seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
42335237588
# -*- coding:utf-8 -*- def FindNumsAppearOnce(array): xorValue = AdjacentXor(array) # o(n) index = getFirstBit(xorValue) temp1 = 0 temp2 = 0 for i in array: # o(k*n) k为位数 if isBit1(i, index): temp1 = temp1^i else: temp2 = temp2^i return temp1, temp2 # 相邻元素做异或 def AdjacentXor(array): if len(array)==0: return 0 else: for i in range(len(array)): if i==0: temp = array[i] else: temp = temp^array[i] return temp # 获取最低位为1对应的索引,比如0111,则返回-1 # bin(5) = '0b101' def getFirstBit(num): binstr = bin(num) lenstr = len(binstr) for i in range(-1,-1*(lenstr+1),-1): if binstr[i]==str(1): return i def isBit1(num, index): binstr = bin(num) if binstr[index]==str(1): return True else: return False # 获取array各个元素中某位为1相加的合数,长度为32位列表 # 第0个元素表示,array中所有元素的二进制表示的最低位的和,依次类推。 # bin(0)='0b0', bin(-1)='-0b1' # 如果某个特定位上的1加起来,可以被3整除,说明对应x的那位是0 # 如果某个特定位上的1加起来,不可以被3整除,说明对应x的那位是1 # 根据返回的nums1bit来判断只出现一次的整数的值 def get1BitNum(array): nums1bit = [0 for i in range(32)] for num in array: if num<0: strlen = len(bin(num)) for j, bit in enumerate(bin(num)[-1,-strlen+2,-1]): if bit==1: nums1bit[j] +=1 else: strlen = len(bin(num)) for j, bit in enumerate(bin(num)[-1,-strlen+1,-1]): if bit==1: nums1bit[j] +=1 return nums1bit
TangAL0203/code_to_offer
python/FindNumsAppearOnce.py
FindNumsAppearOnce.py
py
1,868
python
en
code
1
github-code
6
29916696641
import unittest from livecli import Livecli from livecli.plugins.rtmp import RTMPPlugin from livecli.stream import RTMPStream class TestPluginRTMPPlugin(unittest.TestCase): def setUp(self): self.session = Livecli() def assertDictHas(self, a, b): for key, value in a.items(): self.assertEqual(b[key], value) def test_can_handle_url(self): should_match = [ "rtmp://https://example.com/", "rtmpe://https://example.com/", "rtmps://https://example.com/", "rtmpt://https://example.com/", "rtmpte://https://example.com/", ] for url in should_match: self.assertTrue(RTMPPlugin.can_handle_url(url)) should_not_match = [ "https://example.com/index.html", ] for url in should_not_match: self.assertFalse(RTMPPlugin.can_handle_url(url)) def _test_rtmp(self, surl, url, params): plugin = self.session.resolve_url(surl) streams = plugin.streams() self.assertTrue("live" in streams) stream = streams["live"] self.assertTrue(isinstance(stream, RTMPStream)) self.assertEqual(stream.params["rtmp"], url) self.assertDictHas(params, stream.params) def test_plugin_rtmp(self): self._test_rtmp("rtmp://hostname.se/stream", "rtmp://hostname.se/stream", dict()) self._test_rtmp("rtmp://hostname.se/stream live=1 qarg='a \\'string' noq=test", "rtmp://hostname.se/stream", dict(live=True, qarg='a \'string', noq="test")) self._test_rtmp("rtmp://hostname.se/stream live=1 num=47", "rtmp://hostname.se/stream", dict(live=True, num=47)) self._test_rtmp("rtmp://hostname.se/stream conn=['B:1','S:authMe','O:1','NN:code:1.23','NS:flag:ok','O:0']", "rtmp://hostname.se/stream", dict(conn=['B:1', 'S:authMe', 'O:1', 'NN:code:1.23', 'NS:flag:ok', 'O:0']))
ariesw/livecli
tests/test_plugin_rtmp.py
test_plugin_rtmp.py
py
2,035
python
en
code
0
github-code
6
34711863736
from fastapi import FastAPI from fastapi import HTTPException import models app = FastAPI() coffeeDescriptions = [ "A latte is a coffee drink made with espresso and steamed milk. It is a single shot of espresso served in a tall glass, with a layer of steamed milk on top, and a layer of microfoam on top of that.", "A cappuccino is an espresso-based coffee drink that originated in Italy, and is traditionally prepared with steamed milk foam.", "An espresso is a coffee drink that is prepared by forcing a small amount of boiling water under pressure through finely ground coffee beans. Espresso is generally thicker than coffee brewed by other methods, and has cream on top.", "Your average cup of joe made by putting boiled water through some freshly ground coffee beans, nothing special." ] coffeePrices = [2.5, 3.5, 4.5, 1.5] orders = [] @app.get("/") async def root(): """ Returns the menu for the coffee shop """ return {"menu": {1: "latte", 2: "cappuccino", 3: "espresso", 4:"normal"}} @app.get("/coffee/{coffee_id}") async def describeCoffee(coffee_id: int): """ Args: coffee_id (int): The id of the coffee you want to know more about Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: The description of the coffee """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") return {"description": coffeeDescriptions[coffee_id-1]} @app.get("/coffee/{coffee_id}/price") async def priceCoffee(coffee_id: int): """ gets the price of the coffee including tax in USD Args: coffee_id (int): The id of the coffee Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: The price of the coffee including tax in USD """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") return {"price": coffeePrices[coffee_id-1], "currency": "USD", "tax": 0.1, "total": coffeePrices[coffee_id-1]*1.1,} @app.post("/coffee/{coffee_id}/order") async def orderCoffee(coffee_id: int, quantity: int = 1, payed: bool = True): """ Orders the coffee Args: coffee_id (int): The id of the coffee quantity (int, optional): The quantity of the coffee. Defaults to 1. payed (bool, optional): If the coffee has been payed for. Defaults to True. Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: A message saying that the coffee was ordered """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") if not payed: raise HTTPException(status_code=402, detail="You have not payed for your coffee") orders.append(coffee_id) return {"message": "Your coffee has been ordered"} @app.get("/orders") async def getOrders(): """ Gets all the orders Returns: A list of all the orders """ return {"orders": orders} @app.delete("/orders/{order_number}") async def deleteOrders(order_number: int, token: models.Token): """ Deletes an order Args: order_number (int): The order number Raises: HTTPException: If the order_id is not in the list of orders Returns: A message saying that the order was deleted """ if token.id != "secret": raise HTTPException(status_code=403, detail="You do not have permission to delete orders") if order_number > len(orders) or order_number < 1: raise HTTPException(status_code=404, detail="Order not found") orders.pop(order_number-1) return {"message": "Your order has been deleted"} if __name__ == "__main__": import uvicorn # launch the server on port 8000 uvicorn.run(app, host="localhost", port=8000)
ByteOfKathy/RESTAPI-example
backend.py
backend.py
py
3,994
python
en
code
0
github-code
6
37169098035
__author__ = "Moath Maharmeh" __license__ = "GNU General Public License v2.0" __version__ = "1.1" __email__ = "[email protected]" __created__ = "13/Dec/2018" __modified__ = "5/Apr/2019" __project_page__ = "https://github.com/iomoath/file_watchtower" import sqlite3 import os import csv DEFAULT_PATH = os.path.join(os.path.dirname(__file__), 'database.sqlite3') def get_db_path(): global DEFAULT_PATH return DEFAULT_PATH def db_connect(db_path=DEFAULT_PATH): con = sqlite3.connect(db_path) return con def create_tables(): file_record_query = """ CREATE TABLE IF NOT EXISTS file_record ( id INTEGER PRIMARY KEY AUTOINCREMENT, file_path TEXT NOT NULL UNIQUE, hash TEXT NOT NULL, file_size TEXT NOT NULL, exists_on_disk varchar(6) NOT NULL, datetime_last_check TEXT NOT NULL)""" email_msg_query = """ CREATE TABLE IF NOT EXISTS email_msg ( id INTEGER PRIMARY KEY, subject TEXT NOT NULL, body TEXT NOT NULL, attachment TEXT, is_sent VARCHAR(6) DEFAULT 'False')""" conn = db_connect() try: cursor = conn.cursor() cursor.execute(file_record_query) cursor.execute(email_msg_query) except: pass finally: conn.commit() conn.close() def insert_file_record(file_record_dict): conn = db_connect() try: cursor = conn.cursor() query = """ INSERT INTO file_record (file_path, hash, file_size, exists_on_disk, datetime_last_check) VALUES (?, ?, ?, ?, ?)""" cursor.execute(query, (file_record_dict["path"], file_record_dict["hash"], file_record_dict["file_size"], file_record_dict["exists_on_disk"], file_record_dict["datetime_last_check"])) return cursor.lastrowid except: conn.rollback() raise finally: conn.commit() conn.close() def get_exists_on_disk_value(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT exists_on_disk FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_exists_on_disk_value_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT exists_on_disk FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def update_exists_on_disk_value(file_path, new_value): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET exists_on_disk =? WHERE file_path =?""" cursor.execute(query, (new_value, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_exists_on_disk_value_by_hash(file_hash, new_value): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET exists_on_disk =? WHERE hash =?""" cursor.execute(query, (new_value, file_hash,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_file_last_check(file_path, new_datetime_check): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET datetime_last_check =? WHERE file_path =?""" cursor.execute(query, (new_datetime_check, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_file_path(file_hash, old_path, new_path): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET file_path =? WHERE hash =? and file_path=?""" cursor.execute(query, (new_path, file_hash, old_path)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def get_file_records(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM file_record WHERE file_path=?", (file_path,)) rows = cursor.fetchall() return rows except IndexError: return None finally: conn.commit() conn.close() def get_file_records_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM file_record WHERE hash=?", (file_hash,)) rows = cursor.fetchall() return rows except Exception: conn.rollback() raise finally: conn.close() def get_all_file_paths(): # returns all files paths conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_path FROM file_record") rows = cursor.fetchall() path_list = [] for row in rows: path_list.append(row[0]) return path_list except: conn.rollback() finally: conn.close() def get_file_hash(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT hash FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_file_path_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_path FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def is_file_has_record_by_path(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT id FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return len(rows) > 0 except: conn.rollback() return False finally: conn.close() def is_file_has_record_by_hash(hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT id FROM file_record WHERE hash=? LIMIT 1", (hash,)) rows = cursor.fetchall() return len(rows) > 0 except: conn.rollback() finally: conn.close() def get_file_size(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_size FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_file_size_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_size FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def update_file_hash(file_path, new_hash): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET hash =? WHERE file_path =?""" cursor.execute(query, (new_hash, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def delete_file_record(file_path): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM file_record WHERE file_path=?""" cursor.execute(query, (file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def insert_email_msg(email_msg_dict): conn = db_connect() try: cursor = conn.cursor() query = """ INSERT INTO email_msg (subject, body, attachment) VALUES (?, ?, ?)""" cursor.execute(query, ( email_msg_dict["subject"], email_msg_dict["body"], email_msg_dict["attachment"])) return cursor.lastrowid except: conn.rollback() raise finally: conn.commit() conn.close() def delete_msg(msg_id): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM email_msg WHERE id=?""" cursor.execute(query, (msg_id,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def get_unsent_messages(): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM email_msg WHERE is_sent='False'") rows = cursor.fetchall() list_messages = [] for row in rows: msg = { "id": row[0], "subject": row[1], "body": row[2], "attachments": row[3], "is_sent": row[4] } list_messages.append(msg) return list_messages except: conn.rollback() raise finally: conn.close() def delete_sent_messages(): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM email_msg WHERE is_sent=?""" cursor.execute(query, ("True",)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def dump_file_records_to_csv(export_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute('SELECT * FROM file_record') with open(export_path, 'w') as out_csv_file: csv_out = csv.writer(out_csv_file) # write header csv_out.writerow([d[0] for d in cursor.description]) # write data for result in cursor: csv_out.writerow(result) except: conn.rollback() raise finally: conn.close() def delete_all_data(): conn = db_connect() try: cursor = conn.cursor() query1 = """DELETE FROM email_msg""" query2 = """DELETE FROM file_record""" cursor.execute(query1, ) cursor.execute(query2, ) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() # init the database, if no db file or tables, it will be created here create_tables()
iomoath/file_watchtower
db.py
db.py
py
10,875
python
en
code
30
github-code
6
73739274748
#!/usr/bin/env python3 """" This module provides the interface to manage the state of configured workers. It allows to setup the virtual environment, install dependencies into it and then to execute BuildBot worker commands. """ import sys import os.path import argparse import getpass import socket import paramiko import logging sys.path.append(os.path.abspath("{}/../../master/".format(__file__))) import maxscale.config.workers as workers def determineHost(host, domain): possibleHosts = [ host, "{}.{}".format(host, domain) ] for checkHost in possibleHosts: try: socket.gethostbyname(checkHost) except BaseException: continue return checkHost return None def determineHosts(arguments): hosts = {} for hostConfiguration in workers.WORKER_CREDENTIALS: if arguments.host is not None and hostConfiguration["host"] != arguments.host: continue host = determineHost(hostConfiguration["host"], arguments.domain) if host is None: continue if host in hosts: hosts[host].append(hostConfiguration) else: hosts[host] = [hostConfiguration] return hosts def runCommand(sshClient, command): logging.debug("Calling command '{}'".format(command)) stdin, stdout, stderr = sshClient.exec_command(command) stdin.close() stdoutContents = stdout.readlines() stderrContents = stderr.readlines() stdoutText = "".join(stdoutContents).strip() stderrText = "".join(stderrContents).strip() logging.debug("Stdout:\n{}".format(stdoutText)) logging.debug("Stderr:\n{}".format(stderrText)) return [stdoutText, stderrText] def isDirectoryAbsent(sshClient, directory): _, stderr = runCommand(sshClient, "ls -ld {}".format(directory)) if stderr: return True else: return False PYTHON_VENV = "~/buildbot-virtual-env" WORKERS_DIR = "~/buildbot-workers" CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) def executeActionOnHost(hosts, user, description, action): """Execute an action for every host""" client = paramiko.SSHClient() client.load_system_host_keys() for hostIp in hosts: logging.info(description.format(hostIp=hostIp)) client.connect(hostIp, username=user) action(client, hosts[hostIp]) client.close() def setupVirtualEnv(sshClient): if isDirectoryAbsent(sshClient, PYTHON_VENV): logging.info("Creating python virtual environment in {}".format(PYTHON_VENV)) runCommand(sshClient, "python3 -m virtualenv -p /usr/bin/python3 {}".format(PYTHON_VENV)) logging.info("Installing latest version of requirements") absolutePythonEnvDir, _ = runCommand(sshClient, "cd {}; pwd".format(PYTHON_VENV)) sftClient = sshClient.open_sftp() sftClient.put("{}/requirements-worker.txt".format(CURRENT_DIR), "{}/requirements.txt".format(absolutePythonEnvDir)) workerWrapper = "{}/bin/run-worker.py".format(absolutePythonEnvDir) sftClient.put("{}/run-worker.py".format(CURRENT_DIR), workerWrapper) sftClient.chmod(workerWrapper, 0o755) runCommand(sshClient, "{}/bin/pip3 install -U -r {}/requirements.txt".format(PYTHON_VENV, PYTHON_VENV)) def configureVirtualEnvironment(hosts, arguments): def performAction(client, _): setupVirtualEnv(client) executeActionOnHost(hosts, arguments.user, "Configuring virtual environment on host '{hostIp}'", performAction) def createWorkerConfig(sshClient, config, masterHost): logging.info("Creating configuration for worker '{}'.".format(config["name"])) runCommand(sshClient, "mkdir -p {}".format(WORKERS_DIR)) runCommand(sshClient, "rm -rf {dir}/{name}".format(dir=WORKERS_DIR, **config)) runCommand(sshClient, "{venv}/bin/run-worker.py create-worker --umask=0o002 {dir}/{name} {server} {name} {password}".format( venv=PYTHON_VENV, dir=WORKERS_DIR, server=masterHost, **config)) runCommand(sshClient, "echo '{host}' > {dir}/{name}/info/host".format(dir=WORKERS_DIR, **config)) def installWorkers(hosts, arguments): def performAction(client, host): setupVirtualEnv(client) for worker in host: createWorkerConfig(client, worker, arguments.master) stopWorkers(hosts, arguments) executeActionOnHost(hosts, arguments.user, "Configuring host '{hostIp}'", performAction) def callBuildbotAction(action, hosts, arguments): def performAction(client, host): for worker in host: if isDirectoryAbsent(client, "{dir}/{name}".format(dir=WORKERS_DIR, **worker)): logging.error("Worker '{name}' configuration does not exist, doing nothing".format(**worker)) continue runCommand(client, "{venv}/bin/run-worker.py {action} {dir}/{name}".format( venv=PYTHON_VENV, dir=WORKERS_DIR, action=action, **worker)) logging.info("Executing action '{}'".format(action)) executeActionOnHost(hosts, arguments.user, "Executing command on host '{hostIp}", performAction) def restartWorkers(hosts, arguments): callBuildbotAction("restart", hosts, arguments) def stopWorkers(hosts, arguments): callBuildbotAction("stop", hosts, arguments) def startWorkers(hosts, arguments): callBuildbotAction("start", hosts, arguments) AVAILABLE_ACTIONS = { "install": installWorkers, "configureVenv": configureVirtualEnvironment, "restart": restartWorkers, "stop": stopWorkers, "start": startWorkers } def parseArguments(): parser = argparse.ArgumentParser(description="A tool to install, restart the BuildBot worker instances.") parser.add_argument("action", help="Action to perform, install for example.", choices=AVAILABLE_ACTIONS.keys()) parser.add_argument("--host", help="Host to manage.") parser.add_argument("--user", help="User to use during the SSH connection to host.", default=getpass.getuser()) parser.add_argument("--domain", help="Default domain for hosts", default="mariadb.com") parser.add_argument("--master", help="Domain name of the master to configure on workers", default="maxscale-jenkins.mariadb.com") parser.add_argument("--debug", help="Show debug output", dest="debug", action="store_true") parser.set_defaults(debug=False) return parser.parse_args() def main(): arguments = parseArguments() if arguments.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) action = AVAILABLE_ACTIONS.get(arguments.action) if action is None: logging.error("Unknown action '{}'.".format(arguments.action)) exit(1) hosts = determineHosts(arguments) action(hosts, arguments) if __name__ == "__main__": main()
dA505819/maxscale-buildbot
worker-management/manage.py
manage.py
py
6,833
python
en
code
0
github-code
6
70488670907
# accepted on coderun import sys deltas = ((1, 1), (-1, 1), (-1, -1), (1, -1)) def cut_down(): n, m, w, b, whites, blacks, turn = get_pars() checkers_board = [[' ' for i in range(n)] for j in range(m)] for j_, i_ in whites: checkers_board[j_ - 1][i_ - 1] = 'w' for j_, i_ in blacks: checkers_board[j_ - 1][i_ - 1] = 'b' for j_, i_ in (whites if turn == 'white' else blacks): for dj, di in deltas: if 0 <= j_ + dj - 1 < m and 0 <= i_ + di - 1 < n: if checkers_board[j_ + dj - 1][i_ + di - 1] == ('b' if turn == 'whites' else 'w'): if 0 <= j_ + 2 * dj - 1 < m and 0 <= i_ + 2 * di - 1 < n: if checkers_board[j_ + 2 * dj - 1][i_ + 2 * di - 1] == ' ': return 'Yes' return 'No' def get_pars() -> tuple[int, int, int, int, list[list[int, ...]], list[list[int, ...]], str]: n, m = [int(_) for _ in input().split(' ')] w = int(input()) whites = [[int(_) for _ in input().split(' ')] for _ in range(w)] b = int(input()) blacks = [[int(_) for _ in input().split(' ')] for _ in range(b)] turn = input() return n, m, w, b, whites, blacks, turn print(f'{cut_down()}')
LocusLontrime/Python
Yandex_fast_recruit_days/Easy/Checkers.py
Checkers.py
py
1,242
python
en
code
1
github-code
6
12100232146
import random from heaps import heapsort def mergesort(l, low, high): def merge(l, low, middle, high): left_runner = low right_runner = middle + 1; # While there are elements in right run: sorted_l = [] while left_runner <= middle and right_runner <= high: if l[left_runner] <= l[right_runner]: sorted_l.append(l[left_runner]) left_runner += 1 else: sorted_l.append(l[right_runner]) right_runner += 1 while left_runner <= middle: sorted_l.append(l[left_runner]) left_runner += 1 while right_runner <= high: sorted_l.append(l[right_runner]) right_runner += 1 for i in range(low, high + 1): l[i] = sorted_l[i - low] # This is the mergesort that uses merge if low < high: middle = int((low + high) / 2) mergesort(l, low, middle) mergesort(l, middle+1, high) return merge(l, low, middle, high) def insertion_sort(l): # No need to sort empty list if l == []: return l new_l = [l[0]] new_l_len = 0 for elem in l[1:]: for i in range(new_l_len, -1, -1): if elem >= new_l[i]: new_l.insert(i+1, elem) new_l_len += 1 break if i == 0: new_l.insert(0, elem) new_l_len += 1 return new_l def quicksort(l): if len(l) <= 1: return l pivot_index = random.randint(0, len(l)-1) pivot = l.pop(pivot_index) lte_pivot = [] gt_pivot = [] for elem in l: if elem <= pivot: lte_pivot.append(elem) else: gt_pivot.append(elem) return quicksort(lte_pivot) + [pivot] + quicksort(gt_pivot) def quicksort_inplace(l, left=None, right=None): def partition(l, left, right, pivot_index): ''' After running the list will have the pivot in its place for sorting, only greater elements to its right. left is the index of the leftmost element of the subarray right is the index of the rightmost element of the subarray (inclusive) number of elements in subarray = right-left+1 ''' pivot_value = l[pivot_index] l[pivot_index], l[right] = l[right], l[pivot_index] # move pivot to end store_index = left for i in range(left, right): if l[i] <= pivot_value: l[i], l[store_index] = l[store_index], l[i] store_index += 1 l[right], l[store_index] = l[store_index], l[right] # move pivot to its final place return store_index # in-place quicksort if left is None: left = 0 right = len(l)-1 if left < right: pivot_index = random.randint(left, right-1) pivot_new_index = partition(l, left, right, pivot_index) quicksort_inplace(l, left, pivot_new_index-1) quicksort_inplace(l, pivot_new_index+1, right)
Shaywei/MyDevTools
Python/BasicDataStructures/sorts.py
sorts.py
py
3,070
python
en
code
0
github-code
6
21509653092
from fastapi import APIRouter, Depends, Request, Response from sqlalchemy.orm import Session from typing import List from uuid import UUID from api.models.node_threat import NodeThreatCreate, NodeThreatRead, NodeThreatUpdate from api.routes import helpers from db import crud from db.database import get_db from db.schemas.node_threat import NodeThreat from db.schemas.node_threat_type import NodeThreatType router = APIRouter( prefix="/node/threat", tags=["Node Threat"], ) # # CREATE # def create_node_threat( node_threat: NodeThreatCreate, request: Request, response: Response, db: Session = Depends(get_db), ): # Make sure that all the threat types that were given actually exist db_threat_types = crud.read_by_values(values=node_threat.types, db_table=NodeThreatType, db=db) # Create the new node threat new_threat = NodeThreat(**node_threat.dict()) # Set the threat types on the new node threat new_threat.types = db_threat_types # Save the new node threat to the database db.add(new_threat) crud.commit(db) response.headers["Content-Location"] = request.url_for("get_node_threat", uuid=new_threat.uuid) helpers.api_route_create(router, create_node_threat) # # READ # def get_all_node_threats(db: Session = Depends(get_db)): return crud.read_all(db_table=NodeThreat, db=db) def get_node_threat(uuid: UUID, db: Session = Depends(get_db)): return crud.read(uuid=uuid, db_table=NodeThreat, db=db) helpers.api_route_read_all(router, get_all_node_threats, List[NodeThreatRead]) helpers.api_route_read(router, get_node_threat, NodeThreatRead) # # UPDATE # def update_node_threat( uuid: UUID, node_threat: NodeThreatUpdate, request: Request, response: Response, db: Session = Depends(get_db), ): # Read the current node threat from the database db_node_threat: NodeThreat = crud.read(uuid=uuid, db_table=NodeThreat, db=db) # Get the data that was given in the request and use it to update the database object update_data = node_threat.dict(exclude_unset=True) if "description" in update_data: db_node_threat.description = update_data["description"] if "value" in update_data: db_node_threat.value = update_data["value"] if "types" in update_data: db_node_threat.types = crud.read_by_values( values=update_data["types"], db_table=NodeThreatType, db=db ) crud.commit(db) response.headers["Content-Location"] = request.url_for("get_node_threat", uuid=uuid) helpers.api_route_update(router, update_node_threat) # # DELETE # def delete_node_threat(uuid: UUID, db: Session = Depends(get_db)): crud.delete(uuid=uuid, db_table=NodeThreat, db=db) helpers.api_route_delete(router, delete_node_threat)
hollyfoxx/ace2-gui
backend/app/api/routes/node_threat.py
node_threat.py
py
2,805
python
en
code
1
github-code
6
20802484372
class Graph: def __init__(self): self.edges = [] self.visited = [] self.adjacent = 0 pass def from_matrix(self, matrix): self.visited = [False for i in range(len(matrix))] for i in matrix: self.edges.append([]) for i in range(len(matrix)): for u in range(len(matrix[i])): if matrix[i][u] == 1: self.edges[i].append(u) def dfs_util(self, node,visited): visited[node] = True self.adjacent += 1 for i in self.edges[node]: if visited[i] == False: self.dfs_util(i, visited) edges = [] for i in range(num_e): u, v = [int(i) for i in input().split()] edges.append([u, v]) edges.append([v, u]) def util(node, edges, visited): visited[node] = True for edge in edges: if edge[0]-1 == node and visited[edge[1]-1]==False: util(edge[1]-1, edges, visited)
michbogos/olymp
utils/graph.py
graph.py
py
964
python
en
code
0
github-code
6
36213639675
#!/usr/bin/env python # coding: utf-8 import os import math import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import time import os,glob import matplotlib.pyplot as plt from random import choice VGG_MEAN=[103.939,116.779,123.68] class VGGNet(): def __init__(self,data_dict): self.data_dict=data_dict def get_conv_filter(self,name): return tf.constant(self.data_dict[name][0],name='conv') def get_fc_weight(self,name): return tf.constant(self.data_dict[name][0],name='fc') def get_bias(self,name): return tf.constant(self.data_dict[name][1],name='bias') def conv_layer(self,x,name): with tf.name_scope(name): conv_w=self.get_conv_filter(name) conv_b=self.get_bias(name) h=tf.nn.conv2d(x,conv_w,strides=[1,1,1,1],padding="SAME") h=tf.nn.bias_add(h,conv_b) h=tf.nn.relu(h) return h def pooling_layer(self,x,name): return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME",name=name) def fc_layer(self,x,name,activation=tf.nn.relu): with tf.name_scope(name,activation): fc_w=self.get_fc_weight(name) fc_b=self.get_bias(name) h=tf.matmul(x,fc_w) h=tf.nn.bias_add(h,fc_b) if activation is None: return h else: return activation(h) def flatten_layer(self,x,name): with tf.name_scope(name): x_shape=x.get_shape().as_list() dim=1 for d in x_shape[1:]: dim*=d x=tf.reshape(x,[-1,dim]) return x def build(self,x_rgb): start_time=time.time() print("Modeling Start...") r,g,b=tf.split(x_rgb,[1,1,1],axis=3) x_bgr=tf.concat([b-VGG_MEAN[0],g-VGG_MEAN[1],r-VGG_MEAN[2]],axis=3) # 开始构建卷积层 # vgg16 的网络结构 # 第一层:2个卷积层 1个pooling层 # 第二层:2个卷积层 1个pooling层 # 第三层:3个卷积层 1个pooling层 # 第四层:3个卷积层 1个pooling层 # 第五层:3个卷积层 1个pooling层 # 第六层: 全连接 # 第七层: 全连接 # 第八层: 全连接 self.conv1_1=self.conv_layer(x_bgr,'conv1_1') self.conv1_2=self.conv_layer(self.conv1_1,'conv1_2') self.pool1=self.pooling_layer(self.conv1_2,'pool1') self.conv2_1 = self.conv_layer(self.pool1, 'conv2_1') self.conv2_2 = self.conv_layer(self.conv2_1, 'conv2_2') self.pool2 = self.pooling_layer(self.conv2_2, 'pool2') self.conv3_1 = self.conv_layer(self.pool2, 'conv3_1') self.conv3_2 = self.conv_layer(self.conv3_1, 'conv3_2') self.conv3_3 = self.conv_layer(self.conv3_2, 'conv3_3') self.pool3 = self.pooling_layer(self.conv3_3, 'pool3') self.conv4_1 = self.conv_layer(self.pool3, 'conv4_1') self.conv4_2 = self.conv_layer(self.conv4_1, 'conv4_2') self.conv4_3 = self.conv_layer(self.conv4_2, 'conv4_3') self.pool4 = self.pooling_layer(self.conv4_3, 'pool4') self.conv5_1 = self.conv_layer(self.pool4, 'conv5_1') self.conv5_2 = self.conv_layer(self.conv5_1, 'conv5_2') self.conv5_3 = self.conv_layer(self.conv5_2, 'conv5_3') self.pool5 = self.pooling_layer(self.conv5_3, 'pool5') ''' 因为风格转换只需要 卷积层 的数据 self.flatten5 = self.flatten_layer(self.pool5, 'flatten') self.fc6 = self.fc_layer(self.flatten5, 'fc6') self.fc7 = self.fc_layer(self.fc6, 'fc7') self.fc8 = self.fc_layer(self.fc7, 'fc8', activation = None) self.prob = tf.nn.softmax(self.fc8, name = 'prob') ''' print('Modeling Finished...:%f ms' % ((time.time() - start_time)*1000)) def initial_result(shape,mean,stddev): initial=tf.truncated_normal(shape,mean=mean,stddev=stddev) return tf.Variable(initial) def read_img(img_name): img=Image.open(img_name) img=img.convert('RGB') img = img.resize((224, 224)) np_img=np.array(img) np_img=np.asarray([np_img],dtype=np.int32) return np_img def gram_matrix(x): b,w,h,ch=x.get_shape().as_list() features=tf.reshape(x,[b,h*w,ch]) gram=tf.matmul(features,features,adjoint_a=True)/tf.constant(ch*w*h,tf.float32) return gram vgg16_npy_path="./vgg_model/vgg16.npy" image_pattern = "./images/content/video_dlzm*jpg" output_dir="./images/results" style_img_path="./images/style/Vincent_Willem_van_Gogh_085.jpg" image_paths = glob.glob(image_pattern) image_paths.sort() num_step=100 learning_rate=10 lambda_c=0.1 lambda_s=50 for n,p in enumerate(image_paths): print(n) content_img_path = p result=initial_result((1,224,224,3),127.5,20) content_val=read_img(content_img_path) style_val=read_img(style_img_path) content=tf.placeholder(tf.float32,shape=[1,224,224,3]) style=tf.placeholder(tf.float32,shape=[1,224,224,3]) data_dict=np.load(vgg16_npy_path,encoding="latin1",allow_pickle=True).item() vgg_for_content=VGGNet(data_dict) vgg_for_style=VGGNet(data_dict) vgg_for_result=VGGNet(data_dict) vgg_for_content.build(content) vgg_for_style.build(style) vgg_for_result.build(result) # 提取哪些层特征 # 需要注意的是:内容特征抽取的层数和结果特征抽取的层数必须相同 # 风格特征抽取的层数和结果特征抽取的层数必须相同 content_features=[vgg_for_content.conv3_2,] result_content_features=[vgg_for_result.conv3_2,] style_features=[vgg_for_style.conv4_1, vgg_for_style.conv5_1,] style_gram=[gram_matrix(feature) for feature in style_features] result_style_features=[vgg_for_result.conv4_1, vgg_for_result.conv5_1,] result_style_gram=[gram_matrix(feature) for feature in result_style_features] content_loss=tf.zeros(1,tf.float32) for c,c_ in zip(content_features,result_content_features): content_loss+=tf.reduce_mean((c-c_)**2,axis=[1,2,3]) style_loss=tf.zeros(1,tf.float32) for s,s_ in zip(style_gram,result_style_gram): style_loss+=0.2*tf.reduce_mean((s-s_)**2,[1,2]) loss=content_loss*lambda_c+style_loss*lambda_s train_op=tf.train.AdamOptimizer(learning_rate).minimize(loss) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) for step in range(num_step): loss_value,content_loss_value,style_loss_value,_= sess.run([loss,content_loss,style_loss,train_op], feed_dict={ content:content_val, style:style_val }) # print('step: %d, loss_value: %8.4f, content_loss: %8.4f, style_loss: %8.4f' % (step+1, # loss_value[0], # content_loss_value[0], # style_loss_value[0])) if step+1 == num_step: result_img_path=os.path.join(output_dir,'result_%03d_%05d.jpg'%(n,step+1)) result_val=result.eval(sess)[0] result_val=np.clip(result_val,0,255) img_arr=np.asarray(result_val,np.uint8) img=Image.fromarray(img_arr) img.save(result_img_path)
castleKing1997/Style_Transfer
StyleTransfer.py
StyleTransfer.py
py
7,795
python
en
code
0
github-code
6
34616102356
from fenics import * import numpy as np from Stretch_Mesh import stretch_mesh def solver_para(nx,ny,tau): # Create mesh and define function space mesh = stretch_mesh(nx=nx,ny=ny) V = FunctionSpace(mesh, "P", 1) # Define boundary condition tol = 1E-14 u_D = Expression('near(x[0], 1, tol) ? pow(1-x[1],4)*exp(-t*tau):0', degree=4, tol=tol,tau=tau, t=0) def boundary(x, on_boundary): return on_boundary bc = DirichletBC(V, u_D, boundary) # Define initial value u_n = project(u_D, V) # Define variational problem u = TrialFunction(V) v = TestFunction(V) f = Constant(0.0) return V, u, v, u_n, f, u_D, bc, mesh def solver_run(alpha, V, u, v, u_n, f, u_D, bc, mesh, epsilon, num_steps): dt = 0.01 # time step size w = Expression(('exp(alpha)*2*x[1]*(1-x[0]*x[0])', 'exp(alpha)*-2*x[0]*(1-x[1]*x[1])'),alpha = alpha,degree=3) #define the wind F = u * v * dx + epsilon * dt * dot(grad(u), grad(v)) * dx + dt * dot(w, grad(u)) * v * dx - (u_n + dt * f) * v * dx a, L = lhs(F), rhs(F) # Time-stepping t = 0 # Create VTK file for saving solution # namefile = str(alpha)+"-alpha.pvd" # vtkfile = File("Alixcode/alixswork/"+namefile) # list to store t and u u = Function(V) u_list = [] for n in range(num_steps): # Update current time t += dt u_D.t = t #update the time in the boundary condition # Compute solution solve(a == L, u, bc) # # # Plot solution # plot(u, cmap='jet', scalarbar='h', text=__doc__) # Save to file and plot solution # vtkfile << (u, t) # Compute u at the vertices and add them to the list u_approx = u.compute_vertex_values(mesh) u_list.append(u_approx.copy()) # Update previous solution u_n.assign(u) return u_list if __name__ == "__main__": from vedo.dolfin import plot, Latex, clear, histogram import matplotlib.pyplot as plt def main(): # Coarse. tau = 1/10 epsilon = 1/200 num_steps = 100 nx = 32 ny = 32 alpha = 0 V, u, v, u_n, f, u_D, bc, mesh = solver_para(nx,ny,tau) return solver_run(alpha, V, u, v, u_n, f, u_D, bc, mesh, epsilon, num_steps), mesh u_list, mesh = main() # mesh_fine = refine(mesh) # V_fine = FunctionSpace(mesh_fine, "P", 1) # u_fine = project(u_list[0], V_fine) # u_approx_fine = u_fine.compute_vertex_values(mesh_fine) # u_approx = u_list[0] # print(np.shape(u_approx), np.shape(u_approx_fine))
alixsleroy/PhD-project2
Solver Package/Interpolate_Solver.py
Interpolate_Solver.py
py
2,554
python
en
code
1
github-code
6
20473378944
import json import numpy as np class calculte(): def __init__(self, data, n_x, n_y, t_s, morning_time, afternoon_time): self.data = data self.n_x = n_x self.n_y = n_y self.t_s = t_s self.morning = morning_time self.afternoon_time = afternoon_time def _process_data_(self, num): list_patientID = np.array(self.data['就诊号'])[:] list_doctID = np.array(self.data['医生'])[:] list_sleepy = np.array(self.data['麻醉方式'])[:] list_operation = np.array(self.data['time'])[:] list_clean = np.array(self.data['手术级别'])[:] list_operation = (np.ceil(list_operation / 5) * 5).astype(np.int) list_sleepy.reshape((num, 1)) for i in range(num): b = list_sleepy[i] if (b == '全身麻醉' or b == '全身麻醉(喉罩)'): tb = 60 else: tb = 0 list_sleepy[i] = tb list_clean.reshape((num, 1)) for i in range(num): a = list_clean[i] if a == '1.0': tp = 10 elif a == '2.0' or a == '3.0': tp = 20 else: tp = 30 list_clean[i] = tp c = np.vstack((list_doctID, list_patientID, list_operation, list_sleepy, list_clean)) key = [i + 1 for i in range(num)] e = [] #存储了所有信息的列表,每一个列表的内容是一个字典 for i in range(num): f = dict() d = c[:, i] f[key[i]] = d e.append(f) return list_doctID, list_patientID, list_operation, list_sleepy, list_clean, e def _best_result_(self,best_paixu,Num,list_doctID,list_sleepy,list_operation,list_clean): return list_1,list_2,list_3 def _get_list_(self,a): key = [] dic = {} key_2 = ['time_of_operation', 'time_of_sleep', 'time_of_clean'] for i in range(self.n_x): c = a[i] key.append('手术室{}'.format(i+1)) x = [] for j in range(int(len(c) / 3)): e = 3 * j d = c[e:e + 3] f = dict(zip(key_2, d)) x.append(f) dic[key[i]] = x return dic def _output_date_(self,output_1): f = open('output.json', 'w', encoding='utf-8') json.dump(output_1, f, ensure_ascii=False, indent=4) f.close()
Jkcert/deecamp-frontend
src/ors_backend/model/schedule/calculation.py
calculation.py
py
2,473
python
en
code
1
github-code
6
30109795593
# -*- coding: utf-8 -*- """ Created on Thu Oct 7 10:30:52 2021 @author: X """ import json import lz4.frame, lz4.block import os import copy # The full path to the Firefox folders is: # C:\Users\USERNAME\AppData\Roaming\Mozilla\Firefox\Profiles # Each profile gets its own folder and from there, the bookmark files are saved # in "bookmarksbackups". def bookmarkbackups(): USERS=r"C:\Users" users=os.listdir(USERS) MOZAPPDATA=r"AppData\Roaming\Mozilla\Firefox\Profiles" REMOVE=['All Users', 'Default', 'Default User', 'desktop.ini', 'Public'] rv=[] for each in REMOVE: users.remove(each) for user in users: for profile_folder in os.listdir(os.path.join(USERS,user,MOZAPPDATA)): for bookmark_file in os.listdir(os.path.join(USERS,user,MOZAPPDATA, profile_folder,"bookmarkbackups")): rv.append(os.path.join(USERS,user,MOZAPPDATA,profile_folder, "bookmarkbackups",bookmark_file)) return rv def readfile(fn): with open(fn,'rb') as fh: return fh.read() # The backup files are lz4 compressed and start with "mozLz40" def readbookmarkfile(fn): file_content=readfile(fn) if file_content[0:8]==bytes("mozLz40\x00".encode('ascii')): file_content = lz4.block.decompress(file_content[8:]) return json.loads(file_content) def count_links(j,count=0): if type(j)==dict: if "children" in j: for e in j["children"]: count+=count_links(e) return count else:#if no children then it's a link return 1 assert False def count_and_validate_flatv(v): count=0 for j in v: if "children" in j: for e in j["children"]: if e["type"]!="text/x-moz-place": return False, count count+=1 else: assert False return True,count def grab_all_links(j,depth=0): rv=[] if "children" in j: for e in j["children"]: if e["type"]=="text/x-moz-place": rv.append(e) elif e["type"]=="text/x-moz-place-container": rv.extend(grab_all_links(e,depth+1)) else: assert False return rv def printkeys(j): for k,v in j.items(): if k!="children": print(k,"=",v,sep="") else: print(len(v),"children") print() def write_pretty(j,fn): with open(fn, "w") as write_file: json.dump(j, write_file, indent=4) # I had a bug where if every item didn't have its own unique id it would fail # to load in Firefox. I created this dictionary making function to discover # duplicate ids. In the end I just change all the ids in the big data structure # rather than trying to keep track during the process of merging. def id_dict(n,d): id = n["id"] if n["type"]=="text/x-moz-place": if id in d: d[id]+=1 else: d[id]=1 elif n["type"]=="text/x-moz-place-container": if id in d: d[id]+=1 else: d[id]=1 if "children" in n: for sub in n["children"]: id_dict(sub,d) else: assert False def return_id_dict(n): d={} id_dict(n,d) return d def fix_all_ids(n,id=100): n["id"]=id id+=1 if "children" in n: for sub in n["children"]: id=fix_all_ids(sub,id) return id def remove_children(j): rv={} for k,v in j.items(): if k=="children": continue rv[k]=v return rv def link_anywhere_in_rv(j,rv): for folder in rv: for link in folder["children"]: if j["uri"]==link["uri"]: return True return False # There are a few contradictory ideas here. It is possible to comment out # if link_anywhere_in_rv() to only search folders with the same name # first it searches if the link exists anywhere, leave that in to not have dupe # then it looks for a place for the link to go # it looks for a matching folder name # then compares all links. If the folder name matches then it first checks the # uris for a match. If already in folder skips # but if not then it returns the destination folder # if the uri is unique then it returns False signaling to create a place for it def already_in_rv(link,title,rv): if link_anywhere_in_rv(link,rv): #print(link["title"]) return True for i,j in enumerate(rv): dest=None if j["title"]==title: dest = i if "children" in j: for sub in j["children"]: if sub["uri"]==link["uri"]: return True if dest!=None: return rv[dest] return False def merge_link_folder(link,folder,rv,idd): assert link["type"]=="text/x-moz-place" assert "children" not in link assert folder["type"]=="text/x-moz-place-container" assert type(rv)==list b = already_in_rv(link,folder["title"],rv) if b==False: rv.append(remove_children(folder)) rv[-1]["children"]=[link] elif type(b)==dict: if "children" not in b: b["children"]=[] b["children"].append(link) else: assert b==True def merge_link_folder_all(folder,rv,idd): assert folder["type"]=="text/x-moz-place-container" if "children" not in folder: return for sub in folder["children"]: if sub["type"]=="text/x-moz-place": merge_link_folder(sub,folder,rv,idd) elif sub["type"]=="text/x-moz-place-container": merge_link_folder_all(sub,rv,idd) else: assert False # mut is a name for the template structure that has a "menu" "unfiled" and # "toolbar" folder. I actually later include "mobile" as well. # This stucture is the empty structure that I merge all the links into since I # don't want links to fall into those orignal folders and instead to fall into # alternate ones that are under the root menu folder def build_mut(): mut=readbookmarkfile("empty_pretty.json") for each in mut["children"][0]["children"]: each["children"]=[] return mut["children"][0]["children"] def process_alts(first=None): if first==None: files=[] else: files=[first] files.extend(bookmarkbackups()) rv=build_mut() idd={} for fn in files: j=readbookmarkfile(fn) if count_links(j)<10000: merge_link_folder_all(j,rv,idd) else: print(fn) return rv def create_merged_json(first=None): v=process_alts(first) merged=readbookmarkfile("empty_pretty.json") merged["children"][0]["children"]=v print("count =",count_links(merged)) fix_all_ids(merged) write_pretty(merged,"merged.json") return merged merged=create_merged_json(input("Primary bookmark file: "))
AndrewWigginCout/bookmarks
bookmarks.py
bookmarks.py
py
7,127
python
en
code
1
github-code
6
15932158711
from ..exceptions import HydraError, ResourceNotFoundError from . import scenario, network from .. import db from ..db.model import ResourceGroup, ResourceGroupItem, Node, Link from .scenario import _get_scenario from sqlalchemy.orm.exc import NoResultFound import logging log = logging.getLogger(__name__) def _get_group(group_id): try: return db.DBSession.query(ResourceGroup).filter(ResourceGroup.id==group_id).one() except NoResultFound: raise ResourceNotFoundError("ResourceGroup %s not found"%(group_id,)) def _get_item(item_id): try: item = db.DBSession.query(ResourceGroupItem).filter(ResourceGroupItem.id==item_id).one() return item except NoResultFound: raise ResourceNotFoundError("ResourceGroupItem %s not found"%(item_id,)) def add_resourcegroup(group, network_id,**kwargs): """ Add a new group to a network. """ group_i = ResourceGroup() group_i.name = group.name group_i.description = group.description group_i.status = group.status group_i.network_id = network_id db.DBSession.add(group_i) db.DBSession.flush() return group_i def delete_resourcegroup(group_id, purge_data='N', **kwargs): """ Add a new group to a scenario. """ group_i = _get_group(group_id) if purge_data == 'Y': network._purge_datasets_unique_to_resource('GROUP', group_id) #This should cascaded to delete all the group items. db.DBSession.delete(group_i) db.DBSession.flush() return 'OK' def update_resourcegroup(group,**kwargs): """ Add a new group to a network. """ group_i = _get_group(group.id) group_i.name = group.name group_i.description = group.description group_i.status = group.status db.DBSession.flush() return group_i def add_resourcegroupitem(group_item, scenario_id,**kwargs): _get_scenario(scenario_id, kwargs['user_id'], check_can_edit=True) #Check whether the ref_id is correct. if group_item.ref_key == 'NODE': try: db.DBSession.query(Node).filter(Node.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Node group item!"%(group_item.ref_id)) elif group_item.ref_key == 'LINK': try: db.DBSession.query(Link).filter(Link.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Link group item!"%(group_item.ref_id)) elif group_item.ref_key == 'GROUP': try: db.DBSession.query(ResourceGroup).filter(ResourceGroup.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Group group item!"%(group_item.ref_id)) else: raise HydraError("Invalid ref key: %s"%(group_item.ref_key)) group_item_i = ResourceGroupItem() group_item_i.scenario_id = scenario_id group_item_i.group_id = group_item.group_id group_item_i.ref_key = group_item.ref_key if group_item.ref_key == 'NODE': group_item_i.node_id = group_item.ref_id elif group_item.ref_key == 'LINK': group_item_i.link_id = group_item.ref_id elif group_item.ref_key == 'GROUP': group_item_i.subgroup_id = group_item.ref_id db.DBSession.add(group_item_i) db.DBSession.flush() return group_item_i def delete_resourcegroupitem(item_id,**kwargs): group_item_i = _get_item(item_id) _get_scenario(group_item_i.scenario_id, kwargs['user_id'], check_can_edit=True) db.DBSession.delete(group_item_i) db.DBSession.flush() return 'OK'
hydraplatform/hydra-base
hydra_base/lib/groups.py
groups.py
py
3,757
python
en
code
8
github-code
6
34886436598
#!/bin/python3 import math import os import random import re import sys # Complete the dayOfProgrammer function below. def dayOfProgrammer(year): if year == 1918: return '26.09.1918' date = 256 - 243 # 1917 ke bawah kabisat hanya bisa di modulasi 4 is_leap_year_under_1917 = (year <= 1917 and year % 4 == 0) # diatas 1918 aturan kabisat diubah is_leap_year = ((year > 1918) & (year%400 == 0 or ((year%4 == 0) & (year%100 != 0)))) # if year <= 1917 and year > 1918: # if is_leap_year or year <= 1800: # date = 256 - 244 if is_leap_year_under_1917 or is_leap_year: date = 256 - 244 day_of_programmer = "%s.09.%d" % (date, year) return day_of_programmer if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') year = int(input().strip()) result = dayOfProgrammer(year) fptr.write(result + '\n') fptr.close()
nipeharefa/hackkerrank-problemsolving-practice
day-of-the-programmer.py
day-of-the-programmer.py
py
930
python
en
code
1
github-code
6
9695092385
#!/bin/python3 import datetime import json import threading import time import turtle import sys from urllib import request from collections import namedtuple class ISS(): def __init__(self): self.is_instance = True self._astronauts_url = 'http://api.open-notify.org/astros.json' self._location_url = 'http://api.open-notify.org/iss-now.json' self._location_tuple = namedtuple( 'Location', ['latitude', 'longitude']) self._location() def __enter__(self): return self def __exit__(self, exctype, excinst, exctb): self.is_instance = False def __repr__(self): return (f'{self.__class__.__name__}:\n\tTimestamp:{self._update_timestamp}\n\tLocation:{self.location}\n\tPeople: {self.people_in_space}') def _get_page(self, url): response = request.urlopen(url) result = json.loads(response.read()) return result def _location(self): result = self._get_page(self._location_url) self.location = self._location_tuple(result['iss_position']['latitude'], result['iss_position']['longitude']) self._update_timestamp = result['timestamp'] @property def people_in_space(self): result = self._get_page(self._astronauts_url) return [people['name'] for people in result['people']] class Tracker(ISS): def __init__(self): super().__init__() self._bgpic = 'images/map.gif' self._shape = 'images/iss2.gif' self._screen = turtle.Screen() self._screen.title('Python ISS Tracker') self._screen.setup(width=720, height=360) self._screen.setworldcoordinates(-180, -90, 180, 90) self._screen.bgpic(self._bgpic) self._screen.register_shape(self._shape) self._screen.onscreenclick(self.update_turtle_location, btn=1) self._tracker = turtle.Turtle() self._tracker.shape(self._shape) self._tracker.setheading(90) def update_turtle_location(self, *args): self._location() self._tracker.penup() self._tracker.goto(float(self.location[0]), float(self.location[1])) # Debug print(self.__repr__()) if __name__ == '__main__': try: with Tracker() as iss: iss.update_turtle_location() turtle.mainloop() except KeyboardInterrupt: sys.exit(0) # # http://open-notify.org/Open-Notify-API/ # url = 'http://api.open-notify.org/astros.json' # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # print('People in Space: ', result['number']) # people = result['people'] # for p in people: # print(p['name'], ' in ', p['craft']) # url = 'http://api.open-notify.org/iss-now.json' # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # location = result['iss_position'] # lat = float(location['latitude']) # lon = float(location['longitude']) # print('Latitude: ', lat) # print('Longitude: ', lon) # screen = turtle.Screen() # screen.setup(720, 360) # screen.setworldcoordinates(-180, -90, 180, 90) # screen.bgpic('map.gif') # screen = turtle.Screen() # screen.setup(720, 360) # screen.setworldcoordinates(-180, -90, 180, 90) # # image source: # # map.jpg: http://visibleearth.nasa.gov/view.php?id=57752 Credit: NASA # screen.bgpic('map.gif') # screen.register_shape('iss2.gif') # iss = turtle.Turtle() # iss.shape('iss2.gif') # iss.setheading(90) # iss.penup() # iss.goto(lon, lat) # # When Does ISS next pass over me? # #london # #lat = 51.5072 # #lon = 0.1275 # # Tokyo # #lat = 35.689487 # #lon = 139.691706 # # Space Center, Houston # lat = 29.5502 # lon = -95.097 # location = turtle.Turtle() # location.penup() # location.color('yellow') # location.goto(lon, lat) # location.dot(5) # location.hideturtle() # url = 'http://api.open-notify.org/iss-pass.json?lat=' + \ # str(lat) + '&lon=' + str(lon) # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # #print result # over = result['response'][1]['risetime'] # location.write(time.ctime(over))
mattbhenley/ISS_Locator
locator.py
locator.py
py
4,144
python
en
code
0
github-code
6
33851082611
def parse(line): f = line.split(" ") return f if len(f) == 1 else (f[0], int(f[1])) def parse_items(items_l): f = items_l.split(":") return [int(i) for i in f[1].split(",")] def parse_operation_function(operation_l): f = operation_l.split("=") g = f[1].split(" ") if g[-1].isdigit(): if g[-2] == '+': return lambda x: (x + int(g[-1])) // 3 else: return lambda x: (x * int(g[-1])) // 3 else: if g[-2] == '+': return lambda x: (x + x) // 3 else: return lambda x: (x * x) // 3 def parse_test_function(test_cond, true_cond, false_cond): cond_num = int(test_cond.split(" ")[-1]) true_cond_num = int(true_cond.split(" ")[-1]) false_cond_num = int(false_cond.split(" ")[-1]) return lambda x: true_cond_num if x % cond_num == 0 else false_cond_num def exec(): with open("input2.txt") as fp: lines = [l.strip() for l in fp if l.strip()] # Parse input items = [] test = [] op = [] for start_line in range(0, len(lines), 6): items.append(parse_items(lines[start_line + 1])) op.append(parse_operation_function(lines[start_line + 2])) test.append(parse_test_function(lines[start_line + 3], lines[start_line + 4], lines[start_line + 5])) num_monkeys = len(items) # Process input items_processed = [0 for i in range(0, num_monkeys)] for rnd in range(0, 20): for m in range(0, num_monkeys): items_processed[m] = items_processed[m] + len(items[m]) for i in items[m]: worry_lvl = op[m](i) dest_monkey = test[m](worry_lvl) items[dest_monkey].append(worry_lvl) items[m] = [] # print(f'Round {rnd + 1}: {items}') print(items_processed) s = sorted(items_processed) print(s[-1] * s[-2]) if __name__ == '__main__': exec()
akepa/advent-of-code-2022
day11/day11.py
day11.py
py
1,934
python
en
code
0
github-code
6
25968516319
"""added san and is_my_move to Move Revision ID: f39051a2ca9b Revises: c9b0d072e5e4 Create Date: 2020-12-16 13:05:46.434429 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f39051a2ca9b' down_revision = 'c9b0d072e5e4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('moves', schema=None) as batch_op: batch_op.add_column(sa.Column('is_my_move', sa.Boolean(), nullable=True)) batch_op.add_column(sa.Column('san', sa.String(length=8), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('moves', schema=None) as batch_op: batch_op.drop_column('san') batch_op.drop_column('is_my_move') # ### end Alembic commands ###
joshua-stauffer/opening-book-api
migrations/versions/f39051a2ca9b_added_san_and_is_my_move_to_move.py
f39051a2ca9b_added_san_and_is_my_move_to_move.py
py
929
python
en
code
2
github-code
6
70827770107
from selenium import webdriver from datetime import datetime import boto3 import os import time now = datetime.now() folder_name = now.strftime("%Y%m%d") image_name = "traffic_" + now.strftime("%Y%m%d") + "-" + now.strftime("%H-%M") + ".png" Bucket_name = "googletrafficmap" prefix = folder_name + "/" #Get map snapshot driver = webdriver.PhantomJS(service_log_path=os.path.devnull) driver.set_window_size(1920, 1080) # set the window size that you need driver.get('http://googletrafficmap.s3-website.ca-central-1.amazonaws.com') # driver.save_screenshot(folder_name + "/" + image_name) screenshotPNG = driver.get_screenshot_as_png() #Get screenshot in binary data #Create low-client connection client = boto3.client('s3') #Uploading image to s3 bucket and creating folder structure at the same time client.put_object( Bucket = Bucket_name, Body = screenshotPNG, Key = folder_name + "/" + image_name ) time.sleep(60) driver.close() driver.quit()
nathan36/GoogleTrafficMap-GIF
GoogleTrafficMap-GIF/saveImage.py
saveImage.py
py
993
python
en
code
0
github-code
6
44632720863
#!/usr/bin/env python import sys import shutil from typing import Optional, List, Tuple, Dict import typer from rich import print from rich.columns import Columns from rich.console import Console from rich.traceback import install # fmt: off # Mapping from topics to colors TOPICS = { "TIMR": "#9a9a99", "VOTE": "#67a0b2", "LEAD": "#d0b343", "TERM": "#70c43f", "LOG1": "#4878bc", "LOG2": "#398280", "CMIT": "#98719f", "PERS": "#d08341", "SNAP": "#FD971F", "DROP": "#ff615c", "CLNT": "#00813c", "TEST": "#fe2c79", "INFO": "#ffffff", "WARN": "#d08341", "ERRO": "#fe2626", "TRCE": "#fe2626", } # fmt: on def list_topics(value: Optional[str]): if value is None: return value topics = value.split(",") for topic in topics: if topic not in TOPICS: raise typer.BadParameter(f"topic {topic} not recognized") return topics def main( file: typer.FileText = typer.Argument(None, help="File to read, stdin otherwise"), colorize: bool = typer.Option(True, "--no-color"), n_columns: Optional[int] = typer.Option(None, "--columns", "-c"), ignore: Optional[str] = typer.Option(None, "--ignore", "-i", callback=list_topics), just: Optional[str] = typer.Option(None, "--just", "-j", callback=list_topics), ): topics = list(TOPICS) # We can take input from a stdin (pipes) or from a file input_ = file if file else sys.stdin # Print just some topics or exclude some topics (good for avoiding verbose ones) if just: topics = just if ignore: topics = [lvl for lvl in topics if lvl not in set(ignore)] topics = set(topics) console = Console() width = console.size.width panic = False for line in input_: try: time, topic, *msg = line.strip().split(" ") # To ignore some topics if topic not in topics: continue msg = " ".join(msg) # Debug calls from the test suite aren't associated with # any particular peer. Otherwise we can treat second column # as peer id if topic != "TEST": i = int(msg[1]) # Colorize output by using rich syntax when needed if colorize and topic in TOPICS: color = TOPICS[topic] msg = f"[{color}]{msg}[/{color}]" # Single column printing. Always the case for debug stmts in tests if n_columns is None or topic == "TEST": print(time, msg) # Multi column printing, timing is dropped to maximize horizontal # space. Heavylifting is done through rich.column.Columns object else: cols = ["" for _ in range(n_columns)] msg = "" + msg cols[i] = msg col_width = int(width / n_columns) cols = Columns(cols, width=col_width - 1, equal=True, expand=True) print(cols) except: # Code from tests or panics does not follow format # so we print it as is if line.startswith("panic"): panic = True # Output from tests is usually important so add a # horizontal line with hashes to make it more obvious if not panic: print("#" * console.width) print(line, end="") if __name__ == "__main__": typer.run(main)
fansehep/Raft_Key-Value
RAFT_6_824/src/raft/dslogs.py
dslogs.py
py
3,483
python
en
code
4
github-code
6
40428996054
# python3 class Node: def __init__(self, key=None, next=None): self.key = key self.next = next class LinkedList: def __init__(self): self.head = None def insert(self, key): self.head = Node(key, self.head) def check(self): if not self.head: print() else: node = self.head while node: print(node.key, end=' ') node = node.next print() def delete(self, key): if self.head: if self.head.key == key: self.head = self.head.next else: node = self.head while node and node.next: if node.next.key == key: node.next = node.next.next break node = node.next def find(self, key): node = self.head while node: if node.key == key: return 'yes' node = node.next return 'no' def polyhash(S, p, x): hash = 0 for i in range(len(S)-1, -1, -1): hash = ((hash*x + ord(S[i])) % p) return hash if __name__ == "__main__": m = int(input()) n = int(input()) queries = [input() for i in range(n)] hash_map = [LinkedList() for i in range(m)] for i in queries: q = i.split() if q[0] == 'add': index = polyhash(q[1], 1000000007, 263) % m if hash_map[index].find(q[1]) == 'no': hash_map[index].insert(q[1]) elif q[0] == 'del': hash_map[polyhash(q[1], 1000000007, 263) % m].delete(q[1]) elif q[0] == 'find': print(hash_map[polyhash(q[1], 1000000007, 263) % m].find(q[1])) else: hash_map[int(q[1])].check()
probhakarroy/Algorithms-Data-Structures
Data Structures/week4/hashing_chaining.py
hashing_chaining.py
py
1,831
python
en
code
0
github-code
6
3035731078
i = 1 f = 1.2 b = True l = [1, 2, 3] d = {'a': 1, 'b': 2} s = {1, 2, 3} t = (1, 2, 3) def greeting(): print('Hello world') def func(something): return something # Appending a function to a list l.append(greeting) # Adding a function to dictionary d.update({'greeting': greeting})
Archana-SK/python_tutorials
Decorators/_functions_as_normal_objects.py
_functions_as_normal_objects.py
py
301
python
en
code
0
github-code
6
18529816397
# 对学生基本信息进行画像展示分析。包括性别、年级、班级、住址、班主任等形成学生画像标签。 # 对个体维度对学生学业情况进行描述性统计分析。 # 对成绩情况进行统计,并汇总各个科目历史考试成绩趋势, # 明确学生当前学科成绩分布特点以及未来成绩趋势,为学业干预提供输入。 # 度量指标如原始分、得分率、标准分(Z以及T分)、全年级排名、全班排名、离均值等。 # 学生消费画像分析,通过对学生一卡通消费数据,分析学生消费情况; # 支持消费分布数据统计分析; # 如消费趋势对比,对消费进行预警,便于了解学生生活方式尤其是贫困生,并及时干预支持消费明细的查询。 # 学生考勤画像分析,如学生考勤数据统计:如缺勤、迟到、请假、到勤的比例和实际天数; class Student: def __init__(self,name='', stuId=0,sex='', grade=0, cla=0, addr='', headTeacher='', scores=[]): self.stuId = stuId self.name = name self.sex = sex self.grade = grade self.cla = cla self.addr = addr self.headTeacher = headTeacher self.scores = scores class Teacher: """ 1_teacher.csv:包含了近五年各班各学科的教师信息 term:学期 cla_id:班级ID cla_Name:班级名 gra_Name:年级名 sub_id:学科ID sub_Name:学科名 bas_id:教师id bas_Name:教师名 """ def __init__(self,term, claID, claName, graName, subID, subName, basID, basName): self.term = term self.claID = claID self.claName = claName self.graName = graName self.subID = subID self.subName = subName self.basID = basID self.basName = basName class Score: """ mes_TestID,考试id exam_number,考试编码 exam_numname,考试编码名称 mes_sub_id,考试学科id mes_sub_name,考试学科名 exam_term,考试学期 exam_type,考试类型(对应考试类型表) exam_sdate,考试开始时间 mes_StudentID,学生id mes_Score,考试成绩(-1为作弊,-2为缺考,-3为免考) mes_Z_Score,换算成Z-score mes_T_Score,换算成T-score mes_dengdi:换算成等第 """ def __init__(self,TestID, exam_number, exam_numname, sub_id, sub_name, exam_term, exam_type, exam_sdate, StudentID, score, Z_score, T_score, dengdi): self.TestID = TestID self.exam_number = exam_number self.exam_numname = exam_numname self.sub_id =sub_id self.sub_name = sub_name self.exam_term = exam_term self.exam_type = exam_type self.exam_sdate = exam_sdate self.studentID = StudentID self.score = score self.T_score = T_score self.Z_score = Z_score self.dengdi = dengdi # 班级
kjp96/tianchi
ClassDef.py
ClassDef.py
py
2,928
python
zh
code
0
github-code
6
35168238376
from serpent.game_agent import GameAgent from serpent.input_controller import KeyboardKey import offshoot class SerpentSuperHexagonGameAgent(GameAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.frame_handlers["PLAY"] = self.handle_play self.frame_handler_setups["PLAY"] = self.setup_play self.analytics_client = None #Ccontext class setup plugin_path = offshoot.config["file_paths"]["plugins"] context_classifier_path = "datasets/context_classifier.model" from serpent.machine_learning.context_classification.context_classifiers.cnn_inception_v3_context_classifier import \ CNNInceptionV3ContextClassifier context_classifier = CNNInceptionV3ContextClassifier( input_shape=(240, 384, 3)) # Replace with the shape (rows, cols, channels) of your captured context frames context_classifier.prepare_generators() context_classifier.load_classifier(context_classifier_path) self.machine_learning_models["context_classifier"] = context_classifier def setup_play(self): # self.input_controller.tap_key(KeyboardKey.KEY_SPACE) pass def handle_play(self, game_frame): # for i, game_frame in enumerate(self.game_frame_buffer.frames): # self.visual_debugger.store_image_data( # game_frame.frame, # game_frame.frame.shape, # str(i) # ) # self.input_controller.tap_key(KeyboardKey.KEY_RIGHT) context = self.machine_learning_models["context_classifier"].predict(game_frame.frame) print("Context:", context)
cameron-j-knight/General-AI
plugins/SerpentSuperHexagonGameAgentPlugin/files/serpent_SuperHexagon_game_agent.py
serpent_SuperHexagon_game_agent.py
py
1,675
python
en
code
0
github-code
6
74637081787
import socket import time from PyQt5.QtCore import QTimer, QThread import queue import logging import pyaudio import threading logging.basicConfig(format="%(message)s", level=logging.INFO) class AudioRec(QThread): def __init__(self, threadChat): super().__init__() self.threadChat = threadChat self.host_name = socket.gethostname() self.host_ip = socket.gethostbyname(self.host_name) # self.host_ip = '127.0.0.1' self.port = 9634 self.socket_address = (self.host_ip, self.port) # a maxsize 100 will be ideal but lags with video at the moment # must send frames from server VideoGen and make sync in client # using audio and frame timestamps self.q = queue.Queue(maxsize=5) self.BUFF_SIZE = 65536 self.audio_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.audio_socket.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, self.BUFF_SIZE) self.audio_socket.bind(self.socket_address) self.p = pyaudio.PyAudio() self.CHUNK = 1024 self.stream = self.p.open(format=self.p.get_format_from_width(2), channels=2, rate=44100, output=True, frames_per_buffer=self.CHUNK) self.timer = QTimer() self.timer.timeout.connect(self.play_audio) self.timer.start(1000 * 0.8 * self.CHUNK / 44100) t1 = threading.Thread(target=self.get_audio_data, args=()) t1.start() print('Listening for audio...') def get_audio_data(self): while self.threadChat.nickname == "": # print('wait audio') # time.sleep(0.1) pass while True: try: self.frame, _ = self.audio_socket.recvfrom(self.BUFF_SIZE) self.q.put(self.frame) except BlockingIOError: pass except Exception as e: logging.error(e) def play_audio(self): if not self.q.empty(): frame = self.q.get() self.stream.write(frame)
shully899509/OpenParty
app/client/ClientAudio.py
ClientAudio.py
py
2,191
python
en
code
0
github-code
6
92459438
print("Mustafa kapasi") # a = int(input("Enter your name:")) # print(a) # b = [1 , 3, 4, 5] # print(b) # print(b[1]) # b[0] = 35 # print(b) # c = (45 , 32, 43, 12) # print(c) # c[0] = 24 # print(c) # calculating orders print("Welcome to Our Restaurant") a1 = 0 a2 = 0 b1 = 0 b2 = 0 print("Enter 1 for punjabi menu and 2 for gujarati menu : ") ch = int(input()) if (ch==1) : print("Panner bhurji 100Rs\nPanner toofani 130Rs") print("Now enter 1 for panner bhurji and 2 for panner toofani : ") a = int(input()) if(a==1) : a1 = a1 + 1 elif (a==2) : a2 = a2 + 1 else : print("enter number 1 or 2") elif (ch==2) : print("Sev tameta 100Rs\nFlower bataka 140Rs") print("Now enter 1 for Sev tameta and 2 for flower bateka : ") b = int(input()) if(b==1) : b1 = b1 + 1 elif (b==2) : b2 = b2 + 1 else : print("enter number 1 or 2") else : print("enter number 1 or 2")
Mustu19/Python-Programs
revision1.py
revision1.py
py
970
python
en
code
0
github-code
6
7945180135
def merge_files(filenames, output_filename): with open(output_filename, 'a') as output_file: for filename in filenames: with open(filename, 'r') as input_file: output_file.write(input_file.read()) output_file.write('\n') # Add a new line between each file's content # List to store input filenames input_files = [] # Accept eight text file paths from the user for i in range(1, 9): file_path = input(f"Enter path of text file {i}: ") input_files.append(file_path) # Output filename output_file = 'all.txt' # Merge the files merge_files(input_files, output_file) print("Merging completed! The content of all the files has been appended into 'all.txt'.")
eilishbaby/spam_toolss
compilation.py
compilation.py
py
723
python
en
code
0
github-code
6
41843820390
import numpy as np from sklearn.metrics import f1_score from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer class NaiveBayes: """ Naive Bayes implementation based on Multi-variate Bernoulli using python """ def __init__(self): """ self.class_probability --> Class probability of shape (output_label, ). It indicates the probability of alpha label appearing without seeing the input data. self.phi --> Probability of alpha input feature given alpha output label. P(x|y_train). shape (output_label, input_feature) self.output_label --> Number of output class self.input_feature --> Number of input feature """ self.class_probability = None self.phi = None self.output_label = None def fit(self, x_train, y_train): """ Train the model :param x_train: Input training example of shape (number of training data, input feature) :param y_train: Output training example of shape (number of training data, ) :return: """ m = x_train.shape[0] # Number of training example # Flatten the training set x_train = x_train.reshape(m, -1) input_features = x_train.shape[1] self.output_label = len(np.unique(y_train.reshape(-1))) # Initialize everything with zero self.class_probability = np.zeros(self.output_label) self.phi = np.zeros((self.output_label, input_features)) # Calculate class probability and phi for label in range(self.output_label): # Extract the training data from an individual labels current_label_data = x_train[y_train == label] # Number of occurarances of this particular label in the training set current_label_occur = current_label_data.shape[0] # Class label of this training data self.class_probability[label] = (current_label_occur + 1) / (m + self.output_label) # Calculate phi for an individual label # How many times each of the input feature appeared for this label # One is added for laplace smoothing input_feature_occur = np.sum(current_label_data, axis=0) + 1 # Fix the denominator according to the laplace smoothing curr_label_laplace_smoothing = current_label_occur + self.output_label # Calculate phi self.phi[label, :] = input_feature_occur / curr_label_laplace_smoothing def predict(self, x_test): """ Make prediction :param x_test: data to predict of shape (number of prediction, input feature) :return: """ # Number of prediction num_of_test = x_test.shape[0] # Probability of each of the class. # Initially each of the label will have zero probability probabilities = np.zeros((num_of_test, self.output_label)) # Calculate for all test for test_index in range(num_of_test): # Count probabilities for each of the classes for label in range(self.output_label): # First get all the words present in this test example words_for_this_example = x_test[test_index] == 1 # Get the calculated probabilities for this label and this ese words example words_probabilities = self.phi[label][words_for_this_example] # Multiply all these probability words_probability_multiply = np.prod(words_probabilities) # Multiply this with class_probability probabilities/class probabilities # to get the overall probability of this example probabilities[test_index, label] = words_probability_multiply * self.class_probability[label] # Normalize the probabilities probabilities[test_index] /= np.sum(probabilities[test_index]) # return the maximum probability index return np.argmax(probabilities, axis=1) def get_f1_score(self, x_test, y_test): """ Calculate the f1 score of our model :param x_test: :param y_test: :return: """ return f1_score(y_test, self.predict(x_test)) if __name__ == '__main__': # Test our model with amazon cell review dataset. # Where model will predict if alpha review is positive or negetive # Read the dataset with open("amazon_cells_labelled.txt", "r") as file: # This will contain all the sentences sentences = [] # This will contain all the output label(0, 1) labels = [] for line in file.readlines(): # The label and sentences are separated with alpha tab line_arr = line.strip().split("\t") # Remove stop words sentences.append(line_arr[0]) labels.append(int(line_arr[1])) # Vectorize the training sentences vectorizer = CountVectorizer(analyzer="word", lowercase=True, stop_words="english", max_features=4500) data = vectorizer.fit_transform(sentences).toarray() # Split data x_train, x_test, y_train, y_test = train_test_split(data, np.array(labels)) # Fit to our model naive_bayes = NaiveBayes() naive_bayes.fit(x_train, y_train) model_f1_score = naive_bayes.get_f1_score(x_test, y_test) print("F1 score of test set of our model is : ", str(model_f1_score)) # Compare with scikit-learn model sci_naive_bayes = BernoulliNB() sci_naive_bayes.fit(x_train, y_train) sk_prediction = sci_naive_bayes.predict(x_test) print("F1 score of the test set of scikit learn model is : ", str(f1_score(y_test, sk_prediction)))
gmortuza/machine-learning-scratch
machine_learning/bayesian/naive_bayes/naive_bayes.py
naive_bayes.py
py
5,821
python
en
code
6
github-code
6
30791686316
from numba import * from numba import error #@autojit def func(): if x: print("hello") else: print("world") def compile_func1(): try: jit(void())(func) except error.NumbaError as e: print("exception: %s" % e) __doc__ = """ >>> compile_func1() --------------------- Numba Encountered Errors or Warnings --------------------- if x: -------^ Error 6:7: No global named 'x' -------------------------------------------------------------------------------- exception: 6:7: No global named 'x' """ #@autojit def func2(): print(10[20]) def compile_func2(): try: jit(void())(func2) except error.NumbaError as e: print("exception: %s" % e) __doc__ += """>>> compile_func2() --------------------- Numba Encountered Errors or Warnings --------------------- print(10[20]) ----------^ Error 29:10: object of type int cannot be indexed -------------------------------------------------------------------------------- exception: 29:10: object of type int cannot be indexed """ @autojit # this often messes up line numbers def func_decorated(): print(10[20]) def compile_func3(): try: func_decorated() except error.NumbaError as e: print("exception: %s" % e) __doc__ += """ >>> compile_func3() --------------------- Numba Encountered Errors or Warnings --------------------- print(10[20]) ----------^ Error 48:10: object of type int cannot be indexed -------------------------------------------------------------------------------- exception: 48:10: object of type int cannot be indexed """ if __name__ == '__main__': import numba numba.testmod()
garrison/numba
numba/tests/test_reporting.py
test_reporting.py
py
1,664
python
en
code
null
github-code
6
30162086505
from tkinter import * fenetre = Tk() import debug as de import sauvegarde as sauvegarde import plateau as plateau import pions as pions import gestionnaire_evenements as g_evenements import menu as menu import gestionnaire_images as g_images import ast # -*- coding: utf-8 -*- """ Created on Mon Mar 13 18:48:54 2017 @author: Pierre Monrocq """ #Paramètres d'affichage fenetre.title('Latroncules') FENETRE_LARGEUR = "1000" FENETRE_HAUTEUR = "580" fenetre.geometry(FENETRE_LARGEUR+"x"+FENETRE_HAUTEUR) fenetre.resizable(0, 0) can = Canvas(fenetre,height=FENETRE_HAUTEUR,width=FENETRE_LARGEUR,bg="#d5d5d5") #Menu imgmenu = can.create_image(500,290,image=g_images.menu) bm = Button(can, text="NOUVELLE PARTIE",fg="#f5f5f5",bg="#262625",highlightthickness = 0,bd=0,borderwidth=5,font = ('Helvetica',12)) bm2 = Button(can, text="CONTINUER PARTIE",fg="#f5f5f5",bg="#262625",highlightthickness = 0,bd=0,borderwidth=5,font = ('Helvetica',12)) bm4 = Button(can, text="QUITTER",fg="#f5f5f5",bg="#262625",highlightthickness = 0,bd=0,borderwidth=5,font = ('Helvetica',12)) bm3 = Button(can, text="AIDE",fg="#f5f5f5",bg="#262625",highlightthickness = 0,bd=0,borderwidth=5,font = ('Helvetica',12)) bm.configure(width=20,height=1,activebackground = "#b9b8b6", relief = FLAT, command= lambda: lancer_jeu(can)) bm2.configure(width=20,height=1,activebackground = "#b9b8b6", relief = FLAT, command= lambda: lancer_jeu(can,True),state=DISABLED) bm3.configure(width=20,height=1,activebackground = "#b9b8b6", relief = FLAT,command= lambda: print("Merci de consulter le mode mode d’emploi, situé dans le dossier rapport.")) bm4.configure(width=20,height=1,activebackground = "#b9b8b6", relief = FLAT, command=fenetre.destroy) bm.place(relx=0.5,rely=0.48,anchor=CENTER) bm2.place(relx=0.5,rely=0.38,anchor=CENTER) bm4.place(relx=0.5,rely=0.68,anchor=CENTER) bm3.place(relx=0.5,rely=0.58,anchor=CENTER) can.pack() if(sauvegarde.fichier_existant() == True):#Si il y a déjà une partie enregistrée bm2.configure(state=NORMAL) can.pack() def lancer_jeu(can,*continuer): """ Lance le jeu et appel les autres fonctions :param can: Canvas Tkinter :type can: Objet Tkinter :param continuer: Si la condition continuer est vraie le jeu charge une partie existante (default false) (facultatif) :type continuer: Booléen """ #Debut du calcul du temps d'execution deb = de.afficher_temps_execution_debut() #suppression du menu global bm,bm2,bm3,bm4,imgmenu bm2.configure(state=NORMAL) menu.supprimer_boutons_menu(bm,bm2,bm3,bm4) menu.supprimer_fond_menu(can,imgmenu) #Fonctions de création du plateau plateau.generer_plateaux(can,g_images.case_noire_iso,g_images.case_blanche_iso,g_images.case_noire_plat,g_images.case_blanche_plat) if(True in continuer):#Chargement d'une partie existante grille = ast.literal_eval(sauvegarde.charger_grille_partie()) pions.tour = int(sauvegarde.charger_tour_partie()) pions.afficher_pions_captures(can,grille,"C","c",g_images.cavalier_blanc_plat,g_images.cavalier_noir_plat) else:#sinon creation d'une nouvelle partie grille = pions.ajouter_pions_grille(8) pions.afficher_pions_plateau_plat(grille,can) pions.afficher_pions_plateau_iso(grille,can) g_evenements.afficher_tour(can,pions.tour,g_images.tourn,g_images.tourb) de.afficher_temps_execution_fin(deb, "Lancement en") #Boutons en jeu but = Button(can, text="CHANGER DE VUE", command= lambda: g_evenements.changement_vue(can),fg="#f5f5f5",bg="#8c8c8b",highlightthickness = 0,bd=0,borderwidth=5) but.configure(width = 14, activebackground = "#b9b8b6", relief = FLAT) but.place(relx=0.1,rely=0.05,anchor=CENTER) b2 = Button(can, text="NOUVELLE PARTIE",fg="#f5f5f5",bg="#8c8c8b",highlightthickness = 0,bd=0,borderwidth=5) b2.configure(width = 14, activebackground = "#b9b8b6", relief = FLAT,command=lambda: g_evenements.partie_termine(fenetre,can)) b2.place(relx=0.9,rely=0.05,anchor=CENTER) #Evenements can.bind("<Button-1>",lambda event: pions.selectionner_pion(event,grille,can)) can.bind("<Button-3>",lambda event: pions.deplacer_pion(event,fenetre,grille,can)) fenetre.protocol("WM_DELETE_WINDOW",lambda: g_evenements.confirmer_quitter(fenetre,grille,pions.tour)) #Execution de la boucle principale Tkinter fenetre.mainloop()
PierreMonrocq/L1-Latroncules-game
Main.py
Main.py
py
4,373
python
en
code
0
github-code
6
10702615749
# pylint: disable=E0401 import js import functools from pyodide.ffi import create_once_callable, create_proxy from enum import Enum from typing import Callable, TypedDict, Sequence, MutableMapping, Union State = MutableMapping[str, Union[str, int, dict, list, None]] Actions = dict[str, Callable] Attributes = dict[str, Union[str, int, tuple[str]]] class VDom(TypedDict): node_name: str attributes: Attributes children: Sequence[Union[str, "VDom"]] def p( node_name: str, attributes: Attributes, children: Sequence[Union[str, "VDom"]] ) -> VDom: if not isinstance(children, Sequence): return { "node_name": node_name, "attributes": attributes, "children": [children], } return {"node_name": node_name, "attributes": attributes, "children": children} class App: def __init__( self, selector: str, state: State, view: Callable[[State, Actions], VDom], actions: Actions, ): def dispatch_action(action, state, data): action(state, data) self.resolve_node() self.view = view self.state = state self.actions = { name: functools.partial(dispatch_action, action) for name, action in actions.items() } self.skip_render = False self.new_node = None self.current_node = None self.dom_manager = DomManager(selector) self.resolve_node() def resolve_node(self): self.new_node = self.view(self.state, self.actions) self.schedule_render() def render(self, _): self.dom_manager.render(self.new_node) self.skip_render = False def schedule_render(self): if not self.skip_render: self.skip_render = True js.requestAnimationFrame(create_once_callable(self.render)) class DomManager: def __init__(self, selector: str) -> None: self.element = js.document.querySelector(selector) self.element.innerHTML = "" self.v_current_node = None class ChangeType(Enum): NONE = 1 TYPE = 2 TEXT = 3 NODE = 4 VALUE = 5 ATTR = 6 def render(self, v_new_node): if self.v_current_node: self.update_element(self.element, self.v_current_node, v_new_node) else: self.element.appendChild(self.create_element(v_new_node)) self.v_current_node = v_new_node def create_element(self, v_node): if not self.is_v_node(v_node): return js.document.createTextNode(str(v_node)) element = js.document.createElement(v_node["node_name"]) self.set_attributes(element, v_node["attributes"]) for child in v_node["children"]: element.appendChild(self.create_element(child)) return element def set_attributes(self, element, attributes): for attr, value in attributes.items(): if self.is_event_attr(attr): element.addEventListener(attr[2:].lower(), create_proxy(value)) else: element.setAttribute(str(attr), value) def update_element( self, parent_node, v_current_node, v_new_node, current_node_index=0 ): if not v_current_node: parent_node.appendChild(self.create_element(v_new_node)) return current_node = ( parent_node.childNodes[current_node_index] if len(parent_node.childNodes) > current_node_index else parent_node.childNodes[-1] ) if not v_new_node: parent_node.removeChild(current_node) return change_type = self.change_type(v_current_node, v_new_node) if change_type in [ self.ChangeType.TYPE, self.ChangeType.TEXT, self.ChangeType.NODE, ]: parent_node.replaceChild(self.create_element(v_new_node), current_node) if change_type == self.ChangeType.VALUE: current_node.value = v_new_node["attributes"].get("value") if change_type == self.ChangeType.ATTR: self.update_attributes( current_node, v_current_node["attributes"], v_new_node["attributes"] ) if not self.is_v_node(v_current_node) or not self.is_v_node(v_new_node): return for i in range( max([len(v_current_node["children"]), len(v_new_node["children"])]) ): v_current_node_child = ( v_current_node["children"][i] if i < len(v_current_node["children"]) else None ) v_new_node_child = ( v_new_node["children"][i] if i < len(v_new_node["children"]) else None ) self.update_element(current_node, v_current_node_child, v_new_node_child, i) def update_attributes(self, target_node, current_attributes, new_attributes): for attr in list(set(current_attributes.keys()) - set(new_attributes)): if self.is_event_attr(str(attr)): continue target_node.removeAttribute(str(attr)) for attr, value in new_attributes.items(): if ( self.is_event_attr(str(attr)) or current_attributes.get(str(attr)) == value ): continue target_node.setAttribute(str(attr), value) def change_type(self, a, b): if a.__class__.__name__ != b.__class__.__name__: return self.ChangeType.TYPE if not self.is_v_node(a) and a != b: return self.ChangeType.TEXT if self.is_v_node(a) and self.is_v_node(b): if a["node_name"] != b["node_name"]: return self.ChangeType.NODE if a["attributes"].get("value") != b["attributes"].get("value"): return self.ChangeType.VALUE if a["attributes"] != b["attributes"]: return self.ChangeType.ATTR return self.ChangeType.NONE def is_v_node(self, node): return isinstance(node, dict) def is_event_attr(self, attr: str): return attr.startswith("on")
harehare/python-wasm-vdom
vdom.py
vdom.py
py
6,230
python
en
code
0
github-code
6
42755033612
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- from datetime import datetime import re import importlib import inspect import logging import os import sys import sphinx import megengine # -- Project information ----------------------------------------------------- project = 'MegEngine' copyright = f'2020-{datetime.now().year}, The MegEngine Open Source Team' author = 'The MegEngine Open Source Team' version = megengine.__version__ release = version # -- General configuration --------------------------------------------------- extensions = [ 'nbsphinx', 'recommonmark', 'sphinx.ext.napoleon', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.graphviz', 'sphinxcontrib.mermaid', 'sphinx_autodoc_typehints', 'sphinx_copybutton' ] source_suffix = { '.rst': 'restructuredtext', '.txt': 'markdown', '.md': 'markdown', } source_encoding = "utf-8" master_doc = 'index' templates_path = ['_templates'] exclude_patterns = [ '_build', 'build', 'examples', '**/includes/**', '**.ipynb_checkpoints' ] # -- Options for internationalization ---------------------------------------- language = 'zh_CN' # By default, the document `functional/loss.rst` ends up in the `functional` text domain. # With this option set to False, it is `functional/loss`. gettext_compact = False # -- Options for Extensions ------------------------------------------------- # Setting for sphinx.ext.autosummary to auto-generate single html pages # Please makesure all api pages are stored in `/refenrece/api/` directory autosummary_generate = True # Setting for sphinx.ext.auotdoc autodoc_default_options = { 'member-order': 'bysource', # Need developer organize the source code 'show-inheritance': True, # But it can not refer the short module path } autoclass_content = 'class' autodoc_typehints = 'description' autodoc_docstring_signature = True add_function_parentheses = False add_module_names = False # Setting for sphinx.ext.mathjax # The path to the JavaScript file to include in the HTML files in order to load MathJax. mathjax_path = 'https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js' mathjax_config = { 'extensions': ['tex2jax.js'], 'jax': ['input/TeX', 'output/HTML-CSS'], } # Setting for sphinxcontrib-mermaid mermaid_version = 'latest' # from CDN unpkg.com # Setting for sphinx.ext.intersphinx # Useful for refenrece other projects, eg. :py:class:`zipfile.ZipFile` intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://numpy.org/doc/stable/', None), } # Setting for sphinx.ext.extlinks # Can use the alias name as a new role, e.g. :issue:`123` extlinks = { 'src': ('https://github.com/MegEngine/MegEngine/blob/master/%s', ''), 'docs': ('https://github.com/MegEngine/Documentation/blob/master/%s', ''), 'issue': ('https://github.com/MegEngine/MegEngine/issues/%s', 'Issue #'), 'pull': ('https://github.com/MegEngine/MegEngine/pull/%s', 'Pull Requset #'), 'duref': ('http://docutils.sourceforge.net/docs/ref/rst/' 'restructuredtext.html#%s', ''), } # Setting for sphinx.ext.nbsphinx # nbsphinx do not use requirejs (breaks bootstrap) nbsphinx_requirejs_path = "" logger = logging.getLogger(__name__) try: import nbconvert except ImportError: logger.warning("nbconvert not installed. Skipping notebooks.") exclude_patterns.append("**/*.ipynb") else: try: nbconvert.utils.pandoc.get_pandoc_version() except nbconvert.utils.pandoc.PandocMissing: logger.warning("Pandoc not installed. Skipping notebooks.") exclude_patterns.append("**/*.ipynb") # -- Options for HTML output ------------------------------------------------- html_theme = 'pydata_sphinx_theme' html_theme_path = ['_themes'] html_theme_options = { 'search_bar_text': '输入搜索文本...', 'search_bar_position': 'navbar', 'github_url': 'https://github.com/MegEngine/MegEngine', 'external_links': [ { 'name': '论坛', 'url': 'https://discuss.megengine.org.cn/'}, { 'name': '官网', 'url': 'https://megengine.org.cn/'} ], 'use_edit_page_button': False, 'navigation_with_keys': False, 'show_prev_next': False, 'use_version_switch': True, 'version_switch_json_url': '/doc/version.json', 'version_switch_enable_locale': True, 'version_switch_locates': ['zh', 'en'] } html_sidebars = { '**': ['sidebar-search-bs.html', 'sidebar-nav-bs.html'], 'index': ['sidebar-search-bs.html', 'homepage-sidebar.html'] } html_static_path = ['_static'] html_logo = "logo.png" html_favicon = "favicon.ico" html_css_files = [ 'css/custom.css' ] html_js_files = [ 'js/custom.js' ] html_search_language = 'zh'
tpoisonooo/Documentation
source/conf.py
conf.py
py
5,214
python
en
code
null
github-code
6
71477050428
import sys input = sys.stdin.readline n, k = map(int, input().split()) data = list(map(int, input().split())) ans = 0 start = 0 end = 20*n while start <= end: # 그룹들의 최소가 mid인가? mid = (start + end) // 2 my_sum = 0 count = 0 for i in range(n): my_sum += data[i] if my_sum >= mid: count += 1 my_sum = 0 if count >= k: start = mid + 1 ans = mid else: end = mid - 1 print(ans)
YOONJAHYUN/Python
BOJ/17951.py
17951.py
py
490
python
en
code
2
github-code
6
22912396559
# -*- coding: utf-8 -*- from datetime import datetime, timedelta from flask import Flask, request, jsonify, make_response, abort import requests from stations import stations app = Flask(__name__) name = [ 'station_train_code', 'from_station_name', 'to_station_name', 'lishi', 'start_time', 'arrive_time', 'swz_num', 'tz_num', 'zy_num', 'ze_num', 'gr_num', 'rw_num', 'yw_num', 'rz_num', 'yz_num', 'wz_num', 'qt_num'] @app.route('/zd') def zd_tickets(): tickets = [] date = request.args.get('Date') from_station = request.args.get('from') to_station = request.args.get('to') if from_station in stations.keys() and to_station in stations.keys(): from_station = stations[from_station] to_station = stations[to_station] else: abort(400) url = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT&queryDate={}&from_station={}&to_station={}'.\ format(date, from_station, to_station) r = requests.get(url, verify=False) # if the url param 'date'was supplied incorrectly, 12306 would return -1 of int type. if r.json() == -1: abort(400) if 'datas' in r.json()['data']: contents = r.json()['data']['datas'] # get out the information that we want in the contents dict. for content in contents: ticket = {key: content[key] for key in name} tickets.append(ticket) else: abort(404) return jsonify({'tickets': tickets}) @app.route('/hc') def hc_tickets(): tickets_1 = [] tickets_2 = [] date = request.args.get('Date') from_station = request.args.get('from') to_station = request.args.get('to') changed_station = request.args.get('change') if from_station in stations.keys() and to_station in stations.keys() and changed_station in stations.keys(): from_station = stations[from_station] to_station = stations[to_station] changed_station = stations[changed_station] else: abort(400) url1 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT&queryDate={}&from_station={}&to_station={}'. \ format(date, from_station, changed_station) r1 = requests.get(url1, verify=False) if r1.json() == -1: abort(400) if 'datas' in r1.json()['data']: contents_1 = r1.json()['data']['datas'] for content in contents_1: ticket = {key: content[key] for key in name} tickets_1.append(ticket) else: abort(404) for ticket in tickets_1: if int(ticket['lishi'][:2]) + int(ticket['start_time'][:2]) < 24: # TODO url2 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT' \ '&queryDate={}&from_station={}&to_station={}'. \ format(date, changed_station, to_station) r2 = requests.get(url2, verify=False) if r2.json() == -1: abort(400) if 'datas' in r2.json()['data']: contents_2 = r2.json()['data']['datas'] for content in contents_2: ticket = {key: content[key] for key in name} tickets_2.append(ticket) if tickets_2: for x in tickets_1: x['changed_ticket'] = [y for y in tickets_2 if 1 < int(y['start_time'][:2]) - int(x['arrive_time'][:2]) < 3] else: abort(404) else: # if the first train arrived at next day, we add one day to the queryDate param. date2 = str(datetime.strptime(date, '%Y-%m-%d') + timedelta(days=1))[:10] # TODO: the following repeatedly codes should be moved to a helper method. url2 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT' \ '&queryDate={}&from_station={}&to_station={}'. \ format(date2, changed_station, to_station) r2 = requests.get(url2, verify=False) if r2.json() == -1: abort(400) if 'datas' in r2.json()['data']: contents_2 = r2.json()['data']['datas'] for content in contents_2: ticket = {key: content[key] for key in name} tickets_2.append(ticket) if tickets_2: for x in tickets_1: x['changed_ticket'] = [y for y in tickets_2 if 1 < int(y['start_time'][:2]) - int(x['arrive_time'][:2]) < 3] return jsonify({'tickets': tickets_1}) @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found'}), 404) @app.errorhandler(400) def bad_request(error): return make_response(jsonify({'error': 'Please check your query param format'}), 400) if __name__ == '__main__': app.run(debug=True)
shenmj053/querytickets
tickets.py
tickets.py
py
5,024
python
en
code
0
github-code
6
26524076638
import math def calculatein(main_list, dictionary, imm, non_imm): time_loss = 0 for f, l in imm: fir = main_list.index(f) sec = main_list.index(l) order = [fir, sec] order.sort() sub_list = main_list[order[0]+1: order[1]+1] for i in range(0, len(sub_list)): sub_list[i] = dictionary[sub_list[i]] time_loss += sum(sub_list) for f, l in non_imm: fir = main_list.index(f) sec = main_list.index(l) order = [fir, sec] order.sort() sub_list = main_list[order[0]+1: order[1]+1] for i in range(0, len(sub_list)): sub_list[i] = dictionary[sub_list[i]] time_loss += 15-sum(sub_list) return time_loss condition = input('enter condition(works, prerequired, imm, non_imm): ') condition = condition.strip().split() print(condition) n_work = int(condition[0]) n_prereq = int(condition[1]) n_imm = int(condition[2]) n_non_imm = int(condition[3]) work_time = input('enter works required times: ') work_time = work_time.strip().split() print(work_time) string = [str(i) for i in range(1, 16)] print(string) count = 0 work_dict = dict() for time in work_time: work_dict[string[count]] = int(time) count += 1 print(work_dict) prereq = [] for x in range(0, int(n_prereq)): pr = input('enter prerequirments: ') pr = pr.strip().split() prereq.append((pr[0], pr[1])) print(prereq) imm = [] for x in range(0, int(n_imm)): imd = input('enter immediate works: ') imd = imd.strip().split() imm.append((imd[0], imd[1])) print(imm) non_imm = [] for x in range(0, int(n_non_imm)): nimd = input('enter non-immediate: ') nimd = nimd.strip().split() non_imm.append((nimd[0], nimd[1])) print(non_imm) def sort_prereq(main_list, prereq): pass def sort_imm(main_list, imm): pass def sort_non_imm(main_list, non_imm): pass with open('/tmp/all.list', 'a') as file: elements = [i for i in list(work_dict.keys())] print(elements) for x in elements: count = math.factorial(len(elements) - 1) print(count) # یک راه پیدا کردم که شاید جواب بده. # این که لیست های مطابق پیش نیاز ها رو جدا کنم و یکی که # کمترین ضرر رو به بار میاره رو جدا کنم
mortezatajerii/projects
Python/quera-program programmer.py
quera-program programmer.py
py
2,368
python
en
code
0
github-code
6
18956703257
from datetime import datetime, timezone from slack_sdk import WebClient from slack_sdk.errors import SlackApiError import logging import os import mongo_client from typing import Optional, List, Union import random client = WebClient(token=os.environ.get("SLACK_TOKEN")) good_words_collection = mongo_client.get_good_words_collection() EMOJIS = os.environ.get("VALID_EMOJIS").split(' ') def add_historical_goodwords(): # Call the conversations.list method using the WebClient result = client.conversations_history(channel="C0441R6SKBN") conversation_history = result["messages"] for message in conversation_history: word = message['text'] date_millis = float(message['ts']) user_id = message['user'] temp_list = list(filter(lambda a: len(a) > 0, word.split(" "))) if len(temp_list) == 1: handle_word_sent(temp_list[0], date_millis, user_id, True) def process_event(event: object): if event.get('text', False) and event.get('ts', False) and event.get('user', False): if event.get('thread_ts', False): print(f"Replies to posts not accepted.") return message = event['text'] millis_time = float(event['ts']) user = event['user'] channel = event['channel'] temp_list = list(filter(lambda a: len(a) > 0, message.split(" "))) if len(temp_list) > 1 or channel != "C0441R6SKBN": print(f"invalid submission: {temp_list}") else: handle_word_sent(temp_list[0], millis_time, user) else: print(f"Event missing attribute ts or text: {event}") def handle_word_sent(word: str, millis_time: float, user_id: str, historical: bool=False): prev_sent = find_word(word) if prev_sent is not None: if not historical: client.chat_postMessage(channel="C0441R6SKBN", text=f"{word} was previously sent on {datetime.fromtimestamp(prev_sent['date_millis']).strftime('%m/%d/%Y')}", thread_ts=str(millis_time)) print(f"Thread Time: {datetime.fromtimestamp(prev_sent['date_millis']).strftime('%m/%d/%Y')}, Prev Sent Word: {word}") elif not historical: insert_new_word(word, millis_time, user_id) client.reactions_add(channel="C0441R6SKBN", name=random.choice(EMOJIS), timestamp=str(millis_time)) else: insert_new_word(word, millis_time, user_id) def insert_new_word(word: str, date_millis: float, user: str): word_lowercase = word.lower() document = { "word": word_lowercase, "date_millis": date_millis, "user_id": user } good_words_collection.insert_one(document) print(f"Successfully added word: \n {document['word']} \n millis: {document['date_millis']}") def find_word(word: str): result = good_words_collection.find_one({"word": word.lower()}) print(f"Found: {result}") return result
isaacson-f/slack-bots
goodwords_service.py
goodwords_service.py
py
2,887
python
en
code
0
github-code
6
5033666757
from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect from django.db import transaction from django.template import loader from django.core.exceptions import ValidationError from django.contrib.auth import authenticate, login, logout from django.contrib import messages from django.shortcuts import render, get_object_or_404, redirect from django.urls import reverse from django.core.mail import send_mail, BadHeaderError from django.contrib.auth.decorators import login_required from .forms import UserForm, RegisterForm, UserProfileForm, ContactForm from .models import UserProfile, Event def index(request): template = loader.get_template("help/index.html") return HttpResponse(template.render(request=request)) @transaction.atomic def register(request): registered = False if request.method == "POST": user_form = RegisterForm(data=request.POST) userprofile_form = UserProfileForm(data=request.POST) if user_form.is_valid() and userprofile_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() phone = userprofile_form.cleaned_data.get("phone") userprofile = UserProfile.objects.filter(user_id=user.id) userprofile.update(phone=phone) registered = True else: messages.error(request, ( 'Veuillez corriger les erreurs ci-dessous.')) else: user_form = RegisterForm() userprofile_form = UserProfileForm() return render( request, "help/registration.html", { "user_form": user_form, "userprofile_form": userprofile_form, "registered": registered} ) def logout2(request): logout(request) return redirect(reverse("index")) @login_required() def update_event(request): if request.method == "POST": id = request.POST['event_id'] event = Event.objects.filter(id=id) event.update(status="closed") return redirect(reverse('profile')) else: user_form = RegisterForm() userprofile_form = UserProfileForm() return render(request, "help/profile.html") def contact(request): send = False email = [] contact_form = ContactForm() if request.method == "POST": subject = "demande d'info" from_email = "needhelp_contact" email.append(request.POST['Email']) body = { 'name': request.POST['Nom'], 'email': request.POST['Email'], 'phone': request.POST['Mobile'], 'message': request.POST['Message'], } message = "\n".join(body.values()) try: send_mail( subject, message, from_email, email ) except BadHeaderError: return HttpResponse('Invalid header found.') send = True # return redirect(reverse('contact')) else: contact_form = ContactForm() return render( request, "help/contact.html", { 'contact_form': contact_form, 'send': send })
davidbarat/P13
needhelp/help/views.py
views.py
py
3,219
python
en
code
0
github-code
6
28395924014
import os import numpy as np from PIL import Image from torch.utils.data import Dataset from torchvision import transforms class AnimeDataset(Dataset): def __init__(self, dataset_path, image_size): self.transform = transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) self.paths = [os.path.join(dataset_path, name) for name in os.listdir(dataset_path)] def __getitem__(self, item): image = Image.open(self.paths[item]) data = self.transform(image) return data def __len__(self): return len(self.paths) class LossWriter: def __init__(self, save_path): self.save_path = save_path def add(self, loss, i): with open(self.save_path, mode="a") as f: term = str(i) + " " + str(loss) + "\n" f.write(term) f.close() def recover_image(img): return ( (img.numpy() * np.array([0.5, 0.5, 0.5]).reshape((1, 3, 1, 1)) + np.array([0.5, 0.5, 0.5]).reshape((1, 3, 1, 1)) ).transpose(0, 2, 3, 1) * 255 ).clip(0, 255).astype(np.uint8)
cwpeng-cn/DCGAN
data.py
data.py
py
1,276
python
en
code
0
github-code
6
8528358737
""" crown.py COMP9444, CSE, UNSW """ import torch import torch.nn as nn import matplotlib.pyplot as plt # the data for this task has three columns: x y and class. # the input of nn will be x and y, and the output will be a binary class. class Full3Net(torch.nn.Module): # assume we have a linear nn here: def __init__(self, hid=3): super(Full3Net, self).__init__() # define the structure of the nn # define the first hidden layer: size of in feature is 2 and size of out feature is define by variable hid self.hidden1 = nn.Linear(2, hid) # define the second hidden layer: size of in feature is hid and size of out feature is hid self.hidden2 = nn.Linear(hid, hid) # define the third layer: the size of input is hid from layer 2, the size of output is 1 self.hidden3 = nn.Linear(hid, 1) def forward(self, input): # assume we are having a linear nn. # calculate the linear sum of the weight with the input: sum1 = self.hidden1(input) # apply the activation function: tanh self.hid1 = torch.tanh(sum1) # calculate the linear sum of the weight with the first hidden layer output after activation sum2 = self.hidden2(self.hid1) # apply the activation function: tanh self.hid2 = torch.tanh(sum2) # compute the sum for the final layer out_sum = self.hidden3(self.hid2) # apply the activation function: sigmoid output = torch.sigmoid(out_sum) return output class Full4Net(torch.nn.Module): def __init__(self, hid): super(Full4Net, self).__init__() def forward(self, input): self.hid1 = None self.hid2 = None self.hid3 = None return 0*input[:,0] class DenseNet(torch.nn.Module): def __init__(self, num_hid): super(DenseNet, self).__init__() def forward(self, input): self.hid1 = None self.hid2 = None return 0*input[:,0]
sijinwnag/COMP9444_HW1
hw1/crown.py
crown.py
py
2,002
python
en
code
0
github-code
6
12066066456
from random import randint # n = randint(0, 100) n = 71 playing = True count = 0 while playing: guess = int(input('Guess my number (0-100)? ')) if guess > n: print('Too big') elif guess < n: print('Too small') else: print('bingo') break count += 1 if count == 7: print('You lose') break
paty0504/nguyentienthanh-fundamental-c4e13
ss3/test.py
test.py
py
360
python
en
code
0
github-code
6
39189785619
""" Example of the FrequentistSurface plot. Usage: surf_plot.py FILE where FILE is a file containing Surface to be plotted. The surface is expected to be found in the `/surface` directory of the FILE. """ import sys import matplotlib.pyplot as plt from cafplot import load from cafplot.plot.surface import ( plot_surface, plot_surface_best_fit, plot_surface_gauss_contour ) root_file = load(sys.argv[1]) surface = root_file.get_fsurface('surface') f, ax = plt.subplots() im = plot_surface(ax, surface) plot_surface_best_fit(ax, surface, color = 'red', marker = '*') plot_surface_gauss_contour( ax, surface, sigma = 1, color = 'red', label = r'1$\sigma$' ) ax.set_xlabel(r'$\sin^2 \theta_{23}$') ax.set_ylabel(r'$\Delta m^2_{32}$') ax.legend() f.colorbar(im) plt.show()
usert5432/cafplot
examples/surf_plot.py
surf_plot.py
py
791
python
en
code
0
github-code
6
75145119867
A, B = map(int,input().split()) C = int(input()) hour = (B+C)//60 # 몫이므로 (30+20)//60= 0 이렇게 더함 min = (B+C)%60 # 나머지 if (B+C >= 60): if (A+hour >= 24): # 24시간 넘어갈 경우 24시간 빼줘서 0부터 시작하게 만들어줌 A = A-24 A = A + hour # 뺴준 값에다 다시 hour 더해주기 print(A, min) else: # B+C < 60 if(A >= 24): A = A-24 print(A, B+C)
zlnongi/Algorithm
baekjoon17.py
baekjoon17.py
py
429
python
ko
code
1
github-code
6
24347960900
import numpy as np import os from .image_extraction import extract_images_from_pdf from .images import get_box from PIL import Image from flask import current_app def reference_image(exam_id, page, dpi, widget_area_in=None, padding=0): """Returns a reference image for a specified area The reference image is a flattened image of the problem on the original PDF Parameters ---------- exam_id : int The id of the exam to use page : int The page number to get the reference image for dpi : int The desired DPI of the image widget_area_in : numpy array The widget coordinates as numpy array If None, return the full page padding : float Extra padding to apply in inches Returns ------- image_path : string Location of the image. """ app_config = current_app.config data_directory = app_config["DATA_DIRECTORY"] generated_path = os.path.join(data_directory, f"{exam_id}_data", "blanks", f"{dpi}") if not os.path.exists(generated_path): _extract_reference_images(dpi, exam_id) image_path = os.path.join(generated_path, f"page{page:02d}.jpg") if not os.path.exists(image_path): _extract_reference_images(dpi, exam_id) blank_page = Image.open(image_path) blank_img_array = np.array(blank_page) if widget_area_in is not None: return get_box(blank_img_array, widget_area_in, padding=padding) else: return blank_img_array def _extract_reference_images(dpi, exam_id): """Extract and save reference images for the specified exam Saves the images at: {data_directory}/{exam_id}_data/blanks/{dpi}/page{page}.jpg Parameters ---------- dpi : int The desired DPI for the extracted images exam_id : int The id of the desired exam """ data_directory = current_app.config["DATA_DIRECTORY"] output_directory = os.path.join(data_directory, f"{exam_id}_data") pdf_path = os.path.join(output_directory, "exam.pdf") pages = extract_images_from_pdf(pdf_path, dpi=dpi) for page, (image, _) in enumerate(pages, start=1): _save_image(image, page, dpi, output_directory) def _save_image(image, page, dpi, output_directory): """Save an image at an appropriate location. Saves the images at: {output_directory}/blanks/{dpi}/page{page}.jpg Parameters ---------- image : PIL Image Image data. page : int The corresponding page number, starting at 1. dpi : int The DPI of the image to save. output_directory : path The output directory of the exam the page is from. Returns ------- image_path : string Location of the image. """ submission_path = os.path.join(output_directory, "blanks", f"{dpi}") os.makedirs(submission_path, exist_ok=True) image_path = os.path.join(submission_path, f"page{page-1:02d}.jpg") image.save(image_path) return image_path
zesje/zesje
zesje/blanks.py
blanks.py
py
3,019
python
en
code
9
github-code
6
24955814708
import shutil import pytest from repo2rocrate.snakemake import find_workflow, get_lang_version, make_crate SNAKEMAKE_ID = "https://w3id.org/workflowhub/workflow-ro-crate#snakemake" def test_find_workflow(tmpdir): root = tmpdir / "snakemake-repo" workflow_dir = root / "workflow" workflow_dir.mkdir(parents=True) with pytest.raises(RuntimeError): find_workflow(root) wf_path = workflow_dir / "Snakefile" wf_path.touch() assert find_workflow(root) == wf_path new_wf_path = root / "Snakefile" shutil.move(wf_path, new_wf_path) assert find_workflow(root) == new_wf_path def test_get_lang_version(tmpdir): v = "0.1.0" wf_path = tmpdir / "Snakefile" for arg_part in f'("{v}")', f"( '{v}')": with open(wf_path, "wt") as f: f.write(f"# comment\nfrom x import y\nmin_version{arg_part}\n") assert get_lang_version(wf_path) == v @pytest.mark.parametrize("defaults", [False, True]) def test_make_crate(data_dir, defaults): repo_name = "fair-crcc-send-data" root = data_dir / repo_name repo_url = f"https://github.com/crs4/{repo_name}" kwargs = {"repo_url": repo_url} if defaults: wf_path = root / "workflow" / "Snakefile" wf_name = repo_name wf_version = None lang_version = "6.5.0" license = None ci_workflow = "main.yml" diagram = "images/rulegraph.svg" else: wf_path = root / "pyproject.toml" wf_name = "spam/bar" wf_version = "0.9.0" lang_version = "99.9.9" license = "GPL-3.0" ci_workflow = "release-please.yml" diagram = "images/rulegraph.dot" kwargs.update( workflow=wf_path, wf_name=wf_name, wf_version=wf_version, lang_version=lang_version, license=license, ci_workflow=ci_workflow, diagram=diagram, ) crate = make_crate(root, **kwargs) if license: assert crate.root_dataset["license"] == license # workflow workflow = crate.mainEntity assert workflow.id == str(wf_path.relative_to(root)) assert workflow["name"] == crate.root_dataset["name"] == wf_name if wf_version: assert workflow["version"] == wf_version image = crate.get(diagram) assert image assert set(image.type) == {"File", "ImageObject"} assert workflow["image"] is image language = workflow["programmingLanguage"] assert language.id == SNAKEMAKE_ID assert language["version"] == lang_version assert workflow["url"] == crate.root_dataset["isBasedOn"] == repo_url # workflow testing metadata suite = crate.root_dataset["mentions"] assert suite if isinstance(suite, list): assert len(suite) == 1 suite = suite[0] assert suite.type == "TestSuite" assert suite["mainEntity"] is workflow instance = suite["instance"] assert instance if isinstance(instance, list): assert len(instance) == 1 instance = instance[0] assert instance.type == "TestInstance" assert instance["url"] == "https://api.github.com" assert instance["resource"] == f"repos/crs4/{repo_name}/actions/workflows/{ci_workflow}" # layout expected_data_entities = [ ("LICENSE", "File", ""), ("README.md", "File", ""), ("config", "Dataset", "Configuration folder"), (".tests/integration", "Dataset", "Integration tests for the workflow"), ("workflow/rules", "Dataset", "Workflow rule modules"), ("workflow/schemas", "Dataset", "Validation files"), ("workflow/scripts", "Dataset", "Scripts folder"), ] for relpath, type_, desc in expected_data_entities: entity = crate.get(relpath) assert entity, f"{relpath} not listed in crate metadata" assert entity.type == type_ if desc: assert entity["description"] == desc
crs4/repo2rocrate
test/test_snakemake.py
test_snakemake.py
py
3,932
python
en
code
1
github-code
6
2785515345
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import logging as log from time import sleep from html import escape import requests class FloodException(Exception): pass def send(config, post): # prepare config c = {'token': '', 'chat': '', 'maxlength': 1000, 'skip': [], 'censor': []} c.update(config) if not c['token'] or not c['chat']: raise Exception('[Telegram] missing parameter') # check key words if any((x in post['title']) for x in c['skip']): log.info('[Telegram] skip word hit') return if any((x in post['content']) for x in c['censor']): log.info('[Telegram] censor word hit') post['content'] = '' # fixes email addresses and links post['content'] = re.sub(r'([!-~]+\@[!-~]+)', ' \\1 ', post['content']) post['content'] = re.sub(r'(https?://[!-~]+)', '\\1 ', post['content']) # form message html = f'<b>{escape(post["title"])}</b>\n' html += f'{post["time"]} #{post["dept"]}\n' html += f'<a href="{post["linkLAN"]}">校内链接</a> <a href="{post["linkVPN"]}">VPN链接</a>\n\n' html += f'{escape(post["content"])}' if len(html) > c['maxlength']: html = html[:c['maxlength']] + '...' log.debug(f'[Telegram] html: {html}') # call HTTP API while True: try: r = requests.post('https://api.telegram.org/bot'+c['token']+'/sendMessage', json={ 'chat_id': c['chat'], 'text': html, 'parse_mode': 'HTML', 'disable_web_page_preview': True }, timeout=5) log.debug(f'[Telegram] response: {r.text}') if not r.json()['ok']: if r.json()['error_code'] == 429: raise FloodException() else: raise Exception(r.json()['error_code']) break except FloodException: log.warning('[Telegram] hit rate limit!') sleep(30) except requests.exceptions.RequestException as e: log.info('[Telegram] network error') log.info(repr(e)) sleep(5) except Exception as e: log.error('[Telegram] unknown error') log.error(repr(e)) sleep(60)
TechCiel/Reachee
sender/telegram.py
telegram.py
py
2,274
python
en
code
11
github-code
6
10422651353
from __future__ import annotations import copy from dataclasses import dataclass from enum import Enum from typing import TYPE_CHECKING, Self from randovania.bitpacking import bitpacking from randovania.bitpacking.bitpacking import BitPackDecoder, BitPackEnum, BitPackValue from randovania.bitpacking.type_enforcement import DataclassPostInitTypeCheck from randovania.game_description import default_database from randovania.game_description.db.dock import DockType, DockWeakness from randovania.games.game import RandovaniaGame from randovania.lib import enum_lib if TYPE_CHECKING: from collections.abc import Iterator from randovania.game_description.db.dock import DockWeaknessDatabase class DockRandoMode(BitPackEnum, Enum): long_name: str description: str VANILLA = "vanilla" DOCKS = "docks" WEAKNESSES = "weaknesses" enum_lib.add_long_name( DockRandoMode, { DockRandoMode.VANILLA: "Vanilla", DockRandoMode.DOCKS: "Doors", DockRandoMode.WEAKNESSES: "Types", }, ) enum_lib.add_per_enum_field( DockRandoMode, "description", { DockRandoMode.VANILLA: "Original door locks", DockRandoMode.DOCKS: "Randomize the type of each door individually", DockRandoMode.WEAKNESSES: "Randomizes all doors by type, turning all of one type into another", }, ) @dataclass(frozen=True) class DockTypeState(BitPackValue, DataclassPostInitTypeCheck): game: RandovaniaGame dock_type_name: str can_change_from: set[DockWeakness] can_change_to: set[DockWeakness] @staticmethod def _get_weakness_database(game: RandovaniaGame) -> DockWeaknessDatabase: return default_database.game_description_for(game).dock_weakness_database @property def weakness_database(self) -> DockWeaknessDatabase: return self._get_weakness_database(self.game) @property def dock_type(self) -> DockType: return self.weakness_database.find_type(self.dock_type_name) @property def can_shuffle(self) -> bool: return len(self.can_change_from) > 0 @property def as_json(self) -> dict: return { "can_change_from": sorted(weakness.name for weakness in self.can_change_from), "can_change_to": sorted(weakness.name for weakness in self.can_change_to), } @classmethod def from_json(cls, value: dict, game: RandovaniaGame, dock_type_name: str) -> DockTypeState: weakness_database = cls._get_weakness_database(game) return cls( game=game, dock_type_name=dock_type_name, can_change_from={ weakness_database.get_by_weakness(dock_type_name, weakness) for weakness in value["can_change_from"] }, can_change_to={ weakness_database.get_by_weakness(dock_type_name, weakness) for weakness in value["can_change_to"] }, ) def bit_pack_encode(self, metadata) -> Iterator[tuple[int, int]]: yield from bitpacking.pack_sorted_array_elements( sorted(self.can_change_from), sorted(self.possible_change_from), ) yield from bitpacking.pack_sorted_array_elements( sorted(self.can_change_to), sorted(self.possible_change_to), ) @classmethod def bit_pack_unpack(cls, decoder: BitPackDecoder, metadata) -> DockTypeState: reference: DockTypeState = metadata["reference"] ref_change_from = sorted(cls._possible_change_from(reference.game, reference.dock_type_name)) ref_change_to = sorted(cls._possible_change_to(reference.game, reference.dock_type_name)) return cls( game=reference.game, dock_type_name=reference.dock_type_name, can_change_from=set(bitpacking.decode_sorted_array_elements(decoder, ref_change_from)), can_change_to=set(bitpacking.decode_sorted_array_elements(decoder, ref_change_to)), ) @staticmethod def _possible_change_from(game: RandovaniaGame, dock_type_name: str) -> Iterator[DockWeakness]: weakness_database = DockTypeState._get_weakness_database(game) yield from weakness_database.dock_rando_params[weakness_database.find_type(dock_type_name)].change_from @property def possible_change_from(self) -> Iterator[DockWeakness]: yield from self._possible_change_from(self.game, self.dock_type_name) @staticmethod def _possible_change_to(game: RandovaniaGame, dock_type_name: str) -> Iterator[DockWeakness]: weakness_database = DockTypeState._get_weakness_database(game) yield from weakness_database.dock_rando_params[weakness_database.find_type(dock_type_name)].change_to @property def possible_change_to(self) -> Iterator[DockWeakness]: yield from self._possible_change_to(self.game, self.dock_type_name) @dataclass(frozen=True) class DockRandoConfiguration(BitPackValue, DataclassPostInitTypeCheck): game: RandovaniaGame mode: DockRandoMode types_state: dict[DockType, DockTypeState] @staticmethod def _get_weakness_database(game: RandovaniaGame) -> DockWeaknessDatabase: return default_database.game_description_for(game).dock_weakness_database @property def weakness_database(self) -> DockWeaknessDatabase: return self._get_weakness_database(self.game) @property def as_json(self) -> dict: return { "mode": self.mode.value, "types_state": { dock_type.short_name: type_state.as_json for dock_type, type_state in self.types_state.items() }, } @classmethod def from_json(cls, value: dict, game: RandovaniaGame) -> Self: weakness_database = cls._get_weakness_database(game) return cls( game=game, mode=DockRandoMode(value["mode"]), types_state={ weakness_database.find_type(dock_type): DockTypeState.from_json(type_state, game, dock_type) for dock_type, type_state in value["types_state"].items() }, ) def bit_pack_encode(self, metadata) -> Iterator[tuple[int, int]]: reference: DockRandoConfiguration = metadata["reference"] yield from self.mode.bit_pack_encode(None) modified_types = sorted( dock_type for dock_type, type_state in self.types_state.items() if type_state != reference.types_state[dock_type] ) yield from bitpacking.pack_sorted_array_elements(modified_types, sorted(self.weakness_database.dock_types)) for dock_type in modified_types: yield from self.types_state[dock_type].bit_pack_encode({"reference": reference.types_state[dock_type]}) @classmethod def bit_pack_unpack(cls, decoder: BitPackDecoder, metadata) -> Self: reference: DockRandoConfiguration = metadata["reference"] mode = DockRandoMode.bit_pack_unpack(decoder, None) modified_types = bitpacking.decode_sorted_array_elements( decoder, sorted(reference.weakness_database.dock_types) ) types_state = copy.copy(reference.types_state) for dock_type in modified_types: types_state[dock_type] = DockTypeState.bit_pack_unpack( decoder, {"reference": reference.types_state[dock_type]} ) return cls( game=reference.game, mode=mode, types_state=types_state, ) def is_enabled(self) -> bool: return self.mode != DockRandoMode.VANILLA def can_shuffle(self, dock_type: DockType) -> bool: return dock_type in self.weakness_database.dock_rando_params and self.types_state[dock_type].can_shuffle def settings_incompatible_with_multiworld(self) -> list[str]: danger = [] if self.mode == DockRandoMode.DOCKS: danger.append(f"{self.mode.long_name}: {self.mode.description}") return danger
randovania/randovania
randovania/layout/base/dock_rando_configuration.py
dock_rando_configuration.py
py
8,008
python
en
code
165
github-code
6
11467657062
# p161 미로찾기(그래프탐색) def solve_maze(g, start, end): qu = [] done = set() qu.append(start) done.add(start) while qu: p = qu.pop(0) v = p[-1] if v == end: return p for x in g[v]: if x not in done: qu.append(p + x) done.add(x) return '?' maze = { 'a': ['e'], 'b': ['c', 'f'], 'c': ['b', 'd'], 'd': ['c'], 'e': ['a', 'i'], 'f': ['b', 'g', 'j'], 'g': ['f', 'h'], 'h': ['g', 'l'], 'i': ['e', 'm'], 'j': ['f', 'k', 'n'], 'k': ['j', 'o'], 'l': ['h', 'p'], 'm': ['i', 'n'], 'n': ['m', 'j'], 'o': ['k'], 'p': ['l'] } print(solve_maze(maze, 'a', 'p')) # p168 가짜 동전 찾기1 def weigh(a, b, c, d): fake = 14 if a <= fake and fake <= b: return -1 elif c >= fake and fake <= d: return 1 return 0 def find_fakecoin(left, right): for i in range(left+1, right+1): result = weigh(left, left, i, i) if result == -1: return left elif result == 1: return i return '?' n = 100 print(find_fakecoin(0, n-1)) # p178 가짜 동전 찾기2 def weigh(a, b, c, d): fake = 25 if a <= fake and fake <= b: return -1 elif c <= fake and fake <= d: return 1 return 0 def find_fakecoin(left, right): if left == right: return left half = (right - left + 1) // 2 g1_l = left g1_r = left + half - 1 g2_l = left + half g2_r = g2_l + half - 1 result = weigh(g1_l, g1_r, g2_l, g2_r) if result == -1: return find_fakecoin(g1_l, g1_r) elif result == 1: return find_fakecoin(g2_l, g2_r) else: return right n = 100 print(find_fakecoin(0, n-1)) # p175 주식 최대수익1 def max_profit(prices): n = len(prices) max_profit = 0 for i in range(0, n-1): for j in range(i+1, n): profit = prices[j] - prices[i] if profit > max_profit: max_profit = profit return max_profit stock = [10300, 9600, 9800, 8200, 7800, 8300, 9500, 9800, 10200, 9500] print(max_profit(stock)) # p177 주식 최대수익2 def max_profit(prices): n = len(prices) min_price = prices[0] max_profit = 0 for i in range(1, n): profit = prices[i] - min_price if profit > max_profit: max_profit = profit if prices[i] < min_price: min_price = prices[i] return max_profit stock = [10300, 9600, 9800, 8200, 7800, 8300, 9500, 9800, 10200, 9500] print(max_profit(stock))
hsyeon4001/algorithm_records
Python/교재/5.py
5.py
py
2,747
python
en
code
0
github-code
6
23647554795
from flask import render_template, request, flash, jsonify from appInitialize import app, db from model.client import Client from model.product import Product from model.order import Order import json @app.route('/') def index (): return render_template('layout.html') #Consultar clientes @app.route('/read/clients', methods=['GET']) def readClients (): clients = Client.query.filter_by(state = 'activo').all() return render_template('read.html', id = False, records = clients, route = 'client') @app.route('/api/read/clients', methods=['GET']) def apiReadClients (): clients = Client.query.filter_by(state = 'activo').all() return jsonify([{'name': client.name, 'document': client.document, 'state': client.state, 'created_at': client.created_at} for client in clients]) #Consultar productos @app.route('/read/products', methods=['GET']) def readProducts (): products = Product.query.filter(Product.state != 'inactivo').all() return render_template('read.html', id = False, records = products, route = 'product') @app.route('/api/read/products', methods=['GET']) def apiReadProducts (): products = Product.query.filter(Product.state != 'inactivo').all() return jsonify([{'name': product.name, 'document': product.price, 'state': product.state, 'created_at': product.created_at} for product in products]) #Consultar ordenes @app.route('/read/orders', methods=['GET', 'POST']) def readOrders (): if request.method == 'POST': id = request.form['id'] if id == "true": clientid = request.form['clientid'] client = Client.query.filter_by(clientid = clientid, state = 'activo').all() if len(client) == 0: flash('Cliente no encontrado') return render_template('read.html', id = True, route = 'order') else: orders = Order.query.filter_by(clientid = clientid, state = 'pendiente').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return render_template('read.html', id = False, records = orders, route = 'order') return render_template('read.html', id = True, route = 'order') @app.route('/api/read/orders', methods=['POST']) def apiReadOrders (): if request.method == 'POST': data = json.loads(request.data) client = Client.query.filter_by(clientid = data['clientid'], state = 'activo').all() if len(client) == 0: return "Registro no encontrado", 402 orders = Order.query.filter_by(clientid = data['clientid'], state = 'pendiente').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return jsonify([{'clientid': order.clientid, 'productid': order.productid, 'quantity': order.quantity, 'total': order.total, 'state': order.state, 'created_at': order.created_at} for order in orders]) #Consultar compras @app.route('/read/purchases', methods=['GET', 'POST']) def readPurchases (): if request.method == 'POST': id = request.form['id'] if id == "true": clientid = request.form['clientid'] client = Client.query.filter_by(clientid = clientid, state = 'activo').all() if len(client) == 0: flash('Cliente no encontrado') return render_template('read.html', id = True, route = 'purchase') else: orders = Order.query.filter_by(clientid = clientid, state = 'pagada').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return render_template('read.html', id = False, records = orders, route = 'purchase') return render_template('read.html', id = True, route = 'purchase') @app.route('/api/read/purchases', methods=['POST']) def apiReadPurchases (): if request.method == 'POST': data = json.loads(request.data) client = Client.query.filter_by(clientid = data['clientid'], state = 'activo').all() if len(client) == 0: return "Registro no encontrado", 402 orders = Order.query.filter_by(clientid = data['clientid'], state = 'pagada').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return jsonify([{'clientid': order.clientid, 'productid': order.productid, 'quantity': order.quantity, 'total': order.total, 'state': order.state, 'created_at': order.created_at} for order in orders]) if __name__ == '__main__': app.run(host='0.0.0.0', debug=True)
cesar-orozco-chr/tienda-online
read/app.py
app.py
py
4,862
python
en
code
0
github-code
6
30493177090
#Seting the Hyper Parameters param_test1 = { 'max_depth':[3,5,6,10], 'min_child_weight':[3,5,10], 'gamma':[0.0, 0.1, 0.2, 0.3, 0.4], # 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 10], 'subsample':[i/100.0 for i in range(75,90,5)], 'colsample_bytree':[i/100.0 for i in range(75,90,5)] } #Creating the classifier model_xg = XGBClassifier(random_state=2) grid_search = GridSearchCV(model_xg, param_grid=param_test1, cv=5, scoring='recall') grid_search.fit(X_train, y_train) grid_search.best_score_ grid_search.best_params_ y_pred = grid_search.predict(X_test) # Verificaar os resultados obtidos print(accuracy_score(y_test,y_pred)) print("\n") print(confusion_matrix(y_test, y_pred))
garagaby/Kernel-Airflow
bin/implementing_pipeline_models.py
implementing_pipeline_models.py
py
681
python
en
code
0
github-code
6
7176555609
import functools from typing import ( Any, Callable, TypeVar, cast, ) import warnings TFunc = TypeVar("TFunc", bound=Callable[..., Any]) def deprecate_method(func: TFunc, message: str = None) -> TFunc: @functools.wraps(func) def deprecated_func(*args: Any, **kwargs: Any) -> Any: warnings.warn( category=DeprecationWarning, message=( message or f"{func.__name__} is deprecated. " "A breaking change is expected in a future release." ), stacklevel=2, ) func(*args, **kwargs) return cast(TFunc, deprecated_func)
ethereum/py-evm
eth/tools/_utils/deprecation.py
deprecation.py
py
662
python
en
code
2,109
github-code
6
40880830024
from bs4 import BeautifulSoup import requests,re,os import textract os.chdir("..") DATA_DIR = "data/fiscal_pdf" SAVE_DIR = "data/fiscal_txt" pre_link="http://www.imf.org" target_dir = "http://www.imf.org/external/np/g20/" g8_link = "http://www.g8.utoronto.ca/summit/index.htm" # Extract all IMF Staff Note from IMF website html = requests.get(target_dir) soup = BeautifulSoup(html.content, "lxml") link_imf = soup.findAll("a",text=re.compile('IMF Staff Note to G-20')) def extract_pdf(r,link,datdir,savedir): name = link.split("/")[-1].split(".")[0][:6] name_format = "20"+name[-2:]+name[:2]+name[2:4] name_pdf = name_format + ".pdf" name_txt = name_format + ".txt" save_dir = os.path.join(datdir,name_pdf) save_txt = os.path.join(savedir,name_txt) with open(save_dir, 'wb') as f: f.write(r.content) text = textract.process(save_dir) with open(save_txt, 'wb') as f: f.write(text) for i in link_imf: if "pdf" in i["href"]: if "www" in i["href"]: r = requests.get(i["href"], stream=True) extract_pdf(r,i["href"],DATA_DIR,SAVE_DIR) else: link_temp=pre_link + i["href"] r = requests.get(link_temp,stream=True) extract_pdf(r,i["href"],DATA_DIR,SAVE_DIR) else: if "www" in i["href"]: r = requests.get(i["href"], stream=True) else: link_temp=pre_link + i["href"] r = requests.get(link_temp,stream=True) temp=BeautifulSoup(r.content, "lxml") link_temp=temp.find(text=re.compile("Read the")) link_temp=link_temp.parent.a["href"] if "external" in link_temp: link_temp=pre_link+link_temp else: link_temp=target_dir+link_temp r = requests.get(link_temp,stream=True) extract_pdf(r,link_temp,DATA_DIR,SAVE_DIR)
utipe/imf_fiscal
code/corpus_extraction.py
corpus_extraction.py
py
1,880
python
en
code
0
github-code
6
19365158235
import pickle, ssl, logging import numpy as np import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms import pytorch_lightning as pl import models, curves, utils1, utils, preresnet, resnet DATASET = datasets.CIFAR10 TEST_ITEMS = 50_000 BATCH_SIZE = 128 WORKER_COUNT = 6 EPOCHS = 120 LEARNING_RATE=0.1 LR_GAMMA=0.1 L2_REG = 5e-4 MOMENTUM = 0.9 PARALLEL_MODELS = 1 MODEL = resnet.ResNet18 if DATASET == datasets.CIFAR10 else resnet.ResNet14MNIST CURVE_BENDS = 3 CURVE_NUM_SAMPLES = 61 STEP_MODES = 2 STEP_BAD_MODES = 2 CODE_CHECK = False if CODE_CHECK: TEST_ITEMS = 5000 WORKER_COUNT = 0 EPOCHS = 1 CURVE_NUM_SAMPLES = 2 LOADER_ARGS = {"batch_size":BATCH_SIZE, "num_workers":WORKER_COUNT, "persistent_workers":WORKER_COUNT>0} TRAINER_ARGS = {"accelerator":"gpu", "devices":"auto", "max_epochs":EPOCHS, "precision":16} class LitModel(pl.LightningModule): def __init__(self): super().__init__() if PARALLEL_MODELS > 1: self.model = models.ParallelModel(PARALLEL_MODELS, MODEL, 10, **MODEL.kwargs) else: self.model = MODEL.base(10, **MODEL.kwargs) self.loss = nn.CrossEntropyLoss() self.mode = None def forward(self, x): return self.model(x) def process_batch(self, batch): x, y = batch if PARALLEL_MODELS > 1: y = torch.cat([y for _ in range(PARALLEL_MODELS)], dim=0) return self(x), y def training_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) self.log("train_loss", loss.item(), on_epoch=True) return loss def validation_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("val_loss", loss) self.log("val_acc", acc) def test_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("test_loss", loss) self.log("test_acc", acc) def configure_optimizers(self): optimiser = torch.optim.SGD(self.parameters(), lr=LEARNING_RATE*PARALLEL_MODELS, momentum=MOMENTUM, weight_decay=L2_REG) scheduler_dict = { "scheduler": torch.optim.lr_scheduler.StepLR(optimiser, step_size=max(1,EPOCHS//3), gamma=LR_GAMMA), "interval": "epoch" } return {"optimizer":optimiser, "lr_scheduler":scheduler_dict} class LitModelConnect(pl.LightningModule): def __init__(self, start_model = None, end_model = None, num_bends=CURVE_BENDS): super().__init__() self.loss = nn.CrossEntropyLoss() self.model = curves.CurveNet(10, curves.PolyChain, MODEL.curve, num_bends, architecture_kwargs=MODEL.kwargs) self.t = None self.update_bn = False # Initialise curve weights if start_model != None: self.model.import_base_parameters(start_model.model, 0) self.model.import_base_parameters(end_model.model, num_bends - 1) self.model.init_linear() def forward(self, x, **kwargs): return self.model(x, **kwargs) def regulariser(self): return 0.5 * L2_REG * self.model.l2 def process_batch(self, batch): x, y = batch return self(x, t=self.t), y def set_t(self, t): self.t = t def training_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) + self.regulariser() self.log("train_loss", loss.item(), on_epoch=True) return loss def on_test_start(self): if self.update_bn: self.model.train() def test_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) nll = self.loss(y_hat, y) loss = nll + self.regulariser() correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("test_nll", nll) self.log("test_loss", loss) self.log("test_acc", acc) def configure_optimizers(self): optimiser = torch.optim.SGD( filter(lambda param: param.requires_grad, self.parameters()), lr=LEARNING_RATE, momentum=MOMENTUM ) scheduler_dict = { "scheduler": torch.optim.lr_scheduler.StepLR(optimiser, step_size=max(1,EPOCHS//3), gamma=LR_GAMMA), "interval": "epoch" } return {"optimizer":optimiser, "lr_scheduler":scheduler_dict} def update_bn(model, loader): if not utils.check_bn(model): return bn_trainer = pl.Trainer(logger=False,**TRAINER_ARGS) model.update_bn = True bn_trainer.test(model, loader, verbose=False) model.update_bn = False def testCurve(model, trainer, test_loader, train_loader=None): ts = np.linspace(0.0, 1.0, CURVE_NUM_SAMPLES) if train_loader == None: train_loader = test_loader # BN has momentum so iter a few times to warm up model.set_t(0.0) for _ in range(3): update_bn(model, train_loader) # Test and compute max stats max_loss = -1 for t in ts: model.set_t(t) update_bn(model, train_loader) metrics = trainer.test(model, test_loader) max_loss = max(max_loss, metrics[0]["test_loss"]) return max_loss if __name__ == "__main__": # Select training device use_cuda = torch.cuda.is_available() if use_cuda: LOADER_ARGS["pin_memory"] = True device = "cuda" if use_cuda else "cpu" print(f"Training on {device}") # Setup logging logging.getLogger("lightning").setLevel(logging.ERROR) def genLogger(log, path): return pl.loggers.CSVLogger(path, name=log) # Setup checkpointing checkpoint = pl.callbacks.ModelCheckpoint( #dirpath="checkpoints", #save_last=True, save_top_k=0, save_weights_only=True ) # Setup progress bar progress_bar = pl.callbacks.RichProgressBar() TRAINER_ARGS["callbacks"] = [checkpoint, progress_bar] # ------------------------ # Prepare Datasets / Loaders # ------------------------ # CIFAR10 has an expired cert ssl._create_default_https_context = ssl._create_unverified_context # Too many files open with file_descriptor strategy torch.multiprocessing.set_sharing_strategy('file_system') transform = [] # if DATASET == datasets.CIFAR10: # transform += [transforms.Grayscale()] transform += [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ] transform = transforms.Compose(transform) train_data = DATASET( root=".data", train=True, download=True, transform=transform ) # Truncate data for quick checks if TEST_ITEMS < 50_000: train_data = torch.utils.data.Subset(train_data, range(TEST_ITEMS)) adverse_data = utils1.NoiseDataset(train_data) test_data = DATASET( root=".data", train=False, download=True, transform=transform ) # train_data = utils1.GPUDataset(train_data, "cuda") # adverse_data = utils1.GPUDataset(adverse_data, "cuda") # test_data = utils1.GPUDataset(test_data, "cuda") train_loader = DataLoader(train_data, shuffle=True, **LOADER_ARGS) adverse_loader = DataLoader(adverse_data, shuffle=True, **LOADER_ARGS) LOADER_ARGS["batch_size"] = 1024 test_loader = DataLoader(test_data, **LOADER_ARGS) curve_loader = DataLoader(train_data, **LOADER_ARGS) # ------------------------ # Generate Data # ------------------------ # Load state state = {"minima":[], "paths":[]} try: state_file = open('state.p', 'rb') state = pickle.load(state_file) state_file.close() except FileNotFoundError: pass # ------------------------ # Generate Minima # ------------------------ # Generate good minima good_minima = [] for _ in range(STEP_MODES): model = LitModel() model.mode = "train" path=f"modes/{len(state['minima'])}" trainer = pl.Trainer(logger=genLogger("train", path),**TRAINER_ARGS) trainer.fit(model, train_loader, test_loader) metrics = trainer.test(model, test_loader)[0] trainer.save_checkpoint(path+"/model.ckpt") record = {"idx":len(state["minima"]), "type":"good", "path":path, "loss":metrics["test_loss"], "acc":metrics["test_acc"]} good_minima.append(record) state["minima"].append(record) # Generate adversarial init model = LitModel() model.mode = "adverse" trainer = pl.Trainer(logger=genLogger("adverse", "modes"), **TRAINER_ARGS) trainer.fit(model, adverse_loader) trainer.save_checkpoint("modes/adverse.ckpt") # Generate bad minima bad_minima = [] for _ in range(STEP_BAD_MODES): model = LitModel.load_from_checkpoint("modes/adverse.ckpt") model.mode = "train" path=f"modes/{len(state['minima'])}" trainer = pl.Trainer(logger=genLogger("train", path), **TRAINER_ARGS) trainer.fit(model, train_loader, test_loader) metrics = trainer.test(model, test_loader)[0] trainer.save_checkpoint(path+"/model.ckpt") record = {"idx":len(state["minima"]), "type":"bad", "path":path, "loss":metrics["test_loss"], "acc":metrics["test_acc"]} bad_minima.append(record) state["minima"].append(record) # ------------------------ # Generate Curves # ------------------------ new_curves = [] # Connect good minima to existing for mode in good_minima: if mode["idx"] == 0: continue other = np.random.randint(mode["idx"]) while state["minima"][other]["type"] != "good": other = np.random.randint(mode["idx"]) new_curves.append((mode["idx"], other)) # Connect a bad minimum to a good minimum other = np.random.randint(bad_minima[0]["idx"]) while state["minima"][other]["type"] != "good": other = np.random.randint(bad_minima[0]["idx"]) new_curves.append((bad_minima[0]["idx"], other)) # Curve directly between bad minima new_curves.append((bad_minima[0]["idx"], bad_minima[1]["idx"])) # Random new curves start = np.random.randint(len(state["minima"])) other = np.random.randint(len(state["minima"])) while start == other: other = np.random.randint(len(state["minima"])) new_curves.append((start, other)) start = np.random.randint(len(state["minima"])) other = np.random.randint(len(state["minima"])) while start == other: other = np.random.randint(len(state["minima"])) new_curves.append((start, other)) for start_idx, end_idx in new_curves: start = LitModel.load_from_checkpoint(state["minima"][start_idx]["path"] + "/model.ckpt") end = LitModel.load_from_checkpoint(state["minima"][end_idx]["path"] + "/model.ckpt") path=f"curves/{len(state['paths'])}" linear = LitModelConnect(start, end, 2) trainer = pl.Trainer(logger=genLogger("linear", path), **TRAINER_ARGS) lin_loss = testCurve(linear, trainer, curve_loader, test_loader) trainer.save_checkpoint(path + "/linear.ckpt") curve = LitModelConnect(start, end, CURVE_BENDS) trainer = pl.Trainer(logger=genLogger("curve", path), **TRAINER_ARGS) trainer.fit(curve, train_loader) trainer.save_checkpoint(path + "/curve.ckpt") curve_loss = testCurve(curve, trainer, curve_loader, test_loader) curve_test_loss = testCurve(curve, trainer, test_loader, test_loader) record = {"idx":len(state["paths"]), "path":path, "start":start_idx, "end":end_idx, "lin_loss":lin_loss, "curve_loss":curve_loss, "curve_test_loss":curve_test_loss} state["paths"].append(record) # Save state pickle.dump(state, open('state.p', 'wb'))
jonasjuerss/mode-connectivity
james/main.py
main.py
py
12,280
python
en
code
0
github-code
6
70073356027
from asyncio import coroutine, get_event_loop from time import time import requests import json class IngestaoDadosDogs: def __init__(self, urls, dir): self.urls = urls self.dir = dir @coroutine def collect(self): start = time() loop = get_event_loop() scrape_list = [loop.run_in_executor(None, requests.get, url) for url in self.urls] for i, scrape in enumerate(scrape_list): resp = yield from scrape arquive = resp.json() print(f'{i+1}: {resp.ok}') with open(dir+f'{i+1}_File.json', 'w+') as file: json.dump(arquive, file) termino = time() - start print(f'Fim da Operação: {termino:.2f} s') # API que busca aleatoriamente imagem de cachorros na internet! url_list = ['https://dog.ceo/api/breeds/image/random' for n in range(0,10)] # Diretorio onda ira salvar o arquivo JSON dir = "C:/Users/BlueShift/Desktop/Gustavo/Gustavo/MentoramaPythonPRO/MentoramaPythonPRO_MOD9/mod9pro/JsonConcorrentes/" Dados = IngestaoDadosDogs(url_list, dir).collect() loop = get_event_loop() loop.run_until_complete(Dados)
gustavo-duarte-silva/MentoramaPythonPRO_MOD9
mod9pro/ScriptsAssincronos/scriptConcorrente.py
scriptConcorrente.py
py
1,155
python
en
code
0
github-code
6
37187212499
# solved by satyam kumar (refernce https://www.youtube.com/watch?v=cjWnW0hdF1Y) # question link https://leetcode.com/problems/longest-increasing-subsequence/ class Solution: def lengthOfLIS(self, nums: List[int]) -> int: # creating cache lst=[1]*len(nums) # iterating from end for i in range(len(nums)-1,-1,-1): # iterating from ith index till end for j in range(i+1,len(nums)): # increasing condition if nums[i]<nums[j]: # update the list lst[i]=max(lst[i],1+lst[j]) return max(lst)
saty035/DSA_Python
Longest Increasing Subsequence_leetcode/Longest Increasing Subsequence.py
Longest Increasing Subsequence.py
py
675
python
en
code
2
github-code
6
38285343171
""" Created on Fri Apr 24 11:34:48 2020 Matthew Irvine 1001401200 4/24/2020 Windows 10 """ import os def getFullSize(path): #variables used to determine if the path is a file or a directory isFile = os.path.isfile(path) isDir = os.path.isdir(path) #if it is a file if isFile: #calculate file size tmpsize = os.path.getsize(path) #printout the file and its corrosponding size print(path, end = ':\t') print(tmpsize) #return the size of the file return tmpsize elif isDir: #otherwise if it is a directory #list all of the file and subdirectories listd = os.listdir(path) #used to keep track of the size of the entire directory fullSize = 0 for l in listd: #new absolute path for the entry newpath = path + '\\' + l #add the size of subdirectory or file of each entry fullSize += getFullSize(newpath) return fullSize def main(): #get absolute path to current working directory size = getFullSize(os.getcwd()) print("The full size of " + os.getcwd() + " is:") print(size, end = ' ') print("bytes") if __name__ == '__main__': main()
Tropolopolo/ProgrammingLanguages
mli1200_PA6/mli1200_PA6.py
mli1200_PA6.py
py
1,257
python
en
code
0
github-code
6
27773589780
import os import asyncio from telepyrobot.setclient import TelePyroBot from pyrogram import filters from pyrogram.types import Message from telepyrobot import COMMAND_HAND_LER from telepyrobot.utils.pyrohelpers import ReplyCheck __PLUGIN__ = os.path.basename(__file__.replace(".py", "")) __help__ = f""" `{COMMAND_HAND_LER}sdmsg <message> | <time in seconds>` The command will automatically destruct the message after specified time. """ @TelePyroBot.on_message(filters.command("sdmsg", COMMAND_HAND_LER) & filters.me) async def self_destruct(c: TelePyroBot, m: Message): input_str = m.text.split(None, 1)[1] rm = await m.edit_text("`Meking self-destruct msg...`") ttl = 0 if input_str: if "=" in input_str: msg, ttl = input_str.split("|") else: await m.reply_text("__Check help to know how to use__") return sd_msg = await m.reply_text(f"{msg}", reply_to_message_id=ReplyCheck(m)) await rm.delete() await asyncio.sleep(int(ttl)) await sd_msg.delete() else: await m.edit_text("__Check help to know how to use__") return
Divkix/TelePyroBot
telepyrobot/plugins/self_destruct.py
self_destruct.py
py
1,145
python
en
code
40
github-code
6
41045511776
#!/usr/bin/python3 # Simon, Simon, Silvija number1 = 0 number2 = 0 operation = None bAsk = 1 def add(number1, number2): print(number1 + number2) def subtract(number1, number2): print(number1 - number2) def multiply(number1, number2): print(number1 * number2) def divide(number1, number2): try: print(number1 / number2) except ZeroDivisionError: print("Hmm, that's not right ... can't divide by zero, right?\n") def askNum(): while bAsk: number1 = input("Give me the first number, please: ") if (number1 == "done"): print("See you!") quit() try: number1 = float(number1) except: print("Whoa, this is not a float ...") number1 = input("Give me the first number, please: ") operation = input("Operation: (+, -, *, /): ") if (operation != "+" and operation != "-" and operation != "*" and operation != "/"): print("That's not an operation I want!!!") operation = input("Operation: (+, -, *, /): ") if (operation == "done"): print("Farewell, young traveler") quit() number2 = input("Would you give me the second number, please? ") if (number2 == "done"): print("Bye") quit() try: number2 = float(number2) except: print("Sorry man, not a float or 'done'! ...\n") number2 = input("Would you give me the second number, please? ") if operation == "+": add(number1, number2) elif operation == "-": subtract(number1, number2) elif operation == "*": multiply(number1, number2) elif operation == "/": divide(number1, number2) askNum()
simonSlamka/UCL-ITtech
programming/calc_pairChallenge.py
calc_pairChallenge.py
py
1,809
python
en
code
2
github-code
6
39620185683
# Importa e define oque for nescessário para o código import pygame import random WIDTH = 880 HEIGHT = 660 from config import GAME, QUIT def init_screen(screen): # Variável para o ajuste de velocidade clock = pygame.time.Clock() # Carrega o fundo da tela inicial background = pygame.image.load('Flying_Fox_Game/assets/img/tela de inicio final.png').convert() background = pygame.transform.scale(background, (WIDTH, HEIGHT)) background_rect = background.get_rect() running = True while running: # Ajusta a velocidade do jogo. clock.tick(60) # Processa os eventos (mouse, teclado, botão, etc). for event in pygame.event.get(): # Verifica se foi fechado. if event.type == pygame.QUIT: state = QUIT running = False if event.type == pygame.KEYUP: state = GAME running = False # A cada loop, redesenha o fundo e os sprites #screen.fill(BLACK) screen.blit(background, background_rect) # Depois de desenhar tudo, inverte o display. pygame.display.flip() return state
RodrigoAnciaes/Flying_Fox_game
Flying_Fox_Game/first_screen.py
first_screen.py
py
1,182
python
pt
code
0
github-code
6
34375411916
#!/usr/bin/env python3 from curses import wrapper from functools import partial from Gamepad import Gamepad import curses import time def spd_scale(y0, x0, y1, x1, x): """Get the speed at the given value of time. NOTE: The output is not clamped, regardless of the reference points given.""" # Two point form of a line # y-y0 = y2-y1/x2-x1 (x-x0) m = (y1 - y0) / (x1 - x0) c = y0 return c + m * (x - x0) def main(stdscr): """Main loop for listening to input events and displaying speed using curses. Takes in the window created by curses. Call this function using curses' wrapper function in order to not mess up terminal state on exceptions.""" # Curses Prelude curses.noecho() curses.cbreak() curses.curs_set(False) # Don't show the cursor stdscr.keypad(True) stdscr.clear() stdscr.nodelay(True) # Don't wait for ENTER to read input stdscr.border() spd_scale_c = partial(spd_scale, 100, 10, 0, 0) w_down_counter = 0 speed = spd_scale_c(w_down_counter) stdscr.attrset(curses.color_pair(1)) stdscr.addstr(0, curses.COLS // 2, "Motor Control", curses.A_DIM) if not Gamepad.available(): print("Couldn't find a gamepad") while not Gamepad.available(): time.sleep(1.0) gamepad = Gamepad.Xbox360() gamepad.startBackgroundUpdates() try: while True and gamepad.isConnected(): val = gamepad.axis("RT") if gamepad.isPressed("A"): w_down_counter = min(w_down_counter + 1, 10) else: w_down_counter = max(w_down_counter - 1, 0) if gamepad.beenPressed("B"): break speed = spd_scale_c(w_down_counter) stdscr.addstr( 4, curses.COLS // 2, f"Current speed is {speed}", curses.A_BOLD ) stdscr.refresh() stdscr.refresh() time.sleep(0.1) finally: gamepad.disconnect() wrapper(main)
kknives/rudra-training
motor-control/js_control.py
js_control.py
py
2,024
python
en
code
0
github-code
6
29477807046
""" Portfolio: LongWrite #100DaysOfCode with Python Day: 89 Date: 2023-07-21 Author: MC """ from tkinter import * from time import strftime, gmtime from tkinter.messagebox import showinfo from tkinter import filedialog # ---------------------------- constance ------------------------------------ # FONT_48 = ("NewYork", 48) FONT_36 = ("NewYork", 36) FONT_32 = ("NewYork", 32) FONT_24 = ("NewYork", 24) FONT_20 = ("NewYork", 20) FONT_16 = ("NewYork", 16) is_start_typing = False is_long_timer_start = False is_short_timer_start = False my_timer = None long_time_set = 60 short_time_set = 5 long_timer_curr_state = long_time_set short_timer_curr_state = short_time_set # ---------------------------- some func ------------------------------------ # def text_input_key_enter(event): # key enter event global is_start_typing global is_long_timer_start global is_short_timer_start if is_start_typing is True and is_long_timer_start is True: reset_short_timer() if is_start_typing is False: is_start_typing = True is_long_timer_start = True is_short_timer_start = True start_timers() # start_short_timer(short_time_set) # # if is_start_typing is False: # is_start_typing = True # start_long_timer(long_time_set) def refresh_timers( long_timer_state, short_timer_state ): # refresh timers func global long_timer_curr_state global short_timer_curr_state global my_timer global is_long_timer_start time_format = '%M:%S' long_time_clock.config( text=strftime( time_format, gmtime(long_timer_curr_state) ) ) short_time_clock.config( text=strftime( time_format, gmtime(short_timer_curr_state) ) ) if short_timer_curr_state <= 0: # cleaning text box clear_text() short_timer_curr_state = short_time_set if long_timer_curr_state <= 0: # active save btn save_btn_activator() is_long_timer_start = False if long_timer_curr_state > 0: long_timer_curr_state -= 1 short_timer_curr_state -= 1 print(f"{short_timer_curr_state}") my_timer = window.after( 1000, refresh_timers, long_timer_curr_state, short_timer_curr_state # long_timer_curr_state - 0.001, # short_timer_curr_state - 0.001 ) def start_timers(): refresh_timers( long_timer_curr_state, short_timer_curr_state ) def reset_short_timer(): # reset short timer current state -> to test global is_short_timer_start global short_timer_curr_state if is_short_timer_start is True: short_timer_curr_state = short_time_set def save_btn_activator(): # make save btn active save_btn.config( state='active' ) def clear_text(): """ clear text input field """ text_input.delete("1.0", END) def save_work(): """ save work :) """ if len(text_input.get('1.0', END)) > 0: filetype = ( ('txt file', '*.txt'), ) try: file = filedialog.asksaveasfile(filetypes=filetype) if file is None: raise ValueError("The file name must be set") showinfo( title="Info", message="Your work was saved correctly ;)" ) with open(file.name, 'w') as f: f.writelines(text_input.get('1.0', END)) except Exception as e: showinfo( title="Error", message=e.__str__() ) # print(text_input.get('1.0', END)) # ---------------------------- UI ------------------------------------ # # window ini window = Tk() window.title("Long Write Project by MC") window.config( padx=50, pady=25, bg="#323232" ) window.minsize( width=800, height=600 ) # some controls long_time_text_label = Label( text="Long time", font=FONT_20, fg="white", pady=15, ) long_time_text_label.grid( row=0, column=0 ) long_time_clock = Label( text="00:00", font=FONT_24, fg='white', pady=15 ) long_time_clock.grid( row=1, column=0 ) short_time_text_label = Label( text="Short time", font=FONT_20, fg='white', pady=15 ) short_time_text_label.grid( row=0, column=1 ) short_time_clock = Label( text="00:00", font=FONT_24, fg='red', pady=15 ) short_time_clock.grid( row=1, column=1 ) # text v = Scrollbar( window, orient='vertical' ) text_input = Text( window, yscrollcommand=v.set, font=FONT_20 ) text_input.grid( row=2, columnspan=2 ) # some buttons # clear button clear_btn = Button( text="Clear text", highlightthickness=0, command=clear_text ) clear_btn.grid( row=3, column=0 ) # save button save_btn = Button( text="Save work", highlightthickness=0, command=save_work, state='disabled', ) save_btn.grid( row=3, column=1 ) # ---------------------------- start window ------------------------------------ # # on key event text_input.bind("<Key>", text_input_key_enter) window.mainloop()
chinek01/LongWrite
main.py
main.py
py
5,331
python
en
code
0
github-code
6
40449028487
from ray.rllib.evaluation import MultiAgentEpisode, RolloutWorker from ray.rllib.agents.callbacks import DefaultCallbacks from ray.rllib.env import BaseEnv from ray.rllib.policy import Policy from typing import Dict from ray.rllib.policy.sample_batch import SampleBatch import numpy as np import time import csv import os def trainEvlogs2csv(folder_name,file_name,csvDict, n_episode): fieldnames = list(csvDict.keys()) if n_episode == 1: #print('this happens') csvfile = open(folder_name + file_name, 'w', newline='') writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() else: csvfile = open(folder_name + file_name, 'a', newline='') writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow(csvDict) class MyCallbacks(DefaultCallbacks): def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, **kwargs): # , env_index: int, **kwargs): # print("episode {} (env-idx) started.".format(episode.episode_id)) episode.user_data["step"] = 0 #episode.user_data["nb_communications_episode"] = 0 #episode.user_data["collisions"] = 0 #episode.user_data["list_communications"] = [] #episode.user_data["comms_per_step"] = [] #episode.user_data["histogram_communications"] = np.zeros(policies["policy_0"].config["horizon"]+1)#np.zeros(101) episode.user_data["secs_per_episode"] = time.time() episode.user_data["mean_secs_per_ts"] = 0 episode.user_data["auxiliary_time"] = time.time() episode.user_data["auxiliary_time_episode"] = time.time() def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, episode: MultiAgentEpisode, **kwargs): auxtime_ts = time.time() - episode.user_data["auxiliary_time"] episode.user_data["mean_secs_per_ts"] += auxtime_ts aux = episode.last_observation_for(0) aux12 = aux.reshape((1,aux.shape[0])) #aux2 = episode.last_action_for(0) #aux3 = episode.last_info_for(0) n_agents = worker.env.num_agents episode.batch_builder.count += n_agents - 1 ### THIS ONE IS THE ONE TO CHANGE!! #collisions = 0 if episode.user_data["step"] != 0: for i in range(n_agents): aux4 = episode.policy_for(i) #episode.user_data["nb_communications_episode"] += episode.last_info_for(i)["communication"] #collisions += episode.last_info_for(i)["collisions"] #for ii in range(int(episode.last_info_for(i)["communication"])): # episode.user_data["comms_per_step"].append(episode.user_data["step"]) #episode.user_data["histogram_communications"][episode.user_data["step"]] += episode.last_info_for(i)["communication"] #episode.user_data["list_communications"].append(episode.user_data["nb_communications_episode"]) #episode.user_data["collisions"] += collisions / 2 #if episode.user_data["collisions"] != 0: # print("COLLISION!") episode.user_data["step"] += 1 #print(episode.user_data["step"]) debug = False if debug: workerdebug = worker policy_index = worker.policies_to_train[0] policydebug = worker.policy_map[policy_index] wdebug = policydebug.get_weights() predicate = policydebug.loss_initialized() if predicate: # overwrite default VF prediction with the central VF #sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf( #sample_batch[SampleBatch.CUR_OBS], sample_batch[OPPONENT_OBS], #sample_batch[OPPONENT_ACTION]) t1 = time.time() #encoder_debug = policydebug.compute_encoding_layer(aux12) #print(encoder_debug) t1 = time.time()-t1 t2 = time.time() action_debug = policydebug.compute_action(aux12) output_inputs = policydebug.output_inputs(aux12) t2 = time.time() - t2 #print("WEIGHTS") #print(wdebug) #print("END WEIGHTS") episode.user_data["auxiliary_time"] = time.time() def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, **kwargs): #horizon = policies["policy_0"].config["horizon"] #print("episode time:",time.time() - episode.user_data["auxiliary_time_episode"]) policy_index = worker.policies_to_train[0] episode.custom_metrics["secs_per_episode"] = time.time()-episode.user_data["secs_per_episode"] #episode.custom_metrics["mean_secs_per_ts"] = episode.user_data["mean_secs_per_ts"] / policies["policy_0"].config["horizon"] #100.0 episode.custom_metrics["mean_secs_per_ts"] = episode.user_data["mean_secs_per_ts"] / \ policies[policy_index].config["horizon"] # 100.0 episode.custom_metrics["nb targets tracked"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length"] = worker.env.steps episode.custom_metrics["success_rate"] = worker.env.success episode.custom_metrics["entropy"] = worker.env.last_entropy_log if worker.env.ntargets == 3: episode.custom_metrics["nb_targets_tracked_3targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_3targets"] = worker.env.steps if worker.env.ntargets == 6: episode.custom_metrics["nb_targets_tracked_6targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_6targets"] = worker.env.steps if worker.env.ntargets == 9: episode.custom_metrics["nb_targets_tracked_9targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_9targets"] = worker.env.steps if worker.env.ntargets == 12: episode.custom_metrics["nb_targets_tracked_12targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_12targets"] = worker.env.steps #episode.custom_metrics["nb_communications_episode"] = episode.user_data["nb_communications_episode"] #episode.custom_metrics["collisions"] = episode.user_data["collisions"] #episode.hist_data["communications_histogram"] = episode.user_data["list_communications"] #episode.hist_data["communications_per_step"] = episode.user_data["comms_per_step"] #if episode.user_data["collisions"] == 0: # episode.custom_metrics["success"] = 1 #else: # episode.custom_metrics["success"] = 0 #episode.custom_metrics["scn_"+str(base_env.envs[0]._env.world.current_scenario)+"_success"] = episode.custom_metrics["success"] #episode.custom_metrics["scn_" + str(base_env.envs[0]._env.world.current_scenario) + "_nb_comm_episode"] = episode.custom_metrics["nb_communications_episode"] #nEpisodesxScenario = worker.policy_config['train_batch_size']/(base_env.envs[0]._env.num_agents*policies["policy_0"].config["horizon"]) #if base_env.envs[0]._env.episode_id % nEpisodesxScenario == 0 and base_env.envs[0]._env.world.test == 1: # Alternatively use the in_evaluation value in config #if base_env.envs[0]._env.world.time_step % (worker.policy_config['train_batch_size']/base_env.envs[0]._env.num_agents) == 0 and worker.policy_config["model"]["custom_model_config"]["training"]==False: # Alternatively use the in_evaluation value in config #if base_env.envs[0]._env.world.time_step % (worker.policy_config['train_batch_size']) == 0 and worker.policy_config["model"]["custom_model_config"]["training"] == False: # Alternatively use the in_evaluation value in config #base_env.envs[0]._env.world.next_eval_scenario() #base_env.envs[0]._env.world.set_eval_scenario() # training_eval_logs = base_env.envs[0]._env.world.test # if worker.policy_config["model"]["custom_model_config"]["training"]==False and training_eval_logs == True: # goal_achieved = 1 # for i in range(worker.env.num_agents): # if episode.last_info_for(i)["goal_achieved"] == 0: # goal_achieved = 0 # # if episode.custom_metrics["success"] == 0: # goal_achieved = 0 # # timesteps = episode.last_info_for(0)["step"] # # checkpoint = policies["policy_0"].config["model"]["custom_model_config"]["checkpoint"] # scenario = base_env.envs[0]._env.world.current_scenario # folder_name = base_env.envs[0]._env.folder_name + 'training_eval/' # file_name = 'checkpoint_' + str(checkpoint) + '.csv' # n_episode = base_env.envs[0]._env.episode_id # csvDict = { # 'scenario': scenario, # 'ep_safety': episode.custom_metrics["success"], # 'ep_nb_communications': episode.custom_metrics["nb_communications_episode"], # 'ep_goal_achieved': goal_achieved, # 'step': timesteps # } # for i in range(policies["policy_0"].config["horizon"]+1): #101): # csvDict[str(i)] = episode.user_data["histogram_communications"][i] # # if not os.path.isdir(folder_name): # os.makedirs(folder_name) # trainEvlogs2csv(folder_name,file_name,csvDict, n_episode) #print("episode END") #""" def on_sample_end(self, *, worker: RolloutWorker, samples: SampleBatch, **kwargs): print("returned sample batch of size {}".format(samples.count)) #""" def on_train_result(self, *, trainer, result: dict, **kwargs): #print("trainer.train() result: {} -> {} episodes".format(trainer, result["episodes_this_iter"])) work = trainer.workers.local_worker() policy_index = work.policies_to_train[0] policydebug = work.policy_map[policy_index] wdebug = policydebug.get_weights() #kernelweights = wdebug['default_policy/dense/kernel'] #if np.any(np.isnan(kernelweights)): # print("here's a nan") # if trainer.config["model"]["custom_model_config"]["training"]: # if 313 <= trainer.iteration < 313 * 2: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.25, 0.75, 0])) # if 313 * 2 <= trainer.iteration < 313 * 3: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.125, 0.125, 0.75])) # if 313 * 3 <= trainer.iteration < 313 * 4: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.0, 0.25, 0.75])) # if 313 * 4 <= trainer.iteration: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.0, 0.0, 1.0])) # you can mutate the result dict to add new fields to return result["callback_ok"] = True """ def on_postprocess_trajectory( self, *, worker: RolloutWorker, episode: MultiAgentEpisode, agent_id: str, policy_id: str, policies: Dict[str, Policy], postprocessed_batch: SampleBatch, original_batches: Dict[str, SampleBatch], **kwargs): print("postprocessed {} steps".format(postprocessed_batch.count)) if "num_batches" not in episode.custom_metrics: episode.custom_metrics["num_batches"] = 0 episode.custom_metrics["num_batches"] += 1 #"""
tud-amr/AC-LCP
utils/callbacks.py
callbacks.py
py
12,175
python
en
code
2
github-code
6
9980232390
class Settings(): """ A class to store all the settings for our Alien Invasion Game. """ def __init__(self): """ Initialize the game's settings """ #Screen settings #Height and Width of our game screen. self.screen_width = 1200 self.screen_height = 800 #Set the background color of the window self.bg_color = (230,230,230) #Ship Settings # self.ship_speed_factor = 1.5 self.ship_limit = 3 #Bullet Settings(small rectangle) # self.bullet_speed_factor = 3 self.bullet_width = 3 self.bullet_height = 15 self.bullet_color = 60, 60, 60 self.bullets_allowed = 3 #Alien Settings # self.alien_speed_factor = 0.5 self.fleet_drop_speed = 10 # #fleets direction of 1 represents right and -1 represents left. # self.fleet_direction = 1 #How quickly the game speeds up self.speedup_scale = 1 #How quickly the alien point score scale increase self.score_scale = 1.5 self.initialize_dyanamic_settings() def initialize_dyanamic_settings(self): """Initialize settings that change throughout the game""" self.ship_speed_factor = 1.5 self.bullet_speed_factor = 3 self.alien_speed_factor = 1 #fleets direction of 1 represents right and -1 represents left. self.fleet_direction = 1 #Scoring self.alien_points = 50 def increase_speed(self): """Increase speed settings and alien points value""" self.ship_speed_factor *= self.speedup_scale self.bullet_speed_factor *= self.speedup_scale self.alien_speed_factor *= self.speedup_scale self.alien_points = int(self.alien_points * self.score_scale) print(self.alien_points)
mihirjadhav04/Alien_Invasion_Game
settings.py
settings.py
py
1,857
python
en
code
0
github-code
6
741344040
import os from pytest_mock import MockFixture from app.config import get_config, DevelopmentConfig, ProductionConfig, PRODUCTION, DEVELOPMENT def test_get_config_in_development(): app_config = get_config() assert app_config.env == DEVELOPMENT assert isinstance(app_config, DevelopmentConfig) def test_get_config_in_production(mocker: MockFixture): mocked_environ = { 'ENV': 'PROD', 'API_URL': 'http://test.com', 'API_EMAIL': '[email protected]', 'API_PASSWORD': 'pass123', 'BROKER_URI': 'broker.com', 'BROKER_PORT': '1232' } mocker.patch.dict(os.environ, mocked_environ) app_config = get_config() assert app_config.env == PRODUCTION assert isinstance(app_config, ProductionConfig)
hrozan/utfpr-final-paper
legacy/smart-object/tests/test_config.py
test_config.py
py
771
python
en
code
2
github-code
6
39620196443
# ===== Inicialização ===== # ----- Importa e inicia pacotes import pygame import random pygame.init() # ----- Gera tela principal WIDTH = 880 HEIGHT = 800 window = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('Flying_Fox') gravity = 1 difficult = 0 # ----- Inicia assets METEOR_WIDTH = 100 METEOR_HEIGHT = random.randint(300, 450) font = pygame.font.SysFont(None, 48) background = pygame.image.load('Folder_de_Testes/assets/img/snow_day.jpeg').convert() background = pygame.transform.scale(background, (WIDTH, HEIGHT)) meteor_img = pygame.image.load('Folder_de_Testes/assets/img/Tree.png').convert_alpha() meteor_img = pygame.transform.scale(meteor_img, (METEOR_WIDTH, METEOR_HEIGHT)) # ----- Inicia estruturas de dados # Definindo os novos tipos class Fox(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) Fox_WIDTH = 70 Fox_HEIGHT = 70 Fox1 = pygame.image.load('Folder_de_Testes/assets/img/raposafinal.png').convert_alpha() Fox1 = pygame.transform.scale(Fox1, (Fox_WIDTH, Fox_HEIGHT)) Fox2 = pygame.image.load('Folder_de_Testes/assets/img/snowflake.png').convert_alpha() Fox2 = pygame.transform.scale(Fox2, (Fox_WIDTH, Fox_HEIGHT)) Fox3 = pygame.image.load('Folder_de_Testes/assets/img/Fox.jpeg').convert_alpha() Fox3 = pygame.transform.scale(Fox3, (Fox_WIDTH, Fox_HEIGHT)) self.images = [Fox1,Fox2,Fox3] self.image = Fox1 self.rect = self.image.get_rect() self.rect.centerx = WIDTH / 4 self.rect.bottom = HEIGHT - 200 self.speedy = 1 self.now_on_windon = 0 def update(self): self.rect.y += self.speedy self.speedy += gravity + 0.1 * (-self.speedy) self.now_on_windon = (self.now_on_windon + 1) % 3 self.image = self.images[self.now_on_windon] self.mask = pygame.mask.from_surface(self.image) # Mantem dentro da tela if self.rect.bottom > HEIGHT: pygame.QUIT self.rect.bottom = HEIGHT #game = False if self.rect.top < 0: pygame.QUIT self.rect.top = 0 def pulo(self): self.speedy += -18 class Meteor(pygame.sprite.Sprite): def __init__(self, img): # Construtor da classe mãe (Sprite). pygame.sprite.Sprite.__init__(self) METEOR_HEIGHT = random.randint(50, 250) self.image = img self.mask = pygame.mask.from_surface(self.image) self.rect = self.image.get_rect() self.rect.x = (WIDTH-METEOR_WIDTH) self.rect.y = random.randint(10,HEIGHT) self.speedx = random.randint(-5, -3) METEOR_HEIGHT = random.randint(50, 250) def update(self): # Atualizando a posição do meteoro self.rect.x += self.speedx # Se o meteoro passar do final da tela, volta para cima e sorteia # novas posições e velocidades if self.rect.top > HEIGHT or self.rect.right < 0 or self.rect.left > WIDTH: self.rect.x = (WIDTH-METEOR_WIDTH) self.rect.y = random.randint(10,HEIGHT) self.speedx = random.randint(-5, -3) game = True # Variável para o ajuste de velocidade clock = pygame.time.Clock() FPS = 15 # Criando um grupo de meteoros all_sprites = pygame.sprite.Group() all_meteors = pygame.sprite.Group() # Criando o jogador player = Fox() all_sprites.add(player) # Criando os meteoros for i in range(2): meteor = Meteor(meteor_img) all_sprites.add(meteor) all_meteors.add(meteor) # ===== Loop principal ===== while game: fpdif = FPS + difficult print(fpdif) clock.tick(fpdif) #print(clock) difficult += 0.01 # ----- Trata eventos for event in pygame.event.get(): # ----- Verifica consequências if event.type == pygame.QUIT: game = False # Verifica se apertou alguma tecla. # Verifica se soltou alguma tecla. if event.type == pygame.KEYUP: # Dependendo da tecla, altera a velocidade. if event.key == pygame.K_SPACE: Fox.pulo(player) # ----- Atualiza estado do jogo # Atualizando a posição dos meteoros all_sprites.update() hits = pygame.sprite.spritecollide(player,all_meteors,True, pygame.sprite.collide_mask) if len(hits) > 0: game = False # ----- Gera saídas window.fill((0, 0, 0)) # Preenche com a cor branca window.blit(background, (0, 0)) # Desenhando meteoros all_sprites.draw(window) pygame.display.update() # Mostra o novo frame para o jogador # ===== Finalização ===== pygame.quit() # Função do PyGame que finaliza os recursos utilizados
RodrigoAnciaes/Flying_Fox_game
Folder_de_Testes/Flappy.py
Flappy.py
py
4,902
python
en
code
0
github-code
6
15662314012
''' The 'd' in projd stands for directory. Project based helper functions. A project is a group of files and directories within a common root dir. This module contains functions for finding the root directory, etc. There are two sub-organizing principles seen in projects, based around how they find the root directory of the project: - In the "cwd" approach, exemplified by `git`, code and executables find the project based on the current working directory. For example, to work in a git repository, one must first `cd` somewhere into the repository directory (or a subdir). - In the "which" approach, exemplified by a django `manage.py` script, code and executables find the project based on the path of the executable itself. For example, a django `manage.py` script expects to be located in the root of the.project. The advantage to the "cwd" approach is that one set of binaries can be used with multiple projects. The advantages of the "which" approach are that one can run the binaries from anywhere and that a different version of code/binaries can be associated with each project. ''' import os import sys ############################# # PROJECT DIRECTORY FUNCTIONS def cwd_token_dir(token): ''' Find the directory containing token, starting from the current working directory. Start walking up the directory tree from the current working directory and return the first directory found that contains a filename, dirname, or linkname that matches token. If no directory is found containing token, return None. :param token: a path basename. ''' return token_dir(cwd_dir(), token) def script_token_dir(token): ''' Find the directory containing token, starting from the location of the running script. Start walking up the directory tree from the location of the currently running script (as indicated by sys.argv[0]) and return the first directory found that contains a filename, dirname, or linkname that matches token. If no directory is found containing token, return None. :param token: a path basename. ''' return token_dir(script_dir(), token) ##################### # AUXILIARY FUNCTIONS def token_dir(path, token): ''' Find the directory containing token, starting from path. Start walking up the directory tree from path and return the first directory found that contains a filename, dirname, or linkname that matches token. If no directory is found containing token, return None. :param path: a path at which to start searching for a directory containing token. :param token: a path basename. ''' # make sure that token does not contain any directories. basename = os.path.basename(token) for d in walk_up(path): if os.path.exists(os.path.join(d, basename)): return d return None def script_dir(realpath=False): ''' Return the script directory from sys.argv[0] as an absolute path using os.path.abspath (default) or os.path.realpath (if realpath is True). ''' d = os.path.dirname(sys.argv[0]) if realpath: return os.path.realpath(d) else: return os.path.abspath(d) def cwd_dir(realpath=False): ''' Return the current working directory as an absolute path using os.path.abspath (default) or os.path.realpath (if realpath is True). Note that although the docs do not explicitly say so, os.getcwd() might already return a real or absolute path, so this function might be redundant. ''' d = os.getcwd() if realpath: return os.path.realpath(d) else: return os.path.abspath(d) def walk_up(path, realpath=False): ''' First normalize path using os.path.expanduser, then os.path.abspath (default) or os.path.realpath (if realpath is True). Then yield path and every directory above path. Example: list(walk_up('~/tmp/./')) -> ['/Users/td23/tmp', '/Users/td23', '/Users', '/'] path: Should be a directory. ''' if realpath: curdir = os.path.realpath(os.path.expanduser(path)) else: curdir = os.path.abspath(os.path.expanduser(path)) while 1: yield curdir curdir, tail = os.path.split(curdir) if not tail: break def which(program): ''' In python3.3, see shutil.which(). Emulate unix 'which' command. If program contains any directories (e.g. './foo'), return program, else if program is found on the PATH, return the absolute path to it, otherwise return None. http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python/377028#377028 ''' def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None
todddeluca/projd
projd.py
projd.py
py
5,109
python
en
code
0
github-code
6
27241749881
import pygal from random import randint class Die: def __init__(self, sides=6): self.sides = sides def roll(self): return randint(1, self.sides) die = Die(8) die_1 = Die(8) results = [die.roll() + die_1.roll() for x in range(1000)] frequencies = [results.count(x) for x in range(2, 2 * die.sides + 1)] # pygal.bar hist = pygal.Bar() hist.title = 'Rolling D6 - 1000' hist.x_labels = [str(x) for x in range(2, 2 * die.sides + 1)] hist.x_title = 'Sides' hist.y_title = 'Frequency' hist.add('D6', frequencies) hist.render_to_file('recap_die_2d8.svg')
mbrad26/Data-Vizualization
Recap/recap_die_2d8.py
recap_die_2d8.py
py
580
python
en
code
0
github-code
6
4829544125
def main(): #fuel() taqueria() def fuel(): tank = float(tank_status()) * 100 if tank <= 1: print('E') elif tank >= 99: print('F') else: print(str(int(tank)) + "%") def tank_status(): while True: fract = input("Fraction: ").split("/") try: gas = int(fract[0]) / int(fract[1]) except: print("That's not a proper fraction") continue if gas <= 1: return f'{gas:.2f}' print("Can't overfill your gas tank") def taqueria(): while True : item = input("Item: ") pass main()
Calvin-Spens/scripting
python_scripting/cs50_problems/problem_set_3.py
problem_set_3.py
py
637
python
en
code
0
github-code
6
40464221544
import os.path import re import numpy as np from PIL import Image NUM_RE = re.compile(r'(\d+)') maxint = 999999 WHITE_LIST_FORMATS = {'png', 'jpg', 'jpeg', 'bmp'} def hstack_images(input_filenames, target_size=(224, 224)): """ Horizontally stack all images from @input_filenames in order and write to @output_filename """ images = list(map(lambda i: i.resize(target_size), map(Image.open, input_filenames))) widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) max_height = max(heights) new_im = Image.new('RGB', (total_width, max_height)) x_offset = 0 for im in images: new_im.paste(im, (x_offset, 0)) x_offset += im.size[0] return new_im def should_include_image(path, start_num, end_num): """Returns true if an image path should be included in the set, false otherwise. """ fname = path.lower() for extension in WHITE_LIST_FORMATS: if fname.endswith('.' + extension): num_match = NUM_RE.search(fname) if num_match: num, = num_match.groups() num = int(num, 10) return start_num <= num <= end_num return False def flow_from_directory(directory, a, b, c, target_size=(224, 224)): for dirpath, dirnames, fnames in os.walk(directory): if len(dirnames) == 0: # we are at a top-level directory, extract the images in our range xs = [] ys = [] for fname in fnames: if should_include_image(fname, a, b): xs.append(os.path.join(dirpath, fname)) elif should_include_image(fname, b + 1, c): ys.append(os.path.join(dirpath, fname)) xs.sort() ys.sort() if not xs or not ys: continue x_imgs = np.asarray(hstack_images(xs, target_size=target_size)) y_imgs = np.asarray(hstack_images(ys, target_size=target_size)) yield (x_imgs, y_imgs)
eklitzke/dnn-fastai-project
vidextend/flow.py
flow.py
py
2,047
python
en
code
2
github-code
6
34107122191
from flask import g, request, current_app import iot_api_core import time class InstanceVersionBaseBehavior(): def __init__(self, widget_type, namespace, instance_id): self.widget_type = widget_type self.namespace = namespace self.instance_id = instance_id self.lumavate = iot_api_core.Lumavate() self.temp = {} self.post_version_create_handlers = [] self.experience_info = None self._instance = None self.status_id = None data = request.get_json(silent=True) if data: self.status_id = data.get('statusId') if self.namespace is None: self.namespace = self.rest_get_single(self.instance_id)['namespace'] @property def properties(self): return [] @property def components(self): return [] @property def page_security_property(self): page_security = { 'always': 'Always Render', 'user-logged-in': 'Only Render When User Logged In', 'user-not-logged-in': 'Only Render When User NOT Logged In', 'prod-registered': 'Only Render When Product Registered', 'device-authorized': 'Only Render When Device Authorized', 'prod-not-registered': 'Only Render When Product NOT Registered', 'device-not-authorized': 'Only Render When Device NOT Authorized', } return iot_api_core.DropdownProperty('General', 'General Settings', 'pageSecurity', 'Page Security', self, default='always', options=page_security) @property def experience_id(self): self.load_experience_info() return self.experience_info.get('id') @property def model_id(self): self.load_experience_info() return self.experience_info.get('modelId') def load(self, version_name): instance = self.rest_get_single(self.instance_id) data = instance[version_name + 'Version']['data'] for x in self.properties: if not x.name.startswith('instance__'): x.read(data) def get_general_properties(self, include_auth=False): return [ self.instance_name_property(), self.instance_page_type_property(include_auth=include_auth), iot_api_core.ToggleProperty('General', 'General Settings', 'displayBackgroundImage', 'Display Background Image', self, default=False), iot_api_core.ImageProperty('General', 'General Settings', 'backgroundImage', 'Background Image', self), iot_api_core.ColorProperty('General', 'General Settings', 'backgroundColor', 'Background Color', self, default='#e2e2e2'), self.page_security_property ] def load_experience_info(self): if not self.experience_info: results = self.lumavate.get('/iot/v1/experiences?siteName=' + self.namespace) if len(results) > 0: self.experience_info = results[0] self.model_info = self.lumavate.get('/iot/v1/models/' + str(self.experience_info['modelId'])) else: self.experience_info = {} self.model_info = {} def rest_get_single(self, id): if self._instance is None: self._instance = self.lumavate.get('/iot/v1/widget-instances/' + str(id)) return self._instance def get_version_id(self, instance_id, version_name): instance = self.rest_get_single(instance_id) return str(instance[version_name + 'VersionId']) def get_property(self, name): return next((p for p in self.properties if p.name == name), None) def get_collection_rest_uri(self): return '/iot/v1/widget-instances/' + str(self.instance_id) + '/versions' def get_single_rest_uri(self, version_id): return self.get_collection_rest_uri() + '/' + str(version_id) def rest_get_collection(self): return self.lumavate.get(self.get_collection_rest_uri()) def instance_name_property(self): instance = self.rest_get_single(self.instance_id) return iot_api_core.TextProperty('General', 'General Settings', 'instance__name', 'Page Name', self, rows=0, default=instance['name']) def resolve_images(self, data): if isinstance(data, dict): if 'key' in data and 'versionId' in data: image_data = self.lumavate.post('/iot/v1/files/preview/' + data['key'] + '/' + data['versionId'], {}) for f in ['contentType', 'url', 'mobileUrl']: if f in data: image_data[f] = data.get(f) return image_data else: return { k: self.resolve_images(data[k]) for k in data } elif isinstance(data, list): return [self.resolve_images(x) for x in data] else: return data def collapse_language(self, data): lang = 'en-us' if isinstance(data, dict): if lang in data: return data[lang] else: return { k: self.collapse_language(data[k]) for k in data } elif isinstance(data, list): return [self.collapse_language(x) for x in data] else: return data def instance_page_type_property(self, include_auth=False): page_types = { 'home': 'Home', 'registration': 'Registration', 'auth': 'Auth', 'error': 'Error', 'normal': '<Normal>' } if include_auth == False: del page_types['auth'] return iot_api_core.DropdownProperty('General', 'General Settings', 'pageType', 'Page Type', self, default='normal', options=page_types) def rest_create(self): instance = self.rest_get_single(self.instance_id) if instance: payload = {'data': self.validate_data(request.get_json())} results = self.lumavate.post(self.get_collection_rest_uri() + '-direct', payload) instance['futureVersionId'] = results['id'] for vch in self.post_version_create_handlers: vch() self.post_version_create_handlers = [] if instance.get('futureVersion') is not None: results['delta'] = self.get_delta_document(instance.get('futureVersion').get('data'), results['data']) else: results['delta'] = results.get('data') return results def background(self, function, args=[], kwargs={}): data = { 'namespace': self.namespace, 'widgetInstanceId': self.instance_id, 'widgetType': current_app.config['WIDGET_ID'], 'method': function.__name__, 'args': args, 'kwargs': kwargs, 'statusId': self.status_id } self.lumavate.post('/iot/v1/background', data) def run_background(self): self.lumavate.put('/iot/v1/statuses/' + self.status_id, {'percent': 100}) return {'a': 4} data = request.get_json() method = data.get('method') args = data.get('args') kwargs = data.get('kwargs') getattr(self, method)(*args, **kwargs) def publish(self, version_name): instance = self.rest_get_single(self.instance_id) if not instance: return if version_name not in ['future', 'draft', 'production', 'current']: return version = instance.get(version_name + 'Version') #for x in self.properties: # x.read(version['data']) # x.publish() if self.status_id: self.lumavate.put('/iot/v1/statuses/' + self.status_id, {'percent': 100}) else: print('NOPE', flush=True) return {'Status': 'Ok'} def store_data(self, category, record_id, data, latitude=None, longitude=None, version='future'): version_id = self.get_version_id(self.instance_id, version) payload = { 'recordId': str(record_id), 'data': data, 'latitude': latitude, 'longitude': longitude } return self.lumavate.post(self.get_single_rest_uri(version_id) + '/data/' + category, payload) def clear_data(self, category, version='future'): version_id = self.get_version_id(self.instance_id, version) return self.lumavate.delete(self.get_single_rest_uri(version_id) + '/data/' + category) def get_current_version(self): if hasattr(g, 'iot_context'): return g.iot_context['token_data']['version'] else: return 'future' def get_data(self, category, default=[], qs=''): version_id = self.get_version_id(self.instance_id, self.get_current_version()) res = self.lumavate.get('/iot/v1/widget-instances/' + str(self.instance_id) + '/versions/' + version_id + '/data/' + category + '?' + qs) for x in res: if 'distance' in x: x['data']['distance'] = x['distance'] res = [x['data'] for x in res] if len(res) == 0: return default else: return res def load_activation_info(self): api_result = {} try: api_result = self.lumavate.get('/iot/v1/labels/' + str(g.iot_context['token_data'].get('activationId', 0))) except Exception as e: pass return { 'key': api_result.get('key'), 'serialNumber': api_result.get('serialNumber') } def get_config_data(self): # Check if there is a valid version for the current context instance = self.rest_get_single(self.instance_id) if instance[self.get_current_version() + 'Version'] is None: raise Exception('Version ' + self.get_current_version() + ' does not exist for instance ' + str(self.instance_id)) result = instance[self.get_current_version() + 'Version']['data'] # Is there any activation to report? result['activation'] = self.load_activation_info() # Are there any 'special' pages that the UI should know about? result['authCheck'] = None if g.iot_context['token_data'].get('authUrl') is not None: root, part, instance = g.iot_context['token_data']['authUrl'].rpartition('/') result['authCheck'] = '{}/api/instances/{}/check-login-status'.format(root, instance) return result def default_image_data(self, data, prop): return { 'preview': data.get(prop, {}).get('preview', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewLarge': data.get(prop, {}).get('previewLarge', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewMedium': data.get(prop, {}).get('previewMedium', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewSmall': data.get(prop, {}).get('previewSmall', '/icons/iot/page/api/instances/icons/no_image_available.png') } def get_delta_document(self, original, current): if original is None: return current else: result = {} for x in self.properties: dd = x.delta_doc(original.get(x.name), current.get(x.name)) if dd is not None: result[x.name] = dd return result def validate_data(self, data): result = {} instance_payload = {} for x in self.properties: if x.name.startswith('instance__'): field = x.name.split('__')[-1] new_val = x.read(data) if self._instance[field] != new_val: self._instance[field] = new_val instance_payload[x.name.split('__')[-1]] = x.read(data) else: result[x.name] = x.read(data) if len(instance_payload.keys()) > 0: self.lumavate.put('/iot/v1/widget-instances/' + str(self.instance_id), instance_payload) return result def get_all_components(self): return [ { 'label': x.instantiate().label, 'type': x.instantiate().component_type, 'icon': x.instantiate().icon_url, 'section': x.instantiate().section, 'category': x.instantiate().category } for x in self.components ] def get_component_properties(self, component_type): comp = next((x.instantiate() for x in self.components if x.instantiate().component_type == component_type), None) if comp: return comp.get_properties() def get_component_property(self, component_type, property_name): comp = next((x.instantiate() for x in self.components if x.instantiate().component_type == component_type), None) if comp: return comp.get_property(property_name) def get_widget_properties(self): return [x.to_json() for x in self.properties] def handle_language_fields(self, data): lang = 'en-us' if isinstance(data, dict): if lang in data: return self.handle_language_fields(data[lang]) else: return { k: self.handle_language_fields(data[k]) for k in data } if isinstance(data, list): return [ self.handle_language_fields(x) for x in data ] else: return data
Lumavate-Team/python-hello
app/iot_api_core/instance_version_base.py
instance_version_base.py
py
12,129
python
en
code
0
github-code
6
29358868643
from sqlalchemy.orm import joinedload from clld.db.util import get_distinct_values from clld.db.models import common from clld.web import datatables from clld.web.datatables.base import LinkCol, Col, LinkToMapCol from clld.web.datatables.parameter import Parameters from clld.web.datatables.value import Values, ValueNameCol from clld_glottologfamily_plugin.models import Family from clld_glottologfamily_plugin.datatables import FamilyCol from plansa import models class Languages(datatables.Languages): def base_query(self, query): return query.join(Family).options(joinedload(models.Variety.family)).distinct() def col_defs(self): return [ LinkCol(self, 'name'), FamilyCol(self, 'Family', models.Variety), Col(self, 'latitude', sDescription='<small>The geographic latitude</small>'), Col(self, 'longitude', sDescription='<small>The geographic longitude</small>'), LinkToMapCol(self, 'm'), ] class Taxa(Parameters): def col_defs(self): res = [ LinkCol(self, 'name'), Col(self, 'english', model_col=models.Taxon.name_english), ] for label, col in [ ('kingdom', models.Taxon.kingdom), ('phylum', models.Taxon.phylum), ('class', models.Taxon.class_), ('order', models.Taxon.order), ('family', models.Taxon.family), #('genus', models.Taxon.genus), ]: res.append(Col(self, label, model_col=col, choices=get_distinct_values(col))) return res class Names(Values): def col_defs(self): if self.language: return [ ValueNameCol(self, 'value'), LinkCol(self, 'parameter', sTitle='Scientific name', model_col=common.Parameter.name, get_object=lambda i: i.valueset.parameter), Col(self, 'english', model_col=models.Taxon.name_english, get_object=lambda i: i.valueset.parameter), Col(self, 'spanish', model_col=models.Taxon.name_spanish, get_object=lambda i: i.valueset.parameter), Col(self, 'portuguese', model_col=models.Taxon.name_portuguese, get_object=lambda i: i.valueset.parameter), ] return Values.col_defs(self) def includeme(config): config.register_datatable('values', Names) config.register_datatable('parameters', Taxa) config.register_datatable('languages', Languages)
tsammalex/plansa
plansa/datatables.py
datatables.py
py
2,802
python
en
code
0
github-code
6
5759869864
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg #%% Importar los datos (leer la imagen) img = mpimg.imread('../Data/indice.png') plt.imshow(img) #%% reordenar la imagen en una sola tabla d = img.shape img_col = np.reshape(img,(d[0]*d[1],d[2])) #%% Convertir los datos a media cero media = img_col.mean(axis=0) img_m = img_col - media #%% obtener la matriz de covarianzas img_cov = np.cov(img_m,rowvar=False) #%% Obtener valores propios y vectores propios w,v = np.linalg.eig(img_cov) #%% Analizar los componentes principales porcentaje = w/np.sum(w) #%% Comprimir la imagen componentes = w[0] M_trans = np.reshape(v[:,0],(4,1)) img_new = np.matrix(img_m)*np.matrix(M_trans) #%% Recuperar la imagen y visualizarla img_recuperada = np.matrix(img_new)*np.matrix(M_trans.transpose()) img_recuperada = img_recuperada+media img_r = img.copy() for i in np.arange(4): img_r[:,:,i] = img_recuperada[:,i].reshape((d[0],d[1])) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(img_r)
OscarFlores-IFi/CDINP19
code/p13.py
p13.py
py
1,039
python
es
code
0
github-code
6
72370696507
from django.urls import path from products.views import ( CreateProduct, CreateOption, Products, UpdateProduct, Option, UpdateOption, ) urlpatterns = [ path("", Products.as_view()), path("create/product", CreateProduct.as_view()), path("update/product/<int:pk>", UpdateProduct.as_view()), path("options", Option.as_view()), path("create/option", CreateOption.as_view()), path("update/option/<int:pk>", UpdateOption.as_view()), ]
ohnas/Manager-backend
products/urls.py
urls.py
py
478
python
en
code
0
github-code
6
8595213301
import openpyxl,os,shutil import pandas as pd import pymssql from sqlalchemy import create_engine backupPath='files-backup' def get_xlsx_to_dataframe(fliename): wb = openpyxl.load_workbook(fliename) sheets = wb.sheetnames ws = wb.get_sheet_by_name(sheets[0]) df = pd.read_excel(fliename) if not os.path.exists(backupPath): os.mkdir(backupPath) shutil.move(fliename,os.path.join(backupPath,os.path.basename(fliename))) return df def dataframe_to_mssql(df, tablename): engine = create_engine('mssql+pymssql://sa:[email protected]/database?tds_version=7.0') df.to_sql(tablename, engine, if_exists='append', index=False)
zjz7304/xlsx_to_database
util.py
util.py
py
666
python
en
code
0
github-code
6
2687351802
import numpy as np import matplotlib.pyplot as plt import random as rnd import turtle N = 100 Nw = 1000 def wedrowniczek(length): x0, y0 = 0,0 x,y = x0,y0 walkx,walky = [x],[y] for i in range(length): rand = rnd.randint(1,4) if rand == 1: x += 1 elif rand == 2: y += 1 elif rand == 3: x += -1 elif rand == 4: y += -1 walkx.append(x) walky.append(y) return [walkx,walky] lastPositions = [] for i in range(Nw): walk = wedrowniczek(N) lastPositions.append([walk[0][-1],walk[1][-1]]) plt.plot(walk[0],walk[1]) lastPositionInStart = 0 for lastPos in lastPositions: if lastPos[0] == 0 and lastPos[-1] == 0: lastPositionInStart += 1 print(lastPositionInStart) plt.axis([-30,30,-30,30]) plt.grid() plt.show()
filipmalecki94/Computer_modeling
lista3/zadanie1.py
zadanie1.py
py
784
python
en
code
0
github-code
6
3081251304
# -*- coding: utf-8 -* """Graphics .. module:: graphics :synopsis: Module for creating graphs """ # imports import matplotlib.pyplot as plt import numpy as np import resoncalc.output as output from math import ceil from csv import DictReader # globals n_points = 1000 # count of points in graph n_rows = 20.0 # count of rows in graph legend def plot_fem_base_function(func, a, b): """Plot base function Args: func (func): base function a (float): left boundary of interval b (float): right boundary of interval """ # coordinates init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) y = np.zeros(n, dtype=float) # calculate function values for i in range(n): y[i] = np.real(func(x[i])) # create graph plt.plot(x, y) plt.title('FEM base function') plt.tight_layout() plt.show() def plot_fem_base(funcs, a, b): """Plot base functions Args: funcs (list): base functions a (float): left boundary of interval b (float): right boundary of interval """ # coordinate init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) # function loop for i in range(len(funcs)): # coordinate init y = np.zeros(n, dtype=float) # bridging function if (type(funcs[i]) is list): for j in range(n): y[j] = np.real(funcs[i][0](x[j]) + funcs[i][1](x[j])) # function within element else: for j in range(n): y[j] = np.real(funcs[i](x[j])) # plot function plt.plot(x, y, label=i+2) # create graph plt.title('FEM base functions') plt.legend(bbox_to_anchor=(1, 1), borderaxespad=0.0, ncol=ceil(len(funcs)/n_rows)) plt.tight_layout() plt.show() def plot_potential(potential, a, b, *params): """Plot potential Args: potential (func): potential function a (float): left boundary of interval b (float): right boundary of interval params (args): potential specific parameters """ # coordinates init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) y = np.zeros(n, dtype=float) # plot potential for i in range(n): y[i] = potential(x[i], *params) plt.plot(x, y) # create graph plt.title('Potential') plt.xlabel('x') plt.ylabel('E') plt.grid() plt.tight_layout() plt.show() def plot_eigenstates(potential, eigenvalues, a, b, emax, fname='', *params): """Plot eigenstates for given potential Args: potential (func): potential function eigenvalues (list): bound states a (float): left boundary of interval b (float): right boundary of interval emax (float): maximum energy in atomic units fname (str): export filename params (args): potential specific parameters """ # coordinates init eigenvalues = np.real(eigenvalues) x = np.linspace(a, b, n_points) n = len(x) y = np.zeros(n, dtype=float) # plot potential for i in range(n): y[i] = potential(x[i], *params) plt.plot(x, y) # plot eigenstates for i in range(len(eigenvalues)): z = np.zeros(n, dtype=float) val = eigenvalues[i] bound_state = True if (val < 0.0) else False cross = 0 # line segment representing eigenstate for j in range(n): # intersection points with potential if (val > y[j]): if (cross == 0 or (cross == 2 and not bound_state)): cross += 1 elif (cross == 1): cross += 1 # plot line if ((bound_state and cross == 1) or (not bound_state and cross == 2)): z[j] = val else: z[j] = np.nan plt.plot(x, z, 'r', label='E{0} = {1:e}'.format(i+1, val)) # create graph plt.xlim(left=a, right=b) plt.ylim(bottom=None, top=emax) plt.title('Eigenstates') plt.xlabel('x') plt.ylabel('E') plt.grid() plt.legend(bbox_to_anchor=(1, 1), borderaxespad=0.0, ncol=ceil(len(eigenvalues)/n_rows)) plt.tight_layout() # export graph if (len(fname) > 0): plt.savefig(fname) plt.close() # display graph else: plt.show() def plot_complex_spectrum(eigenvalues, eigenvalues2=[], states=None, fname=''): """Plot complex spectrum used in ECS method Args: eigenvalues (list): eigenvalues for first angle or rotation eigenvalues2 (list): eigenvalues for second angle of rotation, default empty states (list): highlighted eigenstates fname (str): export filename """ # plot first eigenvalues x = [] y = [] if (states is None): x = np.real(eigenvalues) y = np.imag(eigenvalues) else: limit = np.abs(states[0]) for val in eigenvalues: if (np.real(val) <= limit): x.append(np.real(val)) y.append(np.imag(val)) plt.plot(x, y, 'b.') # plot second eigenvalues x = [] y = [] if (len(eigenvalues2) > 0): if (states is None): x = np.real(eigenvalues2) y = np.imag(eigenvalues2) else: limit = np.abs(states[0]) for val in eigenvalues2: if (np.real(val) <= limit): x.append(np.real(val)) y.append(np.imag(val)) plt.plot(x, y, 'g.') # highlight eigenstates if (states is not None): for state in states: plt.plot(np.real(state), np.imag(state), 'ro', label='real={0:e}, imag={1:e}'.format(np.real(state), np.imag(state))) plt.legend(loc='lower left') # create graph plt.title('Complex spectrum') plt.xlabel('Re') plt.ylabel('Im') plt.grid() # export graph if (len(fname) > 0): plt.savefig(fname) plt.close() # display graph else: plt.show() def plot_resonances_complex(infile, outfile=''): """Plot resonances in complex plane Args: infile (str): input filename outfile (str): output filename, default empty """ # parse csv file with open(infile, 'r') as f: reader = DictReader(f) states = {} # get resonance states, group by param2 for row in reader: if (row['type'] == 'resonance'): param2 = row['param2'] if (not param2 in states): states[param2] = [] states[param2].append(float(row['real']) + 1j*float(row['imag'])) # plot state trajectories for k, v in states.items(): plt.plot(np.real(v), np.imag(v), 'b-') # create graph plt.title('Resonance states') plt.xlabel('Re') plt.ylabel('Im') plt.grid() # export graph if (len(outfile) > 0): plt.savefig(outfile) plt.close() # display graph else: plt.show() def plot_resonances_params(infile, energy=True, outfile=''): """Plot resonances according to parameters Args: infile (str): input filename energy (bool): energy or width, default energy outfile (str): output filename, default empty """ # parse csv file with open(infile, 'r') as f: reader = DictReader(f) param1, param2, value = [], [], [] # get resonance states for row in reader: if (row['type'] == 'resonance'): param1.append(float(row['param1'])) param2.append(float(row['param2'])) value.append(float(row['real']) if (energy) else -0.5 * float(row['imag'])) # create graph plt.scatter(param1, param2, c=value, cmap=plt.cm.rainbow) plt.colorbar() plt.title('Resonance states {0}'.format('energy' if (energy) else 'width')) plt.xlabel('param a') plt.ylabel('param b') plt.grid() # export graph if (len(outfile) > 0): plt.savefig(outfile) plt.close() # display graph else: plt.show()
hydratk/resoncalc
src/resoncalc/graphics.py
graphics.py
py
8,384
python
en
code
0
github-code
6
75401661626
import numpy as np import time import torch from multiprocessing import Array, Manager from dgl.dataloading.dataloader import GraphCollator from collections import deque, namedtuple from gp.utils.datasets import DatasetWithCollate """ Following namedtuple makes data collating nad referencing easier """ GraphLabelNT = namedtuple("GraphLabelNT", ["g", "labels", "index"]) ReplayBatch = namedtuple( "ReplayBatch", ["g", "plabel", "nlabel", "select_node", "move_node", "reward"], ) GraphNMLabel = namedtuple("GraphNMLabel", ["g", "rlabel", "labels", "index"]) ReplayBatchHist = namedtuple( "ReplayBatchHist", [ "g", "plabel", "nlabel", "select_node", "move_node", "reward", "context", ], ) ReplayBatchSM = namedtuple( "ReplayBatchSM", [ "g", "plabel", "nlabel", "select_node", "move_node", "reward", ], ) class GraphLabelDataset(DatasetWithCollate): def __init__(self, graphs, labels, ind=None) -> None: super().__init__() self.graphs = graphs self.labels = labels if ind is None: self.ind = np.arange(len(self.graphs)) else: self.ind = ind def __getitem__(self, index): return GraphLabelNT( self.graphs[index], np.array([self.labels[index]]), self.ind[index] ) def __len__(self): return len(self.graphs) def get_collate_fn(self): return GraphCollator().collate class GraphNMDataset(DatasetWithCollate): def __init__(self, graphs, labels, r_labels) -> None: super().__init__() self.graphs = graphs self.labels = labels self.rlabels = r_labels def __getitem__(self, index): return GraphNMLabel( self.graphs[index], np.array(self.rlabels[index]), np.array([self.labels[index]]), index, ) def __len__(self): return len(self.graphs) def get_collate_fn(self): return GraphCollator().collate class GraphReplayBuffer: def __init__(self, capacity): # self.buffer = deque(maxlen=capacity) self.capacity = capacity self.buffer = np.empty(capacity, dtype=object) self.size_count = 0 self.pointer = 0 def __len__(self): return self.size_count def add(self, experience): if isinstance(experience, list): ct = len(experience) self.size_count += ct next_pointer = self.pointer + ct if next_pointer > self.capacity: reminder = self.capacity - self.pointer self.buffer[self.pointer :] = experience[:reminder] self.pointer = 0 next_pointer = next_pointer - self.capacity ct = next_pointer experience = experience[reminder:] self.buffer[self.pointer : next_pointer] = experience self.pointer = next_pointer self.size_count = min(self.size_count, self.capacity) else: self.buffer[self.size_count] = experience # if (len(self) / self.capacity) > 1.3: # self.buffer = self.buffer[-self.capacity :] def sample(self, batch_size): if len(self) < batch_size: return None indices = np.random.choice(len(self), batch_size, replace=True) return [self.buffer[idx] for idx in indices] def reset(self): self.buffer = deque(maxlen=self.capacity) class ReplayDataset(DatasetWithCollate): def __init__(self, graphs, buffer, replay_size=1, replay_type=ReplayBatch): super().__init__() self.graphs = graphs self.buffer = buffer self.replay_size = replay_size self.replay_type = replay_type def __getitem__(self, index): # print(len(self.buffer)) replay = self.buffer.sample(1)[0] replay_graph = self.graphs[int(replay[0])] return self.replay_type(replay_graph, *map(np.array, replay[1:])) def __len__(self): return len(self.graphs) * self.replay_size def get_collate_fn(self): return GraphCollator().collate
LechengKong/MAG-GNN
dataset.py
dataset.py
py
4,231
python
en
code
1
github-code
6
18524960895
exp_name = 'cdr_0fold' _base_ = [ '../_base_/models/late_integration_drp/base_deepCDR.py', '../_base_/dataset/drp_dataset/drugs_genes_dataset.py', '../_base_/exp_setting/base_setting.py', '../_base_/default_runtime.py' ] data = dict( train=dict( celllines_data='data/processed_raw_data/564_cellGraphs_exp_mu_cn_new.npy', include_omic=['expr', 'mut', 'dna'], ), val=dict( celllines_data='data/processed_raw_data/564_cellGraphs_exp_mu_cn_new.npy', include_omic=['expr', 'mut', 'dna'], ), test=dict( celllines_data='data/processed_raw_data/564_cellGraphs_exp_mu_cn_new.npy', include_omic=['expr', 'mut', 'dna'], ), ) custom_hooks = [ dict(type='TensorboardXHook', priority=85, log_dir='/data/xieyufeng/genes_drug_data/result/', interval=5000, exp_name=exp_name, ignore_last=True, reset_flag=False, by_epoch=False ), ] work_dir = f'workdir/{exp_name}'
yivan-WYYGDSG/AGMI
configs/deepcdr/cdr.py
cdr.py
py
1,014
python
en
code
1
github-code
6
3025420311
import sys file = str(sys.argv[1]) # file passed through command line with open(file) as f: input = f.read().split('\n') def detector(data: list, size: int) -> list: pos = [] for line in data: for i in range(len(line)): seq = line[i:i+size] if len(set(seq)) == len(seq): pos.append(i + size) break return pos # 6.1 print(f'6.1: {detector(input, 4)[0]}') # 6.2 print(f'6.2: {detector(input, 14)[0]}')
cclark20/aoc
solutions/day_06.py
day_06.py
py
483
python
en
code
0
github-code
6
5564785730
from src.core.interfaces.model_abc import ModelAbstract from src.core.interfaces.repository_abc import RepositoryAbstract from src.shared import parse_config from sqlalchemy.orm import Session import logging import logging.config import dataclasses from typing import List from datetime import datetime class SqlAlchemyRepository(RepositoryAbstract): def __init__(self, session, object_type) -> None: self.session: Session = session self.object_type: ModelAbstract = object_type logging.config.dictConfig(parse_config.get_logger_config()) self.logger = logging.getLogger("dev") self.logger.debug("{} repository instanciated".format(object_type.__name__)) def get_by_filter(self, filter) -> ModelAbstract: self.logger.info("get_by_filter Request") query = self.session.query(self.object_type).filter_by(**filter) result = self.session.execute(query).fetchall() return result def get_by_id(self, target_id: int) -> ModelAbstract: """This function retrieves an object from the database. Return: The object (ModelAbstract) """ self.logger.info("get_by_id Request") result = self.session.query(self.object_type).get(target_id) return result def get_all(self) -> List[ModelAbstract]: """This function retrieves all the objects in the repository. Returns: A list of the objects (List[ModelAbstract]) """ self.logger.info("get_all Request") result = self.session.query(self.object_type).all() return result def delete_by_filter(self, filter) -> int: """This function deletes an object using the provided filter. Returns: Affected rows provided by the database engine (int) """ self.logger.info("delete_by_filter Request") result = self.session.query(self.object_type).filter(filter).delete() return result def delete_by_id(self, target_id: int) -> int: """This function deletes an object by it's id. Returns: Affected rows provided by the database engine (int) """ self.logger.info("delete_by_id Request") result = self.session.query(self.object_type).filter(self.object_type.id == target_id).delete() self.session.commit() return result def insert(self, new: ModelAbstract) -> int: """This function inserts an object to the database. Returns: Inserted object id (int) """ self.logger.info("insert Request") self.session.add(new) self.session.commit() return new.id def update(self, values_to_update, requested_object) -> ModelAbstract: self.logger.info("update Request") for key, value in values_to_update: if value is not None: setattr(requested_object, key, value) setattr(requested_object, "modified_at", datetime.now()) self.session.commit() return requested_object
ricky-codes/APIGest
src/infrastructure/services/repository.py
repository.py
py
3,071
python
en
code
0
github-code
6
17591759593
import pathlib from PIL import Image class image_to_c_array: def __init__(self, image_path, output_path, format_bytes_count, char_array_name, include_header_guard=False, include_header_guard_name=None, reset_output_file=True): self.image_path = image_path self.output_path = output_path self.file_bytes = pathlib.Path(image_path).read_bytes() self.char_array_name = char_array_name self.format_bytes_count = format_bytes_count self.include_header_guard_name = include_header_guard_name self.include_header_guard = include_header_guard self.reset_output_file = reset_output_file self.file_bytes_len = 0 for _b in self.file_bytes: self.file_bytes_len += 1 def grab_string(self): if self.include_header_guard: data = "#ifndef {}\n#define {}\nunsigned char {}[{}] = {{\n\t".format(self.include_header_guard_name, self.include_header_guard_name, self.char_array_name,self.file_bytes_len) else: data = "unsigned char {}[{}] = {{\n\t".format(self.char_array_name, self.file_bytes_len) count = 0 for x in self.file_bytes: if count == self.format_bytes_count: data += "\n\t" count = 0 temp_data = str(hex(x)) if len(temp_data) == 3: temp_data = temp_data.replace("0x", "0x0") data += temp_data.upper() + ", " count += 1 if self.include_header_guard_name: data += "\n};\n#endif\n" else: data += "\n};\n\n" return data def save(self): if self.reset_output_file: open(self.output_path, 'w+').close() with open(self.output_path, 'a+') as f: f.write(self.grab_string())
0xRooted/File-To-C-Array
filetocarray.py
filetocarray.py
py
1,846
python
en
code
0
github-code
6
26112891425
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "07/01/2019" import os import logging import weakref from . import qt import silx.resources from silx.utils import weakref as silxweakref _logger = logging.getLogger(__name__) """Module logger""" _cached_icons = None """Cache loaded icons in a weak structure""" def getIconCache(): """Get access to all cached icons :rtype: dict """ global _cached_icons if _cached_icons is None: _cached_icons = weakref.WeakValueDictionary() # Clean up the cache before leaving the application # See https://github.com/silx-kit/silx/issues/1771 qt.QApplication.instance().aboutToQuit.connect(cleanIconCache) return _cached_icons def cleanIconCache(): """Clean up the icon cache""" _logger.debug("Clean up icon cache") _cached_icons.clear() _supported_formats = None """Order of file format extension to check""" class AbstractAnimatedIcon(qt.QObject): """Store an animated icon. It provides an event containing the new icon everytime it is updated.""" def __init__(self, parent=None): """Constructor :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ qt.QObject.__init__(self, parent) self.__targets = silxweakref.WeakList() self.__currentIcon = None iconChanged = qt.Signal(qt.QIcon) """Signal sent with a QIcon everytime the animation changed.""" def register(self, obj): """Register an object to the AbstractAnimatedIcon. If no object are registred, the animation is paused. Object are stored in a weaked list. :param object obj: An object """ if obj not in self.__targets: self.__targets.append(obj) self._updateState() def unregister(self, obj): """Remove the object from the registration. If no object are registred the animation is paused. :param object obj: A registered object """ if obj in self.__targets: self.__targets.remove(obj) self._updateState() def hasRegistredObjects(self): """Returns true if any object is registred. :rtype: bool """ return len(self.__targets) def isRegistered(self, obj): """Returns true if the object is registred in the AbstractAnimatedIcon. :param object obj: An object :rtype: bool """ return obj in self.__targets def currentIcon(self): """Returns the icon of the current frame. :rtype: qt.QIcon """ return self.__currentIcon def _updateState(self): """Update the object according to the connected objects.""" pass def _setCurrentIcon(self, icon): """Store the current icon and emit a `iconChanged` event. :param qt.QIcon icon: The current icon """ self.__currentIcon = icon self.iconChanged.emit(self.__currentIcon) class MovieAnimatedIcon(AbstractAnimatedIcon): """Store a looping QMovie to provide icons for each frames. Provides an event with the new icon everytime the movie frame is updated.""" def __init__(self, filename, parent=None): """Constructor :param str filename: An icon name to an animated format :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ AbstractAnimatedIcon.__init__(self, parent) qfile = getQFile(filename) self.__movie = qt.QMovie(qfile.fileName(), qt.QByteArray(), parent) self.__movie.setCacheMode(qt.QMovie.CacheAll) self.__movie.frameChanged.connect(self.__frameChanged) self.__cacheIcons = {} self.__movie.jumpToFrame(0) self.__updateIconAtFrame(0) def __frameChanged(self, frameId): """Callback everytime the QMovie frame change :param int frameId: Current frame id """ self.__updateIconAtFrame(frameId) def __updateIconAtFrame(self, frameId): """ Update the current stored QIcon :param int frameId: Current frame id """ if frameId in self.__cacheIcons: icon = self.__cacheIcons[frameId] else: icon = qt.QIcon(self.__movie.currentPixmap()) self.__cacheIcons[frameId] = icon self._setCurrentIcon(icon) def _updateState(self): """Update the movie play according to internal stat of the MovieAnimatedIcon.""" self.__movie.setPaused(not self.hasRegistredObjects()) class MultiImageAnimatedIcon(AbstractAnimatedIcon): """Store a looping QMovie to provide icons for each frames. Provides an event with the new icon everytime the movie frame is updated.""" def __init__(self, filename, parent=None): """Constructor :param str filename: An icon name to an animated format :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ AbstractAnimatedIcon.__init__(self, parent) self.__frames = [] for i in range(100): try: frame_filename = os.sep.join((filename, ("%02d" %i))) frame_file = getQFile(frame_filename) except ValueError: break try: icon = qt.QIcon(frame_file.fileName()) except ValueError: break self.__frames.append(icon) if len(self.__frames) == 0: raise ValueError("Animated icon '%s' do not exists" % filename) self.__frameId = -1 self.__timer = qt.QTimer(self) self.__timer.timeout.connect(self.__increaseFrame) self.__updateIconAtFrame(0) def __increaseFrame(self): """Callback called every timer timeout to change the current frame of the animation """ frameId = (self.__frameId + 1) % len(self.__frames) self.__updateIconAtFrame(frameId) def __updateIconAtFrame(self, frameId): """ Update the current stored QIcon :param int frameId: Current frame id """ self.__frameId = frameId icon = self.__frames[frameId] self._setCurrentIcon(icon) def _updateState(self): """Update the object to wake up or sleep it according to its use.""" if self.hasRegistredObjects(): if not self.__timer.isActive(): self.__timer.start(100) else: if self.__timer.isActive(): self.__timer.stop() def getWaitIcon(): """Returns a cached version of the waiting AbstractAnimatedIcon. :rtype: AbstractAnimatedIcon """ return getAnimatedIcon("process-working") def getAnimatedIcon(name): """Create an AbstractAnimatedIcon from a resource name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. Try to load a mng or a gif file, then try to load a multi-image animated icon. In Qt5 mng or gif are not used, because the transparency is not very well managed. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding AbstractAnimatedIcon :raises: ValueError when name is not known """ key = name + "__anim" cached_icons = getIconCache() if key not in cached_icons: qtMajorVersion = int(qt.qVersion().split(".")[0]) icon = None # ignore mng and gif in Qt5 if qtMajorVersion != 5: try: icon = MovieAnimatedIcon(name) except ValueError: icon = None if icon is None: try: icon = MultiImageAnimatedIcon(name) except ValueError: icon = None if icon is None: raise ValueError("Not an animated icon name: %s", name) cached_icons[key] = icon else: icon = cached_icons[key] return icon def getQIcon(name): """Create a QIcon from its name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QIcon :raises: ValueError when name is not known """ cached_icons = getIconCache() if name not in cached_icons: qfile = getQFile(name) icon = qt.QIcon(qfile.fileName()) cached_icons[name] = icon else: icon = cached_icons[name] return icon def getQPixmap(name): """Create a QPixmap from its name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QPixmap :raises: ValueError when name is not known """ qfile = getQFile(name) return qt.QPixmap(qfile.fileName()) def getQFile(name): """Create a QFile from an icon name. Filename is found according to supported Qt formats. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QFile :rtype: qt.QFile :raises: ValueError when name is not known """ global _supported_formats if _supported_formats is None: _supported_formats = [] supported_formats = qt.supportedImageFormats() order = ["mng", "gif", "svg", "png", "jpg"] for format_ in order: if format_ in supported_formats: _supported_formats.append(format_) if len(_supported_formats) == 0: _logger.error("No format supported for icons") else: _logger.debug("Format %s supported", ", ".join(_supported_formats)) for format_ in _supported_formats: format_ = str(format_) filename = silx.resources._resource_filename('%s.%s' % (name, format_), default_directory='gui/icons') qfile = qt.QFile(filename) if qfile.exists(): return qfile _logger.debug("File '%s' not found.", filename) raise ValueError('Not an icon name: %s' % name)
silx-kit/silx
src/silx/gui/icons.py
icons.py
py
11,642
python
en
code
106
github-code
6
38076886961
import os from pathlib import Path from tempfile import NamedTemporaryFile import pytest import pytest_mock from werkzeug.exceptions import NotFound from iceart.models import Artist, ArtistDto, ArtistViewModel def test_artist_vm_init(): with pytest.raises(NotFound): ArtistViewModel(-1) def test_artist_vm_search_key(): assert ArtistViewModel(44).search_key() == {"_id": 44} def test_artist_init(): # Arrange data = {"_id": 44, "title": "t", "info": "i", "file": "f", "paintings": [5, 3, 77]} # Act model = Artist(data) # Assert assert model.identity == 44 assert model.title == "t" assert model.info == "i" assert model.file == "f" assert model.paintings == [5, 3, 77] def test_artist_dto_init(): # Arrange data = {"_id": 44, "title": "t", "info": "i", "file": "f", "paintings": [5, 3, 77]} model = Artist(data) with NamedTemporaryFile("w+b", delete=False) as tmp_file: tmp_file.write(b"\xab\xef") p = Path(tmp_file.name) # Act with pytest_mock.mock.patch("pathlib.Path.joinpath", return_value=p): dto = ArtistDto(model, {1: "img1", 2: "img2"}) # Assert assert dto.image == "q+8=" assert dto.id == 44 assert dto.title == "t" assert dto.info == "i" assert dto.as_json() == { "id": 44, "title": "t", "info": "i", "image": "q+8=", "paintings": {1: "img1", 2: "img2"}, } assert dto.paintings == {1: "img1", 2: "img2"} # Cleanup os.remove(p)
JonSteinn/iceart_api
tests/test_models/test_artist.py
test_artist.py
py
1,537
python
en
code
1
github-code
6
35522645807
import requests from time import sleep timeToWait = 300 # Time to wait between callouts (in seconds) while (True): # Get list of commands to run this callout URL = "https://slack.flemingcaleb.com:5000/api/agent/4/command/" r = requests.get(url=URL) if r.status_code == requests.codes.ok: # Process the list of requests print(r) elif r.status_code == requests.codes.not_found: # No list this time print("No list this time") else: #Handle Unintended Error print("ERROR") sleep(timeToWait)
flemingcaleb/InfraBot
agent/agent.py
agent.py
py
567
python
en
code
3
github-code
6
72330655547
# TEE RATKAISUSI TÄHÄN: def summa(luku: int): # kun luku on 1, ei ole muita summattavia... if luku <= 1: return luku return luku + summa(luku - 1) if __name__ == "__main__": tulos = summa(3) print(tulos) print(summa(5)) print(summa(10))
jevgenix/Python_OOP
osa11-14_rekursiivinen_summa/src/rekursiivinen_summa.py
rekursiivinen_summa.py
py
278
python
fi
code
4
github-code
6
39756253957
""" Plot a grid on H2 with Poincare Disk visualization. """ import logging import os import matplotlib.pyplot as plt import numpy as np import geomstats.visualization as visualization from geomstats.geometry.hyperbolic import Hyperbolic H2 = Hyperbolic(dimension=2) METRIC = H2.metric def main(left=-128, right=128, bottom=-128, top=128, grid_size=32, n_steps=512): starts = [] ends = [] for p in np.linspace(left, right, grid_size): starts.append(np.array([top, p])) ends.append(np.array([bottom, p])) for p in np.linspace(top, bottom, grid_size): starts.append(np.array([p, left])) ends.append(np.array([p, right])) starts = [H2.intrinsic_to_extrinsic_coords(s) for s in starts] ends = [H2.intrinsic_to_extrinsic_coords(e) for e in ends] ax = plt.gca() for start, end in zip(starts, ends): geodesic = METRIC.geodesic(initial_point=start, end_point=end) t = np.linspace(0, 1, n_steps) points_to_plot = geodesic(t) visualization.plot( points_to_plot, ax=ax, space='H2_poincare_disk', marker='.', s=1) plt.show() if __name__ == "__main__": if os.environ['GEOMSTATS_BACKEND'] == 'tensorflow': logging.info('Examples with visualizations are only implemented ' 'with numpy backend.\n' 'To change backend, write: ' 'export GEOMSTATS_BACKEND = \'numpy\'.') else: main()
hhajri/geomstats
examples/plot_grid_h2.py
plot_grid_h2.py
py
1,552
python
en
code
null
github-code
6
1004630370
""" DESKRIPSI SOAL Buatlah program yang menerima 3 buah input nilai dan outputkan jumlah maksimal dari 2 bilangannya ! diantara ketiga input tersebut. PETUNJUK MASUKAN Input terdiri atas 3 angka dalam 1 baris PETUNJUK KELUARAN Outputkan angka jumlah terbesar dari 2 angka """ a, b, c = list(map(int, input().split())) sum_values = 0 if a >= b: if b >= c: # a > b > c sum_values = a + b else: # a, c, b sum_values = a + c else: # b > a if a >= c: # b > a > c sum_values = a + b else: # b > c > a sum_values = b + c print(sum_values)
refeed/PAlgoritmaTRPLA
OKT_22_2020/uts_problem_i.py
uts_problem_i.py
py
595
python
id
code
0
github-code
6
74056199547
import torch import torch.nn as nn import torch.nn.functional as F from .activations import ACTIVATIONS class Embedding(nn.Module): ''' Abstract base class for any module that embeds a collection of N vertices into N hidden states ''' def __init__(self, features, hidden, **kwargs): super().__init__() self.features = features self.hidden = hidden def forward(self, x): pass class Constant(Embedding): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return x class OneLayer(Embedding): def __init__(self, features, hidden, act=None, wn=False, **kwargs): super().__init__(features, hidden) self.fc = nn.Linear(features, hidden) if wn: self.fc = nn.utils.weight_norm(self.fc, name='weight') self.activation = ACTIVATIONS[act]() def forward(self, x): return self.activation(self.fc(x)) class TwoLayer(Embedding): def __init__(self, features, hidden, act=None, wn=False, **kwargs): super().__init__(features, hidden) self.e1 = OneLayer(features, hidden, act, wn) self.e2 = OneLayer(hidden, hidden, act, wn) def forward(self, x): return self.e1(self.e2(x)) class NLayer(nn.Module): def __init__(self, dim_in=None, dim_out=None, n_layers=None, dim_hidden=None, act=None, wn=False, **kwargs): super().__init__() self.activation = ACTIVATIONS[act]() if dim_hidden is None: dim_hidden = dim_out dims = [dim_in] + [dim_hidden] * (n_layers-1) + [dim_out] self.fcs = nn.ModuleList() for i in range(len(dims)-1): fc = nn.Linear(dims[i], dims[i+1]) if wn: fc = nn.utils.weight_norm(fc, name='weight') self.fcs.append(fc) def forward(self, x): for fc in self.fcs: x = fc(x) x = self.activation(x) return x EMBEDDINGS = dict( n=NLayer, one=OneLayer, two=TwoLayer, const=Constant, )
isaachenrion/jets
src/architectures/embedding/embedding.py
embedding.py
py
2,081
python
en
code
9
github-code
6
31146266095
import tensorflow as tf import keras.backend as K def huber_loss(y_true, y_pred): return tf.losses.huber_loss(y_true, y_pred) def adjust_binary_cross_entropy(y_true, y_pred): return K.binary_crossentropy(y_true, K.pow(y_pred, 2)) def MMD_Loss_func(num_source, sigmas=None): if sigmas is None: sigmas = [1, 5, 10] def loss(y_true, y_pred): cost = [] for i in range(num_source): for j in range(num_source): domain_i = tf.where(tf.equal(y_true, i))[:, 0] domain_j = tf.where(tf.equal(y_true, j))[:, 0] single_res = mmd_two_distribution(K.gather(y_pred, domain_i), K.gather(y_pred, domain_j), sigmas=sigmas) cost.append(single_res) #print("wtf") cost = K.concatenate(cost) return K.mean(cost) return loss def mmd_two_distribution(source, target, sigmas): sigmas = K.constant(sigmas) xy = rbf_kernel(source, target, sigmas) xx = rbf_kernel(source, source, sigmas) yy = rbf_kernel(target, target, sigmas) return xx + yy - 2 * xy def rbf_kernel(x, y, sigmas): beta = 1. / (2. * (tf.expand_dims(sigmas, 1))) dist = compute_pairwise_distances(x, y) dot = -K.dot(beta, K.reshape(dist, (1, -1))) exp = K.exp(dot) return K.mean(exp, keepdims=True) def compute_pairwise_distances(x, y): norm = lambda x: K.sum(K.square(x), axis=1) return norm(K.expand_dims(x, 2) - K.transpose(y))
rs-dl/MMD-DRCN
customLoss.py
customLoss.py
py
1,575
python
en
code
7
github-code
6
14255581243
from selenium import webdriver import time, re from bs4 import BeautifulSoup import pyautogui from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException import pyperclip import os # 主要功能就是访问300mium所有影片详情页,然后挨个下载封面 class Crawl_51luxu: def main(self, Dir='F:\\pic\\', page=1, category='300MIUM'): current_path = os.getcwd().replace('\\', '/') + '/' # custom_path = 'F:\\pic\\300MIUM\\' custom_path = Dir + category + "\\" chrome_opts = webdriver.ChromeOptions() chrome_opts.add_argument("--headless") chrome_opts.add_experimental_option( 'excludeSwitches', ['enable-logging']) url = 'https://www.51luxu.com/category/sresource/' + category + '/page/' + str(page) def open_browser(url): driver = webdriver.Chrome(options=chrome_opts) driver.get(url) return driver def scrapy(driver): if not os.path.exists(Dir): os.mkdir(Dir) if not os.path.exists(custom_path): os.mkdir(custom_path) Exist = [] if os.path.exists(custom_path + 'history.txt'): with open(custom_path + 'history.txt','r+') as f: lines = f.readlines() for line in lines: Exist.append(line.replace("\n","")) f.close() # 从history中读入历史的所下载的图片的名字,以免重复下载 # 这一步主要是为了,当我筛选图片时,看到好看的要保留,看到不好看的要删除 # 那么读取文件列表就乱了套了,所以把历史下载保存在txt文件中,就知道之前有没有下过这个番号了 for page in range(1,100): try: content = driver.page_source.encode('utf-8') soup = BeautifulSoup(content, 'lxml') img = soup.find_all('img') src1 = re.findall(r'src=".*?"', str(img)) name1 = re.findall(r'alt=".*?"', str(img)) src2 = [] name2 = [] for i in src1: src2.append(i.split('=')[1].replace("\"","")) for i in name1: name2.append(i.split('=')[1].replace("\"", "")) if category == "Scute": pattern = "S-cute" else: pattern = category try: temp = [x.replace("inggo.info", "paypp.xyz") for x in src2] src3 = [x for x in temp if 'images.paypp.xyz/wp-content/uploads' in x] except: src3 = [x for x in src2 if 'images.paypp.xyz/wp-content/uploads' in x] name3 = [x for x in name2 if pattern in x] if len(name3) < 12: name3 = name2 # 上面是name3和src3 保存了主页面的番号和相应的详情页的链接 # 接下来启动第二个浏览器对各个详情页的视频截图进行抓取 driver1 = webdriver.Chrome(options=chrome_opts) for i in range(len(src3)): try: if '[' and '【' not in name3[i]: title = name3[i] else: title = name3[i].split('【')[1].split('】')[0] # 简化一下番号的名字 except: title = name3[i].split('[')[1].split(']')[0] if i >= 1: try: if name3[i].split('[')[1].split(']')[0] == name3[i-1].split('[')[1].split(']')[0]: title = name3[i].split(']')[1].replace("[","") except: pass if i >= 1: try: if name3[i].split('【')[1].split('】')[0] == name3[i-1].split('【')[1].split('】')[0]: title = name3[i].split('】')[1].replace("【","") except: pass if title in Exist: print("%s 已经下载!" % (title)) continue # 前文提到的判断是否下过,如果是,后面就不用进行了 # 进入相应链接的详情页 driver1.get(src3[i]) img = driver1.find_element_by_xpath("//html/body/img") img.screenshot(custom_path + title + '.jpg') # wait = WebDriverWait(driver1, 10) # 等待浏览器相应,删除也可以 # pyautogui.rightClick(x=500, y=500) # 右击图片,位置可根据自己的屏幕调整 # pyautogui.typewrite(['V']) # 另存为的快捷键为 V # time.sleep(2) # 等待电脑响应 # pyperclip.copy(custom_path + title + '.jpg') # 复制文件名加路径到粘贴板 # time.sleep(1) # pyautogui.hotkey('ctrlleft', 'V') # 粘贴 # time.sleep(1) # pyautogui.press('enter') # 确认 # time.sleep(1) while True: filelist = os.listdir(custom_path) if title + '.jpg' in filelist: with open(custom_path + 'history.txt', 'a+') as f: f.writelines(title) f.writelines('\n') f.close() print("%s 下载完成!" % (title)) break else: print("等待响应") time.sleep(2) # pyautogui.hotkey('ctrlleft', 'V') # 粘贴 # time.sleep(1) # pyautogui.press('enter') # 确认 # time.sleep(1) # 在txt中加入当前下载的图片名字 print("%s 下载完成!"%(title)) time.sleep(0.5) driver1.quit() print("第 %d 页爬完"%(page)) button = "//*[@class='next page-numbers']" #翻页按钮 driver.find_elements_by_xpath(button)[0].click() except: print("第 %d 页出错!"%(page)) driver1.quit() try: button = "//*[@class='next page-numbers']" #翻页按钮 driver.find_elements_by_xpath(button)[0].click() except: print("爬取完毕!") break continue driver = open_browser(url) time.sleep(2) scrapy(driver)
ExcaliburEX/GHS
Crawl_51luxu.py
Crawl_51luxu.py
py
7,503
python
en
code
5
github-code
6
35573581070
from models.resnet import ResNet from models.unet import UNet, UNet_dualHeads model_zoo = { 'UNet': UNet, 'UNet_dualHeads': UNet_dualHeads } def get_model(cfg): ########################### COMPUTE INPUT & OUTPUT CHANNELS ############################ print("Satellites: ", cfg.DATA.satellites) print("num_classes:", cfg.MODEL.NUM_CLASS) # cfg.MODEL.NUM_CLASS = cfg.MODEL.cfg.MODEL.NUM_CLASS INPUT_CHANNELS_DICT = {} INPUT_CHANNELS_LIST = [] for sat in cfg.DATA.satellites: INPUT_CHANNELS_DICT[sat] = len(list(cfg.DATA.input_bands[sat])) if cfg.DATA.stacking: INPUT_CHANNELS_DICT[sat] = len(cfg.DATA.prepost) * INPUT_CHANNELS_DICT[sat] INPUT_CHANNELS_LIST.append(INPUT_CHANNELS_DICT[sat]) ########################### MODEL SELECTION ############################ if cfg.MODEL.ARCH in model_zoo.keys(): INPUT_CHANNELS = sum(INPUT_CHANNELS_LIST) MODEL = model_zoo[cfg.MODEL.ARCH] return MODEL(INPUT_CHANNELS, num_classes=cfg.MODEL.NUM_CLASS, topo=cfg.MODEL.TOPO, use_deconv=cfg.MODEL.USE_DECONV) #'FC-EF'
puzhao8/sentinel2-burn-severity
models/__init__.py
__init__.py
py
1,171
python
en
code
0
github-code
6
72010622268
#Stack using Linked List class StackNode: def __init__(self,data): self.data=data self.next=None class Stack: def __init__(self): self.root=None def isempty(self): return True if self.root is None else False def push(self,data): new_node=StackNode(data) new_node.next=self.root self.root=new_node print("pushed") def pop(self): curr=self.root if curr is None: return else: self.root=curr.next curr=None return def prints(self): curr=self.root while curr: print(curr.data,end='-->') curr=curr.next def top(self): return self.root.data def rev(self): while not self.isempty(): x=self.top() print(x,end='') x=self.pop() s=Stack() print(s.isempty()) s.push('h') s.push('e') s.push('m') s.push('a') #s.pop() #s.prints() s.top() s.rev()
Hemasri-3/datastructures_in_python
stack.py
stack.py
py
1,018
python
en
code
0
github-code
6
15451649393
#!/bin/python import csv import urllib import sys if __name__ == "__main__": with open('payphone_set.csv', 'rb') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: if row[0] == 'ID': continue number = "+" + row[0] neighborhood = row[7] lat = row[5] lon = row[6] params = urllib.urlencode({'pay_phone[number]': number, 'pay_phone[neighborhood]': neighborhood, 'pay_phone[lat]': lat, 'pay_phone[lon]': lon}) urllib.urlopen("http://sfpayphones.urbansmore.com/pay_phones", params) #sys.exit(0)
emilyville/SFpayphones
upload.py
upload.py
py
575
python
en
code
4
github-code
6
33205173219
from django.urls import path from .views import (get_user, add_user, get_categories, get_recipe, add_to_favourite, get_user_favourites, get_recipes_in_category, get_random_recipe, add_to_dislikes) urlpatterns = [ path('users/<int:telegram_id>', get_user), path('users/add/', add_user), path('categories/', get_categories), path('category/recipes/', get_recipes_in_category), path('recipe/random/', get_random_recipe), path('favourites/recipe/', get_recipe), path('favourites/', get_user_favourites), path('favourites/add', add_to_favourite), path('dislikes/add', add_to_dislikes) ]
AlexanderZharyuk/recipes
recipes_admin_api/api/urls.py
urls.py
py
684
python
en
code
1
github-code
6
32371727829
def main(): for cont in range(0, 44): with open("C:\\Users\\p22.ribeiro\\OneDrive\\repocode\\challenge-python\\dataset\\{}".format(cont), "r", encoding="cp1252") as arquivo: frase = arquivo.read() for remove in '!@#$%&*()<>:;,./?\|][}{=+-"~£': frase = frase.replace(remove, ' ').lower() lista_frase = frase.split() clear_list = set(lista_frase) clear_list = sorted(clear_list) comprimento = len(clear_list) # print(lista_frase) # print(comprimento) indice = 0 dicionario_palavra = dict() while indice < comprimento: for palavra in clear_list: dicionario_palavra = [indice, palavra] print(dicionario_palavra) # Tirar este print indice += 1 main()
htmribeiro/challenger-python
others/reverse_index.py
reverse_index.py
py
770
python
pt
code
0
github-code
6
24206813915
import webapp2 import jinja2 import os from google.appengine.ext import db template_dir = os.path.join(os.path.dirname(__file__), 'templates') template_env = jinja2.Environment(loader=jinja2.FileSystemLoader(template_dir), autoescape=True) def to_render(template, **para): t = template_env.get_template(template) return t.render(para) def blog_key(name='default'): return db.Key.from_path('blog', name) class Art(db.Model): title = db.StringProperty(required = True) arc = db.TextProperty(required = True) created = db.DateTimeProperty(auto_now_add = True) def render(self): self._render_text = self.arc.replace('\n', '<br>') return to_render('post.html', p = self) class BaseHandler(webapp2.RequestHandler): def render(self, template, **para): self.response.out.write(to_render(template, **para)) class FrontPage(BaseHandler): def get(self): arts = [] arts = db.GqlQuery("select * from Art order by created DESC") self.render("frontPage.html", arts = arts) class ShowPost(BaseHandler): def get(self, post_id): key = db.Key.from_path('Art', int(post_id), parent=blog_key()) post = db.get(key) self.render('permanlink.html', post = post) """Problem: 1. redirect('/blog') don't refresh the page 2. how add id colum to db automatiaclly increase 3. miss click on the title jump to a new page """ class NewPost(BaseHandler): def get(self): self.render("newPost.html") def post(self): title = self.request.get('title') arc = self.request.get('arc') if title and arc.strip(): a = Art(parent=blog_key(), title = title, arc = arc) a.put() self.redirect('/blog/%s' % str(a.key().id())) else: self.render("newPost.html", title=title, arc = arc, error="Content insufficiency") app = webapp2.WSGIApplication([('/blog/?', FrontPage), ('/blog/newpost', NewPost), ('/blog/([0-9]+)', ShowPost)], debug=True)
tongtie/udacity
WebDevelopment/hw3/my_solution.py
my_solution.py
py
2,089
python
en
code
0
github-code
6
13058259505
from datetime import datetime, timezone from config import Config from logger import logger from model.coordinates import Coordinates from model.media_type import MediaType from model.ts_source import TsSource class MediaFile: original_path: str original_filename: str filename: str media_type: MediaType dir_path: list[str] unix_time_sec: int = None timestamp: datetime = None ts_source: TsSource = None mtime: datetime = None index: int = None coordinates: Coordinates = None md5: str = None target_dir = None target_filename = None target = None def __init__(self, original_path: str, original_filename: str, filename: str, media_type: MediaType, dir_path: list[str]): self.original_path = original_path self.original_filename = original_filename self.filename = filename self.media_type = media_type self.dir_path = dir_path def __repr__(self): if self.ts_source == TsSource.EXIF: sym = Config.SYM_CHECK else: sym = Config.SYM_MULTIPLICATION return f'{sym} {self.ts_source} {self.dir_path}/{self.original_filename}, ts={self.timestamp}' def __lt__(self, other): return self.original_filename.lower() < other.original_filename.lower() def has_timestamp(self) -> bool: return self.timestamp is not None def update_time(self, ts: datetime, source: TsSource, force: bool = False): if ts is not None and (force or self.timestamp is None or ts < self.timestamp): self.timestamp = ts.astimezone(timezone.utc) self.unix_time_sec = int(self.timestamp.timestamp()) self.ts_source = source if self.ts_source == TsSource.MTIME: self.mtime = ts def update_coordinates(self, coordinates: Coordinates): if coordinates is not None: self.coordinates = coordinates @staticmethod def create(source_dir: str, file_dir: str) -> 'MediaFile': original_filename, filename, media_type, split_path = MediaFile.retrieve_filename_data(source_dir, file_dir) return MediaFile( original_path=file_dir, original_filename=original_filename, filename=filename, media_type=media_type, dir_path=split_path ) @staticmethod def retrieve_filename_data(source_dir: str, file_dir: str): if not source_dir.endswith('/'): source_dir += '/' split_path = file_dir.replace(source_dir, '').split('/') original_filename = split_path.pop() fixed_filename = MediaFile.replace_dots(original_filename) filename, extension = fixed_filename.split('.') media_type = MediaType.from_string(extension) return original_filename, filename, media_type, split_path @staticmethod def replace_dots(original_filename: str) -> str: result = original_filename while result.count('.') > 1: result = result.replace('.', ' ', 1) return result
mbogner/imagination
model/media_file.py
media_file.py
py
3,104
python
en
code
0
github-code
6
19482945267
import math import random import numba as nb import numpy as np @nb.jit(nopython=True) def dimension_selector_uniform(n_dimensions): return random.randrange(n_dimensions) def get_dimension_selector_expovariate( lambd=None, rel_lambd=None, ): if lambd is not None and rel_lambd is not None: raise ValueError("Cannot set both lambd and rel_lambd") if lambd is None and rel_lambd is None: # the default, using a rel_lambd of 4.0, placing the pseudo-mean # 1/4 of the way into the dimensions rel_lambd = 4. @nb.jit(nopython=True) def dimension_selector_expovariate(n_dimensions): nonlocal lambd, rel_lambd value = math.inf while value >= n_dimensions: value = random.expovariate( lambd if lambd is not None else rel_lambd/n_dimensions ) return int(value) return dimension_selector_expovariate def get_finder_for_cluster_obeying( check_func, min_count=1, max_count=-1, max_depth=-1, dimension_selector=dimension_selector_uniform, fixed_dimensional_parameters=-1, fixed_non_dimensional_parameters=-1, fixed_n=-1, verbose=False, jit_kwargs={}, ): @nb.jit(nopython=True, **jit_kwargs) def _find_cluster_obeying( dimensional_parameters, non_dimensional_parameters, random_seed=None, iterations=-1, ): if dimensional_parameters.shape[1] != non_dimensional_parameters.shape[0]: raise ValueError( "Minor dimension of dimensional_parameters must match " "major dimension of non_dimensional_parameters" ) if ( fixed_dimensional_parameters != -1 and fixed_dimensional_parameters != dimensional_parameters.shape[0] ): raise ValueError("Number of dimensional parameters not expected value") if ( fixed_non_dimensional_parameters != -1 and fixed_non_dimensional_parameters != non_dimensional_parameters.shape[1] ): raise ValueError("Number of non-dimensional parameters not expected value") if ( fixed_n != -1 and fixed_n != non_dimensional_parameters.shape[0] ): raise ValueError("Number of candidates not expected value") final_max_depth = max_depth if max_depth != -1 else (1 + int( math.floor(math.log(dimensional_parameters.shape[-1]) / math.log(2)) )) if final_max_depth < 2: raise ValueError("max_depth < 2 makes no sense") if random_seed is not None: random.seed(random_seed) bitmap_stack = np.zeros( (final_max_depth, dimensional_parameters.shape[-1]), dtype=np.bool_, ) bitmap_stack[0,:] = True right_branch_stack = np.zeros((final_max_depth,), dtype=np.int8) current_level = 1 iteration = 0 while True: if right_branch_stack[current_level] == 0: chosen_dimension = dimension_selector(dimensional_parameters.shape[0]) vals_count = 0 # initialize these to any value of the correct type vals_min = vals_max = dimensional_parameters[0,0] # scan for range of remaining values in this dimension for i in range(dimensional_parameters.shape[1]): if bitmap_stack[current_level-1,i]: v = dimensional_parameters[chosen_dimension,i] if vals_count == 0: vals_min = vals_max = v else: vals_min = min(vals_min, v) vals_max = max(vals_max, v) vals_count+=1 chosen_split_point = random.uniform(vals_min, vals_max) # mark values greater than threshold remaining_count = 0 for i in range(dimensional_parameters.shape[1]): if bitmap_stack[current_level-1,i]: is_chosen = ( dimensional_parameters[chosen_dimension,i] >= chosen_split_point ) bitmap_stack[current_level,i] = is_chosen if is_chosen: remaining_count+=1 elif right_branch_stack[current_level] == 1: # invert current_level's bitmap, masked by the previous level's remaining_count = 0 for i in range(bitmap_stack.shape[1]): if bitmap_stack[current_level-1,i]: is_chosen = not bitmap_stack[current_level,i] bitmap_stack[current_level,i] = is_chosen if is_chosen: remaining_count+=1 else: # tidy up then unwind right_branch_stack[current_level] = 0 bitmap_stack[current_level,:] = False if current_level > 1: current_level-=1 # advance branch at underlying level right_branch_stack[current_level]+=1 else: # we're at the root iteration+=1 if iterations != -1 and iteration >= iterations: return None # start again by continuing at the # same current_level continue if verbose: print("current_level = ", current_level, " remaining_count = ", remaining_count) if remaining_count < min_count: right_branch_stack[current_level]+=1 continue if max_count == -1 or remaining_count <= max_count: ndp_subset = np.empty( (remaining_count, non_dimensional_parameters.shape[1],), dtype=non_dimensional_parameters.dtype, ) j = 0 for i in range(bitmap_stack.shape[1]): if j < remaining_count and bitmap_stack[current_level,i]: for k in range(ndp_subset.shape[1]): ndp_subset[j,k] = non_dimensional_parameters[i,k] j+=1 check_result = check_func(ndp_subset) if check_result: if check_result > 0: return bitmap_stack[current_level,:] else: # negative result signals to stop checking this branch right_branch_stack[current_level]+=1 continue if remaining_count <= 1: # dividing any more makes no sense right_branch_stack[current_level]+=1 continue if current_level+1 >= final_max_depth: # can't descend any deeper right_branch_stack[current_level]+=1 continue current_level+=1 return _find_cluster_obeying
risicle/cluscheck
cluscheck/__init__.py
__init__.py
py
7,246
python
en
code
0
github-code
6
18339770466
import requests import json url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendMessage" photo_url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendPhoto" document_url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendDocument" def buttons(chat_id): payload = { "photo": "https://blog.mint.com/wp-content/uploads/2013/02/1.jpg", #"caption": caption, "chat_id": chat_id, "reply_markup": { "inline_keyboard": [ [ { "text": "Show Plans", "callback_data": "Insurance Plan" } ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(photo_url, json=payload) def button_1(chat_id): payload = { "photo": "AgACAgUAAxkBAAIGv2Mhrr21NIyhQKZHdVnObrNS0_SdAAIStTEb3U4IVSXi2GZ7s3TqAQADAgADcwADKQQ", "chat_id": chat_id, # "text": "Select one option", "reply_markup": { "inline_keyboard": [ [ { "text": "Term Life", "callback_data": "Term Life" }, { "text": "mediclaim", "callback_data": "Mediclaim" }, { "text": "Accidental", "callback_data": "Accidental Insurance" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(photo_url, json=payload) print(response) def term_life(chat_id): payload = { "chat_id": chat_id, 'document': 'BQACAgUAAxkBAAIClGMIdmbOEsi8xsAic-Bk0UahnIl5AAJCBgACDBJBVBLbNwoHbsUhKQQ', #"text": "Choose Your Plan", "reply_markup": { "inline_keyboard": [ [ { "text": "25Lac", "callback_data": "25Lac" }, { "text": "50Lac", "callback_data": "50Lac" }, { "text": "75Lac", "callback_data": "75Lac" }, { "text": "1Cr", "callback_data": "1r" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def mediclaim(chat_id): payload = { "chat_id": chat_id, #"text": "Choose Your Plan", "document":"BQACAgUAAxkBAAICmmMIeJtMVL1v2JTsRhsdMb4uSDvCAAJEBgACDBJBVKwG4QUSEWW7KQQ", "reply_markup": { "inline_keyboard": [ [ { "text": "2Lac", "callback_data": "mediclaim up to 2Lac" }, { "text": "5Lac", "callback_data": "mediclaim up to 5Lac" }, { "text": "10Lac", "callback_data": "mediclaim up to 10Lac" }, { "text": "25Lac", "callback_data": "mediclaim up to 25Lac" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def accidental(chat_id): payload = { "chat_id": chat_id, #"text": "Choose Your Plan", "document":"BQACAgUAAxkBAAICmGMIeJMERoZF4atIdkk_L-cYGESUAAJDBgACDBJBVCJlGZUyjyGkKQQ", "reply_markup": { "inline_keyboard": [ [ { "text": "5Lac", "callback_data": "Plan of 5Lac" }, { "text": "10Lac", "callback_data": "Plan of 10Lac" }, { "text": "25Lac", "callback_data": "Plan of 25Lac" }, { "text": "50Lac", "callback_data": "Plan of 50Lac" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def existing_user(chat_id): payload = { "chat_id": chat_id, "text": "Seems you are an existing user! To see your details click here ", "reply_markup": { "inline_keyboard": [ [ { "text": "Show Details", "callback_data": "show details" } ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(url, json=payload, headers=headers) #print(response.text) # import requests # url = "https://api.telegram.org/bot5340261920:AAF2GGInKosubny7ox-CWeZyl8IMESgQg5o/sendPhoto" # payload = { # "photo": "AgACAgUAAxkBAAMLYvDs4xqN8GzQGUY555yHLr5joacAAjGxMRtMw4hX56puCadfo3cBAAMCAAN5AAMpBA", # # "caption": "Optional", # # "disable_notification": False, # "reply_to_message_id": 0, # "chat_id":1091996976 # } # headers = { # "Accept": "application/json", # "User-Agent": "Telegram Bot SDK - (https://github.com/irazasyed/telegram-bot-sdk)", # "Content-Type": "application/json" # } # response = requests.post(url, json=payload) # print(response.text)
mayuritoro/tele_bot
tele_bot/trial.py
trial.py
py
5,973
python
en
code
0
github-code
6
34228298510
import os import re import sys import glob import builtins from contextlib import contextmanager import setuptools from setuptools import setup, Extension from setuptools.command.build_ext import build_ext as _build_ext from setuptools.command.install import install as _install with open("README.md", "r") as fh: long_description = fh.read() PACKAGENAME = "aliad" VERSIONFILE = f"{PACKAGENAME}/_version.py" verstrline = open(VERSIONFILE, "rt").read() VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VSRE, verstrline, re.M) if mo: verstr = mo.group(1) else: raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) setup( name=PACKAGENAME, # Replace with your own username version=verstr, author="Alkaid Cheng", author_email="[email protected]", description="A library for anomaly detection.", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), package_data={PACKAGENAME: []}, exclude_package_data={PACKAGENAME: []}, classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], install_requires=[ 'numpy', 'pandas', 'matplotlib', 'click', 'quickstats' ], scripts=[f'bin/{PACKAGENAME}'], python_requires='>=3.8', )
AlkaidCheng/aliad
setup.py
setup.py
py
1,655
python
en
code
0
github-code
6
20052609139
import numpy as np import matplotlib.pyplot as plot import math def jacobi(x): x1, x2 = x return np.array([[1, math.sin(x2)], [-math.cos(x1), 1]]) def func(x): x1, x2 = x return np.array([x1 - math.cos(x2) - 1, x2 - math.sin(x1) - 1]) def find_delta_x(f, J): return np.linalg.solve(J, -1 * f) def newthon(x_start, eps): x_curr = x_start x_next = [] iters = 0 is_close = False while True: print(f'x_{iters} = \n{x_curr}') f_x = func(x_curr) J_x = jacobi(x_curr) print(f'f(x_{iters}) = \n {f_x}') print(f'J(x_{iters}) = \n {J_x}') x_next = x_curr + find_delta_x(f_x, J_x) print(f'x_{iters + 1} = \n{x_next}') diff = np.linalg.norm(x_next - x_curr, ord=np.inf) print(f'||x_{iters + 1} - x_{iters}|| = {diff}') if diff <= eps: print(f'Found solution in {iters} steps') break x_curr = x_next iters += 1 return x_next, iters def ph(x): x1, x2 = x return np.array([[1 + math.cos(x2)], [1 + math.sin(x1)]]) def ph_der(x): x1, x2 = x return np.array([[0, -math.sin(x2)], [math.cos(x1), 0]]) def simple_iters(x_range, phi, phi_deriv, eps): x_curr = np.array([[np.mean(x)] for x in x_range]) x_next = [] iters = 0 print(f'x is = {x_range}') x_series = [np.linspace(x[0], x[1]) for x in x_range] q = max(map(lambda x: np.linalg.norm(phi_deriv(x), ord=np.inf), zip(*x_series))) print(f'q = {q}') if q >= 1: print("q should be < 1") exit() coeff = q / (1 - q) print(f'coeff = {coeff}') while True: print(f'x_{iters} = \n{x_curr}') x_next = phi(x_curr) print(f'x_{iters + 1} = \n{x_next}') diff = np.linalg.norm(x_next - x_curr, ord=np.inf) * coeff print(f'||x_{iters + 1} - x_{iters}|| * coeff = {diff}') if diff <= eps: print(f'Found solution in {iters} steps') break x_curr = x_next iters += 1 return x_next, iters def main(): # x_series = np.arange(-3.0, 3.1, 0.1) # f1_series = [(lambda x2: math.cos(x2) + 1)(x) for x in x_series] # f2_series = [(lambda x1: math.sin(x1) + 1)(x) for x in x_series] # plot.figure() # plot.xlabel('x1') # plot.ylabel('x2') # plot.plot(x_series, f1_series, 'r') # plot.plot(f2_series, x_series,'g') # plot.axis('equal') # plot.grid(True) # plot.show() # 1.5 <= x1 <= 2 # 0.7 <= x2 <= 0.92 # (1.73, 0.83) eps = float(input()) x_start = np.array([[1.7], [0.75]]) root_n, iters_n = newthon(x_start, eps) x_range = [(1.7, 1.8), (0.75, 0.85)] root_si, iters_si = simple_iters(x_range, ph, ph_der, eps) print(f'Newthon: root is:\n{root_n}\nfound in {iters_n} iterations') print(f'Simple iterations: root is:\n{root_si}\nfound in {iters_si} iterations') print(f'Are roots close? {np.allclose(root_n, root_si, atol=eps)}') main()
mehakun/Labs
6th_semester/NumMethods/2_lab/task_2.py
task_2.py
py
3,004
python
en
code
2
github-code
6