
xβΒ² : x β univ
y : E
xβΒΉ : y β univ
a b : β
ha : 0 β€ a
hb : 0 β€ b
xβ : a + b = 1
β’ βa β’ 1β * p x + βb β’ 1β * p y = a * p x + b * p y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
|
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
|
Mathlib.Analysis.Seminorm.1092_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
β’ Convex β (ball p x r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
|
convert (p.convexOn.translate_left (-x)).convex_lt r
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
|
Mathlib.Analysis.Seminorm.1110_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r)
|
Mathlib_Analysis_Seminorm
|
case h.e'_6
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
β’ ball p x r = {x_1 | x_1 β (fun z => -x + z) β»ΒΉ' univ β§ (βp β fun z => z + -x) x_1 < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
|
ext y
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
|
Mathlib.Analysis.Seminorm.1110_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r)
|
Mathlib_Analysis_Seminorm
|
case h.e'_6.h
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
y : E
β’ y β ball p x r β y β {x_1 | x_1 β (fun z => -x + z) β»ΒΉ' univ β§ (βp β fun z => z + -x) x_1 < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
|
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
|
Mathlib.Analysis.Seminorm.1110_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r)
|
Mathlib_Analysis_Seminorm
|
case h.e'_6.h
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
y : E
β’ p (y + -x) < r β y β {x_1 | (βp β fun z => z + -x) x_1 < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
|
rfl
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
|
Mathlib.Analysis.Seminorm.1110_0.ywwMCgoKeIFKDZ3
|
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
β’ Convex β (closedBall p x r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
|
rw [closedBall_eq_biInter_ball]
|
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
|
Mathlib.Analysis.Seminorm.1118_0.ywwMCgoKeIFKDZ3
|
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NormedField π
instββ΄ : AddCommGroup E
instβΒ³ : NormedSpace β π
instβΒ² : Module π E
instβΒΉ : Module β E
instβ : IsScalarTower β π E
p : Seminorm π E
x : E
r : β
β’ Convex β (β Ο, β (_ : Ο > r), ball p x Ο)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
|
exact convex_iInterβ fun _ _ => convex_ball _ _ _
|
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
|
Mathlib.Analysis.Seminorm.1118_0.ywwMCgoKeIFKDZ3
|
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
π' : Type u_13
instββ· : NormedField π
instββΆ : SeminormedRing π'
instββ΅ : NormedAlgebra π π'
instββ΄ : NormOneClass π'
instβΒ³ : AddCommGroup E
instβΒ² : Module π' E
instβΒΉ : SMul π E
instβ : IsScalarTower π π' E
p : Seminorm π' E
a : π
x : E
β’ AddGroupSeminorm.toFun p.toAddGroupSeminorm (a β’ x) = βaβ * AddGroupSeminorm.toFun p.toAddGroupSeminorm x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by
|
rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one]
|
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by
|
Mathlib.Analysis.Seminorm.1133_0.ywwMCgoKeIFKDZ3
|
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NontriviallyNormedField π
instββ΄ : SeminormedRing π
instβΒ³ : AddCommGroup E
instβΒ² : Module π E
instβΒΉ : Module π E
instβ : TopologicalSpace E
p : Seminorm π E
hp : β r > 0, closedBall p 0 r β π 0
β’ ContinuousAt (βp) 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
|
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
|
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
|
Mathlib.Analysis.Seminorm.1167_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NontriviallyNormedField π
instββ΄ : SeminormedRing π
instβΒ³ : AddCommGroup E
instβΒ² : Module π E
instβΒΉ : Module π E
instβ : TopologicalSpace E
p : Seminorm π E
hp : β r > 0, βp β»ΒΉ' Metric.closedBall 0 r β π 0
β’ ContinuousAt (βp) 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
|
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
|
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
|
Mathlib.Analysis.Seminorm.1167_0.ywwMCgoKeIFKDZ3
|
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
β’ ContinuousAt (βp) 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
|
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
β’ closedBall p 0 Ξ΅ β π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
|
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
β’ β k, 0 < βkβ β§ βkβ * r < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
|
rcases le_or_lt r 0 with hr | hr
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
case inl
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
hr : r β€ 0
β’ β k, 0 < βkβ β§ βkβ * r < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β·
|
use 1
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β·
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
case h
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
hr : r β€ 0
β’ 0 < β1β β§ β1β * r < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1;
|
simpa using hr.trans_lt hΞ΅
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1;
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
case inr
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
hr : 0 < r
β’ β k, 0 < βkβ β§ βkβ * r < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β·
|
simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β·
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r : β
hp : closedBall p 0 r β π 0
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
k : π
hkβ : 0 < βkβ
hk : βkβ * r < Ξ΅
β’ closedBall p 0 Ξ΅ β π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
|
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : ContinuousConstSMul π E
p : Seminorm π E
r Ξ΅ : β
hΞ΅ : Ξ΅ > 0
k : π
hp : closedBall p 0 (βkβ * r) β π 0
hkβ : 0 < βkβ
hk : βkβ * r < Ξ΅
β’ closedBall p 0 Ξ΅ β π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
|
exact mem_of_superset hp <| p.closedBall_mono hk.le
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
|
Mathlib.Analysis.Seminorm.1176_0.ywwMCgoKeIFKDZ3
|
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : UniformSpace E
instβ : UniformAddGroup E
p : Seminorm π E
hp : ContinuousAt (βp) 0
β’ UniformContinuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
|
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
|
Mathlib.Analysis.Seminorm.1201_0.ywwMCgoKeIFKDZ3
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : UniformSpace E
instβ : UniformAddGroup E
p : Seminorm π E
hpβ : ContinuousAt (βp) 0
hp : Tendsto (βp) (π 0) (π 0)
β’ UniformContinuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
|
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
|
Mathlib.Analysis.Seminorm.1201_0.ywwMCgoKeIFKDZ3
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : UniformSpace E
instβ : UniformAddGroup E
p : Seminorm π E
hpβ : ContinuousAt (βp) 0
hp : Tendsto (βp) (π 0) (π 0)
β’ Tendsto ((fun p => dist p.1 p.2) β fun x => (p x.1, p x.2)) (comap (fun x => x.1 - x.2) (π 0)) (π 0)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
|
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
|
Mathlib.Analysis.Seminorm.1201_0.ywwMCgoKeIFKDZ3
|
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p : Seminorm π E
hp : ContinuousAt (βp) 0
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
|
letI := TopologicalAddGroup.toUniformSpace E
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
|
Mathlib.Analysis.Seminorm.1211_0.ywwMCgoKeIFKDZ3
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p : Seminorm π E
hp : ContinuousAt (βp) 0
this : UniformSpace E := TopologicalAddGroup.toUniformSpace E
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
|
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
|
Mathlib.Analysis.Seminorm.1211_0.ywwMCgoKeIFKDZ3
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p : Seminorm π E
hp : ContinuousAt (βp) 0
thisβ : UniformSpace E := TopologicalAddGroup.toUniformSpace E
this : UniformAddGroup E
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
|
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
|
Mathlib.Analysis.Seminorm.1211_0.ywwMCgoKeIFKDZ3
|
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p q : Seminorm π E
hq : Continuous βq
hpq : p β€ q
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
|
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
|
Mathlib.Analysis.Seminorm.1273_0.ywwMCgoKeIFKDZ3
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p q : Seminorm π E
hq : Continuous βq
hpq : p β€ q
r : β
hr : r > 0
β’ IsOpen (ball q 0 r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
|
rw [ball_zero_eq]
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
|
Mathlib.Analysis.Seminorm.1273_0.ywwMCgoKeIFKDZ3
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββΆ : NontriviallyNormedField π
instββ΅ : SeminormedRing π
instββ΄ : AddCommGroup E
instβΒ³ : Module π E
instβΒ² : Module π E
instβΒΉ : TopologicalSpace E
instβ : TopologicalAddGroup E
p q : Seminorm π E
hq : Continuous βq
hpq : p β€ q
r : β
hr : r > 0
β’ IsOpen {y | q y < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
|
exact isOpen_lt hq continuous_const
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
|
Mathlib.Analysis.Seminorm.1273_0.ywwMCgoKeIFKDZ3
|
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instββ΅ : NontriviallyNormedField π
instββ΄ : SeminormedRing π
instβΒ³ : AddCommGroup E
instβΒ² : Module π E
instβΒΉ : Module π E
instβ : TopologicalSpace E
p : Seminorm π E
hp : Continuous βp
r : β
hr : 0 < r
this : Tendsto (βp) (π 0) (π 0)
β’ ball p 0 r β π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by
|
simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
|
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by
|
Mathlib.Analysis.Seminorm.1281_0.ywwMCgoKeIFKDZ3
|
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ instβΒ² = PseudoMetricSpace.toUniformSpace
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
|
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ π 0 = π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
|
apply le_antisymm
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ π 0 β€ π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β·
|
rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β·
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ Tendsto norm (π 0) (π 0)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
|
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
|
rcases hβ with β¨r, hrβ©
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
r : β
hr : closedBall p 0 r β π 0
β’ Continuous βp
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
|
exact p.continuous' hr
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ π 0 β€ π 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β·
|
rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β·
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
case a
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ β (i' : ΞΉ), p' i' β β i, 0 < i β§ {y | βyβ < i} β s i'
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
|
simpa only [subset_def, mem_ball_zero] using hβ
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
|
Mathlib.Analysis.Seminorm.1286_0.ywwMCgoKeIFKDZ3
|
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ π€ E = β¨
r, β¨
(_ : r > 0), π {x | p (x.1 - x.2) < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
|
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]
|
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
|
Mathlib.Analysis.Seminorm.1301_0.ywwMCgoKeIFKDZ3
|
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r}
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉβ : Type u_12
instββ· : NontriviallyNormedField π
instββΆ : SeminormedRing π
instββ΅ : AddCommGroup E
instββ΄ : Module π E
instβΒ³ : Module π E
ΞΉ : Sort u_13
instβΒ² : UniformSpace E
instβΒΉ : UniformAddGroup E
instβ : ContinuousConstSMul π E
p' : ΞΉ β Prop
s : ΞΉ β Set E
p : Seminorm π E
hb : HasBasis (π 0) p' s
hβ : β r, closedBall p 0 r β π 0
hβ : β (i : ΞΉ), p' i β β r > 0, ball p 0 r β s i
β’ π€ E = β¨
r, β¨
(_ : r > 0), π {x | p (x.1 - x.2) < r}
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ];
|
rfl
|
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ];
|
Mathlib.Analysis.Seminorm.1301_0.ywwMCgoKeIFKDZ3
|
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r}
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
β’ β n, c ^ n β 0 β§ p (c ^ n β’ x) < Ξ΅ β§ Ξ΅ / βcβ β€ p (c ^ n β’ x) β§ βc ^ nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
|
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
β’ 0 < p x / Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by
|
positivity
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
β’ β n, c ^ n β 0 β§ p (c ^ n β’ x) < Ξ΅ β§ Ξ΅ / βcβ β€ p (c ^ n β’ x) β§ βc ^ nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
|
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
β’ β n, c ^ n β 0 β§ p (c ^ n β’ x) < Ξ΅ β§ Ξ΅ / βcβ β€ p (c ^ n β’ x) β§ βc ^ nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
|
have cpos : 0 < βcβ := by positivity
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
β’ 0 < βcβ
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by
|
positivity
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
β’ β n, c ^ n β 0 β§ p (c ^ n β’ x) < Ξ΅ β§ Ξ΅ / βcβ β€ p (c ^ n β’ x) β§ βc ^ nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
|
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
β’ 0 < βc ^ (n + 1)β
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by
|
rw [norm_zpow]
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
β’ 0 < βcβ ^ (n + 1)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow];
|
exact xΞ΅pos.trans hn.2
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow];
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ β n, c ^ n β 0 β§ p (c ^ n β’ x) < Ξ΅ β§ Ξ΅ / βcβ β€ p (c ^ n β’ x) β§ βc ^ nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
|
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_1
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ c ^ (-(n + 1)) β 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β·
|
show c ^ (-(n + 1)) β 0
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β·
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_1
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ c ^ (-(n + 1)) β 0
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0;
|
exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0;
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_2
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ p (c ^ (-(n + 1)) β’ x) < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β·
|
show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β·
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_2
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ p (c ^ (-(n + 1)) β’ x) < Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
|
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_2
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ p x < βcβ ^ (n + 1) * Ξ΅
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
|
exact (div_lt_iff Ξ΅pos).1 (hn.2)
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_3
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β·
|
show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β·
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_3
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
|
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_3
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ βcβ ^ n * Ξ΅ β€ p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
|
exact (le_div_iff Ξ΅pos).1 hn.1
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_4
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ βc ^ (-(n + 1))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β·
|
show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β·
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_4
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ βc ^ (-(n + 1))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
β’ Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by
|
ring
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_4
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
this : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ
β’ βc ^ (-(n + 1))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
|
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
case intro.refine_4
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : Seminorm π E
c : π
hc : 1 < βcβ
Ξ΅ : β
Ξ΅pos : 0 < Ξ΅
x : E
hx : p x β 0
xΞ΅pos : 0 < p x / Ξ΅
n : β€
hn : p x / Ξ΅ β Ico (βcβ ^ n) (βcβ ^ (n + 1))
cpos : 0 < βcβ
cnpos : 0 < βc ^ (n + 1)β
this : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ
β’ βcβ ^ n * βcβ β€ p x / Ξ΅ * βcβ
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
|
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
|
Mathlib.Analysis.Seminorm.1314_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p q : Seminorm π E
Ξ΅ C : β
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x
x : E
hx : p x β 0
β’ q x β€ C * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
|
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
|
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
|
Mathlib.Analysis.Seminorm.1351_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p q : Seminorm π E
Ξ΅ C : β
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x
x : E
hx : p x β 0
Ξ΄ : π
hΞ΄ : Ξ΄ β 0
Ξ΄xle : p (Ξ΄ β’ x) < Ξ΅
leΞ΄x : Ξ΅ / βcβ β€ p (Ξ΄ β’ x)
β’ q x β€ C * p x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
|
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
|
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
|
Mathlib.Analysis.Seminorm.1351_0.ywwMCgoKeIFKDZ3
|
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
hx : β j β s, (p j) x β 0
β’ q x β€ (C β’ Finset.sup s p) x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
|
rcases hx with β¨j, hj, hjxβ©
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
j : ΞΉ
hj : j β s
hjx : (p j) x β 0
β’ q x β€ (C β’ Finset.sup s p) x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
|
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
j : ΞΉ
hj : j β s
hjx : (p j) x β 0
this : (Finset.sup s p) x β 0
β’ q x β€ (C β’ Finset.sup s p) x
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
|
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
j : ΞΉ
hj : j β s
hjx : (p j) x β 0
this : (Finset.sup s p) x β 0
y : E
hle : Ξ΅ / βcβ β€ (Finset.sup s p) y
hlt : (Finset.sup s p) y < Ξ΅
β’ q y β€ (C β’ Finset.sup s p) y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
|
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
j : ΞΉ
hj : j β s
hjx : (p j) x β 0
this : (Finset.sup s p) x β 0
y : E
hle : Ξ΅ / βcβ β€ (Finset.sup s p) y
hlt : (Finset.sup s p) y < Ξ΅
i : ΞΉ
hi : i β s
hiy : (Finset.sup s p) y = (p i) y
β’ q y β€ (C β’ Finset.sup s p) y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
|
rw [smul_apply, hiy]
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Finset ΞΉ
q : Seminorm π E
Ξ΅ : β
C : ββ₯0
Ξ΅_pos : 0 < Ξ΅
c : π
hc : 1 < βcβ
hf : β (x : E), (β i β s, (p i) x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ (p j) x β q x β€ (C β’ p j) x
x : E
j : ΞΉ
hj : j β s
hjx : (p j) x β 0
this : (Finset.sup s p) x β 0
y : E
hle : Ξ΅ / βcβ β€ (Finset.sup s p) y
hlt : (Finset.sup s p) y < Ξ΅
i : ΞΉ
hi : i β s
hiy : (Finset.sup s p) y = (p i) y
β’ q y β€ C β’ (p i) y
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
|
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
|
Mathlib.Analysis.Seminorm.1370_0.ywwMCgoKeIFKDZ3
|
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
β’ BddAbove (range p)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
|
rw [Seminorm.bddAbove_range_iff]
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
β’ β (x : E), BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
|
intro x
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
|
rcases hs x with β¨r, hr, hrxβ©
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
|
rcases exists_lt_norm π r with β¨k, hkβ©
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
|
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
|
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
β’ kβ»ΒΉ β’ x β s
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
|
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
β’ x β k β’ s
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
|
exact hrx k hk.le
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
this : kβ»ΒΉ β’ x β s
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
|
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
this : kβ»ΒΉ β’ x β s
M : β
hM : M β upperBounds (range fun i => (p i) (kβ»ΒΉ β’ x))
β’ BddAbove (range fun i => (p i) x)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
|
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
this : kβ»ΒΉ β’ x β s
M : β
hM : M β upperBounds (range fun i => (p i) (kβ»ΒΉ β’ x))
i : ΞΉ
β’ (p i) x β€ βkβ * M
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
|
have := (forall_range_iff.mp hM) i
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NontriviallyNormedField π
instβΒΉ : AddCommGroup E
instβ : Module π E
p : ΞΉ β Seminorm π E
s : Set E
hs : Absorbent π s
h : β x β s, BddAbove (range fun i => (p i) x)
x : E
r : β
hr : 0 < r
hrx : β (a : π), r β€ βaβ β x β a β’ s
k : π
hk : r < βkβ
hk0 : k β 0
thisβ : kβ»ΒΉ β’ x β s
M : β
hM : M β upperBounds (range fun i => (p i) (kβ»ΒΉ β’ x))
i : ΞΉ
this : (p i) (kβ»ΒΉ β’ x) β€ M
β’ (p i) x β€ βkβ * M
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
|
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
|
Mathlib.Analysis.Seminorm.1389_0.ywwMCgoKeIFKDZ3
|
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
β’ Seminorm.ball (normSeminorm π E) = Metric.ball
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
|
ext x r y
|
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
|
Mathlib.Analysis.Seminorm.1426_0.ywwMCgoKeIFKDZ3
|
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball
|
Mathlib_Analysis_Seminorm
|
case h.h.h
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
rβ : β
x : E
r : β
y : E
β’ y β Seminorm.ball (normSeminorm π E) x r β y β Metric.ball x r
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
|
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
|
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
|
Mathlib.Analysis.Seminorm.1426_0.ywwMCgoKeIFKDZ3
|
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
hr : 0 < r
β’ Absorbent π (Metric.ball 0 r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
|
rw [β ball_normSeminorm π]
|
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
|
Mathlib.Analysis.Seminorm.1434_0.ywwMCgoKeIFKDZ3
|
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
hr : 0 < r
β’ Absorbent π (Seminorm.ball (normSeminorm π E) 0 r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
|
exact (normSeminorm _ _).absorbent_ball_zero hr
|
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
|
Mathlib.Analysis.Seminorm.1434_0.ywwMCgoKeIFKDZ3
|
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
hx : βxβ < r
β’ Absorbent π (Metric.ball x r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball_zero hr
#align absorbent_ball_zero absorbent_ball_zero
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
|
rw [β ball_normSeminorm π]
|
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
|
Mathlib.Analysis.Seminorm.1440_0.ywwMCgoKeIFKDZ3
|
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
hx : βxβ < r
β’ Absorbent π (Seminorm.ball (normSeminorm π E) x r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball_zero hr
#align absorbent_ball_zero absorbent_ball_zero
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
rw [β ball_normSeminorm π]
|
exact (normSeminorm _ _).absorbent_ball hx
|
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
rw [β ball_normSeminorm π]
|
Mathlib.Analysis.Seminorm.1440_0.ywwMCgoKeIFKDZ3
|
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
β’ Balanced π (Metric.ball 0 r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball_zero hr
#align absorbent_ball_zero absorbent_ball_zero
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball hx
#align absorbent_ball absorbent_ball
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r) := by
|
rw [β ball_normSeminorm π]
|
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r) := by
|
Mathlib.Analysis.Seminorm.1446_0.ywwMCgoKeIFKDZ3
|
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r)
|
Mathlib_Analysis_Seminorm
|
R : Type u_1
R' : Type u_2
π : Type u_3
πβ : Type u_4
πβ : Type u_5
π : Type u_6
E : Type u_7
Eβ : Type u_8
Eβ : Type u_9
F : Type u_10
G : Type u_11
ΞΉ : Type u_12
instβΒ² : NormedField π
instβΒΉ : SeminormedAddCommGroup E
instβ : NormedSpace π E
r : β
x : E
β’ Balanced π (Seminorm.ball (normSeminorm π E) 0 r)
|
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import Mathlib.Data.Real.Pointwise
import Mathlib.Analysis.Convex.Function
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.Normed.Group.AddTorsor
#align_import analysis.seminorm from "leanprover-community/mathlib"@"09079525fd01b3dda35e96adaa08d2f943e1648c"
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets, and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For a module over a normed ring:
* `Seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `normSeminorm π E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option autoImplicit true
open NormedField Set Filter
open scoped BigOperators NNReal Pointwise Topology Uniformity
variable {R R' π πβ πβ π E Eβ Eβ F G ΞΉ : Type*}
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π : Type*) (E : Type*) [SeminormedRing π] [AddGroup E] [SMul π E] extends
AddGroupSeminorm E where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
smul' : β (a : π) (x : E), toFun (a β’ x) = βaβ * toFun x
#align seminorm Seminorm
attribute [nolint docBlame] Seminorm.toAddGroupSeminorm
/-- `SeminormClass F π E` states that `F` is a type of seminorms on the `π`-module `E`.
You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π E : outParam <| Type*) [SeminormedRing π] [AddGroup E]
[SMul π E] extends AddGroupSeminormClass F E β where
/-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
and the original seminorm. -/
map_smul_eq_mul (f : F) (a : π) (x : E) : f (a β’ x) = βaβ * f x
#align seminorm_class SeminormClass
export SeminormClass (map_smul_eq_mul)
-- Porting note: dangerous instances no longer exist
-- attribute [nolint dangerousInstance] SeminormClass.toAddGroupSeminormClass
section Of
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π`. -/
def Seminorm.of [SeminormedRing π] [AddCommGroup E] [Module π E] (f : E β β)
(add_le : β x y : E, f (x + y) β€ f x + f y) (smul : β (a : π) (x : E), f (a β’ x) = βaβ * f x) :
Seminorm π E where
toFun := f
map_zero' := by rw [β zero_smul π (0 : E), smul, norm_zero, zero_mul]
add_le' := add_le
smul' := smul
neg' x := by rw [β neg_one_smul π, smul, norm_neg, β smul, one_smul]
#align seminorm.of Seminorm.of
/-- Alternative constructor for a `Seminorm` over a normed field `π` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π] [AddCommGroup E] [Module π E] (f : E β β) (map_zero : f 0 = 0)
(add_le : β x y, f (x + y) β€ f x + f y) (smul_le : β (r : π) (x), f (r β’ x) β€ βrβ * f x) :
Seminorm π E :=
Seminorm.of f add_le fun r x => by
refine' le_antisymm (smul_le r x) _
by_cases h : r = 0
Β· simp [h, map_zero]
rw [β mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
rw [inv_mul_cancel_leftβ (norm_ne_zero_iff.mpr h)]
specialize smul_le rβ»ΒΉ (r β’ x)
rw [norm_inv] at smul_le
convert smul_le
simp [h]
#align seminorm.of_smul_le Seminorm.ofSMulLE
end Of
namespace Seminorm
section SeminormedRing
variable [SeminormedRing π]
section AddGroup
variable [AddGroup E]
section SMul
variable [SMul π E]
instance instSeminormClass : SeminormClass (Seminorm π E) π E where
coe f := f.toFun
coe_injective' f g h := by
rcases f with β¨β¨_β©β©
rcases g with β¨β¨_β©β©
congr
map_zero f := f.map_zero'
map_add_le_add f := f.add_le'
map_neg_eq_map f := f.neg'
map_smul_eq_mul f := f.smul'
#align seminorm.seminorm_class Seminorm.instSeminormClass
/-- Helper instance for when there's too many metavariables to apply `FunLike.hasCoeToFun`. -/
instance instCoeFun : CoeFun (Seminorm π E) fun _ => E β β :=
FunLike.hasCoeToFun
@[ext]
theorem ext {p q : Seminorm π E} (h : β x, (p : E β β) x = q x) : p = q :=
FunLike.ext p q h
#align seminorm.ext Seminorm.ext
instance instZero : Zero (Seminorm π E) :=
β¨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
smul' := fun _ _ => (mul_zero _).symm }β©
@[simp]
theorem coe_zero : β(0 : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_zero Seminorm.coe_zero
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π E) x = 0 :=
rfl
#align seminorm.zero_apply Seminorm.zero_apply
instance : Inhabited (Seminorm π E) :=
β¨0β©
variable (p : Seminorm π E) (c : π) (x y : E) (r : β)
/-- Any action on `β` which factors through `ββ₯0` applies to a seminorm. -/
instance instSMul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] : SMul R (Seminorm π E) where
smul r p :=
{ r β’ p.toAddGroupSeminorm with
toFun := fun x => r β’ p x
smul' := fun _ _ => by
simp only [β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def, smul_eq_mul]
rw [map_smul_eq_mul, mul_left_comm] }
instance [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] [SMul R' β] [SMul R' ββ₯0]
[IsScalarTower R' ββ₯0 β] [SMul R R'] [IsScalarTower R R' β] :
IsScalarTower R R' (Seminorm π E) where
smul_assoc r a p := ext fun x => smul_assoc r a (p x)
theorem coe_smul [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E) :
β(r β’ p) = r β’ βp :=
rfl
#align seminorm.coe_smul Seminorm.coe_smul
@[simp]
theorem smul_apply [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p : Seminorm π E)
(x : E) : (r β’ p) x = r β’ p x :=
rfl
#align seminorm.smul_apply Seminorm.smul_apply
instance instAdd : Add (Seminorm π E) where
add p q :=
{ p.toAddGroupSeminorm + q.toAddGroupSeminorm with
toFun := fun x => p x + q x
smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
theorem coe_add (p q : Seminorm π E) : β(p + q) = p + q :=
rfl
#align seminorm.coe_add Seminorm.coe_add
@[simp]
theorem add_apply (p q : Seminorm π E) (x : E) : (p + q) x = p x + q x :=
rfl
#align seminorm.add_apply Seminorm.add_apply
instance instAddMonoid : AddMonoid (Seminorm π E) :=
FunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
instance instOrderedCancelAddCommMonoid : OrderedCancelAddCommMonoid (Seminorm π E) :=
FunLike.coe_injective.orderedCancelAddCommMonoid _ rfl coe_add fun _ _ => rfl
instance instMulAction [Monoid R] [MulAction R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
MulAction R (Seminorm π E) :=
FunLike.coe_injective.mulAction _ (by intros; rfl)
variable (π E)
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π E) (E β β) where
toFun := (β)
map_zero' := coe_zero
map_add' := coe_add
#align seminorm.coe_fn_add_monoid_hom Seminorm.coeFnAddMonoidHom
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π E) :=
show @Function.Injective (Seminorm π E) (E β β) (β) from FunLike.coe_injective
#align seminorm.coe_fn_add_monoid_hom_injective Seminorm.coeFnAddMonoidHom_injective
variable {π E}
instance instDistribMulAction [Monoid R] [DistribMulAction R β] [SMul R ββ₯0]
[IsScalarTower R ββ₯0 β] : DistribMulAction R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).distribMulAction _ (by intros; rfl)
instance instModule [Semiring R] [Module R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] :
Module R (Seminorm π E) :=
(coeFnAddMonoidHom_injective π E).module R _ (by intros; rfl)
instance instSup : Sup (Seminorm π E) where
sup p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := p β q
smul' := fun x v =>
(congr_argβ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
(mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
@[simp]
theorem coe_sup (p q : Seminorm π E) : β(p β q) = (p : E β β) β (q : E β β) :=
rfl
#align seminorm.coe_sup Seminorm.coe_sup
theorem sup_apply (p q : Seminorm π E) (x : E) : (p β q) x = p x β q x :=
rfl
#align seminorm.sup_apply Seminorm.sup_apply
theorem smul_sup [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q :=
have real.smul_max : β x y : β, r β’ max x y = max (r β’ x) (r β’ y) := fun x y => by
simpa only [β smul_eq_mul, β NNReal.smul_def, smul_one_smul ββ₯0 r (_ : β)] using
mul_max_of_nonneg x y (r β’ (1 : ββ₯0) : ββ₯0).coe_nonneg
ext fun x => real.smul_max _ _
#align seminorm.smul_sup Seminorm.smul_sup
instance instPartialOrder : PartialOrder (Seminorm π E) :=
PartialOrder.lift _ FunLike.coe_injective
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π E} : (p : E β β) β€ q β p β€ q :=
Iff.rfl
#align seminorm.coe_le_coe Seminorm.coe_le_coe
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π E} : (p : E β β) < q β p < q :=
Iff.rfl
#align seminorm.coe_lt_coe Seminorm.coe_lt_coe
theorem le_def {p q : Seminorm π E} : p β€ q β β x, p x β€ q x :=
Iff.rfl
#align seminorm.le_def Seminorm.le_def
theorem lt_def {p q : Seminorm π E} : p < q β p β€ q β§ β x, p x < q x :=
@Pi.lt_def _ _ _ p q
#align seminorm.lt_def Seminorm.lt_def
instance instSemilatticeSup : SemilatticeSup (Seminorm π E) :=
Function.Injective.semilatticeSup _ FunLike.coe_injective coe_sup
end SMul
end AddGroup
section Module
variable [SeminormedRing πβ] [SeminormedRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : πβ β+* πβ} [RingHomIsometric Οββ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [AddCommGroup Eβ]
variable [AddCommGroup F] [AddCommGroup G]
variable [Module π E] [Module πβ Eβ] [Module πβ Eβ] [Module π F] [Module π G]
-- Porting note: even though this instance is found immediately by typeclass search,
-- it seems to be needed below!?
noncomputable instance smul_nnreal_real : SMul ββ₯0 β := inferInstance
variable [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : Seminorm π E :=
{ p.toAddGroupSeminorm.comp f.toAddMonoidHom with
toFun := fun x => p (f x)
-- Porting note: the `simp only` below used to be part of the `rw`.
-- I'm not sure why this change was needed, and am worried by it!
smul' := fun _ _ => by simp only [map_smulββ]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
#align seminorm.comp Seminorm.comp
theorem coe_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) : β(p.comp f) = p β f :=
rfl
#align seminorm.coe_comp Seminorm.coe_comp
@[simp]
theorem comp_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) : (p.comp f) x = p (f x) :=
rfl
#align seminorm.comp_apply Seminorm.comp_apply
@[simp]
theorem comp_id (p : Seminorm π E) : p.comp LinearMap.id = p :=
ext fun _ => rfl
#align seminorm.comp_id Seminorm.comp_id
@[simp]
theorem comp_zero (p : Seminorm πβ Eβ) : p.comp (0 : E βββ[Οββ] Eβ) = 0 :=
ext fun _ => map_zero p
#align seminorm.comp_zero Seminorm.comp_zero
@[simp]
theorem zero_comp (f : E βββ[Οββ] Eβ) : (0 : Seminorm πβ Eβ).comp f = 0 :=
ext fun _ => rfl
#align seminorm.zero_comp Seminorm.zero_comp
theorem comp_comp [RingHomCompTriple Οββ Οββ Οββ] (p : Seminorm πβ Eβ) (g : Eβ βββ[Οββ] Eβ)
(f : E βββ[Οββ] Eβ) : p.comp (g.comp f) = (p.comp g).comp f :=
ext fun _ => rfl
#align seminorm.comp_comp Seminorm.comp_comp
theorem add_comp (p q : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) :
(p + q).comp f = p.comp f + q.comp f :=
ext fun _ => rfl
#align seminorm.add_comp Seminorm.add_comp
theorem comp_add_le (p : Seminorm πβ Eβ) (f g : E βββ[Οββ] Eβ) :
p.comp (f + g) β€ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
#align seminorm.comp_add_le Seminorm.comp_add_le
theorem smul_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : R) :
(c β’ p).comp f = c β’ p.comp f :=
ext fun _ => rfl
#align seminorm.smul_comp Seminorm.smul_comp
theorem comp_mono {p q : Seminorm πβ Eβ} (f : E βββ[Οββ] Eβ) (hp : p β€ q) : p.comp f β€ q.comp f :=
fun _ => hp _
#align seminorm.comp_mono Seminorm.comp_mono
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E βββ[Οββ] Eβ) : Seminorm πβ Eβ β+ Seminorm π E where
toFun := fun p => p.comp f
map_zero' := zero_comp f
map_add' := fun p q => add_comp p q f
#align seminorm.pullback Seminorm.pullback
instance instOrderBot : OrderBot (Seminorm π E) where
bot := 0
bot_le := map_nonneg
@[simp]
theorem coe_bot : β(β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.coe_bot Seminorm.coe_bot
theorem bot_eq_zero : (β₯ : Seminorm π E) = 0 :=
rfl
#align seminorm.bot_eq_zero Seminorm.bot_eq_zero
theorem smul_le_smul {p q : Seminorm π E} {a b : ββ₯0} (hpq : p β€ q) (hab : a β€ b) :
a β’ p β€ b β’ q := by
simp_rw [le_def]
intro x
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
#align seminorm.smul_le_smul Seminorm.smul_le_smul
theorem finset_sup_apply (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = β(s.sup fun i => β¨p i x, map_nonneg (p i) xβ© : ββ₯0) := by
induction' s using Finset.cons_induction_on with a s ha ih
Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
norm_cast
Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max,
NNReal.coe_max, NNReal.coe_mk, ih]
#align seminorm.finset_sup_apply Seminorm.finset_sup_apply
theorem exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
β i β s, s.sup p x = p i x := by
rcases Finset.exists_mem_eq_sup s hs (fun i β¦ (β¨p i x, map_nonneg _ _β© : ββ₯0)) with β¨i, hi, hixβ©
rw [finset_sup_apply]
exact β¨i, hi, congr_arg _ hixβ©
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) :
s.sup p x = 0 β¨ β i β s, s.sup p x = p i x := by
rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
Β· left; rfl
Β· right; exact exists_apply_eq_finset_sup p hs x
theorem finset_sup_smul (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (C : ββ₯0) :
s.sup (C β’ p) = C β’ s.sup p := by
ext x
rw [smul_apply, finset_sup_apply, finset_sup_apply]
symm
exact congr_arg ((β) : ββ₯0 β β) (NNReal.mul_finset_sup C s (fun i β¦ β¨p i x, map_nonneg _ _β©))
theorem finset_sup_le_sum (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) : s.sup p β€ β i in s, p i := by
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
#align seminorm.finset_sup_le_sum Seminorm.finset_sup_le_sum
theorem finset_sup_apply_le {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 β€ a)
(h : β i, i β s β p i x β€ a) : s.sup p x β€ a := by
lift a to ββ₯0 using ha
rw [finset_sup_apply, NNReal.coe_le_coe]
exact Finset.sup_le h
#align seminorm.finset_sup_apply_le Seminorm.finset_sup_apply_le
theorem le_finset_sup_apply {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
(hi : i β s) : p i x β€ s.sup p x :=
(Finset.le_sup hi : p i β€ s.sup p) x
theorem finset_sup_apply_lt {p : ΞΉ β Seminorm π E} {s : Finset ΞΉ} {x : E} {a : β} (ha : 0 < a)
(h : β i, i β s β p i x < a) : s.sup p x < a := by
lift a to ββ₯0 using ha.le
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
Β· exact h
Β· exact NNReal.coe_pos.mpr ha
#align seminorm.finset_sup_apply_lt Seminorm.finset_sup_apply_lt
theorem norm_sub_map_le_sub (p : Seminorm π E) (x y : E) : βp x - p yβ β€ p (x - y) :=
abs_sub_map_le_sub p x y
#align seminorm.norm_sub_map_le_sub Seminorm.norm_sub_map_le_sub
end Module
end SeminormedRing
section SeminormedCommRing
variable [SeminormedRing π] [SeminormedCommRing πβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [AddCommGroup E] [AddCommGroup Eβ] [Module π E] [Module πβ Eβ]
theorem comp_smul (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) :
p.comp (c β’ f) = βcββ β’ p.comp f :=
ext fun _ => by
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
smul_eq_mul, comp_apply]
#align seminorm.comp_smul Seminorm.comp_smul
theorem comp_smul_apply (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (c : πβ) (x : E) :
p.comp (c β’ f) x = βcβ * p (f x) :=
map_smul_eq_mul p _ _
#align seminorm.comp_smul_apply Seminorm.comp_smul_apply
end SeminormedCommRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] {p q : Seminorm π E} {x : E}
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
β¨0, by
rintro _ β¨x, rflβ©
dsimp; positivityβ©
#align seminorm.bdd_below_range_add Seminorm.bddBelow_range_add
noncomputable instance instInf : Inf (Seminorm π E) where
inf p q :=
{ p.toAddGroupSeminorm β q.toAddGroupSeminorm with
toFun := fun x => β¨
u : E, p u + q (x - u)
smul' := by
intro a x
obtain rfl | ha := eq_or_ne a 0
Β· rw [norm_zero, zero_mul, zero_smul]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
-- Porting note: the following was previously `fun i => by positivity`
(fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _))
fun x hx => β¨0, by rwa [map_zero, sub_zero, map_zero, add_zero]β©
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, β map_smul_eq_mul p, β
map_smul_eq_mul q, smul_sub]
refine'
Function.Surjective.iInf_congr ((aβ»ΒΉ β’ Β·) : E β E)
(fun u => β¨a β’ u, inv_smul_smulβ ha uβ©) fun u => _
rw [smul_inv_smulβ ha] }
@[simp]
theorem inf_apply (p q : Seminorm π E) (x : E) : (p β q) x = β¨
u : E, p u + q (x - u) :=
rfl
#align seminorm.inf_apply Seminorm.inf_apply
noncomputable instance instLattice : Lattice (Seminorm π E) :=
{ Seminorm.instSemilatticeSup with
inf := (Β· β Β·)
inf_le_left := fun p q x =>
ciInf_le_of_le bddBelow_range_add x <| by
simp only [sub_self, map_zero, add_zero]; rfl
inf_le_right := fun p q x =>
ciInf_le_of_le bddBelow_range_add 0 <| by
simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
le_inf := fun a b c hab hac x =>
le_ciInf fun u => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
theorem smul_inf [SMul R β] [SMul R ββ₯0] [IsScalarTower R ββ₯0 β] (r : R) (p q : Seminorm π E) :
r β’ (p β q) = r β’ p β r β’ q := by
ext
simp_rw [smul_apply, inf_apply, smul_apply, β smul_one_smul ββ₯0 r (_ : β), NNReal.smul_def,
smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
#align seminorm.smul_inf Seminorm.smul_inf
section Classical
open Classical
/-- We define the supremum of an arbitrary subset of `Seminorm π E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β β`* (that is, if `s` is pointwise bounded
above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
seminorm.
* otherwise, we take the zero seminorm `β₯`.
There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
the case disjunction on `BddAbove ((β) '' s : Set (E β β))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π E) where
sSup s :=
if h : BddAbove ((β) '' s : Set (E β β)) then
{ toFun := β¨ p : s, ((p : Seminorm π E) : E β β)
map_zero' := by
rw [iSup_apply, β @Real.ciSup_const_zero s]
congr!
rename_i _ _ _ i
exact map_zero i.1
add_le' := fun x y => by
rcases h with β¨q, hqβ©
obtain rfl | h := s.eq_empty_or_nonempty
Β· simp [Real.ciSup_empty]
haveI : Nonempty βs := h.coe_sort
simp only [iSup_apply]
refine' ciSup_le fun i =>
((i : Seminorm π E).add_le' x y).trans <| add_le_add
-- Porting note: `f` is provided to force `Subtype.val` to appear.
-- A type ascription on `_` would have also worked, but would have been more verbose.
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun x) β¨q x, _β© i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm π E).toFun y) β¨q y, _β© i)
<;> rw [mem_upperBounds, forall_range_iff]
<;> exact fun j => hq (mem_image_of_mem _ j.2) _
neg' := fun x => by
simp only [iSup_apply]
congr! 2
rename_i _ _ _ i
exact i.1.neg' _
smul' := fun a x => by
simp only [iSup_apply]
rw [β smul_eq_mul,
Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π E) x]
congr!
rename_i _ _ _ i
exact i.1.smul' a x }
else β₯
protected theorem coe_sSup_eq' {s : Set <| Seminorm π E}
(hs : BddAbove ((β) '' s : Set (E β β))) : β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
congr_arg _ (dif_pos hs)
#align seminorm.coe_Sup_eq' Seminorm.coe_sSup_eq'
protected theorem bddAbove_iff {s : Set <| Seminorm π E} :
BddAbove s β BddAbove ((β) '' s : Set (E β β)) :=
β¨fun β¨q, hqβ© => β¨q, ball_image_of_ball fun p hp => hq hpβ©, fun H =>
β¨sSup s, fun p hp x => by
dsimp
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
rcases H with β¨q, hqβ©
exact
le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) xβ© β¨p, hpβ©β©β©
#align seminorm.bdd_above_iff Seminorm.bddAbove_iff
protected theorem bddAbove_range_iff {p : ΞΉ β Seminorm π E} :
BddAbove (range p) β β x, BddAbove (range fun i β¦ p i x) := by
rw [Seminorm.bddAbove_iff, β range_comp, bddAbove_range_pi]; rfl
protected theorem coe_sSup_eq {s : Set <| Seminorm π E} (hs : BddAbove s) :
β(sSup s) = β¨ p : s, ((p : Seminorm π E) : E β β) :=
Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
#align seminorm.coe_Sup_eq Seminorm.coe_sSup_eq
protected theorem coe_iSup_eq {ΞΉ : Type*} {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) :
β(β¨ i, p i) = β¨ i, ((p i : Seminorm π E) : E β β) := by
rw [β sSup_range, Seminorm.coe_sSup_eq hp]
exact iSup_range' (fun p : Seminorm π E => (p : E β β)) p
#align seminorm.coe_supr_eq Seminorm.coe_iSup_eq
protected theorem sSup_apply {s : Set (Seminorm π E)} (hp : BddAbove s) {x : E} :
(sSup s) x = β¨ p : s, (p : E β β) x := by
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
protected theorem iSup_apply {ΞΉ : Type*} {p : ΞΉ β Seminorm π E}
(hp : BddAbove (range p)) {x : E} : (β¨ i, p i) x = β¨ i, p i x := by
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
protected theorem sSup_empty : sSup (β
: Set (Seminorm π E)) = β₯ := by
ext
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
rfl
private theorem Seminorm.isLUB_sSup (s : Set (Seminorm π E)) (hsβ : BddAbove s) (hsβ : s.Nonempty) :
IsLUB s (sSup s) := by
refine' β¨fun p hp x => _, fun p hp x => _β© <;> haveI : Nonempty βs := hsβ.coe_sort <;>
dsimp <;> rw [Seminorm.coe_sSup_eq hsβ, iSup_apply]
Β· rcases hsβ with β¨q, hqβ©
exact le_ciSup β¨q x, forall_range_iff.mpr fun i : s => hq i.2 xβ© β¨p, hpβ©
Β· exact ciSup_le fun q => hp q.2 x
/-- `Seminorm π E` is a conditionally complete lattice.
Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
ConditionallyCompleteLattice (Seminorm π E) :=
conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π E) Seminorm.isLUB_sSup
end Classical
end NormedField
/-! ### Seminorm ball -/
section SeminormedRing
variable [SeminormedRing π]
section AddCommGroup
variable [AddCommGroup E]
section SMul
variable [SMul π E] (p : Seminorm π E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : β) :=
{ y : E | p (y - x) < r }
#align seminorm.ball Seminorm.ball
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) β€ r`. -/
def closedBall (x : E) (r : β) :=
{ y : E | p (y - x) β€ r }
#align seminorm.closed_ball Seminorm.closedBall
variable {x y : E} {r : β}
@[simp]
theorem mem_ball : y β ball p x r β p (y - x) < r :=
Iff.rfl
#align seminorm.mem_ball Seminorm.mem_ball
@[simp]
theorem mem_closedBall : y β closedBall p x r β p (y - x) β€ r :=
Iff.rfl
#align seminorm.mem_closed_ball Seminorm.mem_closedBall
theorem mem_ball_self (hr : 0 < r) : x β ball p x r := by simp [hr]
#align seminorm.mem_ball_self Seminorm.mem_ball_self
theorem mem_closedBall_self (hr : 0 β€ r) : x β closedBall p x r := by simp [hr]
#align seminorm.mem_closed_ball_self Seminorm.mem_closedBall_self
theorem mem_ball_zero : y β ball p 0 r β p y < r := by rw [mem_ball, sub_zero]
#align seminorm.mem_ball_zero Seminorm.mem_ball_zero
theorem mem_closedBall_zero : y β closedBall p 0 r β p y β€ r := by rw [mem_closedBall, sub_zero]
#align seminorm.mem_closed_ball_zero Seminorm.mem_closedBall_zero
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
Set.ext fun _ => p.mem_ball_zero
#align seminorm.ball_zero_eq Seminorm.ball_zero_eq
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y β€ r } :=
Set.ext fun _ => p.mem_closedBall_zero
#align seminorm.closed_ball_zero_eq Seminorm.closedBall_zero_eq
theorem ball_subset_closedBall (x r) : ball p x r β closedBall p x r := fun _ h =>
(mem_closedBall _).mpr ((mem_ball _).mp h).le
#align seminorm.ball_subset_closed_ball Seminorm.ball_subset_closedBall
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β Ο > r, ball p x Ο := by
ext y; simp_rw [mem_closedBall, mem_iInterβ, mem_ball, β forall_lt_iff_le']
#align seminorm.closed_ball_eq_bInter_ball Seminorm.closedBall_eq_biInter_ball
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π E) x r = Set.univ := by
rw [Set.eq_univ_iff_forall, ball]
simp [hr]
#align seminorm.ball_zero' Seminorm.ball_zero'
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π E) x r = Set.univ :=
eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
#align seminorm.closed_ball_zero' Seminorm.closedBall_zero'
theorem ball_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).ball x r = p.ball x (r / c) := by
ext
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.ball_smul Seminorm.ball_smul
theorem closedBall_smul (p : Seminorm π E) {c : NNReal} (hc : 0 < c) (r : β) (x : E) :
(c β’ p).closedBall x r = p.closedBall x (r / c) := by
ext
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
#align seminorm.closed_ball_smul Seminorm.closedBall_smul
theorem ball_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
ball (p β q) e r = ball p e r β© ball q e r := by
simp_rw [ball, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
#align seminorm.ball_sup Seminorm.ball_sup
theorem closedBall_sup (p : Seminorm π E) (q : Seminorm π E) (e : E) (r : β) :
closedBall (p β q) e r = closedBall p e r β© closedBall q e r := by
simp_rw [closedBall, β Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
#align seminorm.closed_ball_sup Seminorm.closedBall_sup
theorem ball_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : β) :
ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.ball_finset_sup' Seminorm.ball_finset_sup'
theorem closedBall_finset_sup' (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
(r : β) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
Β· classical simp
Β· rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
simp only [inf_eq_inter, ih]
#align seminorm.closed_ball_finset_sup' Seminorm.closedBall_finset_sup'
theorem ball_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) : p.ball x rβ β p.ball x rβ :=
fun _ (hx : _ < _) => hx.trans_le h
#align seminorm.ball_mono Seminorm.ball_mono
theorem closedBall_mono {p : Seminorm π E} {rβ rβ : β} (h : rβ β€ rβ) :
p.closedBall x rβ β p.closedBall x rβ := fun _ (hx : _ β€ _) => hx.trans h
#align seminorm.closed_ball_mono Seminorm.closedBall_mono
theorem ball_antitone {p q : Seminorm π E} (h : q β€ p) : p.ball x r β q.ball x r := fun _ =>
(h _).trans_lt
#align seminorm.ball_antitone Seminorm.ball_antitone
theorem closedBall_antitone {p q : Seminorm π E} (h : q β€ p) :
p.closedBall x r β q.closedBall x r := fun _ => (h _).trans
#align seminorm.closed_ball_antitone Seminorm.closedBall_antitone
theorem ball_add_ball_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.ball (xβ : E) rβ + p.ball (xβ : E) rβ β p.ball (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_ball, add_sub_add_comm]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hyβ hyβ)
#align seminorm.ball_add_ball_subset Seminorm.ball_add_ball_subset
theorem closedBall_add_closedBall_subset (p : Seminorm π E) (rβ rβ : β) (xβ xβ : E) :
p.closedBall (xβ : E) rβ + p.closedBall (xβ : E) rβ β p.closedBall (xβ + xβ) (rβ + rβ) := by
rintro x β¨yβ, yβ, hyβ, hyβ, rflβ©
rw [mem_closedBall, add_sub_add_comm]
exact (map_add_le_add p _ _).trans (add_le_add hyβ hyβ)
#align seminorm.closed_ball_add_closed_ball_subset Seminorm.closedBall_add_closedBall_subset
theorem sub_mem_ball (p : Seminorm π E) (xβ xβ y : E) (r : β) :
xβ - xβ β p.ball y r β xβ β p.ball (xβ + y) r := by simp_rw [mem_ball, sub_sub]
#align seminorm.sub_mem_ball Seminorm.sub_mem_ball
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_ball x y r
#align seminorm.vadd_ball Seminorm.vadd_ball
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
Metric.vadd_closedBall x y r
#align seminorm.vadd_closed_ball Seminorm.vadd_closedBall
end SMul
section Module
variable [Module π E]
variable [SeminormedRing πβ] [AddCommGroup Eβ] [Module πβ Eβ]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
theorem ball_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).ball x r = f β»ΒΉ' p.ball (f x) r := by
ext
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.ball_comp Seminorm.ball_comp
theorem closedBall_comp (p : Seminorm πβ Eβ) (f : E βββ[Οββ] Eβ) (x : E) (r : β) :
(p.comp f).closedBall x r = f β»ΒΉ' p.closedBall (f x) r := by
ext
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
#align seminorm.closed_ball_comp Seminorm.closedBall_comp
variable (p : Seminorm π E)
theorem preimage_metric_ball {r : β} : p β»ΒΉ' Metric.ball 0 r = { x | p x < r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_ball Seminorm.preimage_metric_ball
theorem preimage_metric_closedBall {r : β} : p β»ΒΉ' Metric.closedBall 0 r = { x | p x β€ r } := by
ext x
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
Real.norm_of_nonneg (map_nonneg p _)]
#align seminorm.preimage_metric_closed_ball Seminorm.preimage_metric_closedBall
theorem ball_zero_eq_preimage_ball {r : β} : p.ball 0 r = p β»ΒΉ' Metric.ball 0 r := by
rw [ball_zero_eq, preimage_metric_ball]
#align seminorm.ball_zero_eq_preimage_ball Seminorm.ball_zero_eq_preimage_ball
theorem closedBall_zero_eq_preimage_closedBall {r : β} :
p.closedBall 0 r = p β»ΒΉ' Metric.closedBall 0 r := by
rw [closedBall_zero_eq, preimage_metric_closedBall]
#align seminorm.closed_ball_zero_eq_preimage_closed_ball Seminorm.closedBall_zero_eq_preimage_closedBall
@[simp]
theorem ball_bot {r : β} (x : E) (hr : 0 < r) : ball (β₯ : Seminorm π E) x r = Set.univ :=
ball_zero' x hr
#align seminorm.ball_bot Seminorm.ball_bot
@[simp]
theorem closedBall_bot {r : β} (x : E) (hr : 0 < r) :
closedBall (β₯ : Seminorm π E) x r = Set.univ :=
closedBall_zero' x hr
#align seminorm.closed_ball_bot Seminorm.closedBall_bot
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : β) : Balanced π (ball p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_ball_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
#align seminorm.balanced_ball_zero Seminorm.balanced_ball_zero
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : β) : Balanced π (closedBall p 0 r) := by
rintro a ha x β¨y, hy, hxβ©
rw [mem_closedBall_zero, β hx, map_smul_eq_mul]
calc
_ β€ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ β€ r := by rwa [mem_closedBall_zero] at hy
#align seminorm.balanced_closed_ball_zero Seminorm.balanced_closedBall_zero
theorem ball_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 < r) : ball (s.sup p) x r = β i β s, ball (p i) x r := by
lift r to NNReal using hr.le
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
Finset.sup_lt_iff (show β₯ < r from hr), β NNReal.coe_lt_coe, NNReal.coe_mk]
#align seminorm.ball_finset_sup_eq_Inter Seminorm.ball_finset_sup_eq_iInter
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β}
(hr : 0 β€ r) : closedBall (s.sup p) x r = β i β s, closedBall (p i) x r := by
lift r to NNReal using hr
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, β
NNReal.coe_le_coe, NNReal.coe_mk]
#align seminorm.closed_ball_finset_sup_eq_Inter Seminorm.closedBall_finset_sup_eq_iInter
theorem ball_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 < r) :
ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
rw [Finset.inf_eq_iInf]
exact ball_finset_sup_eq_iInter _ _ _ hr
#align seminorm.ball_finset_sup Seminorm.ball_finset_sup
theorem closedBall_finset_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ) (x : E) {r : β} (hr : 0 β€ r) :
closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
rw [Finset.inf_eq_iInf]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
#align seminorm.closed_ball_finset_sup Seminorm.closedBall_finset_sup
@[simp]
theorem ball_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r β€ 0) : p.ball x r = β
:= by
ext
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
exact hr.trans (map_nonneg p _)
#align seminorm.ball_eq_emptyset Seminorm.ball_eq_emptyset
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π E) {x : E} {r : β} (hr : r < 0) :
p.closedBall x r = β
:= by
ext
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
exact hr.trans_le (map_nonneg _ _)
#align seminorm.closed_ball_eq_emptyset Seminorm.closedBall_eq_emptyset
theorem closedBall_smul_ball (p : Seminorm π E) {rβ : β} (hrβ : rβ β 0) (rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
refine fun a ha b hb β¦ mul_lt_mul' ha hb (map_nonneg _ _) ?_
exact hrβ.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
theorem ball_smul_closedBall (p : Seminorm π E) (rβ : β) {rβ : β} (hrβ : rβ β 0) :
Metric.ball (0 : π) rβ β’ p.closedBall 0 rβ β p.ball 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
map_smul_eq_mul]
intro a ha b hb
rw [mul_comm, mul_comm rβ]
refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ.lt_or_lt.resolve_left ?_)
exact ((map_nonneg p b).trans hb).not_lt
theorem ball_smul_ball (p : Seminorm π E) (rβ rβ : β) :
Metric.ball (0 : π) rβ β’ p.ball 0 rβ β p.ball 0 (rβ * rβ) := by
rcases eq_or_ne rβ 0 with rfl | hrβ
Β· simp
Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
(ball_smul_closedBall _ _ hrβ)
#align seminorm.ball_smul_ball Seminorm.ball_smul_ball
theorem closedBall_smul_closedBall (p : Seminorm π E) (rβ rβ : β) :
Metric.closedBall (0 : π) rβ β’ p.closedBall 0 rβ β p.closedBall 0 (rβ * rβ) := by
simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
intro a ha b hb
gcongr
exact (norm_nonneg _).trans ha
#align seminorm.closed_ball_smul_closed_ball Seminorm.closedBall_smul_closedBall
-- Porting note: TODO: make that an `iff`
theorem neg_mem_ball_zero (r : β) (hx : x β ball p 0 r) : -x β ball p 0 r := by
simpa only [mem_ball_zero, map_neg_eq_map] using hx
#align seminorm.symmetric_ball_zero Seminorm.neg_mem_ball_zero
@[simp]
theorem neg_ball (p : Seminorm π E) (r : β) (x : E) : -ball p x r = ball p (-x) r := by
ext
rw [Set.mem_neg, mem_ball, mem_ball, β neg_add', sub_neg_eq_add, map_neg_eq_map]
#align seminorm.neg_ball Seminorm.neg_ball
end Module
end AddCommGroup
end SeminormedRing
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E] (p : Seminorm π E) {A B : Set E} {a : π}
{r : β} {x : E}
theorem closedBall_iSup {p : ΞΉ β Seminorm π E} (hp : BddAbove (range p)) (e : E) {r : β}
(hr : 0 < r) : closedBall (β¨ i, p i) e r = β i, closedBall (p i) e r := by
cases isEmpty_or_nonempty ΞΉ
Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
exact closedBall_bot _ hr
Β· ext x
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
theorem ball_norm_mul_subset {p : Seminorm π E} {k : π} {r : β} :
p.ball 0 (βkβ * r) β k β’ p.ball 0 r := by
rcases eq_or_ne k 0 with (rfl | hk)
Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
exact empty_subset _
Β· intro x
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, β
mul_lt_mul_left <| norm_pos_iff.mpr hk, β mul_assoc, β div_eq_mul_inv βkβ βkβ,
div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self hk, one_smul]
#align seminorm.ball_norm_mul_subset Seminorm.ball_norm_mul_subset
theorem smul_ball_zero {p : Seminorm π E} {k : π} {r : β} (hk : k β 0) :
k β’ p.ball 0 r = p.ball 0 (βkβ * r) := by
ext
rw [mem_smul_set_iff_inv_smul_memβ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
norm_inv, β div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm]
#align seminorm.smul_ball_zero Seminorm.smul_ball_zero
theorem smul_closedBall_subset {p : Seminorm π E} {k : π} {r : β} :
k β’ p.closedBall 0 r β p.closedBall 0 (βkβ * r) := by
rintro x β¨y, hy, hβ©
rw [Seminorm.mem_closedBall_zero, β h, map_smul_eq_mul]
rw [Seminorm.mem_closedBall_zero] at hy
gcongr
#align seminorm.smul_closed_ball_subset Seminorm.smul_closedBall_subset
theorem smul_closedBall_zero {p : Seminorm π E} {k : π} {r : β} (hk : 0 < βkβ) :
k β’ p.closedBall 0 r = p.closedBall 0 (βkβ * r) := by
refine' subset_antisymm smul_closedBall_subset _
intro x
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
refine' fun hx => β¨kβ»ΒΉ β’ x, _, _β©
Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, β mul_le_mul_left hk, β mul_assoc,
β div_eq_mul_inv βkβ βkβ, div_self (ne_of_gt hk), one_mul]
rw [β smul_assoc, smul_eq_mul, β div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
#align seminorm.smul_closed_ball_zero Seminorm.smul_closedBall_zero
theorem ball_zero_absorbs_ball_zero (p : Seminorm π E) {rβ rβ : β} (hrβ : 0 < rβ) :
Absorbs π (p.ball 0 rβ) (p.ball 0 rβ) := by
rcases exists_pos_lt_mul hrβ rβ with β¨r, hrβ, hrβ©
refine' β¨r, hrβ, fun a ha x hx => _β©
rw [smul_ball_zero (norm_pos_iff.1 <| hrβ.trans_le ha), p.mem_ball_zero]
rw [p.mem_ball_zero] at hx
exact hx.trans (hr.trans_le <| by gcongr)
#align seminorm.ball_zero_absorbs_ball_zero Seminorm.ball_zero_absorbs_ball_zero
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (ball p (0 : E) r) :=
absorbent_iff_forall_absorbs_singleton.2 fun _ =>
(p.ball_zero_absorbs_ball_zero hr).mono_right <|
singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
#align seminorm.absorbent_ball_zero Seminorm.absorbent_ball_zero
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π (closedBall p (0 : E) r) :=
(p.absorbent_ball_zero hr).subset (p.ball_subset_closedBall _ _)
#align seminorm.absorbent_closed_ball_zero Seminorm.absorbent_closedBall_zero
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π (ball p x r) := by
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_ball_zero] at hy
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
#align seminorm.absorbent_ball Seminorm.absorbent_ball
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π (closedBall p x r) := by
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
rw [p.mem_closedBall_zero] at hy
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
#align seminorm.absorbent_closed_ball Seminorm.absorbent_closedBall
@[simp]
theorem smul_ball_preimage (p : Seminorm π E) (y : E) (r : β) (a : π) (ha : a β 0) :
(a β’ Β·) β»ΒΉ' p.ball y r = p.ball (aβ»ΒΉ β’ y) (r / βaβ) :=
Set.ext fun _ => by
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, β
map_smul_eq_mul p, smul_sub, smul_inv_smulβ ha]
#align seminorm.smul_ball_preimage Seminorm.smul_ball_preimage
end NormedField
section Convex
variable [NormedField π] [AddCommGroup E] [NormedSpace β π] [Module π E]
section SMul
variable [SMul β E] [IsScalarTower β π E] (p : Seminorm π E)
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn β univ p := by
refine' β¨convex_univ, fun x _ y _ a b ha hb _ => _β©
calc
p (a β’ x + b β’ y) β€ p (a β’ x) + p (b β’ y) := map_add_le_add p _ _
_ = βa β’ (1 : π)β * p x + βb β’ (1 : π)β * p y := by
rw [β map_smul_eq_mul p, β map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
Real.norm_of_nonneg hb]
#align seminorm.convex_on Seminorm.convexOn
end SMul
section Module
variable [Module β E] [IsScalarTower β π E] (p : Seminorm π E) (x : E) (r : β)
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex β (ball p x r) := by
convert (p.convexOn.translate_left (-x)).convex_lt r
ext y
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
rfl
#align seminorm.convex_ball Seminorm.convex_ball
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex β (closedBall p x r) := by
rw [closedBall_eq_biInter_ball]
exact convex_iInterβ fun _ _ => convex_ball _ _ _
#align seminorm.convex_closed_ball Seminorm.convex_closedBall
end Module
end Convex
section RestrictScalars
variable (π) {π' : Type*} [NormedField π] [SeminormedRing π'] [NormedAlgebra π π']
[NormOneClass π'] [AddCommGroup E] [Module π' E] [SMul π E] [IsScalarTower π π' E]
/-- Reinterpret a seminorm over a field `π'` as a seminorm over a smaller field `π`. This will
typically be used with `IsROrC π'` and `π = β`. -/
protected def restrictScalars (p : Seminorm π' E) : Seminorm π E :=
{ p with
smul' := fun a x => by rw [β smul_one_smul π' a x, p.smul', norm_smul, norm_one, mul_one] }
#align seminorm.restrict_scalars Seminorm.restrictScalars
@[simp]
theorem coe_restrictScalars (p : Seminorm π' E) : (p.restrictScalars π : E β β) = p :=
rfl
#align seminorm.coe_restrict_scalars Seminorm.coe_restrictScalars
@[simp]
theorem restrictScalars_ball (p : Seminorm π' E) : (p.restrictScalars π).ball = p.ball :=
rfl
#align seminorm.restrict_scalars_ball Seminorm.restrictScalars_ball
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π' E) :
(p.restrictScalars π).closedBall = p.closedBall :=
rfl
#align seminorm.restrict_scalars_closed_ball Seminorm.restrictScalars_closedBall
end RestrictScalars
/-! ### Continuity criterions for seminorms -/
section Continuity
variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [Module π E]
variable [Module π E]
/-- A seminorm is continuous at `0` if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 := by
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
{r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ β¦ ?_
obtain β¨k, hkβ, hkβ© : β k : π, 0 < βkβ β§ βkβ * r < Ξ΅ := by
rcases le_or_lt r 0 with hr | hr
Β· use 1; simpa using hr.trans_lt hΞ΅
Β· simpa [lt_div_iff hr] using exists_norm_lt π (div_pos hΞ΅ hr)
rw [β set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ), smul_closedBall_zero hkβ] at hp
exact mem_of_superset hp <| p.closedBall_mono hk.le
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
/-- A seminorm is continuous at `0` if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm π E}
(hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
ContinuousAt p 0 :=
continuousAt_zero_of_forall'
(fun r hr β¦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
(hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : UniformContinuous p := by
have hp : Filter.Tendsto p (π 0) (π 0) := map_zero p βΈ hp
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
(fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
#align seminorm.uniform_continuous_of_continuous_at_zero Seminorm.uniformContinuous_of_continuousAt_zero
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : ContinuousAt p 0) : Continuous p := by
letI := TopologicalAddGroup.toUniformSpace E
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
/-- A seminorm is uniformly continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.uniform_continuous Seminorm.uniformContinuous
/-- A seminorm is uniformly continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [UniformAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem uniformContinuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
UniformContinuous p :=
Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.uniform_continuous' Seminorm.uniformContinuous'
/-- A seminorm is continuous if `p.ball 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.ball 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
#align seminorm.continuous Seminorm.continuous
/-- A seminorm is continuous if `p.closedBall 0 r β π 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [TopologicalAddGroup E]
{p : Seminorm π E} (hp : β r > 0, p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
{p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
Continuous p :=
Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
#align seminorm.continuous' Seminorm.continuous'
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E]
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
refine Seminorm.continuous_of_forall (fun r hr β¦ Filter.mem_of_superset
(IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
rw [ball_zero_eq]
exact isOpen_lt hq continuous_const
#align seminorm.continuous_of_le Seminorm.continuous_of_le
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm π E} (hp : Continuous p) {r : β}
(hr : 0 < r) : p.ball 0 r β (π 0 : Filter E) :=
have this : Tendsto p (π 0) (π 0) := map_zero p βΈ hp.tendsto 0
by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
lemma uniformSpace_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
βΉUniformSpace EβΊ = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
refine UniformAddGroup.ext βΉ_βΊ p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_uniformAddGroup ?_
apply le_antisymm
Β· rw [β @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, β tendsto_iff_comap]
suffices Continuous p from this.tendsto' 0 _ (map_zero p)
rcases hβ with β¨r, hrβ©
exact p.continuous' hr
Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
simpa only [subset_def, mem_ball_zero] using hβ
lemma uniformity_eq_of_hasBasis
{ΞΉ} [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
{p' : ΞΉ β Prop} {s : ΞΉ β Set E} (p : Seminorm π E) (hb : (π 0 : Filter E).HasBasis p' s)
(hβ : β r, p.closedBall 0 r β π 0) (hβ : β i, p' i β β r > 0, p.ball 0 r β s i) :
π€ E = β¨
r > 0, π {x | p (x.1 - x.2) < r} := by
rw [uniformSpace_eq_of_hasBasis p hb hβ hβ]; rfl
end Continuity
section ShellLemmas
variable [NormedField π] [AddCommGroup E] [Module π E]
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β}
(Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β 0) : β n : β€, c^n β 0 β§
p (c^n β’ x) < Ξ΅ β§ (Ξ΅ / βcβ β€ p (c^n β’ x)) β§ (βc^nββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) := by
have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
rcases exists_mem_Ico_zpow xΞ΅pos hc with β¨n, hnβ©
have cpos : 0 < βcβ := by positivity
have cnpos : 0 < βc^(n+1)β := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
refine β¨-(n+1), ?_, ?_, ?_, ?_β©
Β· show c ^ (-(n + 1)) β 0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
Β· show p ((c ^ (-(n + 1))) β’ x) < Ξ΅
rw [map_smul_eq_mul, zpow_neg, norm_inv, β div_eq_inv_mul, div_lt_iff cnpos, mul_comm,
norm_zpow]
exact (div_lt_iff Ξ΅pos).1 (hn.2)
Β· show Ξ΅ / βcβ β€ p (c ^ (-(n + 1)) β’ x)
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ (ne_of_gt cpos),
zpow_one, mul_inv_rev, mul_comm, β mul_assoc, β mul_assoc, mul_inv_cancel (ne_of_gt cpos),
one_mul, β div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
exact (le_div_iff Ξ΅pos).1 hn.1
Β· show β(c ^ (-(n + 1)))ββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x
have : Ξ΅β»ΒΉ * βcβ * p x = Ξ΅β»ΒΉ * p x * βcβ := by ring
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ (ne_of_gt cpos), zpow_one, this,
β div_eq_inv_mul]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `βcβ>1`, then any `x` such that `p x β 0` can be
moved by scalar multiplication to any `p`-shell of width `βcβ`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π E) {c : π} (hc : 1 < βcβ) {Ξ΅ : β} (Ξ΅pos : 0 < Ξ΅) {x : E}
(hx : p x β 0) :
βd:π, d β 0 β§ p (d β’ x) < Ξ΅ β§ (Ξ΅/βcβ β€ p (d β’ x)) β§ (βdββ»ΒΉ β€ Ξ΅β»ΒΉ * βcβ * p x) :=
let β¨_, hnβ© := p.rescale_to_shell_zpow hc Ξ΅pos hx; β¨_, hnβ©
/-- Let `p` and `q` be two seminorms on a vector space over a `nontrivially_normed_field`.
If we have `q x β€ C * p x` on some shell of the form `{x | Ξ΅/βcβ β€ p x < Ξ΅}` (where `Ξ΅ > 0`
and `βcβ > 1`), then we also have `q x β€ C * p x` for all `x` such that `p x β 0`. -/
lemma bound_of_shell
(p q : Seminorm π E) {Ξ΅ C : β} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ C * p x) {x : E} (hx : p x β 0) :
q x β€ C * p x := by
rcases p.rescale_to_shell hc Ξ΅_pos hx with β¨Ξ΄, hΞ΄, Ξ΄xle, leΞ΄x, -β©
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
using hf (Ξ΄ β’ x) leΞ΄x Ξ΄xle
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
(p q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, Ξ΅ / βcβ β€ p x β p x < Ξ΅ β q x β€ (C β’ p) x) {x : E} (hx : p x β 0) :
q x β€ (C β’ p) x :=
Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
lemma bound_of_shell_sup (p : ΞΉ β Seminorm π E) (s : Finset ΞΉ)
(q : Seminorm π E) {Ξ΅ : β} {C : ββ₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π} (hc : 1 < βcβ)
(hf : β x, (β i β s, p i x < Ξ΅) β β j β s, Ξ΅ / βcβ β€ p j x β q x β€ (C β’ p j) x)
{x : E} (hx : β j, j β s β§ p j x β 0) :
q x β€ (C β’ s.sup p) x := by
rcases hx with β¨j, hj, hjxβ©
have : (s.sup p) x β 0 :=
ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt β¦ ?_) this
rcases exists_apply_eq_finset_sup p β¨j, hjβ© y with β¨i, hi, hiyβ©
rw [smul_apply, hiy]
exact hf y (fun k hk β¦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy βΈ hle)
end ShellLemmas
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma bddAbove_of_absorbent {p : ΞΉ β Seminorm π E} {s : Set E} (hs : Absorbent π s)
(h : β x β s, BddAbove (range fun i β¦ p i x)) :
BddAbove (range p) := by
rw [Seminorm.bddAbove_range_iff]
intro x
rcases hs x with β¨r, hr, hrxβ©
rcases exists_lt_norm π r with β¨k, hkβ©
have hk0 : k β 0 := norm_pos_iff.mp (hr.trans hk)
have : kβ»ΒΉ β’ x β s := by
rw [β mem_smul_set_iff_inv_smul_memβ hk0]
exact hrx k hk.le
rcases h (kβ»ΒΉ β’ x) this with β¨M, hMβ©
refine β¨βkβ * M, forall_range_iff.mpr fun i β¦ ?_β©
have := (forall_range_iff.mp hM) i
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
end NontriviallyNormedField
end Seminorm
/-! ### The norm as a seminorm -/
section normSeminorm
variable (π) (E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] {r : β}
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π E :=
{ normAddGroupSeminorm E with smul' := norm_smul }
#align norm_seminorm normSeminorm
@[simp]
theorem coe_normSeminorm : β(normSeminorm π E) = norm :=
rfl
#align coe_norm_seminorm coe_normSeminorm
@[simp]
theorem ball_normSeminorm : (normSeminorm π E).ball = Metric.ball := by
ext x r y
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
#align ball_norm_seminorm ball_normSeminorm
variable {π E} {x : E}
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball_zero hr
#align absorbent_ball_zero absorbent_ball_zero
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : βxβ < r) : Absorbent π (Metric.ball x r) := by
rw [β ball_normSeminorm π]
exact (normSeminorm _ _).absorbent_ball hx
#align absorbent_ball absorbent_ball
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
|
exact (normSeminorm _ _).balanced_ball_zero r
|
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r) := by
rw [β ball_normSeminorm π]
|
Mathlib.Analysis.Seminorm.1446_0.ywwMCgoKeIFKDZ3
|
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π (Metric.ball (0 : E) r)
|
Mathlib_Analysis_Seminorm
|
Ξ±β : Type u_1
Ξ²β : Type u_2
Ξ± : Type u
Ξ² : Type v
instβΒΉ : Fintype Ξ±
instβ : Fintype Ξ²
β’ β (x : Ξ± β Ξ²), x β disjSum univ univ
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Finset.Sum
import Mathlib.Logic.Embedding.Set
#align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1"
/-!
## Instances
We provide the `Fintype` instance for the sum of two fintypes.
-/
universe u v
variable {Ξ± Ξ² : Type*}
open Finset
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by
|
rintro (_ | _)
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by
|
Mathlib.Data.Fintype.Sum.25_0.wOnqEoxEwKMN7BR
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems
|
Mathlib_Data_Fintype_Sum
|
case inl
Ξ±β : Type u_1
Ξ²β : Type u_2
Ξ± : Type u
Ξ² : Type v
instβΒΉ : Fintype Ξ±
instβ : Fintype Ξ²
valβ : Ξ±
β’ Sum.inl valβ β disjSum univ univ
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Finset.Sum
import Mathlib.Logic.Embedding.Set
#align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1"
/-!
## Instances
We provide the `Fintype` instance for the sum of two fintypes.
-/
universe u v
variable {Ξ± Ξ² : Type*}
open Finset
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;>
|
simp
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;>
|
Mathlib.Data.Fintype.Sum.25_0.wOnqEoxEwKMN7BR
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems
|
Mathlib_Data_Fintype_Sum
|
case inr
Ξ±β : Type u_1
Ξ²β : Type u_2
Ξ± : Type u
Ξ² : Type v
instβΒΉ : Fintype Ξ±
instβ : Fintype Ξ²
valβ : Ξ²
β’ Sum.inr valβ β disjSum univ univ
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Finset.Sum
import Mathlib.Logic.Embedding.Set
#align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1"
/-!
## Instances
We provide the `Fintype` instance for the sum of two fintypes.
-/
universe u v
variable {Ξ± Ξ² : Type*}
open Finset
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;>
|
simp
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;>
|
Mathlib.Data.Fintype.Sum.25_0.wOnqEoxEwKMN7BR
|
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems
|
Mathlib_Data_Fintype_Sum
|
Ξ± : Type u_1
Ξ² : Type u_2
a : Ξ±
h : Fintype { b // b β a }
β’ Function.Bijective (Sum.elim Subtype.val Subtype.val)
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Finset.Sum
import Mathlib.Logic.Embedding.Set
#align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1"
/-!
## Instances
We provide the `Fintype` instance for the sum of two fintypes.
-/
universe u v
variable {Ξ± Ξ² : Type*}
open Finset
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;> simp
@[simp]
theorem Finset.univ_disjSum_univ {Ξ± Ξ² : Type*} [Fintype Ξ±] [Fintype Ξ²] :
univ.disjSum univ = (univ : Finset (Sum Ξ± Ξ²)) :=
rfl
#align finset.univ_disj_sum_univ Finset.univ_disjSum_univ
@[simp]
theorem Fintype.card_sum [Fintype Ξ±] [Fintype Ξ²] :
Fintype.card (Sum Ξ± Ξ²) = Fintype.card Ξ± + Fintype.card Ξ² :=
card_disjSum _ _
#align fintype.card_sum Fintype.card_sum
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ± :=
Fintype.ofBijective (Sum.elim ((β) : { b // b = a } β Ξ±) ((β) : { b // b β a } β Ξ±)) <| by
|
classical exact (Equiv.sumCompl (Β· = a)).bijective
|
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ± :=
Fintype.ofBijective (Sum.elim ((β) : { b // b = a } β Ξ±) ((β) : { b // b β a } β Ξ±)) <| by
|
Mathlib.Data.Fintype.Sum.41_0.wOnqEoxEwKMN7BR
|
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ±
|
Mathlib_Data_Fintype_Sum
|
Ξ± : Type u_1
Ξ² : Type u_2
a : Ξ±
h : Fintype { b // b β a }
β’ Function.Bijective (Sum.elim Subtype.val Subtype.val)
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Finset.Sum
import Mathlib.Logic.Embedding.Set
#align_import data.fintype.sum from "leanprover-community/mathlib"@"6623e6af705e97002a9054c1c05a980180276fc1"
/-!
## Instances
We provide the `Fintype` instance for the sum of two fintypes.
-/
universe u v
variable {Ξ± Ξ² : Type*}
open Finset
instance (Ξ± : Type u) (Ξ² : Type v) [Fintype Ξ±] [Fintype Ξ²] : Fintype (Sum Ξ± Ξ²) where
elems := univ.disjSum univ
complete := by rintro (_ | _) <;> simp
@[simp]
theorem Finset.univ_disjSum_univ {Ξ± Ξ² : Type*} [Fintype Ξ±] [Fintype Ξ²] :
univ.disjSum univ = (univ : Finset (Sum Ξ± Ξ²)) :=
rfl
#align finset.univ_disj_sum_univ Finset.univ_disjSum_univ
@[simp]
theorem Fintype.card_sum [Fintype Ξ±] [Fintype Ξ²] :
Fintype.card (Sum Ξ± Ξ²) = Fintype.card Ξ± + Fintype.card Ξ² :=
card_disjSum _ _
#align fintype.card_sum Fintype.card_sum
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ± :=
Fintype.ofBijective (Sum.elim ((β) : { b // b = a } β Ξ±) ((β) : { b // b β a } β Ξ±)) <| by
classical
|
exact (Equiv.sumCompl (Β· = a)).bijective
|
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ± :=
Fintype.ofBijective (Sum.elim ((β) : { b // b = a } β Ξ±) ((β) : { b // b β a } β Ξ±)) <| by
classical
|
Mathlib.Data.Fintype.Sum.41_0.wOnqEoxEwKMN7BR
|
/-- If the subtype of all-but-one elements is a `Fintype` then the type itself is a `Fintype`. -/
def fintypeOfFintypeNe (a : Ξ±) (h : Fintype { b // b β a }) : Fintype Ξ±
|
Mathlib_Data_Fintype_Sum
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.