seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
13563263971
import requests import time import json from hoshino import aiorequests apiroot = 'https://help.tencentbot.top' async def getprofile(viewer_id: int, interval: int = 1, full: bool = False) -> dict: reqid = json.loads(await aiorequests.get(f'{apiroot}/enqueue?full={full}&target_viewer_id={viewer_id}').content.decode('utf8'))['reqeust_id'] if reqid is None: return "id err" while True: query = json.loads(await aiorequests.get(f'{apiroot}/query?request_id={reqid}').content.decode('utf8')) status = query['status'] if status == 'done': return query['data'] elif status == 'queue': time.sleep(interval) else: # notfound or else return "queue" async def queryarena(defs: list, page: int) -> dict: return json.loads(await aiorequests.get(f'{apiroot}/arena?def={",".join([str(x) for x in defs])}&page={page}').content.decode('utf8'))
pcrbot/arena_query_push
queryapi.py
queryapi.py
py
933
python
en
code
7
github-code
6
69894678589
import configparser from datetime import datetime import os from pyspark.sql import SparkSession from pyspark.sql.functions import udf, col, monotonically_increasing_id from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format from pyspark.sql import types as t # reading in the AWS config information from the dl.cfg file config = configparser.ConfigParser() config.read('dl.cfg') os.environ['AWS_ACCESS_KEY_ID'] =config['AWS']['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] =config['AWS']['AWS_SECRET_ACCESS_KEY'] print(os.environ['AWS_ACCESS_KEY_ID'] ) print(os.environ['AWS_SECRET_ACCESS_KEY'] ) #def create_spark_session(): # spark = SparkSession \ # .builder \ # .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \ # .getOrCreate() # print("spark session created") # return spark def create_spark_session(): """ This creates a Spark session, specifying the hadoop package to use, the S3 buckets and reads in the AWS ID and key as environment variables Parameters: None Returns: Spark session object """ spark = SparkSession \ .builder \ .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \ .config("spark.hadoop.fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem") \ .config("spark.hadoop.fs.s3a.awsAccessKeyId", os.environ['AWS_ACCESS_KEY_ID']) \ .config("spark.hadoop.fs.s3a.awsSecretAccessKey", os.environ['AWS_SECRET_ACCESS_KEY']) \ .getOrCreate() print("spark session created") return spark def process_song_data(spark, input_data, output_data): """ This reads in song and artist data as csv files from the udacity s3 bucket as a spark dataframe and then uses spark_sql to insert select columns into a parquet file format back into the user-generated S3 bucket Parameters: spark: A spark session object input_data: A string representing the udacity-generated s3 bucket root output_data: A string representing the user-generated s3 bucket root Output: No output returned: but two parquet files written to user-generated s3 bucket """ # get filepath to song data file song_data = input_data +"song_data/*/*/*/*.json" print(song_data) # read song data file print("reading in song data") df = spark.read.json(song_data) # extract columns to create songs table df.createOrReplaceTempView("songs_table_df") songs_table = spark.sql(""" SELECT song_id, title, artist_id,year, duration FROM songs_table_df ORDER by song_id """) # write songs table to parquet files partitioned by year and artist songs_table_path = output_data + "songs_table.parquet" print("read to songs table to parquet format") songs_table.write.mode("overwrite").partitionBy("year","artist_id").parquet(songs_table_path) # extract columns to create artists table df.createOrReplaceTempView("artist_table_df") artists_table = spark.sql( """ SELECT artist_id AS artist_id, artist_name AS name, artist_location AS location, artist_latitude AS latitude, artist_longitute AS longitude FROM artist_table_df """) # write artists table to parquet files artists_table_path = output_data + "artists_table.parquet" print("write to artist table") artists_table.write.mode("overwrite").parquet(artist_table_path) def process_log_data(spark, input_data, output_data): """ This reads in log_data from the udacity-generated s3 bucket, where the data relates to songs played, and this is written to a parquet file. It then takes a subset of the log_data, creates time- and date- stamps by using a udf with lambdas, and this is written to a parquet file. Song data is then read into a data frame and joined with log data to create a joined table, which is written to a parquet file. Parameters: spark: A spark session object input_data: A string representing the udacity-generated s3 bucket root output_data: A string representing the user-generated s3 bucket root Returns: users_table: A spark dataframe holding user information time_table: A spark dataframe holding time information songplays_table: A spark dataframe holding songplay information """ # get filepath to log data file log_data = input_data + "log_data/*.json" print("reading in log data") # read log data file df_log = spark.read.json(log_data) # filter by actions for song plays df_log = df_log.filter(df.page == 'NextSong') # extract columns for users table df_log.createOrReplaceTempView("users_table_df") users_table = spark.sql(""" SELECT DISTINCT userId AS userid, firstName AS first_name, lastName AS last_name, gender, level FROM users_table_df ORDER BY last_name """) print("writing to parquet format") # write users table to parquet files users_table_path = output_data + "users_table.parquet" users_table.write.mode("overwrite").parquet(users_table_path) # create timestamp column from original timestamp column get_timestamp = udf(lambda x: datetime.fromtimestamp((x/1000.0)),TimestampType()) df_log = df_log.withColumn("timestamp", gettimestamp("ts")) # create datetime column from original timestamp column get_datetime = udf(lambda x: datetime.fromtimestamp(ts/1000.0).strfrmtime('%Y-%m-%d %H:%M:%S')) df_log = df_log.withColumn("datetime",get_datetime("ts")) # extract columns to create time table df_log.createOrReplaceTempView("time_table_df") time_table = spark.sql("""SELECT DISTINCT datetime as start_time, hour(timestamp) as hour, day(timestamp) as day, weekofyear(timestamp) as week, month(timestamp) as month, year(timestamp) as year, dayofweek(timestamp) as weekday FROM time_table_df ORDER BY start_time """) # write time table to parquet files partitioned by year and month time_table_path = output_data + "time_table.parquet" time_table.write.mode("overwrite").partitionBy("year","month").parquet(time_table_path) # read in song data to use for songplays table song_df = spark.read.json(song_data) #join log and song df together df_log_song_df_joined = df_log_filtered.join(df_song, (df_log_filtered.artist == df_song.artist_name) & (df_log_filtered.song == df_song.title)) # extract columns from joined song and log datasets to create songplays table df_log_song_df_joined.createOrReplaceTempView("songplays_table_df") songplays_table = spark.sql(""" SELECT songplay_id AS songplay_id, timestamp AS start_time, userId AS user_id, level AS level, song_id AS song_id, artist_id AS artist_id, sessionId AS session_id, location AS location, userAgent AS user_agent FROM songplays_table_DF ORDER BY (user_id, session_id) """) # write songplays table to parquet files partitioned by year and month songplays_table_path = output_data + "songplays_table.parquet" songplays_table.write.mode("overwrite").partitionBy("year","month").parquet(songplays_table_path) return users_table, time_table, songplays_table def main(): """ Main function for the code. It creates a spark session, defines the paths of the input and ouput buckets, and call the two functions process_song_data and process_log_data """ spark = create_spark_session() input_data = "s3a://udacity-dend/" output_data = "s3a://udacity-lake/output_data/" process_song_data(spark, input_data, output_data) process_log_data(spark, input_data, output_data) if __name__ == "__main__": main()
greggwilliams58/data-lake
etl.py
etl.py
py
8,843
python
en
code
0
github-code
6
72137353787
import logging import json from discord import Interaction, app_commands, Role from discord.app_commands import Choice from discord.ext.commands import Bot, Cog logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) with open("config.json") as cfg_json: cfg = json.loads(cfg_json.read()) owner_id = cfg["owner_id"] async def log_reply(ctx: Interaction, response: str, ephemeral=True): log = f"From {ctx.user}: {response}" if ctx.guild: log = f"From {ctx.user} in {ctx.guild.name}: {response}" logger.info(log) await ctx.response.send_message(response, ephemeral=ephemeral) async def is_owner(ctx: Interaction) -> bool: if ctx.user.id != owner_id: await log_reply(ctx, f"**Error:** Only my owner can use this command") return False return True class CommandError(Exception): def __init__(self, msg: str): self.msg = msg super().__init__(msg) @classmethod async def send_err(cls, ctx: Interaction, msg: str): self = cls(msg) await log_reply(ctx, self.msg) return self class OwnerCog(Cog): """Commands that can only be used by the bot's owner""" def __init__(self, bot: Bot): self.bot = bot @app_commands.command(name="sync") @app_commands.check(is_owner) async def sync_commands(self, ctx: Interaction): """(Owner only) Syncs app command info with Discord""" await self.bot.tree.sync() await log_reply(ctx, "Synced command tree with Discord") emote = app_commands.Group( name="emote", description=("(Owner only) Modify DGG emote translations"), ) @emote.command(name="add") @app_commands.describe( dgg_version="The emote as it's used in DGG", disc_version="The emote as it's used in Discord", ) @app_commands.check(is_owner) async def add_emote(self, ctx: Interaction, dgg_version: str, disc_version: str): """(Owner only) Add or modify a DGG emote translation""" self.bot.emotes[dgg_version] = disc_version self.bot.save_cfg() await log_reply(ctx, f"Translating {dgg_version} to {str(disc_version)}") @emote.command(name="remove") @app_commands.describe(dgg_version="The emote to remove (in DGG format)") @app_commands.check(is_owner) async def remove_emote(self, ctx: Interaction, dgg_version: str): """(Owner only) Remove a DGG emote translation""" if dgg_version in self.bot.emotes.keys(): removed_emote = self.bot.emotes.pop(dgg_version) self.bot.save_cfg() await log_reply(ctx, f"Removed {removed_emote} from emotes") else: await log_reply(ctx, f"Couldn't find emote {dgg_version}") config = app_commands.Group( name="config", description=("(Owner only) Modify the bot's config file"), ) @config.command(name="remove") @app_commands.choices( mode=[ Choice(name="phrase", value="phrase"), Choice(name="relay", value="relay"), ] ) @app_commands.check(is_owner) async def config_remove(self, ctx: Interaction, mode: str, value: str): """Remove a relay or phrase from the config file""" if mode == "phrase" and value in self.bot.phrases: del self.bot.phrases[value] self.bot.save_cfg() await log_reply(ctx, f"Removed '{value}' from phrases", ephemeral=False) elif mode == "relay" and value in self.bot.relays: del self.bot.relays[value] self.bot.save_cfg() await log_reply(ctx, f"Removed '{value}' from relays", ephemeral=False) else: await log_reply(ctx, f"Couldn't find '{value}' in {mode}s") class PublicCog(Cog): """Commands that can be used by anybody""" def __init__(self, bot: Bot): self.bot = bot async def get_relay_channel(self, ctx: Interaction) -> int: if not ctx.guild: err = "**Error:** This command is only usable in servers" raise await CommandError(err).send_err(ctx, err) if "dgg-relay-mod" not in (role.name for role in ctx.user.roles): err = "**Error:** This command requires the 'dgg-relay-mod' role" raise await CommandError(err).send_err(ctx, err) relay_channel = None for channel in ctx.guild.channels: if channel.name == "dgg-relay": relay_channel = channel.id break if not relay_channel: err = f"**Error:** No '#dgg-relay' channel found in '{ctx.guild.name}'" raise await CommandError(err).send_err(ctx, err) return relay_channel relay = app_commands.Group( name="relay", description="Relays DGG messages to servers", ) @relay.command(name="add") @app_commands.describe(dgg_username="The DGG user you want to relay messages from") async def relay_add(self, ctx: Interaction, dgg_username: str): """Add a DGG user whose messages get forwarded to this server (case sensitive!)""" relay_channel = await self.get_relay_channel(ctx) if dgg_username not in self.bot.relays: self.bot.relays[dgg_username] = [] logger.info(f"Added new relay list '{dgg_username}'") if relay_channel not in self.bot.relays[dgg_username]: self.bot.relays[dgg_username].append(relay_channel) response = ( f"Messages from '{dgg_username}' will be relayed to '{ctx.guild.name}'" ) else: response = f"**Error:** '{dgg_username}' is already being relayed to '{ctx.guild.name}'" self.bot.save_cfg() await log_reply(ctx, response, ephemeral=False) @relay.command(name="remove") @app_commands.describe(dgg_username="The DGG user you want to stop relaying") async def relay_remove(self, ctx: Interaction, dgg_username: str): """Remove a DGG user's relay from this server""" relay_channel = await self.get_relay_channel(ctx) response = None if dgg_username in self.bot.relays.keys(): if relay_channel in self.bot.relays[dgg_username]: self.bot.relays[dgg_username].remove(relay_channel) response = f"Removed '{dgg_username}' relay from '{ctx.guild.name}'" if not self.bot.relays[dgg_username]: self.bot.relays.pop(dgg_username) logger.info(f"Removed empty relay list for '{dgg_username}'") self.bot.save_cfg() if not response: response = ( f"**Error:** '{dgg_username}' isn't being relayed to '{ctx.guild.name}'" " (try the '/relay list' command)" ) await log_reply(ctx, response, ephemeral=False) @relay.command(name="list") async def relay_list(self, ctx: Interaction): """Lists DGG users currently being relayed to this server.""" relay_channel = await self.get_relay_channel(ctx) relays = [] for nickname in self.bot.relays: for channel in self.bot.relays[nickname]: if channel == relay_channel: relays.append(nickname) relays = "', '".join(relays) response = f"This server gets messages from: '{relays}'" if not relays: response = "No relays are active for this server." await log_reply(ctx, response, ephemeral=False) live_notifications = app_commands.Group( name="live-notifications", description="Configure live notifications for Destiny", ) @live_notifications.command(name="on") async def live_notifications_on(self, ctx: Interaction): """Enable live notifications for this server""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"role": None} self.bot.live["channels"][relay_channel]["enabled"] = True self.bot.save_cfg() response = f"Live notifications enabled for {ctx.guild.name}" await log_reply(ctx, response, ephemeral=False) @live_notifications.command(name="off") async def live_notifications_off(self, ctx: Interaction): """Disable live notifications for this server""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"role": None} self.bot.live["channels"][relay_channel]["enabled"] = False self.bot.save_cfg() response = f"Live notifications disabled for {ctx.guild.name}" await log_reply(ctx, response, ephemeral=False) @live_notifications.command(name="role") @app_commands.describe(role="The role that will be pinged") async def live_notifications_role(self, ctx: Interaction, role: Role): """Set a role that gets pinged for live notifications""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"enabled": True} self.bot.live["channels"][relay_channel]["role"] = role.id self.bot.save_cfg() response = ( f'"<@&{role.id}>" will be pinged for live notifications in {ctx.guild.name}' ) await log_reply(ctx, response, ephemeral=False) def check_prefs(self, disc_user): if disc_user not in self.bot.user_prefs.keys(): self.bot.user_prefs[disc_user] = {"detect_presence": False, "ignores": []} logger.info(f"Added new user '{disc_user}' to preferences list") phrase = app_commands.Group( name="phrase", description="Relays DGG messages to users", ) @phrase.command(name="add") @app_commands.describe( phrase="The phrase you want forwarded to you (most likely your DGG username)" ) async def phrase_add(self, ctx: Interaction, phrase: str): """Add a phrase (usually a username) that will be forwarded to you when it's used in DGG (case insensitive)""" self.check_prefs(ctx.user.id) if phrase not in self.bot.phrases: self.bot.phrases[phrase] = [] logger.info(f"Added new phrase list for '{phrase}'") if ctx.user.id not in self.bot.phrases[phrase]: self.bot.phrases[phrase].append(ctx.user.id) response = f"Forwarding '{phrase}' to {ctx.user}" else: response = f"**Error:** '{phrase}' is already being forwarded to {ctx.user}" self.bot.save_cfg() await log_reply(ctx, response) @phrase.command(name="remove") @app_commands.describe(phrase="The phrase you want to stop being forwarded") async def phrase_remove(self, ctx: Interaction, phrase: str): """Stop a phrase from being forwarded to you""" self.check_prefs(ctx.user.id) response = None if phrase in self.bot.phrases: if ctx.user.id in self.bot.phrases[phrase]: self.bot.phrases[phrase].remove(ctx.user.id) response = f"No longer forwarding '{phrase}' to {ctx.user}" if not self.bot.phrases[phrase]: self.bot.phrases.pop(phrase) logger.info(f"Removed empty phrase list '{phrase}'") self.bot.save_cfg() if not response: response = ( f"**Error:** '{phrase}' isn't being forwarded to {ctx.user}" " (try the '/phrase list' command)" ) await log_reply(ctx, response) @phrase.command(name="list") async def phrase_list(self, ctx: Interaction): """List the phrases currently being forwarded to you""" disc_user = ctx.user.id user_phrases = [] for phrase in self.bot.phrases: for user_id in self.bot.phrases[phrase]: if user_id == disc_user: user_phrases.append(phrase) user_phrases = "', '".join(user_phrases) response = f"Your phrases: '{user_phrases}'" if not user_phrases: response = "No phrases are being forwarded to you." await log_reply(ctx, response) @phrase.command(name="detect-dgg-presence") @app_commands.describe(mode="Set to True to detect DGG presence. Default is False.") async def detect_dgg_presence(self, ctx: Interaction, mode: bool): """Change behavior of the /phrase command by controlling when the bot messages you.""" self.check_prefs(ctx.user.id) self.bot.user_prefs[ctx.user.id]["detect_presence"] = mode self.bot.save_cfg() word = "enabled" if mode else "disabled" response = f"Presence detection {word} for {ctx.user.name}" await log_reply(ctx, response) ignore = app_commands.Group( name="ignore", description="Configure your DGG Relay ignore list", ) @ignore.command(name="add") @app_commands.describe(dgg_username="The user in DGG you want to ignore") async def add_ignore(self, ctx: Interaction, dgg_username: str): """Ignore messages from a DGG user""" self.check_prefs(ctx.user.id) ignores = self.bot.user_prefs[ctx.user.id]["ignores"] ignores.append(dgg_username) self.bot.user_prefs[ctx.user.id]["ignores"] = list(set(ignores)) self.bot.save_cfg() response = f"'{dgg_username}' added to your ignore list" await log_reply(ctx, response) @ignore.command(name="remove") @app_commands.describe(dgg_username="The user in DGG you want to unignore") async def add_ignore(self, ctx: Interaction, dgg_username: str): """Remove someone from your ignore list""" self.check_prefs(ctx.user.id) ignores = self.bot.user_prefs[ctx.user.id]["ignores"] if dgg_username not in ignores: await log_reply(ctx, f"'{dgg_username}' is not in your ignore list") return self.bot.user_prefs[ctx.user.id]["ignores"].remove(dgg_username) self.bot.save_cfg() response = f"'{dgg_username}' removed from your ignore list" await log_reply(ctx, response)
tenacious210/dgg-relay
cogs.py
cogs.py
py
14,701
python
en
code
2
github-code
6
3344378919
import logging import sys from loguru import logger from starlette.config import Config from starlette.datastructures import Secret from app.core.logger import InterceptHandler config = Config(".env") API_PREFIX = "/api" VERSION = "0.1.0" DEBUG: bool = config("DEBUG", cast=bool, default=False) MAX_CONNECTIONS_COUNT: int = config("MAX_CONNECTIONS_COUNT", cast=int, default=10) MIN_CONNECTIONS_COUNT: int = config("MIN_CONNECTIONS_COUNT", cast=int, default=10) HOST: str = config("HOST", cast=str, default="0.0.0.0") PORT: int = config("PORT", cast=int, default=35100) SECRET_KEY: Secret = config("SECRET_KEY", cast=Secret, default="") PROJECT_NAME: str = config("PROJECT_NAME", default="augmentation") # logging configuration LOGGING_LEVEL = logging.DEBUG if DEBUG else logging.INFO logging.basicConfig( handlers=[InterceptHandler(level=LOGGING_LEVEL)], level=LOGGING_LEVEL ) logger.configure(handlers=[{"sink": sys.stderr, "level": LOGGING_LEVEL}]) FASTTEXT_PATH = config("FASTTEXT_PATH", default="./model/cc.vi.300.vec") PHOBERT_PATH = config("PHOBERT_PATH", default="./model/PhoBERT_base_fairseq") STOPWORD_PATH = config("STOPWORD_PATH", default="./data/vietnamese-stopwords.txt") IRRELEVANT_WORD_PATH = config("IRRELEVANT_WORD_PATH", default="./data/irrelevant_words.txt") EDIT_DISTANCE_PATH = config("EDIT_DISTANCE_PATH", default="./data/edit_distance.txt") MAX_CACHE_SIZE = config("MAX_CACHE_SIZE", cast=int, default=1000) PHO_NLP_URL = config("PHO_NLP_URL", default="http://172.29.13.23:20217/") VN_CORE_PATH = config("VN_CORE_PATH", default="http://172.29.13.23") VN_CORE_PORT = config("VN_CORE_PORT", cast=int, default=20215)
hieunt2501/text-augmentation
app/core/config.py
config.py
py
1,648
python
en
code
0
github-code
6
18132721237
from flask import Flask, redirect, render_template, request, url_for, session, flash from datetime import timedelta from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.secret_key = "hello" app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.sqlite3' # Things you have to set up before creating a database app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.permanent_session_lifetime = timedelta(minutes=5) # Deciding the session time db = SQLAlchemy(app) # creating a database class users(db.Model): _id = db.Column("id", db.Integer, primary_key=True) name = db.Column(db.String(100)) email = db.Column(db.String(100)) def __init__(self, name, email): self.name = name self.email = email @app.route('/') def home(): return render_template("Home.html") @app.route("/login", methods=["POST",'GET']) def login(): if request.method == "POST": session.permanent = True user = request.form['nm'] session['user'] = user # 先以名字進行查詢 found_user = users.query.filter_by(name=user).first() #如果有的話就把user的email加進去session list裡面, 如果沒有的話就加入一筆新資料到資料庫 if found_user: flash(f"Welcome back {user}!") session['email'] = found_user.email else: flash(f"Hello {user}!, Nice to meet you!!") usr = users(user ,"") db.session.add(usr) db.session.commit() return redirect(url_for('user_page')) else: if "user" in session: flash("Already Logged in!") return redirect(url_for('user_page')) return render_template("login.html") @app.route('/logout') def logout(): if 'user' in session: user = session['user'] flash(f"You have been logged out, {user}!", "info") session.pop('user', None) session.pop('email', None) return redirect(url_for('login') ) @app.route('/user', methods=["POST",'GET']) def user_page(): email = None if 'user' in session: user = session['user'] if request.method == "POST": email = request.form['email'] # 使用者輸入的email session['email'] = email #也建立一個session found_user = users.query.filter_by(name=user).first() # 找到user之後要做的事情 found_user.email = email # 更新使用者新輸入的email db.session.commit() # 每次更新完就要儲存 commit 一次 flash("Email was saved!!") else: if "email" in session: email = session['email'] return render_template("user_page.html",content=user, email=email) else: flash("You are not logged in! ") return redirect(url_for('login')) @app.route("/view") def view(): return render_template("view.html", values=users.query.all()) if __name__ == '__main__': with app.app_context(): db.create_all() app.run(debug=True)
JayChen1060920909/Projects
Login-Logout.py
Login-Logout.py
py
3,056
python
en
code
1
github-code
6
21346415865
problems = input() count_trust = 0 implemented_problems = 0 for i in range(0,int(problems)): trust_line = input() trust_line = trust_line.split(' ') for j in trust_line: if j=='1': count_trust+=1 if count_trust >1: implemented_problems +=1 count_trust = 0 print(implemented_problems)
YahyaQandel/CodeforcesProblems
Team.py
Team.py
py
334
python
en
code
0
github-code
6
17953524197
# -*- coding: utf-8 -*- import numpy as np import torch import torch.nn as nn from lichee import plugin from lichee import config @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'mse_loss') class MSELoss: @classmethod def build(cls, cfg): return nn.MSELoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'cross_entropy') class CrossEntropyLoss: @classmethod def build(cls, cfg): return nn.CrossEntropyLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'neg_log_likelihood') class NLLLoss: @classmethod def build(cls, cfg): return nn.NLLLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'binary_cross_entropy') class BinaryCrossEntropyLoss: @classmethod def build(cls, cfg): return nn.BCEWithLogitsLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'binary_focal_loss') class BinaryFocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param reduction: `none`|`mean`|`sum` :param **kwargs balance_index: (int) balance class index, should be specific when alpha is float """ def __init__(self, alpha=[1.0, 1.0], gamma=2, ignore_index=None, reduction='mean'): super(BinaryFocalLoss, self).__init__() if alpha is None: alpha = [0.25, 0.75] self.alpha = alpha self.gamma = gamma self.smooth = 1e-6 self.ignore_index = ignore_index self.reduction = reduction assert self.reduction in ['none', 'mean', 'sum'] if self.alpha is None: self.alpha = torch.ones(2) elif isinstance(self.alpha, (list, np.ndarray)): self.alpha = np.asarray(self.alpha) self.alpha = np.reshape(self.alpha, (2)) assert self.alpha.shape[0] == 2, \ 'the `alpha` shape is not match the number of class' elif isinstance(self.alpha, (float, int)): self.alpha = np.asarray([self.alpha, 1.0 - self.alpha], dtype=np.float).view(2) else: raise TypeError('{} not supported'.format(type(self.alpha))) self.one_hot_eye = None @classmethod def set_config_default(cls, cfg): d_c = {'loss_alpha': [1.0, 1.0], 'loss_gamma': 2, 'loss_ignore_index': None, 'loss_reduction': 'mean'} for key, value in d_c.items(): if key not in cfg.PARAM: cfg.PARAM[key] = value @classmethod def build(cls, cfg): cls.set_config_default(cfg) return cls(alpha=cfg.PARAM["loss_alpha"], gamma=cfg.PARAM["loss_gamma"], ignore_index=cfg.PARAM["loss_ignore_index"], reduction=cfg.PARAM["loss_reduction"]) def forward(self, output, target): prob = torch.sigmoid(output) prob = torch.clamp(prob, self.smooth, 1.0 - self.smooth) if self.one_hot_eye == None: self.one_hot_eye = torch.eye(2).cuda(target.device.index) target = self.one_hot_eye[target] pos_mask = (target == 1).float() neg_mask = (target == 0).float() pos_loss = -self.alpha[0] * torch.pow(torch.sub(1.0, prob), self.gamma) * torch.log(prob) * pos_mask neg_loss = -self.alpha[1] * torch.pow(prob, self.gamma) * \ torch.log(torch.sub(1.0, prob)) * neg_mask neg_loss = neg_loss.sum() pos_loss = pos_loss.sum() num_pos = pos_mask.view(pos_mask.size(0), -1).sum() num_neg = neg_mask.view(neg_mask.size(0), -1).sum() if num_pos == 0: loss = neg_loss else: loss = pos_loss / num_pos + neg_loss / num_neg return loss @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'focal_loss') class FocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param smooth: (float,double) smooth value when cross entropy :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. """ def __init__(self, num_class, alpha=[0.25, 0.75], gamma=2, balance_index=-1, size_average=True): super(FocalLoss, self).__init__() self.num_class = num_class self.alpha = alpha self.gamma = gamma self.size_average = size_average self.eps = 1e-6 if isinstance(self.alpha, (list, tuple)): assert len(self.alpha) == self.num_class self.alpha = torch.Tensor(list(self.alpha)) elif isinstance(self.alpha, (float, int)): assert 0 < self.alpha < 1.0, 'alpha should be in `(0,1)`)' assert balance_index > -1 alpha = torch.ones((self.num_class)) alpha *= 1 - self.alpha alpha[balance_index] = self.alpha self.alpha = alpha elif isinstance(self.alpha, torch.Tensor): self.alpha = self.alpha else: raise TypeError('Not support alpha type, expect `int|float|list|tuple|torch.Tensor`') @classmethod def set_config_default(cls, cfg): d_c = {'loss_alpha': [0.25, 0.75], 'loss_gamma': 2, 'loss_balance_index': -1, 'loss_size_average': True} for key, value in d_c.items(): if key not in cfg.PARAM: cfg.PARAM[key] = value @classmethod def build(cls, cfg): cls.set_config_default(cfg) return cls(num_class=config.get_cfg().DATASET.CONFIG.NUM_CLASS, alpha=cfg.PARAM["loss_alpha"], gamma=cfg.PARAM["loss_gamma"], balance_index=cfg.PARAM["loss_balance_index"], size_average=cfg.PARAM["loss_size_average"]) def forward(self, logit, target): if logit.dim() > 2: # N,C,d1,d2 -> N,C,m (m=d1*d2*...) logit = logit.view(logit.size(0), logit.size(1), -1) logit = logit.transpose(1, 2).contiguous() # [N,C,d1*d2..] -> [N,d1*d2..,C] logit = logit.view(-1, logit.size(-1)) # [N,d1*d2..,C]-> [N*d1*d2..,C] target = target.view(-1, 1) # [N,d1,d2,...]->[N*d1*d2*...,1] # -----------legacy way------------ # idx = target.cpu().long() # one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_() # one_hot_key = one_hot_key.scatter_(1, idx, 1) # if one_hot_key.device != logit.device: # one_hot_key = one_hot_key.to(logit.device) # pt = (one_hot_key * logit).sum(1) + epsilon # ----------memory saving way-------- pt = logit.gather(1, target).view(-1) + self.eps # avoid apply logpt = pt.log() if self.alpha.device != logpt.device: alpha = self.alpha.to(logpt.device) alpha_class = alpha.gather(0, target.view(-1)) logpt = alpha_class * logpt loss = -1 * torch.pow(torch.sub(1.0, pt), self.gamma) * logpt if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss
Tencent/Lichee
lichee/module/torch/loss/loss.py
loss.py
py
8,023
python
en
code
295
github-code
6
72067617789
import math as ma import multiprocessing as mp import time def first_test(n): """ test naïf de primalité retourne True si l'entier est premier, et inversement n : un entier naturel """ for a in range(2, int(ma.sqrt(n) + 1)): if n % a == 0: return False return True def pi(x): """retourne le nombre de premiers inférieurs à x X : un réel """ cpt = 0 for n in range(1, int(x)): if first_test(n): cpt += 1 return cpt def gen_carmichael(t): """retourne tous les nombres de Carmichael inférieurs à x t : un réel """ res = [] for x in range(3, int(t), 2): # les nombres de Carmichael sont impairs valid = False for y in range(2, x): if ma.gcd(x, y) == 1: if pow(y, x-1, x) != 1: valid = False break else: valid = True if valid: res.append(x) return res def worker_proc(x): valid = False for y in range(2, x): if ma.gcd(x, y) == 1: if pow(y, x - 1, x) != 1: return else: valid = True if valid: print(x) def gen_carmichael_mp(t): """retourne tous les nombres de Carmichael inférieurs à t version multiprocess t : un réel """ pool = mp.Pool(processes=mp.cpu_count()) pool.map(worker_proc, range(3, int(t), 2)) def gen_carmichael_3(k): """ genère les nombres de Carmicheal de longueur binaire k à partir de trois diviseurs premiers k : un entier """ # t = int(t) prime = [] for n in range(3, 2 ** k, 2): if first_test(n): prime.append(n) res = [] for i_a, a in enumerate(prime): for i_b, b in enumerate(prime[:i_a]): ab = a * b for c in prime[:i_b]: # on a obtenu 3 premiers, on teste si leur produit est Carmichael # worker_proc(a * b * c) tst = ab * c - 1 if tst.bit_length() != k: continue if tst % 2 == 0 and tst % (a - 1) == 0 and tst % (b - 1) == 0 and tst % (c - 1) == 0 and a % (b * c) != 0: res.append(tst + 1) return sorted(res) def gen_carmichael_3_all(t): """ genère un nombre de Carmicheal inférieur t à partir de trois diviseurs premiers version sans contrainte de taille """ t = int(t) prime = [] for n in range(3, t, 2): if first_test(n): prime.append(n) res = [] for i_a, a in enumerate(prime): for i_b, b in enumerate(prime[:i_a]): ab = a * b for c in prime[:i_b]: tst = ab * c - 1 if tst % 2 == 0 and tst % (a - 1) == 0 and tst % (b - 1) == 0 and tst % (c - 1) == 0 and a % (b * c) != 0: res.append(tst + 1) return sorted(res) def gen_carmichael_2(p): """retourne tous les nombre de carmichael de la forme pqr pour un p donné""" prime = [] for n in range(3, 2 * p * (p ** 2 + 1), 2): if n == p: continue if first_test(n): prime.append(n) res = [] for i_r, r in enumerate(prime): for q in prime[:i_r]: tst = p * q * r - 1 if tst % 2 == 0 and tst % (p - 1) == 0 and tst % (q - 1) == 0 and tst % (r - 1) == 0 and r % (p * q) != 0: res.append(tst + 1) return sorted(res) if __name__ == '__main__': t = time.time() gen_carmichael_mp(10000) print("mt : ", str(time.time() - t)) t = time.time() print(gen_carmichael(64000)) print("naif : ", str(time.time() - t)) t = time.time() print(gen_carmichael_3_all(100)) print("3 : ", str(time.time() - t))
BasileLewan/ProjetCOMPLEX
Ex2.py
Ex2.py
py
3,830
python
fr
code
0
github-code
6
70111562749
import firstscript as sense import random import time def get_random_time(): random_time_frame = random.randrange(7,25) return random_time_frame def get_random(): numbers = [1,2,3,4,5,6,7,8,9] y = get_random_time() for i in range(y): sense.display_letter(str(random.choice(numbers))) time.sleep(.5) sense.clear_hat() sense.display_letter(str(random.choice(numbers)),[255,0,0]) if __name__ == '__main__': get_random()
cthacker-udel/Raspberry-Pi-Scripts
py/randomnumber.py
randomnumber.py
py
477
python
en
code
7
github-code
6
38520392642
#!/usr/bin/python """ This is the code to accompany the Lesson 1 (Naive Bayes) mini-project. Use a Naive Bayes Classifier to identify emails by their authors authors and labels: Sara has label 0 Chris has label 1 """ import sys import time sys.path.append("../tools/") from email_preprocess import preprocess #imports from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels ######################################################### ### your code goes here ### sample_size_list = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] ##Loop to change sample Size for j in sample_size_list: features_train, features_test, labels_train, labels_test = preprocess("../tools/word_data_unix.pkl","../tools/email_authors.pkl",j) loop = [0,1,2,3,4,5,6,7,8,9] print("Test sample Size:",features_train.size) ##Loop to change the var_smoothing for i in loop: num=1/(10)**i gnb = GaussianNB(var_smoothing=num) time0=time.time() pred = gnb.fit(features_train, labels_train).predict(features_test) time1=time.time() acc=accuracy_score(labels_test,pred) print("Test sample_Size: ",j," Accuracy for ",num,": ", acc,"Ellapsed time: ",time1-time0) i=i+1 j=1+1 #########################################################
Vkadel/machineLearningNB
nb_author_id.py
nb_author_id.py
py
1,524
python
en
code
0
github-code
6
42940796937
from typing import List, Tuple import networkx as nx import numpy as np from matplotlib import pyplot as plt import time import copy from node import Node def get_graph(node: Node) -> Tuple[nx.Graph, List, List]: board_size = node.state.shape[0] G = nx.grid_2d_graph(board_size, board_size) diagonals = [] for x,y in G: x2 = x-1 y2 = y+1 if y2 >= board_size or x2 < 0: continue edge = ((x, y), (x2,y2)) diagonals.append(edge) G.add_edges_from(diagonals) pos = {} colour_map = [] theta = -(1/4) * np.pi costheta = np.cos(theta) sintheta = np.sin(theta) rotation_matrix = np.array([ [costheta, -sintheta], [sintheta, costheta] ]) for x,y in G: coords = (x,y) pos[coords] = np.dot(rotation_matrix, (y,-x)) if node.state[coords] == 1: colour_map.append("red") elif node.state[coords] == -1: colour_map.append("blue") else: colour_map.append("grey") return G, pos, colour_map def visualize_hex_node_state(node: Node, done: bool=False) -> None: G, pos, colour_map = get_graph(node) nx.draw(G, pos=pos, node_color=colour_map, with_labels=True, node_size=600) plt.draw() plt.pause(0.001) if done: plt.close() if __name__ == "__main__": plt.figure(figsize=(5,5)) plt.ion() plt.show() test_state = np.zeros(shape=(7,7)) test_state[0, 1] = 1 test_node = Node(state=test_state) visualize_hex_node_state(test_node) new_node = copy.copy(test_node) new_node.state[0,2] = -1 visualize_hex_node_state(new_node)
Mathipe98/IT3105-Projects
Project 2/visualizer.py
visualizer.py
py
1,707
python
en
code
0
github-code
6
858399284
from __future__ import division from PyQt4 import QtCore, QtGui from vistrails.core.inspector import PipelineInspector from vistrails.gui.common_widgets import QToolWindowInterface from vistrails.gui.pipeline_view import QPipelineView from vistrails.gui.theme import CurrentTheme ################################################################################ class QAnnotatedPipelineView(QPipelineView, QToolWindowInterface): """ QAnnotatedPipelineView subclass QPipelineView to perform some overlay marking on a pipeline view """ def __init__(self, parent=None): """ QPipelineView(parent: QWidget) -> QPipelineView Initialize the graphics view and its properties """ QPipelineView.__init__(self, parent) self.setWindowTitle('Annotated Pipeline') self.inspector = PipelineInspector() def sizeHint(self): """ sizeHint() -> QSize Prefer the view not so large """ return QtCore.QSize(256, 256) def paintEvent(self, event): """ paintEvent(event: QPaintEvent) -> None Paint an overlay annotation on spreadsheet cell modules """ QPipelineView.paintEvent(self, event) # super(QAnnotatedPipelineView, self).paintEvent(event) if self.scene(): painter = QtGui.QPainter(self.viewport()) for mId, annotatedId in \ self.inspector.annotated_modules.iteritems(): if mId not in self.scene().modules: # faulty annotated_modules entry continue item = self.scene().modules[mId] br = item.sceneBoundingRect() rect = QtCore.QRect(self.mapFromScene(br.topLeft()), self.mapFromScene(br.bottomRight())) QAnnotatedPipelineView.drawId(painter, rect, annotatedId) painter.end() def updateAnnotatedIds(self, pipeline): """ updateAnnotatedIds(pipeline: Pipeline) -> None Re-inspect the pipeline to get annotated ids """ if pipeline and self.scene(): self.inspector.inspect_ambiguous_modules(pipeline) self.scene().fitToAllViews(True) @staticmethod def drawId(painter, rect, id, align=QtCore.Qt.AlignCenter): """ drawId(painter: QPainter, rect: QRect, id: int, align: QtCore.Qt.Align) -> None Draw the rounded id number on a rectangular area """ painter.save() painter.setRenderHints(QtGui.QPainter.Antialiasing) painter.setPen(CurrentTheme.ANNOTATED_ID_BRUSH.color()) painter.setBrush(CurrentTheme.ANNOTATED_ID_BRUSH) font = QtGui.QFont() font.setStyleStrategy(QtGui.QFont.ForceOutline) font.setBold(True) painter.setFont(font) fm = QtGui.QFontMetrics(font) size = fm.size(QtCore.Qt.TextSingleLine, str(id)) size = max(size.width(), size.height()) x = rect.left() if align & QtCore.Qt.AlignHCenter: x = rect.left() + rect.width()//2-size//2 if align & QtCore.Qt.AlignRight: x = rect.left() + rect.width()-size y = rect.top() if align & QtCore.Qt.AlignVCenter: y = rect.top() + rect.height()//2-size//2 if align & QtCore.Qt.AlignBottom: y = rect.top() + rect.height()-size newRect = QtCore.QRect(x, y, size, size) painter.drawEllipse(newRect) painter.setPen(CurrentTheme.ANNOTATED_ID_PEN) painter.drawText(newRect, QtCore.Qt.AlignCenter, str(id)) painter.restore()
VisTrails/VisTrails
vistrails/gui/paramexplore/pe_pipeline.py
pe_pipeline.py
py
3,719
python
en
code
100
github-code
6
28220979750
#Import Necessary Packages import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns import ruptures as rpt from statistics import stdev import pandas as pd def load_rms(path, sect, ref): raw_string = open('../../' + path + '/rmsd_' + sect + '_ref_' + ref + '.txt').readlines() #Convert data to fload raw = np.zeros(len(raw_string)) for i in range(len(raw_string)): raw[i] = float(raw_string[i])*10 return raw def plot_compare(RMSD_mean, RMSD_err, Label, sect, n, ref): rmsd_n = RMSD_mean[:,n] rmsd_err_n = RMSD_err[:,n] section = sect[n] # bar_color = ['gray', 'gray', 'pink', 'blue', 'pink', 'red', 'red'] num = np.linspace(1, len(Label)+1, num = len(Label)) fig = plt.figure(figsize=(18,10)) ax1 = fig.add_subplot(111) ax1.set_title("RMSD for " + section + ' to ' + ref) ax1.set_ylabel(r'RMSD($\AA$)') ax1.bar(num, rmsd_n) plt.xticks(num, Label, fontsize=14) plt.errorbar(num, rmsd_n, yerr= rmsd_err_n, fmt='o', color='black') fig.savefig('RMSD_compare_' + section + '_' + ref + '.png') plt.close(fig) def plot_kernel_mut(df, sect_name, sect_file, xmin, xmax): ax = sns.kdeplot(data = df, fill=True, alpha=0.5, common_grid = True) plt.setp(ax.get_legend().get_texts(), fontsize='12') # for legend text plt.xlabel(r'RMSD($\AA$)', fontsize = 14) plt.xlim(xmin, xmax) plt.xticks(fontsize = 13) plt.yticks(fontsize = 13) plt.ylabel(r'Normalized Density', fontsize = 14) plt.title(str(sect_name) + r' RMSD Relative to WT Closed', fontsize = 15) plt.savefig('mutate_RMSD_' + str(sect_file) + '.png') plt.close() def plot_kernel_cmpr_lig(apo_df, AD_df, BBR_df, mut, sect, n): df = pd.concat([apo_df, AD_df, BBR_df]) sns.kdeplot(data = df, fill=True, alpha=0.5, common_norm = True, common_grid = True) plt.xlabel(r'RMSD($\AA$)', fontsize = 14) plt.ylabel(r'Normalized Density', fontsize = 14) plt.title(sect + ' RMSD Compared to WT Closed', fontsize = 15) plt.savefig('mutate_RMSD_' + sect + '_' + mut + '.png') plt.close() def rmsd_sect(sect, file_path_close, file_path_close_AD, file_path_close_BBR, ref, n): rmsd_1sug = load_rms(file_path_close[0], sect, ref[n]) rmsd_apo = load_rms(file_path_close[1], sect, ref[n]) rmsd_L192F = load_rms(file_path_close[2], sect, ref[n]) rmsd_E276F = load_rms(file_path_close[3], sect, ref[n]) rmsd_F280Y = load_rms(file_path_close[4], sect, ref[n]) rmsd_L195F = load_rms(file_path_close[5], sect, ref[n]) rmsd_F196A = load_rms(file_path_close[6], sect, ref[n]) rmsd_V287T = load_rms(file_path_close[7], sect, ref[n]) rmsd_L192F_AD = load_rms(file_path_close_AD[0], sect, ref[n]) rmsd_L192F_BBR = load_rms(file_path_close_BBR[0], sect, ref[n]) rmsd_E276F_AD = load_rms(file_path_close_AD[1], sect, ref[n]) rmsd_E276F_BBR = load_rms(file_path_close_BBR[1], sect, ref[n]) rmsd_F280Y_AD = load_rms(file_path_close_AD[2], sect, ref[n]) rmsd_F280Y_BBR = load_rms(file_path_close_BBR[2], sect, ref[n]) rmsd_L195F_AD = load_rms(file_path_close_AD[3], sect, ref[n]) rmsd_L195F_BBR = load_rms(file_path_close_BBR[3], sect, ref[n]) rmsd_F196A_AD = load_rms(file_path_close_AD[4], sect, ref[n]) rmsd_F196A_BBR = load_rms(file_path_close_BBR[4], sect, ref[n]) rmsd_V287T_AD = load_rms(file_path_close_AD[4], sect, ref[n]) rmsd_V287T_BBR = load_rms(file_path_close_BBR[4], sect, ref[n]) return rmsd_1sug, rmsd_apo, rmsd_L192F, rmsd_E276F, rmsd_F280Y, rmsd_L195F, rmsd_F196A, rmsd_V287T, rmsd_L192F_AD, rmsd_E276F_AD, rmsd_F280Y_AD, rmsd_L195F_AD, rmsd_F196A_AD, rmsd_V287T_AD, rmsd_L192F_BBR, rmsd_E276F_BBR, rmsd_F280Y_BBR, rmsd_L195F_BBR, rmsd_F196A_BBR, rmsd_V287T_BBR #File paths for all input files file_path = ['../Apo_dis/analysis', 'L192F/Apo/analysis', 'E276F/Apo/analysis', 'F280Y/Apo/analysis', 'L195F/Apo/analysis', 'F196A/Apo/analysis', 'V287T/Apo/analysis'] #Indices to rank in order of closest activity to WT to Furthest file_path_close = ['../Apo_1SUG/analysis/1sug', '../Apo_dis/analysis', 'L192F/Apo/analysis', 'E276F/Apo/analysis', 'F280Y/Apo/analysis', 'L195F/Apo/analysis', 'F196A/Apo/analysis', 'V287T/Apo/analysis'] file_path_close_AD = ['L192F/AD/analysis', 'E276F/AD/analysis', 'F280Y/AD/analysis', 'L195F/AD/analysis', 'F196A/AD/analysis', 'V287T/AD/analysis'] file_path_close_BBR = ['L192F/BBR/analysis', 'E276F/BBR/analysis', 'F280Y/BBR/analysis', 'L195F/BBR/analysis', 'F196A/BBR/analysis', 'V287T/BBR/analysis'] sections = ['WPD', 'WPD_a3', 'SBL', 'beg', 'P', 'CYS', 'a3', 'a3_top', 'a4', 'a5', 'a6', 'a6_bot', 'a7', 'Q'] ref = ['open', 'closed', 'self', 'F196A', 'V287T'] #open all files RMSD_mean = np.zeros((len(file_path), len(sections))) #Mean for reference open RMSD_err = np.zeros((len(file_path), len(sections))) #SEM for reference open RMSD_mean_close = np.zeros((len(file_path_close), len(sections))) #Mean for reference closed RMSD_err_close = np.zeros((len(file_path_close), len(sections))) #SEM for reference closed RMSD_mean_close_AD = np.zeros((len(file_path_close_AD), len(sections))) #Mean for reference closed RMSD_err_close_AD = np.zeros((len(file_path_close_AD), len(sections))) #SEM for reference closed RMSD_mean_close_BBR = np.zeros((len(file_path_close_BBR), len(sections))) #Mean for reference closed RMSD_err_close_BBR = np.zeros((len(file_path_close_BBR), len(sections))) #SEM for reference closed #Save all rmsd values for a3_top, a4_top, and a6 helix rmsd_a3_1sug, rmsd_a3_apo, rmsd_a3_L192F, rmsd_a3_E276F, rmsd_a3_F280Y, rmsd_a3_L195F, rmsd_a3_F196A, rmsd_a3_V287T, rmsd_a3_L192F_AD, rmsd_a3_E276F_AD, rmsd_a3_F280Y_AD, rmsd_a3_L195F_AD, rmsd_a3_F196A_AD, rmsd_a3_V287T_AD, rmsd_a3_L192F_BBR, rmsd_a3_E276F_BBR, rmsd_a3_F280Y_BBR, rmsd_a3_L195F_BBR, rmsd_a3_F196A_BBR, rmsd_a3_V287T_BBR = rmsd_sect('a3', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a3_top_1sug, rmsd_a3_top_apo, rmsd_a3_top_L192F, rmsd_a3_top_E276F, rmsd_a3_top_F280Y, rmsd_a3_top_L195F, rmsd_a3_top_F196A, rmsd_a3_top_V287T, rmsd_a3_top_L192F_AD, rmsd_a3_top_E276F_AD, rmsd_a3_top_F280Y_AD, rmsd_a3_top_L195F_AD, rmsd_a3_top_F196A_AD, rmsd_a3_top_V287T_AD, rmsd_a3_top_L192F_BBR, rmsd_a3_top_E276F_BBR, rmsd_a3_top_F280Y_BBR, rmsd_a3_top_L195F_BBR, rmsd_a3_top_F196A_BBR, rmsd_a3_top_V287T_BBR = rmsd_sect('a3_top', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a4_1sug, rmsd_a4_apo, rmsd_a4_L192F, rmsd_a4_E276F, rmsd_a4_F280Y, rmsd_a4_L195F, rmsd_a4_F196A, rmsd_a4_V287T, rmsd_a4_L192F_AD, rmsd_a4_E276F_AD, rmsd_a4_F280Y_AD, rmsd_a4_L195F_AD, rmsd_a4_F196A_AD, rmsd_a4_V287T_AD, rmsd_a4_L192F_BBR, rmsd_a4_E276F_BBR, rmsd_a4_F280Y_BBR, rmsd_a4_L195F_BBR, rmsd_a4_F196A_BBR, rmsd_a4_V287T_BBR = rmsd_sect('a4', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a6_1sug, rmsd_a6_apo, rmsd_a6_L192F, rmsd_a6_E276F, rmsd_a6_F280Y, rmsd_a6_L195F, rmsd_a6_F196A, rmsd_a6_V287T, rmsd_a6_L192F_AD, rmsd_a6_E276F_AD, rmsd_a6_F280Y_AD, rmsd_a6_L195F_AD, rmsd_a6_F196A_AD, rmsd_a6_V287T_AD, rmsd_a6_L192F_BBR, rmsd_a6_E276F_BBR, rmsd_a6_F280Y_BBR, rmsd_a6_L195F_BBR, rmsd_a6_F196A_BBR, rmsd_a6_V287T_BBR = rmsd_sect('a6', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a6_bot_1sug, rmsd_a6_bot_apo, rmsd_a6_bot_L192F, rmsd_a6_bot_E276F, rmsd_a6_bot_F280Y, rmsd_a6_bot_L195F, rmsd_a6_bot_F196A, rmsd_a6_bot_V287T, rmsd_a6_bot_L192F_AD, rmsd_a6_bot_E276F_AD, rmsd_a6_bot_F280Y_AD, rmsd_a6_bot_L195F_AD, rmsd_a6_bot_F196A_AD, rmsd_a6_bot_V287T_AD, rmsd_a6_bot_L192F_BBR, rmsd_a6_bot_E276F_BBR, rmsd_a6_bot_F280Y_BBR, rmsd_a6_bot_L195F_BBR, rmsd_a6_bot_F196A_BBR, rmsd_a6_bot_V287T_BBR = rmsd_sect('a6_bot', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_CYS_1sug, rmsd_CYS_apo, rmsd_CYS_L192F, rmsd_CYS_E276F, rmsd_CYS_F280Y, rmsd_CYS_L195F, rmsd_CYS_F196A, rmsd_CYS_V287T, rmsd_CYS_L192F_AD, rmsd_CYS_E276F_AD, rmsd_CYS_F280Y_AD, rmsd_CYS_L195F_AD, rmsd_CYS_F196A_AD, rmsd_CYS_V287T_AD, rmsd_CYS_L192F_BBR, rmsd_CYS_E276F_BBR, rmsd_CYS_F280Y_BBR, rmsd_CYS_L195F_BBR, rmsd_CYS_F196A_BBR, rmsd_CYS_V287T_BBR = rmsd_sect('CYS', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_beg_1sug, rmsd_beg_apo, rmsd_beg_L192F, rmsd_beg_E276F, rmsd_beg_F280Y, rmsd_beg_L195F, rmsd_beg_F196A, rmsd_beg_V287T, rmsd_beg_L192F_AD, rmsd_beg_E276F_AD, rmsd_beg_F280Y_AD, rmsd_beg_L195F_AD, rmsd_beg_F196A_AD, rmsd_beg_V287T_AD, rmsd_beg_L192F_BBR, rmsd_beg_E276F_BBR, rmsd_beg_F280Y_BBR, rmsd_beg_L195F_BBR, rmsd_beg_F196A_BBR, rmsd_beg_V287T_BBR = rmsd_sect('beg', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) for i in range(len(file_path_close)): for j in range(len(sections)): #Load Data for reference open rmsd_Apo = load_rms(file_path_close[i], sections[j], ref[1]) #Mean and SEM for each trajectory RMSD_mean_close[i][j] = np.mean(rmsd_Apo) RMSD_err_close[i][j] = stats.sem(rmsd_Apo) for i in range(len(file_path)): #Load Data for reference open rmsd = load_rms(file_path[i], sections[j], ref[0]) #Mean and SEM for each trajectory RMSD_mean[i][j] = np.mean(rmsd) RMSD_err[i][j] = stats.sem(rmsd) for i in range(len(file_path_close_AD)): #Load Data for reference open rmsd_AD = load_rms(file_path_close_AD[i], sections[j], ref[1]) RMSD_mean_close_AD[i][j] = np.mean(rmsd_AD) RMSD_err_close_AD[i][j] = stats.sem(rmsd_AD) rmsd_BBR = load_rms(file_path_close_BBR[i], sections[j], ref[1]) RMSD_mean_close_BBR[i][j] = np.mean(rmsd_BBR) RMSD_err_close_BBR[i][j] = stats.sem(rmsd_BBR) #Name Labels Label = ['WT', 'L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] Label_close = ['WT Close', 'WT Open', 'L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] #Plot all compared to WT Open for i in range(len(sections)): plot_compare(RMSD_mean, RMSD_err, Label, sections, i, ref[0]) plot_compare(RMSD_mean_close, RMSD_err_close, Label_close, sections, i, ref[1]) #Determine % difference from WT RMSD_diff = np.zeros((len(sections), len(Labels_mut))) for i in range(1, len(Label)): n = i-1 for j in range(len(sections)): WT = RMSD_mean[0][j] Mut = RMSD_mean[i][j] RMSD_diff[j][n] = ((Mut-WT)/((Mut+WT)/2)) * 100 #Plot table comparing residue interactions to WT ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame ax = sns.heatmap(RMSD_diff, annot=False, cmap = 'jet', cbar = True, cbar_kws={'label': 'Percentage Difference from WT'}, vmin = 0, vmax = 150, xticklabels = Labels_mut, yticklabels = sections) #ax.add_artist(lines.Line2D([0, 20], [7, 7], color = 'black', linestyle= '--', linewidth = 4)) plt.title('Section RMSD Compared to WT') plt.savefig('mutate_RMSD_Apo.png') plt.close() RMSD_mean_mut = np.zeros((len(Label_close), len(sections))) #Mean for reference open RMSD_err_mut = np.zeros((len(Label_close), len(sections))) #SEM for reference open #Plot self and two references for i in [0, 2, 3, 4]: for j in range(len(sections)): #Load Data RMSD_mean_mut[0][j] = RMSD_mean_close[0][j] RMSD_err_mut[0][j] = RMSD_err_close[0][j] for k in range(1, len(Label_close)): rmsd = load_rms(file_path_close[k], sections[j], ref[i]) RMSD_mean_mut[k][j] = np.mean(rmsd) RMSD_err_mut[k][j] = stats.sem(rmsd) plot_compare(RMSD_mean_mut, RMSD_err_mut, Label_close, sections, j, ref[i]) #Plot Kernel DEnsity Estimate Plot #Compare a3_top for L192F, E276F, L195F, V287T a3_top_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a3_top_apo}) a3_top_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a3_top_1sug}) a3_top_L192F_df = pd.DataFrame({'L192F': rmsd_a3_top_L192F}) a3_top_L195F_df = pd.DataFrame({'L195F': rmsd_a3_top_L195F}) a3_top_F280Y_df = pd.DataFrame({'F280Y': rmsd_a3_top_F280Y}) a3_top_E276F_df = pd.DataFrame({'E276F': rmsd_a3_top_E276F}) a3_top_F196A_df = pd.DataFrame({'F196A': rmsd_a3_top_F196A}) a3_top_V287T_df = pd.DataFrame({'V287T': rmsd_a3_top_V287T}) a3_top_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a3_top_L192F_AD}) a3_top_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a3_top_L195F_AD}) a3_top_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a3_top_F280Y_AD}) a3_top_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a3_top_E276F_AD}) a3_top_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a3_top_F196A_AD}) a3_top_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a3_top_V287T_AD}) a3_top_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a3_top_L192F_BBR}) a3_top_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a3_top_L195F_BBR}) a3_top_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a3_top_F280Y_BBR}) a3_top_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a3_top_E276F_BBR}) a3_top_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a3_top_F196A_BBR}) a3_top_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a3_top_V287T_BBR}) df = pd.concat([a3_top_Apo_open_df, a3_top_Apo_close_df, a3_top_L192F_df, a3_top_E276F_df, a3_top_V287T_df, a3_top_F196A_df, a3_top_F280Y_df, a3_top_L195F_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_all', 0, 2) df = pd.concat([a3_top_L192F_df, a3_top_E276F_df, a3_top_V287T_df, a3_top_F196A_df, a3_top_F280Y_df, a3_top_L195F_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_mut_all', 0, 2) df = pd.concat([a3_top_Apo_open_df, a3_top_Apo_close_df, a3_top_V287T_df, a3_top_F280Y_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_extr', 0, 2) plot_kernel_cmpr_lig(a3_top_L192F_df, a3_top_L192F_AD_df, a3_top_L192F_BBR_df, 'L192F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_L195F_df, a3_top_L195F_AD_df, a3_top_L195F_BBR_df, 'L195F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_E276F_df, a3_top_E276F_AD_df, a3_top_E276F_BBR_df, 'E276F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_V287T_df, a3_top_V287T_AD_df, a3_top_V287T_BBR_df, 'V287T', sections[7], 7) #Compare a3_top for L192F, E276F, L195F, V287T a3_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a3_apo}) a3_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a3_1sug}) a3_L192F_df = pd.DataFrame({'L192F': rmsd_a3_L192F}) a3_L195F_df = pd.DataFrame({'L195F': rmsd_a3_L195F}) a3_F280Y_df = pd.DataFrame({'F280Y': rmsd_a3_F280Y}) a3_E276F_df = pd.DataFrame({'E276F': rmsd_a3_E276F}) a3_F196A_df = pd.DataFrame({'F196A': rmsd_a3_F196A}) a3_V287T_df = pd.DataFrame({'V287T': rmsd_a3_V287T}) a3_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a3_L192F_AD}) a3_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a3_L195F_AD}) a3_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a3_F280Y_AD}) a3_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a3_E276F_AD}) a3_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a3_F196A_AD}) a3_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a3_V287T_AD}) a3_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a3_L192F_BBR}) a3_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a3_L195F_BBR}) a3_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a3_F280Y_BBR}) a3_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a3_E276F_BBR}) a3_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a3_F196A_BBR}) a3_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a3_V287T_BBR}) df = pd.concat([a3_Apo_open_df, a3_Apo_close_df, a3_L192F_df, a3_E276F_df, a3_V287T_df, a3_F196A_df, a3_F280Y_df, a3_L195F_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_all', 0, 2) df = pd.concat([a3_L192F_df, a3_E276F_df, a3_V287T_df, a3_F196A_df, a3_F280Y_df, a3_L195F_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_mut_all', 0, 2) df = pd.concat([a3_Apo_open_df, a3_Apo_close_df, a3_V287T_df, a3_F280Y_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_mut_extr', 0, 2) plot_kernel_cmpr_lig(a3_L192F_df, a3_L192F_AD_df, a3_L192F_BBR_df, 'L192F', sections[6], 6) plot_kernel_cmpr_lig(a3_L195F_df, a3_L195F_AD_df, a3_L195F_BBR_df, 'L195F', sections[6], 6) plot_kernel_cmpr_lig(a3_E276F_df, a3_E276F_AD_df, a3_E276F_BBR_df, 'E276F', sections[6], 6) plot_kernel_cmpr_lig(a3_V287T_df, a3_V287T_AD_df, a3_V287T_BBR_df, 'V287T', sections[6], 6) #Compare a4 for L192F, E276F, L195F, V287T a4_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a4_apo}) a4_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a4_1sug}) a4_L192F_df = pd.DataFrame({'L192F': rmsd_a4_L192F}) a4_L195F_df = pd.DataFrame({'L195F': rmsd_a4_L195F}) a4_F280Y_df = pd.DataFrame({'F280Y': rmsd_a4_F280Y}) a4_E276F_df = pd.DataFrame({'E276F': rmsd_a4_E276F}) a4_F196A_df = pd.DataFrame({'F196A': rmsd_a4_F196A}) a4_V287T_df = pd.DataFrame({'V287T': rmsd_a4_V287T}) a4_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a4_L192F_AD}) a4_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a4_L195F_AD}) a4_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a4_F280Y_AD}) a4_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a4_E276F_AD}) a4_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a4_F196A_AD}) a4_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a4_V287T_AD}) a4_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a4_L192F_BBR}) a4_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a4_L195F_BBR}) a4_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a4_F280Y_BBR}) a4_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a4_E276F_BBR}) a4_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a4_F196A_BBR}) a4_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a4_V287T_BBR}) df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_L192F_df, a4_E276F_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df, a4_L195F_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4_all', 0, 1.5) df = pd.concat([a4_L192F_df, a4_E276F_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df, a4_L195F_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4_mut_all',0, 1.5) df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4', 0, 1.5) plot_kernel_cmpr_lig(a4_F196A_df, a4_F196A_AD_df, a4_F196A_BBR_df, 'F196A', sections[8], 8) plot_kernel_cmpr_lig(a4_F280Y_df, a4_F280Y_AD_df, a4_F280Y_BBR_df, 'F280Y', sections[8], 8) #a4_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a4_apo_rapo}) #a4_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a4_1sug_rapo}) #a4_F196A_df = pd.DataFrame({'F196A': rmsd_a4_F196A_rapo}) #a4_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a4_F196A_AD_rapo}) #a4_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a4_F196A_BBR_rapo}) #df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_F196A_df, a4_F196A_AD_df, a4_F196A_BBR_df]) #ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame #sns.kdeplot(data = df, fill=True, alpha=0.5, common_norm = True, common_grid = True) #plt.xlabel(r'RMSD($\AA$)') #plt.ylabel(r'Normalized Density') #plt.title(r'$\alpha$-4 RMSD Compared to Apo F196A') #plt.savefig('mutate_RMSD_a4_ref_F196A.png') #plt.close() #a6 comparison a6_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a6_apo}) a6_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a6_1sug}) a6_L192F_df = pd.DataFrame({'L192F': rmsd_a6_L192F}) a6_L195F_df = pd.DataFrame({'L195F': rmsd_a6_L195F}) a6_F280Y_df = pd.DataFrame({'F280Y': rmsd_a6_F280Y}) a6_E276F_df = pd.DataFrame({'E276F': rmsd_a6_E276F}) a6_F196A_df = pd.DataFrame({'F196A': rmsd_a6_F196A}) a6_V287T_df = pd.DataFrame({'V287T': rmsd_a6_V287T}) a6_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a6_L192F_AD}) a6_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a6_L195F_AD}) a6_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a6_F280Y_AD}) a6_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a6_E276F_AD}) a6_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a6_F196A_AD}) a6_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a6_V287T_AD}) a6_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a6_L192F_BBR}) a6_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a6_L195F_BBR}) a6_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a6_F280Y_BBR}) a6_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a6_E276F_BBR}) a6_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a6_F196A_BBR}) a6_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a6_V287T_BBR}) df = pd.concat([a6_Apo_open_df, a6_Apo_close_df, a6_L192F_df, a6_E276F_df, a6_V287T_df, a6_F196A_df, a6_F280Y_df, a6_L195F_df]) plot_kernel_mut(df, r'$\alpha$6', 'a6_all', 0, 2) df = pd.concat([a6_L192F_df, a6_E276F_df, a6_V287T_df, a6_F196A_df, a6_F280Y_df, a6_L195F_df]) plot_kernel_mut(df, r'$\alpha$6', 'a6_mut_all', 0, 2) plot_kernel_cmpr_lig(a6_L192F_df, a6_L192F_AD_df, a6_L192F_BBR_df, 'L192F', sections[11], 11) plot_kernel_cmpr_lig(a6_L195F_df, a6_L195F_AD_df, a6_L195F_BBR_df, 'L195F', sections[11], 11) plot_kernel_cmpr_lig(a6_E276F_df, a6_E276F_AD_df, a6_E276F_BBR_df, 'E276F', sections[11], 11) plot_kernel_cmpr_lig(a6_V287T_df, a6_V287T_AD_df, a6_V287T_BBR_df, 'V287T', sections[11], 11) #Just CYS215 cys_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_CYS_apo}) cys_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_CYS_1sug}) cys_L192F_df = pd.DataFrame({'L192F': rmsd_CYS_L192F}) cys_L195F_df = pd.DataFrame({'L195F': rmsd_CYS_L195F}) cys_F280Y_df = pd.DataFrame({'F280Y': rmsd_CYS_F280Y}) cys_E276F_df = pd.DataFrame({'E276F': rmsd_CYS_E276F}) cys_F196A_df = pd.DataFrame({'F196A': rmsd_CYS_F196A}) cys_V287T_df = pd.DataFrame({'V287T': rmsd_CYS_V287T}) df = pd.concat([cys_Apo_open_df, cys_Apo_close_df, cys_L192F_df, cys_E276F_df, cys_V287T_df, cys_F196A_df, cys_F280Y_df, cys_L195F_df]) plot_kernel_mut(df, 'CYS215', 'cys_all', 0, 1) df = pd.concat([cys_L192F_df, cys_E276F_df, cys_V287T_df, cys_F196A_df, cys_F280Y_df, cys_L195F_df]) plot_kernel_mut(df, 'CYS215', 'cys_mut_all', 0, 1) rmsd_cys = [rmsd_CYS_1sug, rmsd_CYS_apo, rmsd_CYS_F196A] ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame sns.kdeplot(data = rmsd_cys, fill=True, alpha=0.5) plt.title('CYS215 RMSD Compared to WT Closed') plt.savefig('mutate_RMSD_cys_F196A.png') plt.close() #BEG loop (L1) beg_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_beg_apo}) beg_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_beg_1sug}) beg_L192F_df = pd.DataFrame({'L192F': rmsd_beg_L192F}) beg_L195F_df = pd.DataFrame({'L195F': rmsd_beg_L195F}) beg_F280Y_df = pd.DataFrame({'F280Y': rmsd_beg_F280Y}) beg_E276F_df = pd.DataFrame({'E276F': rmsd_beg_E276F}) beg_F196A_df = pd.DataFrame({'F196A': rmsd_beg_F196A}) beg_V287T_df = pd.DataFrame({'V287T': rmsd_beg_V287T}) df = pd.concat([beg_Apo_open_df, beg_Apo_close_df, beg_L192F_df, beg_E276F_df, beg_V287T_df, beg_F196A_df, beg_F280Y_df, beg_L195F_df]) plot_kernel_mut(df, 'L1', 'beg_all', 0, 4) df = pd.concat([beg_L192F_df, beg_E276F_df, beg_V287T_df, beg_F196A_df, beg_F280Y_df, beg_L195F_df]) plot_kernel_mut(df, 'L1', 'beg_mut_all', 0, 4) #Determine p-values for each of the sections of focus file_p = open('p_values_mut.txt', 'w') p = np.zeros((5, 7)) st, p[0,0] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_L192F, equal_var = False) #Welch's t-test st, p[0,1] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_E276F, equal_var = False) #Welch's t-test st, p[0,2] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_F280Y, equal_var = False) #Welch's t-test st, p[0,3] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_L195F, equal_var = False) #Welch's t-test st, p[0,4] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_F196A, equal_var = False) #Welch's t-test st, p[0,5] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_V287T, equal_var = False) #Welch's t-test st, p[0,6] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_1sug, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_L192F, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_E276F, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_F280Y, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_L195F, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_F196A, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_V287T, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_1sug, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_L192F, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_E276F, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_F280Y, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_L195F, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_F196A, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_V287T, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_1sug, equal_var = False) #Welch's t-test st, p[2,0] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_L192F, equal_var = False) #Welch's t-test st, p[2,1] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_E276F, equal_var = False) #Welch's t-test st, p[2,2] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_F280Y, equal_var = False) #Welch's t-test st, p[2,3] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_L195F, equal_var = False) #Welch's t-test st, p[2,4] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_F196A, equal_var = False) #Welch's t-test st, p[2,5] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_V287T, equal_var = False) #Welch's t-test st, p[2,6] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_1sug, equal_var = False) #Welch's t-test st, p[3,0] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_L192F, equal_var = False) #Welch's t-test st, p[3,1] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_E276F, equal_var = False) #Welch's t-test st, p[3,2] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_F280Y, equal_var = False) #Welch's t-test st, p[3,3] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_L195F, equal_var = False) #Welch's t-test st, p[3,4] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_F196A, equal_var = False) #Welch's t-test st, p[3,5] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_V287T, equal_var = False) #Welch's t-test st, p[3,6] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_1sug, equal_var = False) #Welch's t-test sections_mini = ['a3_top', 'a3', 'a4', 'a6_bot'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T', 'Apo Closed'] file_p.write('P values of RMSD with Apo closed reference structure Relative to Apo Open \n') for i in range(len(sections_mini)): file_p.write(str(sections_mini[i]) + '\n') for j in range(len(Labels_mut)): file_p.write(Labels_mut[j] + ': ' + str(p[i,j]) + '\n') p = np.zeros((5, 12)) st, p[0,0] = stats.ttest_ind(rmsd_a3_top_L192F, rmsd_a3_top_L192F_AD, equal_var = False) #Welch's t-test st, p[0,1] = stats.ttest_ind(rmsd_a3_top_E276F, rmsd_a3_top_E276F_AD, equal_var = False) #Welch's t-test st, p[0,2] = stats.ttest_ind(rmsd_a3_top_F280Y, rmsd_a3_top_F280Y_AD, equal_var = False) #Welch's t-test st, p[0,3] = stats.ttest_ind(rmsd_a3_top_L195F, rmsd_a3_top_L195F_AD, equal_var = False) #Welch's t-test st, p[0,4] = stats.ttest_ind(rmsd_a3_top_F196A, rmsd_a3_top_F196A_AD, equal_var = False) #Welch's t-test st, p[0,5] = stats.ttest_ind(rmsd_a3_top_V287T, rmsd_a3_top_V287T_AD, equal_var = False) #Welch's t-test st, p[0,6] = stats.ttest_ind(rmsd_a3_top_L192F, rmsd_a3_top_L192F_BBR, equal_var = False) #Welch's t-test st, p[0,7] = stats.ttest_ind(rmsd_a3_top_E276F, rmsd_a3_top_E276F_BBR, equal_var = False) #Welch's t-test st, p[0,8] = stats.ttest_ind(rmsd_a3_top_F280Y, rmsd_a3_top_F280Y_BBR, equal_var = False) #Welch's t-test st, p[0,9] = stats.ttest_ind(rmsd_a3_top_L195F, rmsd_a3_top_L195F_BBR, equal_var = False) #Welch's t-test st, p[0,10] = stats.ttest_ind(rmsd_a3_top_F196A, rmsd_a3_top_F196A_BBR, equal_var = False) #Welch's t-test st, p[0,11] = stats.ttest_ind(rmsd_a3_top_V287T, rmsd_a3_top_V287T_BBR, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a3_L192F, rmsd_a3_L192F_AD, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a3_E276F, rmsd_a3_E276F_AD, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a3_F280Y, rmsd_a3_F280Y_AD, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a3_L195F, rmsd_a3_L195F_AD, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a3_F196A, rmsd_a3_F196A_AD, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a3_V287T, rmsd_a3_V287T_AD, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a3_L192F, rmsd_a3_L192F_BBR, equal_var = False) #Welch's t-test st, p[1,7] = stats.ttest_ind(rmsd_a3_E276F, rmsd_a3_E276F_BBR, equal_var = False) #Welch's t-test st, p[1,8] = stats.ttest_ind(rmsd_a3_F280Y, rmsd_a3_F280Y_BBR, equal_var = False) #Welch's t-test st, p[1,9] = stats.ttest_ind(rmsd_a3_L195F, rmsd_a3_L195F_BBR, equal_var = False) #Welch's t-test st, p[1,10] = stats.ttest_ind(rmsd_a3_F196A, rmsd_a3_F196A_BBR, equal_var = False) #Welch's t-test st, p[1,11] = stats.ttest_ind(rmsd_a3_V287T, rmsd_a3_V287T_BBR, equal_var = False) #Welch's t-test st, p[2,0] = stats.ttest_ind(rmsd_a4_L192F, rmsd_a4_L192F_AD, equal_var = False) #Welch's t-test st, p[2,1] = stats.ttest_ind(rmsd_a4_E276F, rmsd_a4_E276F_AD, equal_var = False) #Welch's t-test st, p[2,2] = stats.ttest_ind(rmsd_a4_F280Y, rmsd_a4_F280Y_AD, equal_var = False) #Welch's t-test st, p[2,3] = stats.ttest_ind(rmsd_a4_L195F, rmsd_a4_L195F_AD, equal_var = False) #Welch's t-test st, p[2,4] = stats.ttest_ind(rmsd_a4_F196A, rmsd_a4_F196A_AD, equal_var = False) #Welch's t-test st, p[2,5] = stats.ttest_ind(rmsd_a4_V287T, rmsd_a4_V287T_AD, equal_var = False) #Welch's t-test st, p[2,6] = stats.ttest_ind(rmsd_a4_L192F, rmsd_a4_L192F_BBR, equal_var = False) #Welch's t-test st, p[2,7] = stats.ttest_ind(rmsd_a4_E276F, rmsd_a4_E276F_BBR, equal_var = False) #Welch's t-test st, p[2,8] = stats.ttest_ind(rmsd_a4_F280Y, rmsd_a4_F280Y_BBR, equal_var = False) #Welch's t-test st, p[2,9] = stats.ttest_ind(rmsd_a4_L195F, rmsd_a4_L195F_BBR, equal_var = False) #Welch's t-test st, p[2,10] = stats.ttest_ind(rmsd_a4_F196A, rmsd_a4_F196A_BBR, equal_var = False) #Welch's t-test st, p[2,11] = stats.ttest_ind(rmsd_a4_V287T, rmsd_a4_V287T_BBR, equal_var = False) #Welch's t-test sections_mini = ['a3_top', 'a3', 'a4'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] file_p.write('P values of RMSD with Apo closed reference structure Relative to Apo Mut \n') for i in range(len(sections_mini)): file_p.write(str(sections_mini[i]) + '\n') for j in range(len(Labels_mut)): n = j+6 file_p.write(Labels_mut[j] + ' AD: ' + str(p[i,j]) + '\n') file_p.write(Labels_mut[j] + ' BBR: ' + str(p[i,n]) + '\n')
ajfriedman22/PTP1B
compare_mutant_scripts/rmsd_mut_compare.py
rmsd_mut_compare.py
py
30,484
python
en
code
0
github-code
6
6056862050
from datetime import datetime import csv def logReceivedGossip(file,gossipID,spreader,audience,awardedSP,targetCitizensSP,receivingAudienceKnownRumours,citizen_list,rumourTarget,sentiment): now = datetime.now() date_time = now.strftime("%m/%d/%Y %H:%M:%S:%f") # get total rumour count for key in citizen_list: kt = sum(len(x['knownRumours']) for x in citizen_list.values() if x) #'time,key,id,spreader,audience,sp,originalsp,audienceKnownRumours,totalRumours,' with open(file, 'a', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow([str(date_time),str(gossipID),spreader,audience,str(awardedSP),str(targetCitizensSP),str(len(receivingAudienceKnownRumours)),rumourTarget,sentiment,kt]) def logUpdateMessage(message,file,action='a'): f = open(file, action) f.write(message) f.close()
murchie85/gossipSimulator
game/functions/logging.py
logging.py
py
822
python
en
code
25
github-code
6
70835728188
import json fs = open("G:\python\Analysis"+"\\"+'score.json', encoding='utf-8') ft = open("G:\python\Analysis"+"\\"+'template.json', encoding='utf-8') res1 = fs.read() data = json.loads(res1) res2 = ft.read() template = json.loads(res2) scoreKey = [] templateKey = template.keys() goal = {} for key in data: user_id = str(key) cases = data[key]['cases'] cid = [] res = [] for case in cases: if case["score"] == 100: cid.append(case['case_id']) for i in templateKey: if i in cid: res.append(1) else: res.append(0) goal[user_id] = res json_str = json.dumps(goal, indent=4, ensure_ascii=False) with open("G:\python\Analysis"+"\\"+"flag.json", 'w', encoding='utf-8') as json_file: json_file.write(json_str)
nju161250023/Analysis
createFlag.py
createFlag.py
py
803
python
en
code
0
github-code
6
27196052204
import Node def readFile(filePath, heuristic=None): if heuristic is None: heuristic = {} with open("./data/" + filePath, 'r') as f: data = f.read().splitlines() initialState, goalState = None, [None] graph = dict() count = 0 for line in data: if line == '' or line == '#': continue elif count == 0: initialState = line count += 1 continue elif count == 1: goalState = line.split() count += 1 continue else: transitions(line, graph) graph = initializeGraph(graph, heuristic) return graph, initialState, goalState def readHeuristic(filePath): with open("./data/" + filePath, 'r') as f: data = f.read().splitlines() heuristic = dict() for line in data: city, heuristicValue = line.split(" ") city = city[:-1] heuristic[city] = int(heuristicValue) return heuristic def transitions(line, graph): city = line.split()[0][:-1] neighbours = [tuple(neighbour.split(',')) for neighbour in line.split()[1:]] node = Node.Node(city, {}) graph[city] = (node, neighbours) def initializeGraph(graph, heuristic): for x, (node, edges) in graph.items(): for edge in edges: neighbor_name, weight = edge node.edges[graph[neighbor_name][0]] = int(weight) if heuristic: node.heuristic = heuristic[node.city] return {k: v[0] for k, v in graph.items()} def setNodes(initialState, goalState, graph): initialNode, goalNodes = None, [] if initialState in graph: initialNode = graph[initialState] for states in goalState: if states in graph: goalNodes.append(graph[states]) return initialNode, goalNodes def calculateTotalCost(copy): totalCost = 0 parent1 = copy.parent while copy.parent: parent1 = copy.parent for key, value in parent1.edges.items(): if key.city == copy.city: totalCost += value copy = copy.parent return totalCost
EdiProdan/FER
Introduction to Artificial Intelligence/laboratory_exercise_1/utils.py
utils.py
py
2,163
python
en
code
0
github-code
6
33062234730
#!/usr/local/bin/python # -*- coding: utf-8 -* import requests class MetrikaAPI(object): def __init__(self, counter_id, token, host='https://api-metrika.yandex.ru'): self.counter_id = counter_id self.token = token self.host = host def _get_url(self, url='/stat/v1/data', params=None, data=None, method='GET'): req = requests.request( method=method, url=self.host + url, params=params, data=data, headers={'Authorization': 'OAuth ' + self.token}, ) try: req.raise_for_status() except requests.exceptions.HTTPError: print(req.content) raise except Exception: print("Unexpected exception") raise return req def get_sources_visits(self): req = self._get_url(params=dict( metrics='ym:s:visits', id=self.counter_id, )) return req.json() def get_sources_users(self): req = self._get_url(params=dict( metrics='ym:s:users', id=self.counter_id, )) return req.json() def get_sources_pageviews(self): req = self._get_url(params=dict( metrics='ym:s:pageviews', id=self.counter_id, )) return req.json() def main(): d = MetrikaAPI(44138734, 'тут мог бы быть токен') vis = d.get_sources_visits() us = d.get_sources_users() view = d.get_sources_pageviews() print('Всего визитов: {}'.format(vis['data'][0]['metrics'])) print('Всего посетителей: {}'.format(us['data'][0]['metrics'])) print('Всего просмотров: {}'.format(view['data'][0]['metrics'])) if __name__ == '__main__': main()
swetlanka/py3
3-5/3-5.py
3-5.py
py
1,824
python
en
code
0
github-code
6
74281365627
from __future__ import annotations import re from dataclasses import asdict, dataclass from typing import Optional, Sized, TypeVar import torch import torchinfo from accelerate.utils.random import set_seed from torch.utils.data import DataLoader from simpletrainer.utils.common import pretty_repr T = TypeVar('T') set_seed = set_seed @dataclass class DataInfo: batch_size: int batch_size_per_device: int num_sampels: Optional[int] num_batches_per_epoch: Optional[int] def __repr__(self) -> str: return pretty_repr(asdict(self), self.__class__.__name__) def get_batch_size_from_dataloader(dataloader: DataLoader) -> int: if dataloader.batch_size is None: try: return dataloader.batch_sampler.batch_size # type: ignore except AttributeError: raise ValueError( 'Can not get batch size from dataloader, does not support `BatchSampler` with varying batch size yet.' ) else: return dataloader.batch_size def get_num_samples_from_dataloader(dataloader: DataLoader) -> Optional[int]: if isinstance(dataloader.dataset, Sized): return len(dataloader.dataset) elif isinstance(dataloader.sampler, Sized): return len(dataloader.sampler) else: sampler = getattr(dataloader.batch_sampler, 'sampler') if isinstance(sampler, Sized): return len(sampler) else: return def get_data_info(dataloader: DataLoader, world_size: int = 1) -> DataInfo: num_samples = get_num_samples_from_dataloader(dataloader) try: num_batches_per_epoch = len(dataloader) except: num_batches_per_epoch = None batch_size_per_device = get_batch_size_from_dataloader(dataloader) batch_size = batch_size_per_device * world_size return DataInfo( batch_size=batch_size, batch_size_per_device=batch_size_per_device, num_sampels=num_samples, num_batches_per_epoch=num_batches_per_epoch, ) def get_model_info( model: torch.nn.Module, input_data: Optional[torchinfo.torchinfo.INPUT_DATA_TYPE] = None, device: Optional[torch.device] = None, ) -> torchinfo.ModelStatistics: try: model_statistics = torchinfo.summary(model, input_data=input_data, verbose=0, device=device) except Exception: model_statistics = torchinfo.summary(model, verbose=0, device=device) return model_statistics def get_parameter_id_group_map( optimizer: torch.optim.Optimizer, ) -> dict[int, str]: parameter_id_group_map = {} for group, params in enumerate(optimizer.param_groups): for param in params['params']: parameter_id_group_map[id(param)] = str(group) return parameter_id_group_map def get_params_with_pattern(model: torch.nn.Module, pattern: re.Pattern): params = [] for name, param in model.named_parameters(): if pattern.search(name): params.append(param) return params def get_module_learning_rate_summary(module: torch.nn.Module, optimizer: torch.optim.Optimizer): lr_dict: dict[str, float] = {} names = {param: name for name, param in module.named_parameters()} for group in optimizer.param_groups: if 'lr' not in group: continue lr = group['lr'] for param in group['params']: if param.requires_grad: lr_dict[names[param]] = lr else: lr_dict[names[param]] = 0.0 return lr_dict def get_module_parameter_summary(model: torch.nn.Module): parameter_mean: dict[str, float] = {} parameter_std: dict[str, float] = {} for name, param in model.named_parameters(): if param.data.numel() > 0: parameter_mean[name] = float(param.data.mean().item()) if param.data.numel() > 1: parameter_std[name] = float(param.data.std().item()) return parameter_mean, parameter_std def get_module_gradient_summary(model: torch.nn.Module): gradient_mean: dict[str, float] = {} gradient_std: dict[str, float] = {} for name, param in model.named_parameters(): if param.grad is not None: if param.grad.is_sparse: grad_data = param.grad.data._values() else: grad_data = param.grad.data # skip empty gradients if torch.prod(torch.tensor(grad_data.shape)).item() > 0: gradient_mean[name] = float(grad_data.mean().item()) if grad_data.numel() > 1: gradient_std[name] = float(grad_data.std().item()) return gradient_mean, gradient_std
Moka-AI/simpletrainer
simpletrainer/utils/torch.py
torch.py
py
4,653
python
en
code
3
github-code
6
33229412854
# Implement the first move model for the Lego robot. # 02_a_filter_motor # Claus Brenner, 31 OCT 2012 from math import sin, cos, pi from pylab import * from lego_robot import * # This function takes the old (x, y, heading) pose and the motor ticks # (ticks_left, ticks_right) and returns the new (x, y, heading). def filter_step(old_pose, motor_ticks, ticks_to_mm, robot_width): l = ticks_to_mm * motor_ticks[0] r = ticks_to_mm * motor_ticks[1] # Find out if there is a turn at all. if motor_ticks[0] == motor_ticks[1]: # No turn. Just drive straight. theta = old_pose[2]; x = old_pose[0] + (l * cos(theta)); y = old_pose[1] + (l * sin(theta)); else: # Turn. Compute alpha, R, etc. alpha = (r - l)/robot_width; R = l/alpha; cx = old_pose[0] - (R + robot_width/2)*sin(old_pose[2]); cy = old_pose[1] + (R + robot_width/2)*cos(old_pose[2]); theta = (old_pose[2] + alpha)%(2*pi) x = cx + (R + robot_width/2)*sin(theta); y = cy - (R + robot_width/2)*cos(theta); return (x, y, theta) if __name__ == '__main__': # Empirically derived conversion from ticks to mm. ticks_to_mm = 0.349 # Measured width of the robot (wheel gauge), in mm. robot_width = 150.0 # Read data. logfile = LegoLogfile() logfile.read("robot4_motors.txt") # Start at origin (0,0), looking along x axis (alpha = 0). pose = (0.0, 0.0, 0.0) # Loop over all motor tick records generate filtered position list. filtered = [] for ticks in logfile.motor_ticks: pose = filter_step(pose, ticks, ticks_to_mm, robot_width) filtered.append(pose) # Draw result. for pose in filtered: print(pose) plot([p[0] for p in filtered], [p[1] for p in filtered], 'bo') show()
jfrascon/SLAM_AND_PATH_PLANNING_ALGORITHMS
01-GETTING_STARTED/CODE/slam_02_a_filter_motor_question.py
slam_02_a_filter_motor_question.py
py
1,893
python
en
code
129
github-code
6
5569399042
"""Display image captured from image sensor""" import numpy as np import cv2 import socket import tkinter import pandas as pd import datetime import time import os class ImageGUI(object): def __init__(self): #self.buffer_size = 128 * 128 * 3 # picture size self.buffer_size = (16384 * 2 + 2048 * 2) # picture size self.img_buf_index = 0 self.img_buf_size = 3 self.img_buf = np.array([[[0] * 128] * 128] * self.img_buf_size) self.array_buf = np.array([[0]*(128*128)]*3) self.array_out_buf = np.array([[0]*(4*8*64)]*2) self.array_out_shape = np.array([[[0] * 64] * 32] * 2) self.array_pod_out = np.array([[0] * 64] * 32) # udp must send bytes object self.enquire_command = bytes([int('0x55', 16), 1]) # 0x55, 0x01 self.start_command = bytes([int('0x55', 16), 2]) self.stop_command = bytes([int('0x55', 16), 3]) self.stop_reply = bytes([int('0xaa', 16), int('0xf3', 16)]) # 创建主窗口,用于容纳其它组件 self.root = tkinter.Tk() # 给主窗口设置标题内容 self.root.title("University of Macau AMSV Image Sensor Control") self.root.geometry('500x300') # 创建一个输入框,并设置尺寸 self.input_ip = tkinter.Entry(self.root,width=50) # 创建一个回显列表 self.display_info = tkinter.Listbox(self.root, width=50) # 创建按钮 #self.result_button = tkinter.Button(self.root, command = self.find_position, text = "查询") self.connect_button = tkinter.Button(self.root, command = self.connect_fun, text = "Connect") self.image_start_button = tkinter.Button(self.root, command = self.trans_start, text = "Start") self.image_stop_button = tkinter.Button(self.root, command = self.image_save_stop, text = "Save") # 完成布局 def gui_arrang(self): self.input_ip.pack() self.connect_button.place(x=100,y=220,height=50,width=100) self.image_start_button.place(x=200,y=220,height=50,width=100) self.image_stop_button.place(x=300,y=220,height=50,width=100) self.display_info.pack() def connect_fun(self, print_en = 1): self.ip_addr = self.input_ip.get() self.udp_server_ip_addr = self.ip_addr # target IP address self.udp_port = 7 # port self.soc=socket.socket() self.soc.connect((self.udp_server_ip_addr, self.udp_port)) if(print_en == 1): self.display_info.insert(0,"Connect successfully") self.soc.close() def trans_start(self): # This function will be executed when 'Start' button is clicked ## 为回显列表赋值 #self.display_info.insert(0,input_str) #end=self.soc.send(self.start_command) # send 'start' command while True: t1_init = time.perf_counter() self.connect_fun(0) #for mean_cnt in range(10): #buf_index = 0 #print('Tcp send') self.soc.send(self.start_command) # send 'start' command int_dat = [] cmd_dat = [] cmd_rec = [] ############## receive data and cmd ############### #print('Tcp receive') cmd_rec = self.soc.recv(self.buffer_size) for i in cmd_rec[:]: # transform bytes into int cmd_dat.append(int(i)) if (int(cmd_dat[0]) == int('0x55', 16)) and (int(cmd_dat[1]) == int('0', 16)): int_dat = cmd_dat[2:] total_len = len(int_dat) #print('Tcp receive num:', total_len) while total_len < (16384 * 2 + 2048 * 2): #if total_len > 36000: # break tcp_dat = self.soc.recv(self.buffer_size) # receive data again for i in tcp_dat[:]: # transform bytes into int int_dat.append(int(i)) total_len = len(int_dat) #print('Tcp receive num:', total_len) #if total_len < (16384 * 2 + 2048 * 2): # print('TCP data lost! Receive Num:', total_len) # self.soc.close() # self.connect_fun() # continue self.array_buf[0][:] = np.array(int_dat[0:16384]) # 曝光前 Pod 数据 self.array_buf[1][:] = np.array(int_dat[16384:32768]) array_out_temp1 = np.array(int_dat[32768: (32768 + 2048)]) array_out_temp2 = np.array(int_dat[(32768 + 2048) : (32768 + 4096)]) # 曝光后 Pod 数据 # change the 8bit array_out_buf data into 64 bit array_shape_temp1 = array_out_temp1.reshape((32, 64), order = 'F') array_shape_temp2 = array_out_temp2.reshape((32, 64), order = 'F') self.array_out_shape[0] = array_shape_temp1 # FPGA输出的 OUTR OUTL OUTU OUTD 数据 # self.array_out_shape[1] = array_shape_temp2 # Chip输出的 OUTR OUTL OUTU OUTD 数据 self.array_pod_out = array_shape_temp2 # Chip输出的 OUT 对应的Pod数据 self.array_buf[2] = self.array_buf[0] - self.array_buf[1] self.img_buf[0] = self.tcp_data2mat(self.array_buf[2]) # reform bytes data into picture structure img = np.mat(self.img_buf[0].astype(np.uint8)) # transform img_data into uint8 matrix x, y = img.shape[0:2] img_test1 = cv2.resize(img, (int(y * 6), int(x * 6))) # picture reshape (scaling) #print('Open-CV show picture') cv2.imshow('frame', img_test1) if cv2.waitKey(1) & 0xFF == ord('c'): #self.buf_img = img #self.buf_tcp_dat = before_array return 0 else: print('Frame lost! ERROR_code:' + str(cmd_dat[:2])) continue self.soc.close() frame_rate = 1/(time.perf_counter() - t1_init) print('Frame Rate:%5.3f' % frame_rate, '/s') def tcp_data2mat(self, int_dat): #temp = np.array(int_dat) #self.img_buf_index = (self.img_buf_index + 1) % self.img_buf_size t1 = int_dat.reshape(-1, 16) t2 = int_dat.reshape(-1, 16).T t3 = t2[0][:].reshape(64,4,2,2) pic = np.array([[0]*128]*128) # generate a 128x128 zero array for i in range(16): for j in range(64): for k in range(4): pic[2*j ][8*i+2*k ] = t2[i][0+4*k+16*j] pic[2*j ][8*i+2*k+1] = t2[i][1+4*k+16*j] pic[2*j+1][8*i+2*k+1] = t2[i][2+4*k+16*j] pic[2*j+1][8*i+2*k ] = t2[i][3+4*k+16*j] return pic def image_save_stop(self): # stop transfer self.connect_fun(0) end=self.soc.send(self.stop_command) image_dat = self.soc.recv(10) # create folder folder_name = "./Pic_data/" + time.strftime("%Y%m%d%H%M%S") dir_exist = os.path.isdir(folder_name) if not dir_exist: os.makedirs(folder_name) #time_info = time.strftime("%Y%m%d%H%M%S") # save data save = pd.DataFrame(self.img_buf[0]) save.to_csv(folder_name + '/img_data.csv') save = pd.DataFrame(self.array_buf[0]) save.to_csv(folder_name + '/before_exposure.csv') save = pd.DataFrame(self.array_buf[1]) save.to_csv(folder_name + '/after_exposure.csv') save = pd.DataFrame(self.array_buf[2]) save.to_csv(folder_name + '/sub_data.csv') #save = pd.DataFrame(self.array_out_buf[0]) #save.to_csv(folder_name + '/out_chip_data.csv') save = pd.DataFrame(self.array_out_shape[0]) save.to_csv(folder_name + '/out_fpga_data.csv') #save = pd.DataFrame(self.array_out_shape[1]) #save.to_csv(folder_name + '/out_chip_data.csv') save = pd.DataFrame(self.array_pod_out) save.to_csv(folder_name + '/out_pod_data.csv') #save = pd.DataFrame(self.array_out_buf[1]) #save.to_csv(folder_name + '/out_fpga_data.csv') if(image_dat == self.stop_reply): self.display_info.insert(0,'Stop and Save successfully!') def image_show(self): # Image show cap = cv2.VideoCapture(0) cap.open(0) while True: ret, frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting ...") break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame', gray) if cv2.waitKey(1) == ord('q'): break cap.release() cv2.destroyAllWindows() def main(): # 初始化对象 FL = ImageGUI() # 进行布局 FL.gui_arrang() # 主程序执行 tkinter.mainloop() pass if __name__ == "__main__": main() ########### UDP client Transfer ######### #from socket import * #HOST = '192.168.1.10' #PORT = 8080 #BUFSIZ = 1024 #ADDRESS = (HOST, PORT) #udpClientSocket = socket(AF_INET, SOCK_DGRAM) # #while True: # data = bytes([int('0xFE', 16), 0,2,0,1]) # if not data: # break # # # 发送数据 # udpClientSocket.sendto(data, ADDRESS) # # 接收数据 # data, ADDR = udpClientSocket.recvfrom(BUFSIZ) # if not data: # break # print("服务器端响应:", data) # #udpClientSocket.close() ######## TCP Client Transfer ######### #client_sock = socket.socket() #client_sock.connect(('192.168.1.10', 7)) ## 发送个连接信息 #stop_command = bytes([int('0x55', 16), 3]) # udp must send bytes object #client_sock.send(stop_command) #while 1: # recv_dat = client_sock.recv(1024) # print(recv_dat) # # 有关输入的 # aa = input("echo >>:") # if aa == 'exit': # break # while not aa: # aa = input("echo >>:") # # 重点就是上下两句 # client_sock.send(aa.encode('utf-8')) #client_sock.close()
yg99992/Image_transfer_open_source
python_code/Image_show.py
Image_show.py
py
10,237
python
en
code
6
github-code
6
28400031595
import os import time from datetime import datetime import torch from torch import nn from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as F from torch.autograd import Variable import pandas as pd import warnings warnings.filterwarnings("ignore") import random import numpy as np import utils.config as config import matplotlib.pyplot as plt import os, psutil import functools from skimage.measure import label as sk_label from skimage.measure import regionprops as sk_regions from skimage.transform import resize # let all of print can be flush = ture print = functools.partial(print, flush=True) #-------- Dataloder -------- # After augmnetation with resize, crop spleen area and than transofermer class BoxCrop(object): ''' Croping image by bounding box label after augmentation input: keys=["image", "label"] label: [[x1,y1,x2,y2,z1,z2,class]...] image: [1,x,y,z] output dictionary add im_info: [x,y,z,scale_x_y,scale_z] num_box: 1 (All is one in our data) ''' def __init__(self,keys): self.keys = keys def __call__(self, data): d = dict(data) image = d['image'] label = d['label'] # only one label if type(label) == type(np.array([])): label_list = label.tolist() else: # more than one label # select the first label label_list = eval(label)[0] if label_list[1]>=label_list[3] or label_list[0]>=label_list[2] or label_list[4]>=label_list[5]: raise RuntimeError(f"{d['image_meta_dict']['filename_or_obj']} bounding box error") #print(f"{d['image_meta_dict']['filename_or_obj']} bounding box error ") out_image = image[0, int(label_list[1]):int(label_list[3]), int(label_list[0]):int(label_list[2]), int(label_list[4]):int(label_list[5])] d['image'] = np.expand_dims(out_image,axis=0) d['label'] = label_list[6] #print(d['image'].shape) return d # Dulicated dataset by num_samples class Dulicated(object): ''' Dulicated data for augmnetation ''' def __init__(self, keys, num_samples: int = 1): self.keys = keys self.num_samples = num_samples def __call__(self, data): d = dict(data) image = d['image'] label = d['label'] results: List[Dict[Hashable, np.ndarray]] = [dict(data) for _ in range(self.num_samples)] for key in data.keys(): for i in range(self.num_samples): results[i][key] = data[key] return results #return d # True label class Annotate(object): ''' transform mask to bounding box label after augmentation check the image shape to know scale_x_y, scale_z input: keys=["image", "label"] output dictionary add im_info: [x,y,z,scale_x_y,scale_z] num_box: 1 (All is one in our data) ''' def __init__(self,keys): self.keys = keys def __call__(self, data): d = dict(data) #image = d[self.keys[0]] #label = d[self.keys[1]] image = d['image'] label = d['label'] label = label.squeeze(0) annotations = np.zeros((1, 7)) annotation = mask2boundingbox(label) if annotation == 0: annotation = annotations raise ValueError('Dataloader data no annotations') #print("Dataloader data no annotations") else: # add class label cls = d['class'] annotation = np.array(annotation) annotation = np.append(annotation, cls) #annotation = np.expand_dims(annotation,0) #print(annotation.shape) #print(image.shape) d['label'] = annotation return d def mask2boundingbox(label): if torch.is_tensor(label): label = label.numpy() sk_mask = sk_label(label) regions = sk_regions(label.astype(np.uint8)) #global top, left, low, bottom, right, height #print(regions) # check regions is empty if not regions: return 0 for region in regions: # print('[INFO]bbox: ', region.bbox) # region.bbox (x1,y1,z1,x2,y2,z2) # top, left, low, bottom, right, height = region.bbox y1, x1, z1, y2, x2, z2 = region.bbox # return left, top, right, bottom, low, height return x1, y1, x2, y2, z1, z2 #-------- Running setting -------- ''' def adjust_learning_rate_by_step(optimizer, epoch, init_lr, decay_rate=.5 ,lr_decay_epoch=40): #Sets the learning rate to initial LR decayed by e^(-0.1*epochs) lr = init_lr * (decay_rate ** (epoch // lr_decay_epoch)) for param_group in optimizer.param_groups: #param_group['lr'] = param_group['lr'] * math.exp(-decay_rate*epoch) param_group['lr'] = lr #lr = init_lr * (0.1**(epoch // lr_decay_epoch)) #print('LR is set to {}'.format(param_group['lr'])) return optimizer , lr def adjust_learning_rate(optimizer, epoch, init_lr, decay_rate=.5): #Sets the learning rate to initial LR decayed by e^(-0.1*epochs) lr = init_lr * decay_rate for param_group in optimizer.param_groups: #param_group['lr'] = param_group['lr'] * math.exp(-decay_rate*epoch) param_group['lr'] = lr #lr = init_lr * (0.1**(epoch // lr_decay_epoch)) #print('LR is set to {}'.format(param_group['lr'])) return optimizer , lr ''' def train(model, device, data_num, epochs, optimizer, loss_function, train_loader, valid_loader, early_stop, scheduler, check_path): # Let ini config file can be writted #global best_metric #global best_metric_epoch #val_interval = 2 best_metric = -1 best_metric_epoch = -1 trigger_times = 0 #epoch_loss_values = list() writer = SummaryWriter() for epoch in range(epochs): print("-" * 10) print(f"epoch {epoch + 1}/{epochs}") # record ram memory used process = psutil.Process(os.getpid()) print(f'RAM used:{process.memory_info().rss/ 1024 ** 3} GB') model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = batch_data['image'].to(device), batch_data['label'].long().to(device) optimizer.zero_grad() #inputs, labels = Variable(inputs), Variable(labels) outputs = model(inputs) #print(f'outputs:{outputs.size()}') #print(f'labels:{labels.size()}') loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_len = data_num // train_loader.batch_size print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}") writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step) epoch_loss /= step config.epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") # Early stopping & save best weights by using validation metric = validation(model, valid_loader, device) scheduler.step(metric) # checkpoint setting if metric > best_metric: # reset trigger_times trigger_times = 0 best_metric = metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), f"{check_path}/{best_metric}.pth") print('trigger times:', trigger_times) print("saved new best metric model") else: trigger_times += 1 print('trigger times:', trigger_times) # Save last 3 epoch weight if early_stop - trigger_times <= 3 or epochs - epoch <= 3: torch.save(model.state_dict(), f"{check_path}/{metric}_last.pth") print("save last metric model") print( "current epoch: {} current accuracy: {:.4f} best accuracy: {:.4f} at epoch {}".format( epoch + 1, metric, best_metric, best_metric_epoch ) ) writer.add_scalar("val_accuracy", metric, epoch + 1) # early stop if trigger_times >= early_stop: print('Early stopping!\nStart to test process.') print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}") return model print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}") config.best_metric = best_metric config.best_metric_epoch = best_metric_epoch writer.close() #print(f'training_torch best_metric:{best_metric}',flush =True) #print(f'training_torch config.best_metric:{config.best_metric}',flush =True) return model class AngleLoss_predict(nn.Module): def __init__(self, gamma=0): super(AngleLoss_predict, self).__init__() self.gamma = gamma self.it = 1 self.LambdaMin = 5.0 self.LambdaMax = 1500.0 self.lamb = 1500.0 def forward(self, input, target): cos_theta, phi_theta = input target = target.view(-1, 1) # size=(B,1) index = cos_theta.data * 0.0 # size=(B, Classnum) # index = index.scatter(1, target.data.view(-1, 1).long(), 1) #index = index.byte() index = index.bool() index = Variable(index) # index = Variable(torch.randn(1,2)).byte() self.lamb = max(self.LambdaMin, self.LambdaMax / (1 + 0.1 * self.it)) output = cos_theta * 1.0 # size=(B,Classnum) output1 = output.clone() # output1[index1] = output[index] - cos_theta[index] * (1.0 + 0) / (1 + self.lamb) # output1[index1] = output[index] + phi_theta[index] * (1.0 + 0) / (1 + self.lamb) output[index] = output1[index]- cos_theta[index] * (1.0 + 0) / (1 + self.lamb)+ phi_theta[index] * (1.0 + 0) / (1 + self.lamb) return(output) def validation(model, val_loader, device): #metric_values = list() model.eval() with torch.no_grad(): num_correct = 0.0 metric_count = 0 for val_data in val_loader: val_images, val_labels = val_data['image'].to(device), val_data['label'].to(device) val_outputs = model(val_images) # base on AngleLoss if isinstance(val_outputs, tuple): val_outputs = AngleLoss_predict()(val_outputs,val_labels) value = torch.eq(val_outputs.argmax(dim=1), val_labels) metric_count += len(value) num_correct += value.sum().item() metric = num_correct / metric_count config.metric_values.append(metric) #print(f'validation metric:{config.metric_values}',flush =True) return metric def plot_loss_metric(epoch_loss_values,metric_values,save_path): plt.figure("train", (12, 6)) plt.subplot(1, 2, 1) plt.title("Epoch Average Loss") x = [i + 1 for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel("epoch") plt.plot(x, y) plt.subplot(1, 2, 2) plt.title("Val Accuracy") x = [i + 1 for i in range(len(metric_values))] y = metric_values plt.xlabel("epoch") plt.plot(x, y) plt.savefig(f'{save_path}/train_loss_metric.png') def kfold_split(file, kfold, seed, type, fold): if type == 'pos': d = {} file_list = ['file'] file_list.extend([f'pos_split_df_{i}' for i in range(kfold)]) d['file'] = file for i in range(kfold): d[f'test_pos_df_{i}'] = d[file_list[i]].groupby(["gender","age_range","spleen_injury_class"],group_keys=False).apply(lambda x: x.sample(frac=1/(kfold-i),random_state=1)) d[f'pos_split_df_{i}'] = d[file_list[i]].drop(d[f'test_pos_df_{i}'].index.to_list()) output_file = d[f'test_pos_df_{fold}'] elif type == 'neg': file_list = [f'neg_split_df_{i}' for i in range(kfold)] file_list = np.array_split(file.sample(frac=1,random_state=seed), kfold) output_file = file_list[fold] return output_file def Data_progressing(pos_file, neg_file, box_df, imbalance_data_ratio, data_split_ratio, seed, fold, save_file = False, cropping = True): # Pos data progress for index, row in pos_file.iterrows(): if row['OIS']==row['OIS']: pos_file.loc[index,'spleen_injury_grade'] = row['OIS'] else: pos_file.loc[index,'spleen_injury_grade'] = row['R_check'] new_col= 'age_range' new_col_2 = 'spleen_injury_class' bins = [0,30,100] bins_2 = [0,2,5] label_2 = ['OIS 1,2','OIS 3,4,5'] pos_file[new_col] = pd.cut(x=pos_file.age, bins=bins) pos_file[new_col_2] = pd.cut(x=pos_file.spleen_injury_grade, bins=bins_2, labels=label_2) # positive need select column and split in kfold test_pos_df = kfold_split(pos_file, int(1/data_split_ratio[2]), seed, 'pos', fold) train_pos_file = pos_file.drop(test_pos_df.index.to_list()) valid_pos_df = train_pos_file.groupby(['gender','age_range','spleen_injury_class'],group_keys=False).apply(lambda x: x.sample(frac=data_split_ratio[1]/(1-data_split_ratio[2]),random_state=seed)) train_pos_df = train_pos_file.drop(valid_pos_df.index.to_list()) # negative only need split in kfold neg_sel_df = neg_file.sample(n=len(pos_file),random_state=seed) test_neg_df = kfold_split(neg_sel_df, int(1/data_split_ratio[2]), seed, 'neg', fold) train_neg_file = neg_file.drop(test_neg_df.index.to_list()) valid_neg_df = train_neg_file.sample(n=len(valid_pos_df),random_state=seed) train_neg_df = train_neg_file.drop(valid_neg_df.index.to_list()).sample(n=len(train_pos_df)*imbalance_data_ratio,random_state=seed) train_df = pd.concat([train_neg_df,train_pos_df]) valid_df = pd.concat([valid_neg_df,valid_pos_df]) test_df = pd.concat([test_neg_df,test_pos_df]) train_data = box_df[box_df.Path.isin(train_df.source.to_list())] valid_data = box_df[box_df.Path.isin(valid_df.source.to_list())] test_data = box_df[box_df.Path.isin(test_df.source.to_list())] train_df['spleen_injury'] = np.array([0 if i else 1 for i in train_df.spleen_injury_class.isna().tolist()]) valid_df['spleen_injury'] = np.array([0 if i else 1 for i in valid_df.spleen_injury_class.isna().tolist()]) test_df['spleen_injury'] = np.array([0 if i else 1 for i in test_df.spleen_injury_class.isna().tolist()]) if save_file: test_df_output = pd.merge(test_data.loc[:,['ID','Path','BBox','Posibility']],test_df,left_on='Path',right_on='source',suffixes = ['','_x']) valid_df_output = pd.merge(test_data.loc[:,['ID','Path','BBox','Posibility']],test_df,left_on='Path',right_on='source',suffixes = ['','_x']) test_df_output = test_df_output.drop(['ID_x'],axis=1) valid_df_output = valid_df_output.drop(['ID_x'],axis=1) test_df_output = test_df_output.loc[:,test_df_output.columns[~test_df_output.columns.str.contains('Unnamed')]] valid_df_output = valid_df_output.loc[:,valid_df_output.columns[~valid_df_output.columns.str.contains('Unnamed')]] valid_df_output.to_csv(f'{save_file}/fold{fold}_valid.csv',index = False) test_df_output.to_csv(f'{save_file}/fold{fold}_test.csv',index = False) if cropping: train_data_dicts = [] for index,row in train_data.iterrows(): image = row['Path'] label = row['BBox'] train_data_dicts.append({'image':image,'label':label}) valid_data_dicts = [] for index,row in valid_data.iterrows(): image = row['Path'] label = row['BBox'] valid_data_dicts.append({'image':image,'label':label}) test_data_dicts = [] for index,row in test_data.iterrows(): image = row['Path'] label = row['BBox'] test_data_dicts.append({'image':image,'label':label}) else: train_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in train_df.source.tolist()], [i for i in train_df.spleen_injury.tolist()] ) ] valid_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in valid_df_output.source.tolist()], [i for i in valid_df_output.spleen_injury.tolist()] ) ] test_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in test_df_output.source.tolist()], [i for i in test_df_output.spleen_injury.tolist()] ) ] return train_data_dicts, valid_data_dicts, test_data_dicts class FocalLoss(nn.Module): def __init__(self, class_num, alpha=None, gamma=2, size_average=True): """ focal_loss损失函数, -α(1-yi)**γ *ce_loss(xi,yi) 步骤详细的实现了 focal_loss损失函数. :param alpha: 阿尔法α,类别权重. 当α是列表时,为各类别权重,当α为常数时,类别权重为[α, 1-α, 1-α, ....],常用于 目标检测算法中抑制背景类 , retainnet中设置为0.25 :param gamma: 伽马γ,难易样本调节参数. retainnet中设置为2 :param num_classes: 类别数量 :param size_average: 损失计算方式,默认取均值 """ super(FocalLoss, self).__init__() if alpha is None: # alpha 是平衡因子 self.alpha = Variable(torch.ones(class_num, 1)) else: if isinstance(alpha, list): self.alpha = torch.Tensor(alpha) else: self.alpha = torch.zeros(class_num) self.alpha[0] += alpha self.alpha[1:] += (1-alpha) self.gamma = gamma # 指数 self.class_num = class_num # 类别数目 self.size_average = size_average # 返回的loss是否需要mean一下 def forward(self, preds, labels): """ focal_loss损失计算 :param preds: 预测类别. size:[B,N,C] or [B,C] 分别对应与检测与分类任务, B 批次, N检测框数, C类别数 :param labels: 实际类别. size:[B,N] or [B] :return: """ # assert preds.dim()==2 and labels.dim()==1 preds = preds.view(-1,preds.size(-1)) self.alpha = self.alpha.to(preds.device) preds_softmax = F.softmax(preds, dim=1) # 这里并没有直接使用log_softmax, 因为后面会用到softmax的结果(当然你也可以使用log_softmax,然后进行exp操作) preds_softmax = preds_softmax.clamp(min=0.0001,max=1.0) # 避免數值過小 進log後 loss 為nan preds_logsoft = torch.log(preds_softmax) preds_softmax = preds_softmax.gather(1,labels.view(-1,1)) # 这部分实现nll_loss ( crossempty = log_softmax + nll ) preds_logsoft = preds_logsoft.gather(1,labels.view(-1,1)) self.alpha = self.alpha.gather(0,labels.view(-1)) loss = -torch.mul(torch.pow((1-preds_softmax), self.gamma), preds_logsoft) # torch.pow((1-preds_softmax), self.gamma) 为focal loss中 (1-pt)**γ loss = torch.mul(self.alpha, loss.t()) if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss
houhsein/Spleen_injury_detection
classification/utils/training_torch_utils.py
training_torch_utils.py
py
19,509
python
en
code
1
github-code
6
18537216469
# prob_link: https://www.codingninjas.com/codestudio/problems/majority-element-ii_8230738?challengeSlug=striver-sde-challenge&leftPanelTab=0 from math import * from collections import * from sys import * from os import * def majorityElementII(arr): n = len(arr) # Write your code here. mp = {} for x in arr: if x not in mp: mp[x] = 1 else: mp[x] += 1 ans = [] for key, val in mp.items(): if val > floor(n / 3): ans.append(key) return ans
Red-Pillow/Strivers-SDE-Sheet-Challenge
P16_Majority Element-II.py
P16_Majority Element-II.py
py
549
python
en
code
0
github-code
6
14188272016
from fastapi import FastAPI app = FastAPI() COLUMN_NAME = "name" COLUMN_ID = "id" FAKE_DB = [ {"id": 1, "name": "Vladimir"}, {"id": 2, "name": "Polina"}, {"id": 3, "name": "Aleksander"} ] def find_friend_name(friend_id, db_name): for row in db_name: if row.get(COLUMN_ID) == friend_id: return row.get(COLUMN_NAME) return None @app.get("/friends/{friend_id}") async def get_friend_name(friend_id: int): friend_name = find_friend_name(friend_id, FAKE_DB) if friend_name is None: return {"error": f"No such friend with id {friend_id}"} return {"friend_name": friend_name} @app.get("/") async def root(): return {"message": "Hello world!"}
DanilaLabydin/Python-tasks-solving-practice
app/main.py
main.py
py
715
python
en
code
0
github-code
6
5005445920
from __future__ import annotations from pathlib import Path from typing import Any, cast import _testutils import pytest from lxml.html import ( HtmlElement as HtmlElement, find_class, find_rel_links, iterlinks, make_links_absolute, parse, resolve_base_href, rewrite_links, ) reveal_type = getattr(_testutils, "reveal_type_wrapper") def test_input_content_type(h_filepath: Path) -> None: fio = open(h_filepath, "rb") tree = parse(h_filepath) for bad_input in [h_filepath, fio, tree]: with pytest.raises( AttributeError, match="object has no attribute 'find_rel_links'" ): _ = find_rel_links(cast(Any, bad_input), "stylesheet") fio.close() links = find_rel_links(str(h_filepath), "stylesheet") reveal_type(links) assert links == find_rel_links(tree.getroot(), "stylesheet") assert links == find_rel_links(h_filepath.read_text(), "stylesheet") assert links == find_rel_links(h_filepath.read_bytes(), "stylesheet") def test_find_class(h_filepath: Path) -> None: elems = find_class(h_filepath.read_text(), "single") reveal_type(elems) for e in elems: reveal_type(e) def test_iterlinks(h_filepath: Path) -> None: results = iterlinks(h_filepath.read_text()) reveal_type(results) for r in results: assert len(r) == 4 reveal_type(r[0]) reveal_type(r[1]) reveal_type(r[2]) reveal_type(r[3]) class TestOutputType: BASE = "http://dummy.link" def test_make_links_absolute(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() with pytest.raises( TypeError, match="No base_url given, and the document has no base_url" ): out_data1 = make_links_absolute(in_data1) out_data1 = make_links_absolute(in_data1, self.BASE) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() with pytest.raises(TypeError, match="Cannot mix str and non-str"): out_data2 = make_links_absolute( in_data2, cast(Any, self.BASE.encode("ascii")) ) out_data2 = make_links_absolute(in_data2, self.BASE) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = make_links_absolute(in_data3, self.BASE) assert type(in_data3) == type(out_data3) def test_resolve_base_href(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() out_data1 = resolve_base_href(in_data1) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() out_data2 = resolve_base_href(in_data2) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = resolve_base_href(in_data3) assert type(in_data3) == type(out_data3) def test_rewrite_links(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() out_data1 = rewrite_links(in_data1, lambda _: self.BASE) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() with pytest.raises(TypeError, match="can only concatenate str"): out_data2 = rewrite_links( in_data2, lambda _: cast(Any, self.BASE.encode("ASCII")) ) out_data2 = rewrite_links(in_data2, lambda _: self.BASE) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = rewrite_links(in_data3, lambda _: None) assert type(in_data3) == type(out_data3)
abelcheung/types-lxml
test-rt/test_html_link_funcs.py
test_html_link_funcs.py
py
3,706
python
en
code
23
github-code
6
14565937194
# Check if a given parentheses string is valid # # Input: par: string # Output: true or false: bool # # We need a stack to store opening braces # We need a map to store types of braces # # Check the length of the string, if the length is odd, return False # Loop through the list, for each char, # - If it is an opening brace, add it to the stack # - If it is not an opening brace, # -- If the stack is empty, return False # -- Pop the stack and get the next opening brace # --- If char is not equal to value at map with key opening brace , return False # Return whether the stack is empty: # - if there's an item left when the loop is done, the string is clearly unbalanced def is_valid(par_str: str) -> bool: stack = [] par_map = {"{": "}", "[": "]", "(": ")"} if len(par_str) % 2 != 0: return False for char in par_str: if char in par_map.keys(): stack.append(char) else: if len(stack) == 0: return False open_brac = stack.pop() if char != par_map[open_brac]: return False return stack == []
HemlockBane/ds_and_algo
stacks/study_questions.py
study_questions.py
py
1,124
python
en
code
0
github-code
6
14098998919
#!/usr/bin/env python # -*- coding: utf-8 -*- """ =================================== Timer --- Create a timer decorator. =================================== Largely this module was simply practice on writing decorators. Might need to review logging best practices. I don't want the logger from this module to emit anything, but it seems tedious to place that burden on any module that imports from here. .. seealso:: :mod:`cProfile` :mod:`pstats` :mod:`timeit` :magic:`timeit` """ import datetime import functools import logging from os import scandir from runpy import run_path import time from timeit import Timer from IPython.core.getipython import get_ipython # noinspection PyProtectedMember from IPython.core.magics.execution import _format_time as format_delta logging.basicConfig(level=logging.INFO) def timer(func): """Print the runtime of the decorated function. Utilizes `time.perf_counter`. .. todo:: Begin using the :mod:`timeit` module. There are more specialized ways of profiling things in other modules; however, this works for a rough estimate. Parameters ---------- func : function Function to profile Returns ------- value : float Output of function :func:`time.perf_counter()`. """ @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter() value = func(*args, **kwargs) end_time = time.perf_counter() run_time = end_time - start_time logging.info(f"Finished {func.__name__!r} in {run_time:.4f} secs") return value return wrapper_timer # class ModuleTimer() # I mean while we're practicing decorators throw this in the mix def debug(func): """Print the function signature and return value""" @functools.wraps(func) def wrapper_debug(*args, **kwargs): args_repr = [repr(a) for a in args] # 1 kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()] # 2 signature = ", ".join(args_repr + kwargs_repr) # 3 print(f"Calling {func.__name__}({signature})") value = func(*args, **kwargs) print(f"{func.__name__!r} returned {value!r}") # 4 return value return wrapper_debug def exc_timer(statement, setup=None): """A non-decorator implementation that uses `timeit`.""" t = Timer(stmt=statement, setup=setup) # outside the try/except try: return t.timeit() except Exception: # noqa E722 t.print_exc() class ArgReparser: """Class decorator that echoes out the arguments a function was called with.""" def __init__(self, func): """Initialize the reparser with the function it wraps.""" self.func = func def __call__(self, *args, **kwargs): print("entering function " + self.func.__name__) i = 0 for arg in args: print("arg {0}: {1}".format(i, arg)) i = i + 1 return self.func(*args, **kwargs) def time_dir(directory=None): """How long does it take to exec(compile(file)) every file in the startup dir?""" if directory is None: directory = get_ipython().startup_dir result = [] for i in scandir("."): if i.name.endswith(".py"): file = i.name print(file) print(time.time()) start_time = time.time() exec(compile(open(file).read(), "timer", "exec")) end = time.time() diff = end - start_time print(f"{diff}") result.append((file, diff)) return result class LineWatcher: """Class that implements a basic timer. Registers the `start` and `stop` methods with the IPython events API. """ def __init__(self): """Define the classes start_time parameter.""" self.start_time = self.start() def start(self): """Return `time.time`.""" return time.time() def __repr__(self): return f"{self.__class__.__name__} {self.start_time}" def stop(self): """Determine the difference between start time and end time.""" stop_time = time.time() diff = abs(stop_time - self.start_time) print("time: {}".format(format_delta(diff))) return diff def load_ipython_extension(ip=None, line_watcher=None): """Initialize a `LineWatcher` and register start and stop with IPython.""" if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.register("pre_run_cell", line_watcher.start) ip.events.register("post_run_cell", line_watcher.stop) def unload_ipython_extension(ip=None, line_watcher=None): if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.unregister("pre_run_cell", line_watcher.start) ip.events.unregister("post_run_cell", line_watcher.stop)
farisachugthai/dynamic_ipython
default_profile/util/timer.py
timer.py
py
5,023
python
en
code
7
github-code
6
77938817
""" file structure: flip_labels_and_scans.py scan_directrory - raw scans folder label_directrory - labels folder save_dir_scan - flipped scans folder (where they will be saved) save_dir_labels - flipped labels folder (where they will be saved) This script flips nii (nifti) labels and scans along the sagittal plane. The plane flipping occurs on can be modified by changing the transformation matrix in the flip3dlabel and flip3dscan functions. This script assumes the following file naming conventions: scans: "scanIdentifier_somesuffix.nii" labels: "scanIdentifier_50um_segmentation_IE-label.nii", the suffix can be modified by altering "label_name" in the "scan_flip_iterator" function. note that scanIdentifier should be unique. """ #imports import numpy as np import SimpleITK as sitk import os #specify directory of scans you would like to flip scan_directrory = 'scan_154um' #specify directory of where labelmaps are label_directrory = 'lab' #specify directory where you want to save flipped scans save_dir_scan = 'scan_save' #specify directory where you want to save flipped labels save_dir_labels = 'lab_save' def get_center(img): """ This function returns the physical center point of a 3d sitk image :param img: The sitk image we are trying to find the center of :return: The physical center point of the image """ width, height, depth = img.GetSize() return img.TransformIndexToPhysicalPoint((int(np.ceil(width/2)), int(np.ceil(height/2)), int(np.ceil(depth/2)))) def flip3dlabel(img): """ This function flips the sitk label passeed to it with NN interpolation :param img: An sitk labelmap :return: The flipped label """ affineTrans = sitk.AffineTransform(3) image_center = get_center(img) affineTrans.SetMatrix([-1,0,0,0,1,0,0,0,1]) affineTrans.SetCenter(image_center) flipped = sitk.Resample(img, affineTrans,sitk.sitkNearestNeighbor) return flipped def flip3dscan(img,lab): """ This function flips the sitk image passeed to it with BSpline interpolation :param img: An sitk image :param lab: An sitk label associated with the given image - used to maintain alignment :return: The flipped image """ affineTrans = sitk.AffineTransform(3) image_center = get_center(lab) affineTrans.SetMatrix([-1,0,0,0,1,0,0,0,1]) affineTrans.SetCenter(image_center) interpolator = sitk.sitkBSpline flipped = sitk.Resample(img, img, affineTrans, interpolator, -2000) return flipped def label_flip_iterator(file): """ This function is called each time a label is flipped. Naming and saving is done here. :param file: filename of label """ prefix = file.split("_")[0] #get the sample prefix IE '1932L' name_without_filetype = file.split(".nii")[0] #file name before the extension (.nii) newname = name_without_filetype+"_flipped.nii" lab = sitk.ReadImage(label_directrory+'/'+file) flipped_lab = flip3dlabel(lab) sitk.WriteImage(flipped_lab,save_dir_labels+"/"+newname)#labels are saved with _flipped appended to their original names def scan_flip_iterator(file): """ This function is called each time a scan is flipped. Naming and saving is done here. :param file: filename of scan """ prefix = file.split("_")[0] #get the scan prefix IE '1932L' name_without_filetype = file.split(".nii")[0] #everything before the extension (.nii) newname = name_without_filetype+"_flipped.nii" label_name = prefix+"_50um_segmentation_IE-label_flipped.nii" #labels corresponding to scans need this naming convention following prefix im = sitk.ReadImage(scan_directrory+"/"+file) lab = sitk.ReadImage(save_dir_labels+'/'+label_name) flipped_im = flip3dscan(im,lab) #flip the image with respect to its already flipped label sitk.WriteImage(flipped_im,save_dir_scan+"/"+newname) #scans are saved with _flipped appended to their original names dir=os.listdir(label_directrory) for i in range(0,len(dir)): #iterate through the directory of labels label_flip_iterator(dir[i]) dir=os.listdir(scan_directrory) for i in range(0,len(dir)): #iterate through the directory of raw scans scan_flip_iterator(dir[i])
kylerioux/python_ML_scripts
3d_image_preprocessing/flip_scans_and_labels.py
flip_scans_and_labels.py
py
4,139
python
en
code
0
github-code
6
34214358930
import json # Set file paths basePath = 'D:\\NTCIR-12_MathIR_arXiv_Corpus\\' inputPath = basePath + "output_FeatAna\\" index_file = 'inverse_semantic_index_formula_catalog(physics_all).json' #basePath = 'D:\\NTCIR-12_MathIR_Wikipedia_Corpus\\' #inputPath = basePath + "output_RE\\" #index_file = 'inverse_semantic_index_formula_catalog(Wikipedia).json' # Load inverse index with open(inputPath + index_file,'r',encoding='utf8') as f: formula_index = json.load(f) # Load example queries with open('../examples_list/formula_examples.json', 'r', encoding='utf8') as f: example_queries = json.load(f) results = {} for example_query in example_queries: GoldID = example_query['GoldID'] FormulaName = example_query['formula_name'] # retrieve only results that are common in all query word results common_results = {} for query_word in FormulaName.split(): try: for formula in formula_index[query_word].items(): try: common_results[formula[0]] += 1 except: common_results[formula[0]] = 1 except: pass ranking = {} for common_result in common_results.items(): if True: #common_result[1] == len(FormulaName.split()): for query_word in FormulaName.split(): try: ranking[common_result[0]] += formula_index[query_word][common_result[0]] except: try: ranking[common_result[0]] = formula_index[query_word][common_result[0]] except: pass result = {k: v for k, v in sorted(ranking.items(), key=lambda item: item[1],reverse=True)} results[GoldID] = (FormulaName,result) # output to csv csv_list = [] csv_list.append("GoldID\tName\tFormula\t(Score,Rank)\tDCG\tnDCG\n") for result in results.items(): # display only first hits or ranking cutoff displayed = False counter = 0 for formula in result[1][1].items(): if counter < 10: # True: #displayed == False: csv_list.append(result[0] + "\t" + result[1][0] + "\t" + formula[0].replace("\t","").replace("\n","") + "\t\t\t\n") displayed = True counter += 1 with open("inverse_formula_index_results.csv", 'w', encoding='utf8') as f: f.writelines(csv_list) print("end")
pratyushshukla19/Minor-Project-2
semanticsearch/modes13-15/evaluate_inverse_formula_index.py
evaluate_inverse_formula_index.py
py
2,411
python
en
code
0
github-code
6
44855958646
""" Source: https://www.geeksforgeeks.org/dynamic-programming-set-13-cutting-a-rod/ Given a rod of length n inches and an array of prices that contains prices of all pieces of size smaller than n. Determine the maximum value obtainable by cutting up the rod and selling the pieces. For example, if length of the rod is 8 and the values of different pieces are given as following, then the maximum obtainable value is 22 (by cutting in two pieces of lengths 2 and 6) length | 1 2 3 4 5 6 7 8 -------------------------------------------- price | 1 5 8 9 10 17 17 20 And if the prices are as following, then the maximum obtainable value is 24 (by cutting in eight pieces of length 1) length | 1 2 3 4 5 6 7 8 -------------------------------------------- price | 3 5 8 9 10 17 17 20 """ priceDict = {1:3, 2:5, 3:8, 4:9, 5:10, 6:17, 7:17, 8:20} solutions = {} def optOfN(n): if n in solutions.keys(): return solutions[n] if n == 1: solutions[1] = priceDict[1] return solutions[1] opt = [priceDict[n]] for i in range(1,int(n/2)+1): opt.append(optOfN(i)+optOfN(n-i)) solutions[n] = max(opt) return solutions[n] optOfN(8) print(solutions)
sandeepjoshi1910/Algorithms-and-Data-Structures
optimal_rod.py
optimal_rod.py
py
1,271
python
en
code
0
github-code
6
71476989628
import sys input = sys.stdin.readline dx = [1, 0] dy = [0, 1] T = int(input()) for tc in range(T): M, N, K = map(int, input().split()) original = [] stack = [] for _ in range(K): x, y = map(int, input().split()) original.append((x, y)) stack.append((x, y)) for nx, ny in original: for i in range(2): if 0 <= nx+dx[i] < M and 0 <= ny+dy[i] < N: if (nx+dx[i], ny+dy[i]) in original: if (nx+dx[i], ny+dy[i]) in stack: idx = stack.index((nx+dx[i], ny+dy[i])) stack.pop(idx) else: if (nx, ny) in stack: idx = stack.index((nx, ny)) stack.pop(idx) print(stack) print(len(stack))
YOONJAHYUN/Python
BOJ/1012_2.py
1012_2.py
py
831
python
en
code
2
github-code
6
73083659707
import numpy as np from scipy.spatial.distance import cdist import matplotlib.pyplot as plt def has_converged(centers, new_centers): return set([tuple(a) for a in centers]) == set([tuple(a) for a in new_centers]) def kmeans(X, K): # centroids = X[np.random.choice(X.shape[0], K, replace=False)] centroids = np.array([[1.0, 1.0], [5.0, 7.0]]) it = 0 while True: it += 1 D = cdist(X, centroids) labels = np.argmin(D, axis=1) new_centroids = np.zeros((K, X.shape[1])) for k in range(K): new_centroids[k, :] = np.mean(X[labels == k, :], axis=0) display(X, K, labels) plt.show() if has_converged(centroids, new_centroids): break centroids = new_centroids return labels, centroids def display(X, K, labels): for i in range(K): X0 = X[labels == i, :] plt.plot(X0[:, 0], X0[:, 1], '.') def error(X, K, labels): sum = 0 for i in range(K): X0 = X[labels == i, :] sum += np.std(X0) print(sum / K) def random_data(): for i in range(6): mean = 200 * np.random.random_sample((1, 2)) X0 = np.random.multivariate_normal(mean[0], [[10, 0], [0, 10]], np.random.randint(20, 50)) if i == 0: X = X0 else: X = np.concatenate((X, X0)) return X from sklearn.cluster import KMeans A = np.array([[1.0, 1.5, 3.0, 5.0, 3.5, 4.5, 3.5]]) B = np.array([[1.0, 2.0, 4.0, 7.0, 5.0, 5.0, 4.5]]) X = np.append(A.T, B.T, axis=1) # X = random_data() for K in range(2, 10): (labels, centroids) = kmeans(X, K) display(X, K, labels) plt.show() error(X, K, labels) cls = KMeans(n_clusters=K, random_state=0) cls.fit(X) lbl = cls.labels_ display(X, K, lbl) plt.show()
cuongdd2/cs582
lab6/prob4.py
prob4.py
py
1,807
python
en
code
0
github-code
6
41149275833
""" Internet Validators - ValidateEmail - ValidateIP - ValidateURL """ import socket import re from email_validator import validate_email, EmailNotValidError from flask_validator import Validator class ValidateEmail(Validator): """ Validate Email type. Check if the new value is a valid e-mail. Using this library to validate https://github.com/JoshData/python-email-validator Args: field: SQLAlchemy column to validate allow_null: (bool) Allow null values allow_smtputf8: (bool) Set to False to prohibit internationalized addresses that would require the SMTPUTF8. check_deliverability: (bool) Set to False to skip the domain name resolution check. allow_empty_local (bool) Set to True to allow an empty local part (i.e. @example.com), e.g. for validating Postfix aliases. allow_null: (bool) Allow null values throw_exception: (bool) Throw a ValidateError if the validation fails """ allow_smtputf8 = True check_deliverability = True allow_empty_local = False def __init__(self, field, allow_smtputf8=True,check_deliverability=True, allow_empty_local=False, allow_null=True, throw_exception=False, message=None): self.allow_smtputf8 = allow_smtputf8 self.check_deliverability = check_deliverability self.allow_empty_local = allow_empty_local Validator.__init__(self, field, allow_null, throw_exception, message) def check_value(self, value): try: validate_email(value, allow_smtputf8=self.allow_smtputf8, check_deliverability=self.check_deliverability, allow_empty_local=self.allow_empty_local) return True except EmailNotValidError: return False class ValidateIP(Validator): """ Validate Regex Compare a value against a regular expresion Args: field: SQLAlchemy column to validate ipv6: Match against IPV6 allow_null: (bool) Allow null values throw_exception: (bool) Throw a ValidateError if the validation fails """ ipv6 = None def __init__(self, field, ipv6=False, allow_null=True, throw_exception=False, message=None): self.ipv6 = ipv6 Validator.__init__(self, field, allow_null, throw_exception, message) def check_value(self, value): try: if not self.ipv6: socket.inet_pton(socket.AF_INET, value) else: socket.inet_pton(socket.AF_INET6, value) return True except socket.error: return False class ValidateURL(Validator): """ Validate URL Check if the values is a valid URL Args: field: SQLAlchemy column to validate allow_null: (bool) Allow null values. Default True throw_exception: (bool) Throw a ValidateError if the validation fails """ regex = r'^[a-z]+://(?P<host>[^/:]+)(?P<port>:[0-9]+)?(?P<path>\/.*)?$' def check_value(self, value): if re.match(self.regex, value): return True else: return False
xeBuz/Flask-Validator
flask_validator/constraints/internet.py
internet.py
py
3,190
python
en
code
28
github-code
6
20662954004
# Imports from math import pi pi * 71 / 223 from math import sin sin(pi/2) # Function values max max(3, 4) f = max f f(3, 4) max = 7 f(3, 4) f(3, max) f = 2 # f(3, 4) # User-defined functions from operator import add, mul add(2, 3) mul(2, 3) def square(x): return mul(x, x) square(21)
Thabhelo/CS7
lab/lab1/code03.py
code03.py
py
295
python
en
code
1
github-code
6
18555731856
import Adafruit_DHT from main.SQL import TempHandler import time class Temps(): def __init__(self): self.sensor = Adafruit_DHT.DHT11 self.pin = 17 self.humidity = 0 self.temperature = 0 def getDHT(self): self.humidity, self.temperature = Adafruit_DHT.read_retry(self.sensor, self.pin) dic ={} if self.humidity is not None and self.temperature is not None: dic['temperature'] = self.temperature dic['humidity'] = self.humidity temp = TempHandler.Temp(temperature=self.temperature, humidity=self.humidity) TempHandler.insert(temp) return dic else: return 'Failed to get reading. Try again!'
chinazkk/raspberry_car
main/Temps.py
Temps.py
py
736
python
en
code
0
github-code
6
39204707046
""" 题目介绍:剑指 Offer 48. 最长不含重复字符的子字符串 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度 """ def length_of_longest_substring(s): dic = {} res = tmp = 0 for j in range(len(s)): # 获取索引i i = dic.get(s[j], -1) # 更新哈希表 dic[s[j]] = j tmp = tmp + 1 if tmp < j - i else j - i res = max(res, tmp) return res s='abcdefgabcdabcikghjk' print(length_of_longest_substring(s)) def singleNumber(nums): counts = [0] * 32 for num in nums: for j in range(32): counts[j] += num & 1 num >>= 1 res, m = 0, 3 for i in range(32): res <<= 1 res |= counts[31 - i] % m return res if counts[31] % m == 0 else ~( res ^ 0xffffffff)
Davidhfw/algorithms
python/dp/48_lengthOfLongestSubstring.py
48_lengthOfLongestSubstring.py
py
856
python
en
code
1
github-code
6
74866931066
import datetime as dt import matplotlib.pyplot as plt import numpy as np import os class HobsHeader(object): sim_head = '"SIMULATED EQUIVALENT"' obs_head = '"OBSERVED VALUE"' obs_name = '"OBSERVATION NAME"' date = 'DATE' dyear = 'DECIMAL_YEAR' header = {sim_head: None, obs_head: None, obs_name: None, date: None, dyear: None} class HobsOut(dict): """ Reads output data from Hobs file and prepares it for post processing. Class sets observations to an ordered dictionary based on observation name If observation name is consistant for a site, a time series is created for plotting! Parameters ---------- filename : str hobs filename strip_after : str flag to indicate a character to strip the hobs label after for grouping wells. Example: OBS_1 OBS_2 strip_after could be set to "_" and then all OBS observations will be stored under the OBS key. This is extremely useful for plotting and calculating statistics """ def __init__(self, filename, strip_after=""): super(HobsOut, self).__init__() self.name = filename self._strip_after = strip_after self._dataframe = None self.__read_hobs_output() def __read_hobs_output(self): """ Method to read a hobs output file. Dynamically sets header information and reads associated values. Sets values to HobsOut dictionary """ with open(self.name) as hobout: for ix, line in enumerate(hobout): if ix == 0: self.__set_header(line) else: self.__set_dictionary_values(line) def __set_dictionary_values(self, line): """ Method to set incoming hobs line to dictionary data values Args: line: (str) """ t = line.strip().split() obsname = t[HobsHeader.header[HobsHeader.obs_name]] dict_name = obsname if self._strip_after: dict_name = obsname.split(self._strip_after)[0] simval = float(t[HobsHeader.header[HobsHeader.sim_head]]) obsval = float(t[HobsHeader.header[HobsHeader.obs_head]]) residual = simval - obsval date = self.__set_datetime_object(t[HobsHeader.header[HobsHeader.date]]) decimal_date = float(t[HobsHeader.header[HobsHeader.dyear]]) if dict_name in self: self[dict_name]['simval'].append(simval) self[dict_name]['obsval'].append(obsval) self[dict_name]['date'].append(date) self[dict_name]['decimal_date'].append(decimal_date) self[dict_name]['residual'].append(residual) self[dict_name]["obsname"].append(obsname) else: self[dict_name] = {"obsname": [obsname], "date": [date], "decimal_date": [decimal_date], "simval": [simval], "obsval": [obsval], "residual": [residual]} def __set_header(self, line): """ Reads header line and sets header index Parameters ---------- line : str first line of the HOB file """ n = 0 s = "" for i in line: s += i if s in HobsHeader.header: HobsHeader.header[s] = n n += 1 s = "" elif s in (" ", "\t", "\n"): s = "" else: pass for key, value in HobsHeader.header.items(): if value is None: raise AssertionError("HobsHeader headings must be updated") def __set_datetime_object(self, s): """ Reformats a string of YYYY-mm-dd to a datetime object Parameters ---------- s : str string of YYYY-mm-dd Returns ------- datetime.date """ return dt.datetime.strptime(s, "%Y-%m-%d") def __get_date_string(self, date): """ Parmaeters ---------- date: datetime.datetime object Returns ------- string """ return date.strftime("%Y/%m/%d") @property def obsnames(self): """ Return a list of obsnames from the HobsOut dictionary """ return self.keys() def to_dataframe(self): """ Method to get a pandas dataframe object of the HOBs data. Returns ------- pd.DataFrame """ import pandas as pd if self._dataframe is None: df = None for hobsname, d in self.items(): t = pd.DataFrame(d) if df is None: df = t else: df = pd.concat([df, t], ignore_index=True) self._dataframe = df return self._dataframe def get_sum_squared_errors(self, obsname): """ Returns the sum of squared errors from the residual Parameters ---------- obsname : str observation name Returns ------- float: sum of square error """ return sum([i**2 for i in self[obsname]['residual']]) def get_rmse(self, obsname): """ Returns the RMSE from the residual Parameters ---------- obsname : str observation name Returns ------- float: rmse """ return np.sqrt(np.mean([i**2 for i in self[obsname]['residual']])) def get_number_observations(self, obsname): """ Returns the number of observations for an obsname Parameters ---------- obsname : str observation name Returns ------- int """ return len(self[obsname]['simval']) def get_maximum_residual(self, obsname): """ Returns the datetime.date and maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(max(data)) date = self[obsname]['date'][index] return date, max(data) def get_minimum_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(min(data)) date = self[obsname]['date'][index] return date, min(data) def get_mean_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.mean(data) def get_median_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.median(data) def get_maximum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(max(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_minimum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(min(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_residual_bias(self, filter=None): """ Method to determine the bias of measurements +- by checking the residual. Returns fraction of residuals > 0. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false to use Returns ------- (float) fraction of residuals greater than zero """ nobs = 0. ngreaterzero = 0. for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = np.array(meta_data['residual']) rgreaterzero = sum((residual > 0)) nobs += residual.size ngreaterzero += rgreaterzero try: bias = ngreaterzero / nobs except ZeroDivisionError: raise ZeroDivisionError("No observations found!") return bias def write_dbf(self, dbfname, filter=None): """ Method to write a dbf file from a the HOBS dictionary Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for ix, val in enumerate(meta_data['simval']): data.append([obsname, self.__get_date_string(meta_data['date'][ix]), val, meta_data['obsval'][ix], meta_data['residual'][ix]]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("HobsDate", fieldType="D") w.field("HeadSim", fieldType='N', decimal=8) w.field("HeadObs", fieldType="N", decimal=8) w.field("Residual", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def write_min_max_residual_dbf(self, dbfname, filter=None): """ Method to write a dbf of transient observations using observation statistics Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue max_date, resid_max = self.get_maximum_residual(obsname) min_date, resid_min = self.get_minimum_residual(obsname) simval_max, obsval_max = self.get_maximum_residual_heads(obsname)[1:] simval_min, obsval_min = self.get_minimum_residual_heads(obsname)[1:] data.append([obsname, self.get_number_observations(obsname), self.__get_date_string(max_date), resid_max, self.__get_date_string(min_date), resid_min, simval_max, obsval_max, simval_min, obsval_min]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("FREQUENCY", fieldType="N") w.field("MaxDate", fieldType="C") w.field("MaxResid", fieldType='N', decimal=8) w.field("MinDate", fieldType="C", decimal=8) w.field("MinResid", fieldType="N", decimal=8) w.field("MaxHeadSim", fieldType="N", decimal=8) w.field("MaxHeadObs", fieldType="N", decimal=8) w.field("MinHeadSim", fieldType="N", decimal=8) w.field("MinHeadObs", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def __filter(self, obsname, filter): """ Boolean filetering method, checks if observation name is in the filter. Parameters ---------- obsname : str observation name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file Returns ------- bool: True if obsname in filter """ if filter is None: return False elif isinstance(filter, list) or isinstance(filter, tuple): if obsname in list: return True elif isinstance(filter, str): if obsname == filter: return True elif callable(filter): if filter(obsname): return True else: raise Exception("Filter is not an appropriate type") return False def write_summary_statistics_csv(self, csvname, filter=None): """ Method to write summary calibration statistics to a CSV file for analysis and reports Parameters ---------- csvname : str csv file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ data = [] header = ["Well name", "Average", "Median", "Minimum", "Maximum", "RMSE ft", "Frequency"] for obsname, meta_data in sorted(self.items()): if self.__filter(obsname, filter): continue resid_mean = self.get_mean_residual(obsname) resid_median = self.get_median_residual(obsname) resid_max = self.get_maximum_residual(obsname)[-1] resid_min = self.get_minimum_residual(obsname)[-1] rmse = self.get_rmse(obsname) frequency = self.get_number_observations(obsname) data.append((obsname, resid_mean, resid_median, resid_min, resid_max, rmse, frequency)) data = np.array(data, dtype=[('id', 'O'), ('mean', float), ('med', float), ('min', float), ('max', float), ('rmse', float), ('num', np.int)]) with open(csvname, "w") as foo: foo.write(",".join(header) + "\n") np.savetxt(foo, data, fmt="%15s,%.2f,%2f,%2f,%2f,%2f,%d") def plot(self, obsname, *args, **kwargs): """ Plotting functionality from the hobs dictionary Parameters ---------- obsname: str hobs package observation name *args: matplotlib args **kwargs: matplotlib kwargs Returns ------- matplotlib.pyplot.axes object """ simulated = True if "observed" in kwargs: simulated = False kwargs.pop('observed') observed = True if "simulated" in kwargs: observed = False kwargs.pop('simulated') if obsname not in self: raise AssertionError("Obsname {}: not valid".format(obsname)) axes = False if 'ax' in kwargs: ax = kwargs.pop('ax') axes = True if not axes: ax = plt.subplot(111) obsval = self[obsname]['obsval'] simval = self[obsname]['simval'] date = self[obsname]['date'] if observed: kwargs['label'] = "Observed" kwargs['color'] = 'r' ax.plot(date, obsval, *args, **kwargs) if simulated: kwargs['label'] = "Simulated" kwargs['color'] = 'b' ax.plot(date, simval, *args, **kwargs) return ax def plot_measured_vs_simulated(self, filter=None, **kwargs): """ Plots measured vs. simulated data along a 1:1 profile. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue simulated = meta_data['simval'] observed = meta_data['obsval'] axes.plot(observed, simulated, 'bo', markeredgecolor='k') return axes def plot_simulated_vs_residual(self, filter=None, histogram=False, **kwargs): """ Creates a matplotlib plot of simulated heads vs residual Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file histogram: (bool) Boolean variable that defines either a scatter plot (False) or a histogram (True) of residuals **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) if not histogram: for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = meta_data['residual'] observed = meta_data['obsval'] axes.plot(observed, residual, 'bo', markeredgecolor="k") else: bins = np.arange(-25, 26, 5) d = {} for ix, abin in enumerate(bins): frequency = 0 for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for residual in meta_data['residual']: if ix == 0: if residual < abin: frequency += 1 elif ix == (len(bins) - 1): if residual > abin: frequency += 1 else: if bins[ix - 1] <= residual < abin: frequency += 1 if ix == 0: name = "Less than {}".format(abin) elif ix == (len(bins) - 1): name = "Greater than {}".format(abin) else: name = "{} to {}".format(bins[ix - 1] + 1, abin) d[ix + 1] = {'name': name, 'frequency': frequency} tick_num = [] tick_name = [] for index, meta_data in sorted(d.items()): axes.bar(index, meta_data['frequency'], width=0.8, **kwargs) tick_num.append(index) tick_name.append(meta_data['name']) plt.xticks(tick_num, tick_name, rotation=45, fontsize=10) plt.xlim([0.5, len(tick_num) + 1]) plt.subplots_adjust(left=0.12, bottom=0.22, right=0.90, top=0.90, wspace=0.20, hspace=0.20) plt.ylabel("Frequency") return axes if __name__ == "__main__": ws = r'C:\Users\jlarsen\Desktop\Lucerne\Lucerne_OWHM\V0_initial_from_MODOPTIM\output' hobs_name = "hobs.out" tmp = HobsOut(os.path.join(ws, hobs_name)) tmp.plot("04N01W01R04S", "o-") plt.legend(loc=0, numpoints=1) plt.show() print('break')
jlarsen-usgs/HydrographTools
hobs_output.py
hobs_output.py
py
22,180
python
en
code
1
github-code
6
33837428124
import array import struct import sys from collections import namedtuple import plotly.express as px import numpy as np from scipy.ndimage import uniform_filter1d from statsmodels.nonparametric.smoothers_lowess import lowess import matplotlib.pyplot as plt from math import degrees, atan import scipy.signal TYPE_DIGITAL = 0 TYPE_ANALOG = 1 expected_version = 0 AnalogData = namedtuple('AnalogData', ('begin_time', 'sample_rate', 'downsample', 'num_samples', 'samples')) def parse_analog(f): # Parse header identifier = f.read(8) if identifier != b"<SALEAE>": raise Exception("Not a saleae file") version, datatype = struct.unpack('=ii', f.read(8)) if version != expected_version or datatype != TYPE_ANALOG: raise Exception("Unexpected data type: {}".format(datatype)) # Parse analog-specific data begin_time, sample_rate, downsample, num_samples = struct.unpack('=dqqq', f.read(32)) # Parse samples samples = array.array("f") samples.fromfile(f, num_samples) return AnalogData(begin_time, sample_rate, downsample, num_samples, samples) if __name__ == '__main__': times = [] volts = [] anchor = 0 filename = sys.argv[1] print("Opening " + filename) with open(filename, 'rb') as f: data = parse_analog(f) # Print out all analog data print("Begin time: {}".format(data.begin_time)) print("Sample rate: {}".format(data.sample_rate)) print("Downsample: {}".format(data.downsample)) print("Number of samples: {}".format(data.num_samples)) j = 0 for idx, voltage in enumerate(data.samples): sample_num = idx * data.downsample #thing/(thing/sec) = thing*(sec/thing) = sec time = data.begin_time + (float(sample_num) / data.sample_rate) times.append(time) volts.append(min(voltage,1.3345)) j = j + 1 volts = scipy.ndimage.median_filter(volts, int((data.sample_rate/data.downsample)*.002)+1) #volts = uniform_filter1d(volts, size=int((data.sample_rate/data.downsample)*.002)) """ filtered = lowess(volts, times, frac=0.0005) plt.plot(filtered[:, 0], filtered[:, 1], 'r-', linewidth=3) plt.show() """ upper_bound = lower_bound = volts[0] for i in range(0,int(data.num_samples*.2)): upper_bound = max(upper_bound, volts[i]) lower_bound = min(lower_bound, volts[i]) v_noise = .0 sample_size = .3 slope_range = int(data.num_samples*.05) temp_threshold = 0.0 angle_threshold = 30.0 tslope_range = 10 """ for s in range(100,11000,100): i = 0 while i < int(data.num_samples*sample_size): l_b = max(i-s,0) r_b = min(i+s,data.num_samples) v_noise = volts[r_b] - volts[l_b] if temp_threshold <= abs(degrees(atan(v_noise/((times[r_b]-times[l_b]))))): temp_threshold = abs(degrees(atan(v_noise/((times[r_b]-times[l_b]))))) print("({},{})({},{})".format(times[l_b], volts[l_b], times[r_b], volts[r_b])) i = i + 1 print("Temp Threshold: {}".format(temp_threshold)) if temp_threshold < angle_threshold: angle_threshold = temp_threshold slope_range = s """ print("Angle Threshold: {}".format(angle_threshold)) start = 0 state = 0 #red is horizontal, b is rise, green is fall colors = ['r','b','g'] i = 1 angle_threshold = 1 slope_range = int(data.num_samples*.002) while i < data.num_samples: l_b = max(i-slope_range,0) r_b = min(i+slope_range,data.num_samples-1) v_noise = volts[r_b] - volts[l_b] angle = degrees(atan(v_noise/((times[r_b]-times[l_b])))) if abs(angle) <= angle_threshold and state != 0: #print("Horizontal line detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 0 start = i elif angle > angle_threshold and state != 1: #print("Rise detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 1 start = i elif angle < -angle_threshold and state != 2: #print("Descent detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 2 start = i i = i + 1 plt.plot(times[start:i], volts[start:i], colors[state]) #plt.plot(times, volts) plt.show()
nkelly1322/analog_analysis
AnalogAnalysis.py
AnalogAnalysis.py
py
4,559
python
en
code
0
github-code
6
74732381948
import numpy as np import tensorflow as tf import cv2 def colormap_jet(img): color_image = cv2.applyColorMap(np.uint8(img), cv2.COLORMAP_JET) return color_image def color_disparity(disparity): with tf.variable_scope('color_disparity'): batch_size = disparity.shape[0] color_maps = [] for i in range(batch_size): color_disp = tf.py_func(colormap_jet, [-disparity[i]], tf.uint8) color_maps.append(color_disp) color_batch = tf.stack(color_maps, axis=0) return color_batch def count_text_lines(file_path): f = open(file_path, 'r') lines = f.readlines() f.close() return len(lines)
fabiotosi92/monoResMatch-Tensorflow
utils.py
utils.py
py
677
python
en
code
117
github-code
6
21916066362
#condig=utf-8 ###二叉树 #树节点 class Node(object): def __init__(self,elem=-1, lchild =None,rchild = None): #节点的值 self.elem = elem #左节点 self.lchild = lchild #右节点 self.rchild = rchild #树 class Tree(object): def __init__(self): self.root = Node() self.myQueue = [] def add(self,elem): node = Node(elem) if self.root.elem == -1: # 如果树是空的,则对根节点赋值 self.root = node self.myQueue.append(self.root) else: treeNode = self.myQueue[0] #为此节点的左右子节点赋值 if treeNode.lchild == None: treeNode.lchild = node self.myQueue.append(treeNode.lchild) else: print(list(f.elem for f in self.myQueue)) treeNode.rchild=node self.myQueue.append(treeNode.rchild) self.myQueue.pop(0) # 如果该结点存在右子树,将此结点丢弃。 ###先序遍历 def front_digui(self,root): if root == None: return print(root.elem) self.front_digui(root.lchild) self.front_digui(root.rchild) ###递归中序遍历 def middle_digui(self,root): if root == None: return self.middle_digui(root.lchild) print(root.elem) self.middle_digui(root.rchild) ###递归后序遍历 def lafter_digui(self,root): if root == None: return self.middle_digui(root.lchild) self.middle_digui(root.rchild) print(root.elem) ###队列层次遍历 def level_queue(self,root): if root == None: return myQueue=[] node = root myQueue.append(node) while myQueue: node=myQueue.pop(0) print(node.elem) if node.lchild != None: myQueue.append(node.lchild) if node.rchild != None: myQueue.append(node.rchild) ###堆栈先序遍历 def front_stack(self,root): if root == None: return myStack = [] node = root while node or myStack: while node: print(node.elem) myStack.append(node) node = node.lchild node = myStack.pop() node = node.rchild ###堆栈中序遍历 def middle_stack(self, root): if root == None: return myStack = [] node = root while node or myStack: while node: #从根节点开始,一直找它的左子树 print(node.elem) myStack.append(node) node = node.lchild node = myStack.pop() #while结束表示当前节点node为空,即前一个节点没有左子树了 node = node.rchild #开始查看它的右子树 ##堆栈后序遍历 def later_stack(self,root): if root == None: return myStack1 = [] myStack2 = [] node = root myStack1.append(node) while myStack1: #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面 node = myStack1.pop() if node.lchild: myStack1.append(node.lchild) if node.rchild: myStack1.append(node.rchild) myStack2.append(node) while myStack2: #将myStack2中的元素出栈,即为后序遍历次序 print(myStack2.pop().elem) if __name__ == '__main__': pass # """主函数""" # elems = range(10) #生成十个数据作为树节点 # tree = Tree() #新建一个树对象 # for elem in elems: # tree.add(elem) #逐个添加树的节点 # # # print ('\n\n递归实现先序遍历:') # # tree.front_digui(tree.root) # # tree.level_queue(tree.root) # # print(tree.root.elem) # # print(list(f.elem for f in tree.myQueue)) # tree.middle_digui(tree.root)
DC-Joney/Machine-Learning
Arithmetic/nodetree.py
nodetree.py
py
4,247
python
en
code
1
github-code
6
24698015874
## # The model uses elements from both the Transformer Encoder as introduced in # “Attention is All You Need” (https://arxiv.org/pdf/1706.03762.pdf) and the # Message Passing Neural Network (MPNN) as described in "Neural Message Passing # for Quantum Chemistry" paper (https://arxiv.org/pdf/1704.01212.pdf) . # # The overall architecture most closely resembles the Transformer Encoder with # stacked encoder blocks and layers connected through residual connections with # layer norm. In this case however the encoder blocks are build up of two # message passing layers, followed by three different types of attention layers # with a final pointwise feed-forward network. # # Both message passing layers use a slightly modified version of the edge # networks as detailed in the MPNN paper. The first layer allows message passing # between bonded atoms, whereas the second layer does so for the atom pairs for # which we need to predict the scalar coupling constant. Unlike the attention # layers the message passing layers' parameters are tied across blocks. # # The three attention layers are: # 1. distance based gaussian attention # 2. graph distance based attention # 3. scaled dot product self attention # # Although the final layers in the block resemble the encoder blocks of the # Transformer model, there are several additional layers designed specifically # to capture the structure and relationships among atoms in a molecule. # # Much of the code is adopted from the annotated version of the Transformer # paper, which can be found here # (http://nlp.seas.harvard.edu/2018/04/03/attention.html). import math import copy import torch import torch.nn as nn import torch.nn.functional as F from fcnet import FullyConnectedNet, hidden_layer from scatter import scatter_mean from layernorm import LayerNorm def clones(module, N): """Produce N identical layers.""" return torch.nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super().__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): """Apply residual connection to any sublayer with the same size.""" return x + self.dropout(sublayer(self.norm(x))) def _gather_nodes(x, idx, sz_last_dim): idx = idx.unsqueeze(-1).expand(-1, -1, sz_last_dim) return x.gather(1, idx) class ENNMessage(nn.Module): """ The edge network message passing function from the MPNN paper. Optionally adds and additional cosine angle based attention mechanism over incoming messages. """ PAD_VAL = -999 def __init__(self, d_model, d_edge, kernel_sz, enn_args={}, ann_args=None): super().__init__() assert kernel_sz <= d_model self.d_model, self.kernel_sz = d_model, kernel_sz self.enn = FullyConnectedNet(d_edge, d_model*kernel_sz, **enn_args) if ann_args: self.ann = FullyConnectedNet(1, d_model, **ann_args) else: self.ann = None def forward(self, x, edges, pairs_idx, angles=None, angles_idx=None, t=0): """Note that edges and pairs_idx raw inputs are for a unidirectional graph. They are expanded to allow bidirectional message passing.""" if t==0: self.set_a_mat(edges) if self.ann: self.set_attn(angles) # concat reversed pairs_idx for bidirectional message passing self.pairs_idx = torch.cat([pairs_idx, pairs_idx[:,:,[1,0]]], dim=1) return self.add_message(torch.zeros_like(x), x, angles_idx) def set_a_mat(self, edges): n_edges = edges.size(1) a_vect = self.enn(edges) a_vect = a_vect / (self.kernel_sz ** .5) # rescale mask = edges[:,:,0,None].expand(a_vect.size())==self.PAD_VAL a_vect = a_vect.masked_fill(mask, 0.0) self.a_mat = a_vect.view(-1, n_edges, self.d_model, self.kernel_sz) # concat a_mats for bidirectional message passing self.a_mat = torch.cat([self.a_mat, self.a_mat], dim=1) def set_attn(self, angles): angles = angles.unsqueeze(-1) self.attn = self.ann(angles) mask = angles.expand(self.attn.size())==self.PAD_VAL self.attn = self.attn.masked_fill(mask, 0.0) def add_message(self, m, x, angles_idx=None): """Add message for atom_{i}: m_{i} += sum_{j}[attn_{ij} A_{ij}x_{j}].""" # select the 'x_{j}' feeding into the 'm_{i}' x_in = _gather_nodes(x, self.pairs_idx[:,:,1], self.d_model) # do the matrix multiplication 'A_{ij}x_{j}' if self.kernel_sz==self.d_model: # full matrix multiplcation ax = (x_in.unsqueeze(-2) @ self.a_mat).squeeze(-2) else: # do a convolution x_padded = F.pad(x_in, self.n_pad) x_unfolded = x_padded.unfold(-1, self.kernel_sz, 1) ax = (x_unfolded * self.a_mat).sum(-1) # apply atttention if self.ann: n_pairs = self.pairs_idx.size(1) # average all attn(angle_{ijk}) per edge_{ij}. # i.e.: attn_{ij} = sum_{k}[attn(angle_{ijk})] / n_angles_{ij} ave_att = scatter_mean(self.attn, angles_idx, num=n_pairs, dim=1, out=torch.ones_like(ax)) ax = ave_att * ax # sum up all 'A_{ij}h_{j}' per node 'i' idx_0 = self.pairs_idx[:,:,0,None].expand(-1, -1, self.d_model) return m.scatter_add(1, idx_0, ax) @property def n_pad(self): k = self.kernel_sz return (k // 2, k // 2 - int(k % 2 == 0)) class MultiHeadedDistAttention(nn.Module): """Generalizes the euclidean and graph distance based attention layers.""" def __init__(self, h, d_model): super().__init__() self.d_model, self.d_k, self.h = d_model, d_model // h, h self.attn = None self.linears = clones(nn.Linear(d_model, d_model), 2) def forward(self, dists, x, mask): batch_size = x.size(0) x = self.linears[0](x).view(batch_size, -1, self.h, self.d_k) x, self.attn = self.apply_attn(dists, x, mask) x = x.view(batch_size, -1, self.h * self.d_k) return self.linears[-1](x) def apply_attn(self, dists, x, mask): attn = self.create_raw_attn(dists, mask) attn = attn.transpose(-2,-1).transpose(1, 2) x = x.transpose(1, 2) x = torch.matmul(attn, x) x = x.transpose(1, 2).contiguous() return x, attn def create_raw_attn(self, dists, mask): pass class MultiHeadedGraphDistAttention(MultiHeadedDistAttention): """Attention based on an embedding of the graph distance matrix.""" MAX_GRAPH_DIST = 10 def __init__(self, h, d_model): super().__init__(h, d_model) self.embedding = nn.Embedding(self.MAX_GRAPH_DIST+1, h) def create_raw_attn(self, dists, mask): emb_dists = self.embedding(dists) mask = mask.unsqueeze(-1).expand(emb_dists.size()) emb_dists = emb_dists.masked_fill(mask==0, -1e9) return F.softmax(emb_dists, dim=-2).masked_fill(mask==0, 0) class MultiHeadedEuclDistAttention(MultiHeadedDistAttention): """Attention based on a parameterized normal pdf taking a molecule's euclidean distance matrix as input.""" def __init__(self, h, d_model): super().__init__(h, d_model) self.log_prec = nn.Parameter(torch.Tensor(1, 1, 1, h)) self.locs = nn.Parameter(torch.Tensor(1, 1, 1, h)) nn.init.normal_(self.log_prec, mean=0.0, std=0.1) nn.init.normal_(self.locs, mean=0.0, std=1.0) def create_raw_attn(self, dists, mask): dists = dists.unsqueeze(-1).expand(-1, -1, -1, self.h) z = torch.exp(self.log_prec) * (dists - self.locs) pdf = torch.exp(-0.5 * z ** 2) return pdf / pdf.sum(dim=-2, keepdim=True).clamp(1e-9) def attention(query, key, value, mask=None, dropout=None): """Compute 'Scaled Dot Product Attention'.""" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask==0, -1e9) p_attn = F.softmax(scores, dim=-1).masked_fill(mask==0, 0) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedSelfAttention(nn.Module): """Applies self-attention as described in the Transformer paper.""" def __init__(self, h, d_model, dropout=0.1): super().__init__() self.d_model, self.d_k, self.h = d_model, d_model // h, h self.attn = None self.linears = clones(nn.Linear(d_model, d_model), 4) self.dropout = nn.Dropout(p=dropout) if dropout > 0.0 else None def forward(self, x, mask): # Same mask applied to all h heads. mask = mask.unsqueeze(1) batch_size = x.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [ l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l in self.linears[:3] ] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask, self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() x = x.view(batch_size, -1, self.d_model) return self.linears[-1](x) class AttendingLayer(nn.Module): """Stacks the three attention layers and the pointwise feedforward net.""" def __init__(self, size, eucl_dist_attn, graph_dist_attn, self_attn, ff, dropout): super().__init__() self.eucl_dist_attn = eucl_dist_attn self.graph_dist_attn = graph_dist_attn self.self_attn = self_attn self.ff = ff self.subconns = clones(SublayerConnection(size, dropout), 4) self.size = size def forward(self, x, eucl_dists, graph_dists, mask): eucl_dist_sub = lambda x: self.eucl_dist_attn(eucl_dists, x, mask) x = self.subconns[0](x, eucl_dist_sub) graph_dist_sub = lambda x: self.graph_dist_attn(graph_dists, x, mask) x = self.subconns[1](x, graph_dist_sub) self_sub = lambda x: self.self_attn(x, mask) x = self.subconns[2](x, self_sub) return self.subconns[3](x, self.ff) class MessagePassingLayer(nn.Module): """Stacks the bond and scalar coupling pair message passing layers.""" def __init__(self, size, bond_mess, sc_mess, dropout, N): super().__init__() self.bond_mess = bond_mess self.sc_mess = sc_mess self.linears = clones(nn.Linear(size, size), 2*N) self.subconns = clones(SublayerConnection(size, dropout), 2*N) def forward(self, x, bond_x, sc_pair_x, angles, mask, bond_idx, sc_idx, angles_idx, t=0): bond_sub = lambda x: self.linears[2*t]( self.bond_mess(x, bond_x, bond_idx, angles, angles_idx, t)) x = self.subconns[2*t](x, bond_sub) sc_sub = lambda x: self.linears[(2*t)+1]( self.sc_mess(x, sc_pair_x, sc_idx, t=t)) return self.subconns[(2*t)+1](x, sc_sub) class Encoder(nn.Module): """Encoder stacks N attention layers and one message passing layer.""" def __init__(self, mess_pass_layer, attn_layer, N): super().__init__() self.mess_pass_layer = mess_pass_layer self.attn_layers = clones(attn_layer, N) self.norm = LayerNorm(attn_layer.size) def forward(self, x, bond_x, sc_pair_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx): """Pass the inputs (and mask) through each block in turn. Note that for each block the same message passing layer is used.""" for t, attn_layer in enumerate(self.attn_layers): x = self.mess_pass_layer(x, bond_x, sc_pair_x, angles, mask, bond_idx, sc_idx, angles_idx, t) x = attn_layer(x, eucl_dists, graph_dists, mask) return self.norm(x) # After N blocks of message passing and attending, the encoded atom states are # transferred to the head of the model: a customized feed-forward net for # predicting the scalar coupling (sc) constant. # First the relevant pairs of atom states for each sc constant in the batch # are selected, concatenated and stacked. Also concatenated to the encoded # states are a set of raw molecule and sc pair specific features. These states # are fed into a residual block comprised of a dense layer followed by a type # specific dense layer of dimension 'd_ff' (the same as the dimension used for # the pointwise feed-forward net). # The processed states are passed through to a relatively small feed-forward # net, which predicts each sc contribution seperately plus a residual. # Ultimately, the predictions of these contributions and the residual are summed # to predict the sc constant. def create_contrib_head(d_in, d_ff, act, dropout=0.0, layer_norm=True): layers = hidden_layer(d_in, d_ff, False, dropout, layer_norm, act) layers += hidden_layer(d_ff, 1, False, 0.0) # output layer return nn.Sequential(*layers) class ContribsNet(nn.Module): """The feed-forward net used for the sc contribution and final sc constant predictions.""" N_CONTRIBS = 5 CONTIB_SCALES = [1, 250, 45, 35, 500] # scales used to make the 5 predictions of similar magnitude def __init__(self, d_in, d_ff, vec_in, act, dropout=0.0, layer_norm=True): super().__init__() contrib_head = create_contrib_head(d_in, d_ff, act, dropout, layer_norm) self.blocks = clones(contrib_head, self.N_CONTRIBS) def forward(self, x): ys = torch.cat( [b(x)/s for b,s in zip(self.blocks, self.CONTIB_SCALES)], dim=-1) return torch.cat([ys[:,:-1], ys.sum(dim=-1, keepdim=True)], dim=-1) class MyCustomHead(nn.Module): """Joins the sc type specific residual block with the sc contribution feed-forward net.""" PAD_VAL = -999 N_TYPES = 8 def __init__(self, d_input, d_ff, d_ff_contribs, pre_layers=[], post_layers=[], act=nn.ReLU(True), dropout=3*[0.], norm=False): super().__init__() fc_pre = hidden_layer(d_input, d_ff, False, dropout[0], norm, act) self.preproc = nn.Sequential(*fc_pre) fc_type = hidden_layer(d_ff, d_input, False, dropout[1], norm, act) self.types_net = clones(nn.Sequential(*fc_type), self.N_TYPES) self.contribs_net = ContribsNet( d_input, d_ff_contribs, d_ff, act, dropout[2], layer_norm=norm) def forward(self, x, sc_types): # stack inputs with a .view for easier processing x, sc_types = x.view(-1, x.size(-1)), sc_types.view(-1) mask = sc_types != self.PAD_VAL x, sc_types = x[mask], sc_types[mask] x_ = self.preproc(x) x_types = torch.zeros_like(x) for i in range(self.N_TYPES): t_idx = sc_types==i if torch.any(t_idx): x_types[t_idx] = self.types_net[i](x_[t_idx]) else: x_types = x_types + 0.0 * self.types_net[i](x_) # fake call (only necessary for distributed training - to make sure all processes have gradients for all parameters) x = x + x_types return self.contribs_net(x) class Transformer(nn.Module): """Molecule transformer with message passing.""" def __init__(self, d_atom, d_bond, d_sc_pair, d_sc_mol, N=6, d_model=512, d_ff=2048, d_ff_contrib=128, h=8, dropout=0.1, kernel_sz=128, enn_args={}, ann_args={}): super().__init__() assert d_model % h == 0 self.d_model = d_model c = copy.deepcopy bond_mess = ENNMessage(d_model, d_bond, kernel_sz, enn_args, ann_args) sc_mess = ENNMessage(d_model, d_sc_pair, kernel_sz, enn_args) eucl_dist_attn = MultiHeadedEuclDistAttention(h, d_model) graph_dist_attn = MultiHeadedGraphDistAttention(h, d_model) self_attn = MultiHeadedSelfAttention(h, d_model, dropout) ff = FullyConnectedNet(d_model, d_model, [d_ff], dropout=[dropout]) message_passing_layer = MessagePassingLayer( d_model, bond_mess, sc_mess, dropout, N) attending_layer = AttendingLayer( d_model, c(eucl_dist_attn), c(graph_dist_attn), c(self_attn), c(ff), dropout ) self.projection = nn.Linear(d_atom, d_model) self.encoder = Encoder(message_passing_layer, attending_layer, N) self.write_head = MyCustomHead( 2 * d_model + d_sc_mol, d_ff, d_ff_contrib, norm=True) def forward(self, atom_x, bond_x, sc_pair_x, sc_mol_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx, sc_types): x = self.encoder( self.projection(atom_x), bond_x, sc_pair_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx ) # for each sc constant in the batch select and concat the relevant pairs # of atom states. x = torch.cat( [_gather_nodes(x, sc_idx[:,:,0], self.d_model), _gather_nodes(x, sc_idx[:,:,1], self.d_model), sc_mol_x], dim=-1 ) return self.write_head(x, sc_types)
robinniesert/kaggle-champs
model.py
model.py
py
17,738
python
en
code
48
github-code
6
17692957276
import os import re import asyncio import time from pyrogram import * from pyrogram.types import * from random import choice from Heroku import cloner, ASSUSERNAME, BOT_NAME from Heroku.config import API_ID, API_HASH IMG = ["https://telegra.ph/file/cefd3211a5acdcd332415.jpg", "https://telegra.ph/file/30d743cea510c563af6e3.jpg", "https://telegra.ph/file/f7ae22a1491f530c05279.jpg", "https://telegra.ph/file/2f1c9c98452ae9a958f7d.jpg"] MESSAGE = "Heya! I'm a music bot hoster/Cloner\n\nI can Host Your Bot On My Server within seconds\n\nTry /clone Token from @botfather" @cloner.on_message(filters.private & filters.command("dkkdej")) async def hello(client, message: Message): buttons = [ [ InlineKeyboardButton("✘ ᴜᴘᴅᴀᴛᴇꜱ ᴄʜᴀɴɴᴇʟ", url="t.me/TheUpdatesChannel"), ], [ InlineKeyboardButton("✘ ꜱᴜᴘᴘᴏʀᴛ ɢʀᴏᴜᴘ", url="t.me/TheSupportChat"), ], ] reply_markup = InlineKeyboardMarkup(buttons) await client.send_photo(message.chat.id, f"{choice(IMG)}", caption=MESSAGE, reply_markup=reply_markup) ##Copy from here # © By Itz-Zaid Your motherfucker if uh Don't gives credits. @cloner.on_message(filters.private & filters.command("clone")) async def clone(bot, msg: Message): chat = msg.chat text = await msg.reply("Kullanım:\n\n /clone token") cmd = msg.command phone = msg.command[1] try: await text.edit("Yükleniyor... ") # change this Directry according to ur repo client = Client(":memory:", API_ID, API_HASH, bot_token=phone, plugins={"root": "Heroku.modules"}) await client.start() user = await client.get_me() await msg.reply(f"Başarıyla Başlatıldı @{user.username}! ✅ \n\n Şimdi Botunuzu ve Asistanı @{ASSUSERNAME} Grubunuza Ekleyin!") except Exception as e: await msg.reply(f"**HATA:** `{str(e)}`\nYeniden /start veriniz.") #End ##This code fit with every pyrogram Codes just import then @Client Xyz!
Amahocaam/SmokeX
Heroku/plugins/clone.py
clone.py
py
2,063
python
en
code
0
github-code
6
26436839942
from PIL import Image imgx = 512 imgy = 512 image = Image.new("RGB",(imgx,imgy)) for x in range(imgx): for y in range(imgy): if ((x//64)%2 == 1) or ((x//64)%2 == 2) and (y//64)%2 == 1 or ((y//64)%2 == 2): image.putpixel ((x,y), (0,0,0) ) else: image.putpixel ((x,y), (250,0,0) ) image.save("demo_image.png", "PNG")
gbroady19/CS550
intropil.py
intropil.py
py
334
python
en
code
0
github-code
6
26625288006
from decimal import Decimal from django import template from livesettings import config_value from product.utils import calc_discounted_by_percentage, find_best_auto_discount from tax.templatetags import satchmo_tax register = template.Library() def sale_price(product): """Returns the sale price, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_sale_price(product) else: return untaxed_sale_price(product) register.filter('sale_price', sale_price) def untaxed_sale_price(product): """Returns the product unit price with the best auto discount applied.""" discount = find_best_auto_discount(product) price = product.unit_price if discount and discount.valid_for_product(product): price = calc_discounted_by_percentage(price, discount.percentage) return price register.filter('untaxed_sale_price', untaxed_sale_price) def taxed_sale_price(product): """Returns the product unit price with the best auto discount applied and taxes included.""" taxer = satchmo_tax._get_taxprocessor() price = untaxed_sale_price(product) price = price + taxer.by_price(product.taxClass, price) return price register.filter('taxed_sale_price', taxed_sale_price) def discount_cart_total(cart, discount): """Returns the discounted total for this cart, with tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_cart_total(cart, discount) else: return untaxed_discount_cart_total(cart, discount) register.filter('discount_cart_total', discount_cart_total) def untaxed_discount_cart_total(cart, discount): """Returns the discounted total for this cart""" total = Decimal('0.00') for item in cart: total += untaxed_discount_line_total(item, discount) return total register.filter('untaxed_discount_cart_total', untaxed_discount_cart_total) def taxed_discount_cart_total(cart, discount): """Returns the discounted total for this cart with taxes included""" total = Decimal('0.00') for item in cart: total += taxed_discount_line_total(item, discount) return total register.filter('taxed_discount_cart_total', taxed_discount_cart_total) def discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_line_total(cartitem, discount) else: return untaxed_discount_line_total(cartitem, discount) register.filter('discount_line_total', discount_line_total) def untaxed_discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item""" price = cartitem.line_total if discount and discount.valid_for_product(cartitem.product): price = calc_discounted_by_percentage(price, discount.percentage) return price register.filter('untaxed_discount_line_total', untaxed_discount_line_total) def taxed_discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item with taxes included.""" price = untaxed_discount_line_total(cartitem, discount) taxer = satchmo_tax._get_taxprocessor() price = price + taxer.by_price(cartitem.product.taxClass, price) return price register.filter('taxed_discount_line_total', taxed_discount_line_total) def discount_price(product, discount): """Returns the product price with the discount applied, including tax if that is the default. Ex: product|discount_price:sale """ if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_price(product, discount) else: return untaxed_discount_price(product, discount) register.filter('discount_price', discount_price) def untaxed_discount_price(product, discount): """Returns the product price with the discount applied. Ex: product|discount_price:sale """ up = product.unit_price if discount and discount.valid_for_product(product): pcnt = calc_discounted_by_percentage(up, discount.percentage) return pcnt else: return up register.filter('untaxed_discount_price', untaxed_discount_price) def taxed_discount_price(product, discount): """Returns the product price with the discount applied, and taxes included. Ex: product|discount_price:sale """ price = untaxed_discount_price(product, discount) taxer = satchmo_tax._get_taxprocessor() return price + taxer.by_price(product.taxClass, price) register.filter('taxed_discount_price', taxed_discount_price) def discount_ratio(discount): """Returns the discount as a ratio, making sure that the percent is under 1""" pcnt = discount.percentage if pcnt > 1: pcnt = pcnt/100 return 1-pcnt register.filter('discount_ratio', discount_ratio) def discount_saved(product, discount): """Returns the amount saved by the discount, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_saved(product, discount) else: return untaxed_discount_saved(product, discount) register.filter('discount_saved', discount_saved) def untaxed_discount_saved(product, discount): """Returns the amount saved by the discount""" if discount and discount.valid_for_product(product): price = product.unit_price discounted = untaxed_discount_price(product, discount) saved = price - discounted cents = Decimal("0.01") return saved.quantize(cents) else: return Decimal('0.00') register.filter('untaxed_discount_saved', untaxed_discount_saved) def taxed_discount_saved(product, discount): """Returns the amount saved by the discount, after applying taxes.""" if discount and discount.valid_for_product(product): price = product.unit_price discounted = taxed_discount_price(product, discount) saved = price - discounted cents = Decimal("0.01") return saved.quantize(cents) else: return Decimal('0.00') register.filter('taxed_discount_saved', taxed_discount_saved)
dokterbob/satchmo
satchmo/apps/product/templatetags/satchmo_discounts.py
satchmo_discounts.py
py
6,222
python
en
code
30
github-code
6
18769293531
from random import randrange with open("in0210_2.txt","w") as f: for _ in range(20): W,H = randrange(1,31),randrange(1,31) f.writelines("%d %d\n"%(W,H)) arr = ["".join("....##ENWSX"[randrange(11)] for _ in range(W)) for _ in range(H)] arr[0] = "".join("##X"[randrange(3)] for _ in range(W)) arr[-1] = "".join("##X"[randrange(3)] for _ in range(W)) for i in range(1,H-1): arr[i] = "##X"[randrange(3)] + arr[i][1:-1] + "##X"[randrange(3)] for n in arr: f.writelines(n+"\n") f.writelines("%d %d\n"%(0,0))
ehki/AOJ_challenge
python/0210_2.py
0210_2.py
py
590
python
en
code
0
github-code
6
32644908087
"""Guide Eye 01 module""" from functools import partial from mgear.shifter.component import guide from mgear.core import transform, pyqt from mgear.vendor.Qt import QtWidgets, QtCore from maya.app.general.mayaMixin import MayaQWidgetDockableMixin from maya.app.general.mayaMixin import MayaQDockWidget from . import settingsUI as sui # guide info AUTHOR = "Jeremie Passerin, Miquel Campos" URL = ", www.miquletd.com" EMAIL = ", " VERSION = [1, 0, 0] TYPE = "eye_01" NAME = "eye" DESCRIPTION = "eye control rig" ########################################################## # CLASS ########################################################## class Guide(guide.ComponentGuide): """Component Guide Class""" compType = TYPE compName = NAME description = DESCRIPTION author = AUTHOR url = URL email = EMAIL version = VERSION def postInit(self): """Initialize the position for the guide""" self.save_transform = ["root", "look"] def addObjects(self): """Add the Guide Root, blade and locators""" # eye guide self.root = self.addRoot() vTemp = transform.getOffsetPosition(self.root, [0, 0, 1]) self.look = self.addLoc("look", self.root, vTemp) centers = [self.root, self.look] self.dispcrv = self.addDispCurve("crv", centers) def addParameters(self): """Add the configurations settings""" self.pUpVDir = self.addEnumParam( "upVectorDirection", ["X", "Y", "Z"], 1) self.pIkRefArray = self.addParam("ikrefarray", "string", "") self.pUseIndex = self.addParam("useIndex", "bool", False) self.pParentJointIndex = self.addParam( "parentJointIndex", "long", -1, None, None) ########################################################## # Setting Page ########################################################## class settingsTab(QtWidgets.QDialog, sui.Ui_Form): """The Component settings UI""" def __init__(self, parent=None): super(settingsTab, self).__init__(parent) self.setupUi(self) class componentSettings(MayaQWidgetDockableMixin, guide.componentMainSettings): """Create the component setting window""" def __init__(self, parent=None): self.toolName = TYPE # Delete old instances of the componet settings window. pyqt.deleteInstances(self, MayaQDockWidget) super(self.__class__, self).__init__(parent=parent) self.settingsTab = settingsTab() self.setup_componentSettingWindow() self.create_componentControls() self.populate_componentControls() self.create_componentLayout() self.create_componentConnections() def setup_componentSettingWindow(self): self.mayaMainWindow = pyqt.maya_main_window() self.setObjectName(self.toolName) self.setWindowFlags(QtCore.Qt.Window) self.setWindowTitle(TYPE) self.resize(350, 350) def create_componentControls(self): return def populate_componentControls(self): """Populate Controls Populate the controls values from the custom attributes of the component. """ # populate tab self.tabs.insertTab(1, self.settingsTab, "Component Settings") # populate component settings self.settingsTab.upVectorDirection_comboBox.setCurrentIndex( self.root.attr("upVectorDirection").get()) ikRefArrayItems = self.root.attr("ikrefarray").get().split(",") for item in ikRefArrayItems: self.settingsTab.ikRefArray_listWidget.addItem(item) def create_componentLayout(self): self.settings_layout = QtWidgets.QVBoxLayout() self.settings_layout.addWidget(self.tabs) self.settings_layout.addWidget(self.close_button) self.setLayout(self.settings_layout) def create_componentConnections(self): cBox = self.settingsTab.upVectorDirection_comboBox cBox.currentIndexChanged.connect( partial(self.updateComboBox, self.settingsTab.upVectorDirection_comboBox, "upVectorDirection")) self.settingsTab.ikRefArrayAdd_pushButton.clicked.connect( partial(self.addItem2listWidget, self.settingsTab.ikRefArray_listWidget, "ikrefarray")) self.settingsTab.ikRefArrayRemove_pushButton.clicked.connect( partial(self.removeSelectedFromListWidget, self.settingsTab.ikRefArray_listWidget, "ikrefarray")) self.settingsTab.ikRefArray_listWidget.installEventFilter(self) def eventFilter(self, sender, event): if event.type() == QtCore.QEvent.ChildRemoved: if sender == self.settingsTab.ikRefArray_listWidget: self.updateListAttr(sender, "ikrefarray") return True else: return QtWidgets.QDialog.eventFilter(self, sender, event) def dockCloseEventTriggered(self): pyqt.deleteInstances(self, MayaQDockWidget)
mgear-dev/mgear4
release/scripts/mgear/shifter_classic_components/eye_01/guide.py
guide.py
py
5,095
python
en
code
209
github-code
6
71617385147
import pandas as pd # Load the original CSV file df = pd.read_csv('data.csv') # Calculate the number of rows in each output file num_rows = len(df) // 10 # Split the dataframe into 10 smaller dataframes dfs = [df[i*num_rows:(i+1)*num_rows] for i in range(10)] # Save each dataframe to a separate CSV file for i, df in enumerate(dfs): df.to_csv(f'small_file_{i}.csv', index=False)
charchitdahal/GameDay-Analytics-Challenge
convert.py
convert.py
py
388
python
en
code
0
github-code
6
20216292952
from model.flyweight import Flyweight from model.static.database import database class Name(Flyweight): def __init__(self,item_id): #prevents reinitializing if "_inited" in self.__dict__: return self._inited = None #prevents reinitializing self.item_id = item_id cursor = database.get_cursor( "select * from eveNames where itemID={};".format(self.item_id)) row = cursor.fetchone() self.item_name = row["itemName"] self.category_id = row["categoryID"] self.group_id = row["groupID"] self.type_id = row["typeID"] cursor.close()
Iconik/eve-suite
src/model/static/eve/name.py
name.py
py
655
python
en
code
0
github-code
6
40187097853
"""https://open.kattis.com/problems/piglatin""" VOWEL = {'a', 'e', 'i', 'o', 'u', 'y'} def is_begin_with_consonant(word, vowel=VOWEL): return word[0] not in vowel def is_begin_with_vowel(word, vowel=VOWEL): return word[0] in vowel def get_next_vowel_index(word, vowel=VOWEL): index = 0 for i in word: index += 1 if i in vowel: return index text = input('') text = text.split() ans = [] for word in text: if is_begin_with_consonant(word): index = get_next_vowel_index(word) new_word = word[index-1:] + word[:index-1] + "ay" ans.append(new_word) else: ans.append(word + "yay") print(" ".join(ans))
roycehoe/algo-practice
practice/kattis/2/piglatin.py
piglatin.py
py
691
python
en
code
1
github-code
6
40527670685
from django import forms from django.forms import TextInput, SplitDateTimeWidget class NumberInput(TextInput): """ HTML5 Number input Left for backwards compatibility """ input_type = 'number' class AdminDateWidget(forms.DateInput): @property def media(self): js = ["calendar.js", "admin/DateTimeShortcuts.js"] return forms.Media(js=["admin/js/%s" % path for path in js]) def __init__(self, attrs=None, format=None): final_attrs = {'class': 'form-control datepicker', 'size': '10', 'type': 'date'} if attrs is not None: final_attrs.update(attrs) super(AdminDateWidget, self).__init__(attrs=final_attrs, format=format) class AdminTimeWidget(forms.TimeInput): @property def media(self): js = ["calendar.js", "admin/DateTimeShortcuts.js"] return forms.Media(js=["admin/js/%s" % path for path in js]) def __init__(self, attrs=None, format=None): final_attrs = {'class': 'form-control timepicker', 'size': '8', 'type': 'time'} if attrs is not None: final_attrs.update(attrs) super(AdminTimeWidget, self).__init__(attrs=final_attrs, format=format) class LteAdminSplitDateTime (forms.SplitDateTimeWidget): #template_name = 'admin/widgets/split_datetime.html' def __init__(self, attrs=None): widgets = [AdminDateWidget, AdminTimeWidget] # Note that we're calling MultiWidget, not SplitDateTimeWidget, because # we want to define widgets. forms.MultiWidget.__init__(self, widgets, attrs)
ricardochaves/django-adminlte
adminlte/widgets.py
widgets.py
py
1,631
python
en
code
1
github-code
6
12646834769
import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression df = pd.read_csv('dividedsamples/training.csv') dfval = pd.read_csv('dividedsamples/testing.csv') train_features = df.copy() test_features = dfval.copy() train_labels = train_features.pop('price') test_labels = test_features.pop('price') regressor = LinearRegression() regressor.fit(train_features, train_labels) coeff_df = pd.DataFrame(regressor.coef_, train_features.columns, columns=['Coefficient']) print(coeff_df) y_pred = regressor.predict(test_features) boi = pd.DataFrame({'Actual': test_labels, 'Predicted': y_pred}) print(boi)
WayneFerrao/autofocus
linreg.py
linreg.py
py
717
python
en
code
2
github-code
6
3026345716
# -*- coding: utf-8 # Testing facet-sphere interaction in periodic case. # Pass, if the sphere is rolling from left to right through the period. from woo import utils sphereRadius=0.1 tc=0.001# collision time en=0.3 # normal restitution coefficient es=0.3 # tangential restitution coefficient density=2700 frictionAngle=radians(35)# params=utils.getViscoelasticFromSpheresInteraction(tc,en,es) facetMat=O.materials.append(ViscElMat(frictionAngle=frictionAngle,**params)) sphereMat=O.materials.append(ViscElMat(density=density,frictionAngle=frictionAngle,**params)) #floor n=5. s=1./n for i in range(0,n): for j in range(0,n): O.bodies.append([ utils.facet( [(i*s,j*s,0.1),(i*s,(j+1)*s,0.1),((i+1)*s,(j+1)*s,0.1)],material=facetMat), utils.facet( [(i*s,j*s,0.1),((i+1)*s,j*s,0.1),((i+1)*s,(j+1)*s,0.1)],material=facetMat), ]) # Spheres sphId=O.bodies.append([ utils.sphere( (0.5,0.5,0.2), 0.1, material=sphereMat), ]) O.bodies[sphId[-1]].state.vel=(0.5,0,0) ## Engines O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]), InteractionLoop( [Ig2_Facet_Sphere_ScGeom()], [Ip2_ViscElMat_ViscElMat_ViscElPhys()], [Law2_ScGeom_ViscElPhys_Basic()], ), GravityEngine(gravity=[0,0,-9.81]), NewtonIntegrator(damping=0), ] O.periodic=True O.cell.refSize=(1,1,1) O.dt=.01*tc O.saveTmp()
Azeko2xo/woodem
scripts/test-OLD/facet-sphere-ViscElBasic-peri.py
facet-sphere-ViscElBasic-peri.py
py
1,352
python
en
code
2
github-code
6
70943332987
_base_ = [ './uvtr_lidar_base.py' ] point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] pts_voxel_size = [0.075, 0.075, 0.2] voxel_size = [0.15, 0.15, 8] lidar_sweep_num = 10 # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' ] model = dict( pts_voxel_layer=dict( point_cloud_range=point_cloud_range, voxel_size=pts_voxel_size, ), pts_middle_encoder=dict( sparse_shape=[41, 1440, 1440]), pts_bbox_head=dict( bbox_coder=dict( pc_range=point_cloud_range, voxel_size=voxel_size), ), # model training and testing settings train_cfg=dict(pts=dict( grid_size=[720, 720, 1], voxel_size=voxel_size, point_cloud_range=point_cloud_range, assigner=dict( pc_range=point_cloud_range))), ) data_root = 'data/nuscenes/' file_client_args = dict(backend='disk') db_sampler = dict( type='UnifiedDataBaseSampler', data_root=data_root, info_path=data_root + 'nuscenes_unified_dbinfos_train.pkl', # please change to your own database file rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict( car=5, truck=5, bus=5, trailer=5, construction_vehicle=5, traffic_cone=5, barrier=5, motorcycle=5, bicycle=5, pedestrian=5)), classes=class_names, sample_groups=dict( car=2, truck=3, construction_vehicle=7, bus=4, trailer=6, barrier=2, motorcycle=6, bicycle=6, pedestrian=2, traffic_cone=2), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=[0, 1, 2, 3, 4], file_client_args=file_client_args)) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), dict( type='LoadPointsFromMultiSweeps', sweeps_num=lidar_sweep_num-1, use_dim=[0, 1, 2, 3, 4], pad_empty_sweeps=True, remove_close=True), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), dict(type='UnifiedObjectSample', db_sampler=db_sampler), # commit this for the last 2 epoch dict( type='UnifiedRotScaleTrans', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05]), dict( type='UnifiedRandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='CollectUnified3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'points']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), dict( type='LoadPointsFromMultiSweeps', sweeps_num=lidar_sweep_num-1, use_dim=[0, 1, 2, 3, 4], pad_empty_sweeps=True, remove_close=True), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='CollectUnified3D', keys=['points']) # dict( # type='MultiScaleFlipAug3D', # img_scale=(1333, 800), # pts_scale_ratio=1, # # Add double-flip augmentation # flip=True, # pcd_horizontal_flip=True, # pcd_vertical_flip=True, # transforms=[ # dict( # type='GlobalRotScaleTrans', # rot_range=[0, 0], # scale_ratio_range=[1., 1.], # translation_std=[0, 0, 0]), # dict(type='RandomFlip3D', sync_2d=False), # dict( # type='PointsRangeFilter', point_cloud_range=point_cloud_range), # dict( # type='DefaultFormatBundle3D', # class_names=class_names, # with_label=False), # dict(type='Collect3D', keys=['points']) # ]) ] optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.01) optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
dvlab-research/UVTR
projects/configs/uvtr/lidar_based/uvtr_l_v0075_h5.py
uvtr_l_v0075_h5.py
py
4,629
python
en
code
199
github-code
6
35987738740
import torch from tsf_baselines.modeling import build_network ALGORITHMS = [ 'BasicTransformerEncoderDecoder' ] def get_algorithm_class(algorithm_name): """Return the algorithm class with the given name.""" if algorithm_name not in globals(): raise NotImplementedError("Algorithm not found: {}".format(algorithm_name)) print('algorithm_name = {}'.format(algorithm_name)) return globals()[algorithm_name] def build_algorithm(cfg): algorithm = get_algorithm_class(cfg.ALGORITHM.NAME)(cfg) return algorithm class Algorithm(torch.nn.Module): """ A subclass of Algorithm implements a time series forecasting algorithm. Subclasses should implement the following: - update() - predict() """ def __init__(self, cfg): super(Algorithm, self).__init__() self.cfg = cfg self.device = self._acquire_device() def _acquire_device(self): # print('self.cfg = {}'.format(self.cfg)) if self.cfg.MODEL.USE_GPU: # os.environ["CUDA_VISIBLE_DEVICES"] = str(self.cfg.MODEL.DEVICE) if not self.args.use_multi_gpu else self.args.devices device = torch.device('cuda:{}'.format(self.cfg.MODEL.DEVICE)) print('Use GPU: cuda:{}'.format(self.cfg.MODEL.DEVICE)) else: device = torch.device('cpu') print('Use CPU') return device def update(self, minibatches): """ Perform one update step, given a list of (x, y) tuples for all environments. """ raise NotImplementedError def predict(self, x): raise NotImplementedError class BasicTransformerEncDec(Algorithm): def __init__(self, cfg): super(BasicTransformerEncDec, self).__init__(cfg) self.cfg = cfg # Backbone self.model = build_network(cfg) # Loss function self.loss_mse = torch.nn.MSELoss() # Optimizer self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.cfg.SOLVER.BASE_LR) # other declarations pass def _process_one_batch(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # decoder input if self.cfg.DATASETS.PADDING == 0: dec_inp = torch.zeros([batch_y.shape[0], self.cfg.MODEL.PRED_LEN, batch_y.shape[-1]]).float() elif self.DATASETS.PADDING == 1: dec_inp = torch.ones([batch_y.shape[0], self.cfg.MODEL.PRED_LEN, batch_y.shape[-1]]).float() dec_inp = torch.cat([batch_y[:, :self.cfg.MODEL.LABEL_LEN, :], dec_inp], dim=1).float().to(self.device) # encoder - decoder if self.cfg.MODEL.OUTPUT_ATTENTION: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if self.cfg.DATASETS.INVERSE: outputs = dataset_object.inverse_transform(outputs) f_dim = -1 if self.cfg.DATASETS.FEATURES == 'MS' else 0 batch_y = batch_y[:, -self.cfg.MODEL.PRED_LEN:, f_dim:].to(self.device) return outputs, batch_y def update(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): outputs, batch_y = self._process_one_batch(dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark) loss = self.loss_mse(outputs, batch_y) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return {'loss': loss.item()} def predict(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): outputs, batch_y = self._process_one_batch(dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark) return outputs, batch_y
zhaoyang10/time-series-forecasting-baselines
tsf_baselines/algorithm/build.py
build.py
py
3,942
python
en
code
3
github-code
6
14712079581
from typing import List, Optional from fastapi import APIRouter, Header from fastapi.exceptions import HTTPException from server.models.subscription import ( ExchangeKlineSubscriptionRequest, ExchangeSubscription, ExchangeSubscriptionType, ) router = APIRouter() @router.get("/") async def list(x_connection_id: str = Header()) -> List[ExchangeSubscription]: return await ExchangeSubscription.find( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.connection == x_connection_id, ).to_list() @router.get("/{symbol:path}/interval/{interval:path}/") async def retrieve( symbol: str, interval: str, x_connection_id: str = Header(), ) -> Optional[ExchangeSubscription]: try: return await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == symbol, ExchangeSubscription.interval == interval, ExchangeSubscription.connection == x_connection_id, ) except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.get("/{symbol:path}/") async def list_symbol( symbol: str, x_connection_id: str = Header(), ) -> List[ExchangeSubscription]: try: return await ExchangeSubscription.find( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == symbol, ExchangeSubscription.connection == x_connection_id, ).to_list() except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.post("/") async def create( request: ExchangeKlineSubscriptionRequest, x_connection_id: str = Header() ) -> ExchangeSubscription: try: existing_subscription = await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == request.symbol, ExchangeSubscription.interval == request.interval, ExchangeSubscription.connection == x_connection_id, ) if existing_subscription: return existing_subscription subscription = ExchangeSubscription( type=ExchangeSubscriptionType.KLINE, interval=request.interval, connection=x_connection_id, symbol=request.symbol, ) return await subscription.create() except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.delete("/") async def destroy( request: ExchangeKlineSubscriptionRequest, x_connection_id: str = Header() ): try: item = await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.interval == request.interval, ExchangeSubscription.connection == x_connection_id, ExchangeSubscription.symbol == request.symbol, ) if not item: raise HTTPException(status_code=400, detail="subscription not found") await ExchangeSubscription.delete(item) except Exception as e: raise HTTPException(status_code=400, detail=str(e))
masked-trader/raccoon-exchange-service
src/server/routes/subscription/kline.py
kline.py
py
3,263
python
en
code
0
github-code
6
72784206907
# https://www.codewars.com/kata/5fc7d2d2682ff3000e1a3fbc import re def is_a_valid_message(message): valid = all(int(n) == len(w) for n,w in re.findall(r'(\d+)([a-z]+)',message, flags = re.I)) # in the name of readability if valid and re.match(r'((\d+)([a-z]+))*$',message, flags = re.I): return True else: return False # clever: import re def is_a_valid_message(message): return all(n and int(n) == len(s) for n, s in re.findall("(\d*)(\D*)", message)[:-1]) # best practice wo re: def is_a_valid_message(message): size = 0 count = 0 for c in message: if c.isnumeric(): if count == 0: size = size * 10 + int(c) else: if count != size: return False count = 0 size = int(c) else: count = count + 1 return count == size
blzzua/codewars
6-kyu/message_validator.py
message_validator.py
py
910
python
en
code
0
github-code
6
14400394656
#!/usr/bin/env python3.8 def missing_element(arr1, arr2): arr1.sort() arr2.sort() for num1, num2 in zip(arr1, arr2): if num1 != num2: return num1 return -1 def missing_element1(arr1, arr2): count = {} output = [] for i in arr1: if i in count: count[i] += 1 else: count[i] = 1 for i in arr2: if i in count: count[i] -= 1 else: count[i] = -1 for k in count: if count[k] > 0: output.append(k) return output import collections def missing_element2(arr1, arr2): count = collections.defaultdict(int) output = [] for i in arr2: count[i] += 1 for i in arr1: if count[i] == 0: output.append(i) else: count[i] -= 1 return output def missing_element3(arr1, arr2): return sum(arr1) - sum(arr2) def missing_element4(arr1, arr2): result = 0 for num in arr1+arr2: result ^= num return result arr1 = [5,5,7,7] arr2 = [5,7,7] print(missing_element4(arr1,arr2)) print( ord("A")^ord("A"))
dnootana/Python
concepts/arrays/find_missing_element.py
find_missing_element.py
py
950
python
en
code
0
github-code
6
9270774406
class Solution: def smallestEqual(self, nums: List[int]) -> int: output = [] for i in range(len(nums)): if i % 10 == nums[i]: output.append(i) if len(output) > 0: return min(output) else: return -1
nancyalaa/LeetCode
2057-smallest-index-with-equal-value/2057-smallest-index-with-equal-value.py
2057-smallest-index-with-equal-value.py
py
294
python
en
code
1
github-code
6
10233608865
from __future__ import annotations import re from typing import TYPE_CHECKING from twitchio import User, PartialUser, Chatter, PartialChatter, Channel, Clip from .errors import BadArgument if TYPE_CHECKING: from .core import Context __all__ = ( "convert_Chatter", "convert_Clip", "convert_Channel", "convert_PartialChatter", "convert_PartialUser", "convert_User", ) async def convert_Chatter(ctx: Context, arg: str) -> Chatter: """ Converts the argument into a chatter in the chat. If the chatter is not found, BadArgument is raised. """ arg = arg.lstrip("@") resp = [x for x in filter(lambda c: c.name == arg, ctx.chatters or tuple())] if not resp: raise BadArgument(f"The user '{arg}' was not found in {ctx.channel.name}'s chat.") return resp[0] async def convert_PartialChatter(ctx: Context, arg: str) -> PartialChatter: """ Converts the argument into a chatter in the chat. As opposed to Chatter converter, this will return a PartialChatter regardless of the cache state. """ return PartialChatter(ctx._ws, name=arg.lstrip("@"), channel=ctx.channel, message=None) async def convert_Clip(ctx: Context, arg: str) -> Clip: finder = re.search(r"(https://clips.twitch.tv/)?(?P<slug>.*)", arg) if not finder: raise RuntimeError( "regex failed to match" ) # this should never ever raise, but its here to make type checkers happy slug = finder.group("slug") clips = await ctx.bot.fetch_clips([slug]) if not clips: raise BadArgument(f"Clip '{slug}' was not found") return clips[0] async def convert_User(ctx: Context, arg: str) -> User: """ Similar to convert_Chatter, but fetches from the twitch API instead, returning a :class:`twitchio.User` instead of a :class:`twitchio.Chatter`. To use this, you most have a valid client id and API token or client secret """ arg = arg.lstrip("@") user = await ctx.bot.fetch_users(names=[arg]) if not user: raise BadArgument(f"User '{arg}' was not found.") return user[0] async def convert_PartialUser(ctx: Context, arg: str) -> User: """ This is simply a shorthand to :ref:`~convert_User`, as fetching from the api will return a full user model """ return await convert_User(ctx, arg) async def convert_Channel(ctx: Context, arg: str) -> Channel: if arg not in ctx.bot._connection._cache: raise BadArgument(f"Not connected to channel '{arg}'") return ctx.bot.get_channel(arg) _mapping = { User: convert_User, PartialUser: convert_PartialUser, Channel: convert_Channel, Chatter: convert_Chatter, PartialChatter: convert_PartialChatter, Clip: convert_Clip, }
PythonistaGuild/TwitchIO
twitchio/ext/commands/builtin_converter.py
builtin_converter.py
py
2,755
python
en
code
714
github-code
6
18660136090
import os import sys try: from dreamberd import interprete except ModuleNotFoundError: sys.exit("Use -m keyword.") from argparse import ArgumentParser parser = ArgumentParser( prog="DreamBerd Interpreter (Python)", description="The perfect programming language.", ) parser.add_argument("content", help="The file or code to run.") args = parser.parse_args() if os.path.exists(args.content): with open(args.content, "r", encoding="utf-8") as file: content: str = file.read() else: content = args.content interprete(content)
AWeirdScratcher/dreamberd-interpreter
dreamberd/__main__.py
__main__.py
py
559
python
en
code
0
github-code
6
36776570545
class Solution: def combination(self, visited, idx): if sum(visited) == self.target: self.ans.append(list(visited)) return if sum(visited) > self.target: return for i in range(idx, len(self.candidates)): visited.append(self.candidates[i]) self.combination(visited, i) visited.pop() def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: self.ans = [] self.target = target self.candidates = candidates self.combination([], 0) return self.ans
nathy-min/Competitive_Programming2
0039-combination-sum/0039-combination-sum.py
0039-combination-sum.py
py
640
python
en
code
1
github-code
6
3574016217
"""Python module for common workflows and library methods. Authors: Prasad Hegde """ import os import json import pathlib import inspect import random import string class Workflows(): """ Common Workflows and library methods """ def get_config_data(self, test_method): """ This routine retuns the config data specific to the test case :param test_method: Name of the test method :return: tuple containing global_config and test_args """ path = pathlib.Path(inspect.getfile(self.__class__)).parent.absolute() config_path = os.path.join(path, "config.json") with open(config_path) as f_in: config_data = json.load(f_in) return config_data["global_config"], config_data["test_args"][self.__class__.__name__]\ [test_method] @staticmethod def generate_new_email(length=16, suffix=None): """ This routine generates a new email id :param length: Length of the email(int) :param suffix: domain(str) :return: email id (str) """ retval = ''.join(random.choice(string.ascii_lowercase + string.digits) \ for i in range(length)) return retval + suffix if suffix else retval @staticmethod def verify_response_header(expected_header, actual_header): """ This routine is used to validate expected response header against actual :param expected_header: dict :param actual_header: dict :return: Boolean """ if not any(item in actual_header.items() for item in expected_header.items()): return False return True @staticmethod def verify_response_time(expected_response_time, actual_response_time): """ This routine is used to verify response time of api call :param actual_response_time: sec :return: Boolean """ if actual_response_time <= expected_response_time: return True return False @staticmethod def update_user_details(test_args, **kwargs): """ This Routine is used to build user details :param test_args: test args of the test method :param kwargs: first_name, last_name, dob, image_url, email_id :return: user data (dict) """ first_name = kwargs.get('first_name', test_args["updated_user_details"]["first_name"]) last_name = kwargs.get('last_name', test_args["updated_user_details"]["last_name"]) dob = kwargs.get('dob', test_args["updated_user_details"]["dob"]) image_url = kwargs.get('image_url', test_args["updated_user_details"]["image_url"]) email = kwargs.get('email_id', None) user_data = {"first_name": first_name, "last_name": last_name, "date_of_birth": dob, "image_url": image_url} if email: user_data["email"] = email return user_data
prasadhegde60/showoff.ie
workflows/workflows.py
workflows.py
py
3,021
python
en
code
0
github-code
6
4432774556
import random trials = 100000 budget = 1000 bet = 100 goal = 2 * budget probability = 18/37 def gamblers_ruin(budget, bet, goal, probability): current_budget = budget num_bets = 0 while current_budget > 0 and current_budget < goal: num_bets += 1 if random.random() < probability: current_budget += bet else: current_budget -= bet return (num_bets, current_budget) results = [gamblers_ruin(budget, bet, goal, probability) for _ in range(trials)] def probability_of_goal(results): return sum([result[1] > 0 for result in results]) / len(results) def expected_profit(results): return sum([result[1] for result in results]) / len(results) def extreme_runs(results): bet_counts = [result[0] for result in results] return (min(bet_counts), max(bet_counts)) print(probability_of_goal(results)) print(expected_profit(results)) print(probability_of_goal(results) * goal) import numpy as np def bet_percentiles(results, percentile): bet_counts = [result[0] for result in results] return np.percentile(bet_counts, percentile) print(extreme_runs(results)) print(bet_percentiles(results, 95))
ander428/Computational-Economics-MGSC-532
In Class Code/GamblersRuin.py
GamblersRuin.py
py
1,224
python
en
code
0
github-code
6
2018211678
#!/usr/bin/env python import os from applicake.app import WrappedApp from applicake.apputils import validation from applicake.coreutils.arguments import Argument from applicake.coreutils.keys import Keys, KeyHelp class Dss(WrappedApp): """ The DSS is often a initial workflow node. Requesting a workdir has thus the nice side effect that the DSS generates the JOB_ID for the workflow """ ALLOWED_PREFIXES = ['getdataset', 'getmsdata', 'getexperiment'] TRUES = ['TRUE', 'T', 'YES', 'Y', '1'] def add_args(self): return [ Argument(Keys.WORKDIR, KeyHelp.WORKDIR), Argument(Keys.EXECUTABLE, "%s %s" % (KeyHelp.EXECUTABLE, self.ALLOWED_PREFIXES)), Argument(Keys.DATASET_CODE, 'dataset code to get for getdataset or getmsdata'), Argument('EXPERIMENT', 'experiment code to get for for getexperiment'), Argument('DATASET_DIR', 'cache directory'), Argument('DSS_KEEP_NAME', "for 'getmsdata' only: output keeps original file name if set to true " "(otherwise it will be changed to samplecode~dscode.mzXXML)", default='false') ] def prepare_run(self, log, info): executable = info[Keys.EXECUTABLE] if not executable in self.ALLOWED_PREFIXES: raise Exception("Executable %s must be one of [%s]" % (executable, self.ALLOWED_PREFIXES)) self.rfile = os.path.join(info[Keys.WORKDIR], executable + ".out") outdir = info['DATASET_DIR'] if executable == 'getmsdata' and not info['DSS_KEEP_NAME'].upper() == 'TRUE': koption = '-c' else: koption = '' if info[Keys.EXECUTABLE] == 'getexperiment': dscode_to_get = info['EXPERIMENT'] else: dscode_to_get = info[Keys.DATASET_CODE] command = "%s -v -r %s --out=%s %s %s" % (executable, self.rfile, outdir, koption, dscode_to_get) return info, command def validate_run(self, log, info, exit_code, out): if "TypeError: expected str or unicode but got <type 'NoneType'>" in out: raise RuntimeError("Dataset is archived. Please unarchive first!") validation.check_exitcode(log, exit_code) #KEY where to store downloaded file paths default_keys = {'getmsdata': 'MZXML', 'getexperiment': 'SEARCH', 'getdataset': 'DSSOUT'} key = default_keys[info[Keys.EXECUTABLE]] #VALUE is a list of files or the mzXMLlink dsfls = [] with open(self.rfile) as f: for downloaded in [line.strip() for line in f.readlines()]: ds, fl = downloaded.split("\t") if ds == info[Keys.DATASET_CODE] or ds == info['EXPERIMENT']: dsfls.append(fl) #MZXML is expected only 1 if key == 'MZXML': dsfls = dsfls[0] log.debug("Adding %s to %s" % (dsfls, key)) info[key] = dsfls return info if __name__ == "__main__": Dss.main()
lcb/applicake
appliapps/openbis/dss.py
dss.py
py
3,044
python
en
code
1
github-code
6
73652373309
# 编写一个算法来判断一个数 n 是不是快乐数。 # “快乐数” 定义为: # 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。 # 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。 # 如果这个过程 结果为 1,那么这个数就是快乐数。 class Solution(object): def isHappy(self, n): """ :type n: int :rtype: bool """ visited = {n} while (True): next = 0 while (n != 0): next += (n % 10) ** 2 n = n // 10 if next == 1: return True if next in visited: return False n = next visited.add(next) n = 2 a = Solution() print(a.isHappy(n))
xxxxlc/leetcode
array/isHappy.py
isHappy.py
py
860
python
zh
code
0
github-code
6
372063532
#!/usr/bin/env python3 import socketserver, socket, threading upload = {} download = {} threadList = [] terminate = False def shutdownServer(): global server server.shutdown() def handlethread(socketup, socketdown): data = socketup.recv(512) while data: socketdown.send(data) data = socketup.recv(512) socketdown.close() class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler): def handle(self): global download, upload, terminate, threadList, cv, cvHandle, handlethread, shutdownServer # self.request is the TCP socket connected to the client command = self.request.recv(1) if(command.decode("utf-8") == "F"): terminate = True for i in range(len(threadList)): threadList[i].join() with cvHandle: cvHandle.notify_all() thread = threading.Thread(target = shutdownServer) thread.start() thread.join() with cv: cv.notify_all() return # thread.join() #upload elif command.decode("utf-8") == "P" and not terminate: key = (self.request.recv(8)).decode('utf-8') if key not in upload: upload[key] = [self.request] else: upload[key].append(self.request) if key not in download: with cv: while key not in download: cv.wait() if terminate: return socketup = upload[key].pop() socketdown = download[key].pop() if len(upload[key]) == 0: del upload[key] if len(download[key]) == 0: del download[key] thread = threading.Thread(target = handlethread, args = (socketup, socketdown, )) threadList.append(thread) thread.start() else: with cv: cv.notify_all() #download elif command.decode("utf-8") == "G" and not terminate: key = (self.request.recv(8)).decode('utf-8') if key not in download: download[key] = [self.request] else: download[key].append(self.request) if key not in upload: with cv: while key not in upload: cv.wait() if terminate: return socketup = upload[key].pop() socketdown = download[key].pop() if len(upload[key]) == 0: del upload[key] if len(download[key]) == 0: del download[key] thread = threading.Thread(target = handlethread, args = (socketup, socketdown, )) threadList.append(thread) thread.start() else: with cv: cv.notify_all() cvHandle.acquire() cvHandle.wait() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass HOST, PORT = "", 0 # Create the server, binding to localhost on port 9999 cv = threading.Condition() cvHandle = threading.Condition() server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler) print(server.server_address[1]) # Activate the server; this will keep running until you # interrupt the program with Ctrl-C server.serve_forever()
rainagan/cs456
a1/server.py
server.py
py
3,642
python
en
code
1
github-code
6
4755956537
import argparse import os import sys import time import json import pickle from nltk.corpus import wordnet as wn import numpy as np import torch import random from aligner import Aligner import log logger = log.get_logger('root') logger.propagate = False def get_print_result(sample_group: dict, sample_result: dict, nonce_word): candidates = sample_group['candidates'] info = sample_group['common_ancestor_info'] print_str = "\n===============================================================================================\n" print_str += f'Number of Candidates: {len(candidates)}\n\n' print_str += f"\nCommon {info['relation']} synset: {info['ancestor_name']}\n{wn.synset(info['ancestor_name']).definition()}\n\n" # Use the line below for CoDA5 # print_str += f"\nCommon {info['relation']} synset: {info['ancestor_synset']}\n{info['ancestor_definition']}\n\n" for candidate_no, candidate in enumerate(candidates): print_str += f"\n{candidate_no+1}) Synset: {candidate['synset_name']} ({candidate['words_in_contexts'][0]})\n" print_str += f"Definition: {candidate['definition']}\n" print_str += f"Context: {candidate['contexts'][0]}\n" print_str += "\n\n" print_str += f"Predicted alignment: {sample_result['predicted_alignment']}\n" print_str += f"Alignment Score: {sample_result['alignment_score']}\n" return print_str if __name__ == '__main__': parser = argparse.ArgumentParser() # file parameters parser.add_argument('--output_folder', default=None, type=str, required=True) parser.add_argument('--data_file', default=None, type=str, required=True) # parameters for the model to generate definitions parser.add_argument('--model_cls', choices=['bert','roberta','gpt-2'], default='gpt-2') parser.add_argument('--model_name', type=str, default='gpt2-medium') parser.add_argument('--word_type', choices=['n','v'], default='n') parser.add_argument('--nonce_word', type=str, default='bkatuhla') parser.add_argument('--max_def_len', type=int, default=48, help='maximum definition length after tokenization') parser.add_argument('--max_batch_size', type=int, default=48, help='maximum batch size') parser.add_argument('--gpu_id', type=int, default=0, help='id of the gpu that will be used during evaluations') parser.add_argument('--seed', type=int, default=42, help='seed for selecting random train samples for one of few shot evaluation') args = parser.parse_args() random.seed(args.seed) with open(args.data_file, 'r') as handle: CoDA = json.load(handle) data = args.data_file.split("/")[-1][:-5] # don't take .json print_file = f'{args.model_name}_on_{data}_{args.word_type}_nonce_{args.nonce_word}_some_results.txt' save_file = f'{args.model_name}_on_{data}_{args.word_type}_nonce_{args.nonce_word}_results.pickle' if not os.path.exists(args.output_folder): os.mkdir(args.output_folder) f_out = open(os.path.join(args.output_folder, print_file), "w", encoding='UTF-8') f_out.close() aligner = Aligner( model_cls=args.model_cls, pretrained_model=args.model_name, gpu_id=args.gpu_id, max_def_len=args.max_def_len, max_batch_size=args.max_batch_size, nonce_word=args.nonce_word, word_type=args.word_type ) sample_result = {} sample_result[''] = [] sample_result['target_scores'] = [] sample_result['predicted_alignment'] = [] sample_result['alignment_score'] = [] all_results = [] sample_groups = CoDA[args.word_type] for group_no, sample_group in enumerate(sample_groups): target_scores, predicted_alignment, aligment_score = aligner.align(sample_group) sample_result = {} sample_result['target_scores'] = target_scores sample_result['predicted_alignment'] = predicted_alignment sample_result['alignment_score'] = aligment_score all_results.append(sample_result) if (group_no+1) % 25 == 0: logger.info(f'{group_no+1}/{len(sample_groups)} synset groups processed') if (group_no+1) % (len(sample_groups) // 20) == 0: with open(os.path.join(args.output_folder, print_file), "a", encoding='UTF-8') as f_out: f_out.write(get_print_result(sample_group, sample_result, args.nonce_word)) with open(os.path.join(args.output_folder, save_file), "wb") as handle: pickle.dump(all_results, handle) with open(os.path.join(args.output_folder, save_file), "wb") as handle: pickle.dump(all_results, handle)
lksenel/CoDA21
Evaluation/evaluate_PLMs.py
evaluate_PLMs.py
py
4,847
python
en
code
2
github-code
6
27094902824
from typing import Any, Callable, Dict from torchvision import transforms as T from rikai.types.vision import Image """ Adapted from https://github.com/pytorch/pytorch.github.io/blob/site/assets/hub/pytorch_vision_resnet.ipynb """ # noqa E501 def pre_processing(options: Dict[str, Any]) -> Callable: """ All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. """ return T.Compose( [ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) def post_processing(options: Dict[str, Any]) -> Callable: def post_process_func(batch): results = [] for result in batch: results.append(result.detach().cpu().tolist()) return results return post_process_func OUTPUT_SCHEMA = "array<float>"
World-shi/rikai
python/rikai/contrib/torchhub/pytorch/vision/resnet.py
resnet.py
py
1,166
python
en
code
null
github-code
6
27453799884
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def averageOfLevels(self, root): """ :type root: TreeNode :rtype: List[float] """ queue = [root] res = [] while queue: res.append(sum([node.val for node in queue]) * 1.0 / len(queue)) temp = [] for node in queue: if node.left: temp.append(node.left) if node.right: temp.append(node.right) queue = temp return res # T:O(n) - # of nodes in the tree # S: O(m) - max num of nodes in one level
dreamebear/Coding-interviews
BFS/LC637-Avg-Level-Binary-Tree/LC637.py
LC637.py
py
794
python
en
code
0
github-code
6
23515271400
# First Solution: 58476KB / 200ms / 674B def BS(array,start,end): while start<=end: mid = (start+end)//2 if array[mid][1] == 1 and array[mid-1][1]==2: return mid elif array[mid][1] == 2: start = mid+1 else: end = mid-1 return None def Solution(data): data = sorted(data.items(), key=lambda x:(-x[1],x[0])) midpoint = BS(data,0,N+M-1) if midpoint == None: print(0) else: print(midpoint) stdout.write('\n'.join(map(str,dict(data[:midpoint]).keys()))) from sys import stdin,stdout from collections import Counter N, M = map(int, stdin.readline().split()) data = Counter([stdin.readline().rstrip() for _ in range(N+M)]) Solution(data) # --------------------------------------------------------- # More Advanced Solution: 41884KB / 124ms / 272B from sys import stdin,stdout N, M = map(int, stdin.readline().split()) hear = set([stdin.readline().rstrip() for _ in range(N)]) see = set([stdin.readline().rstrip() for _ in range(M)]) common = sorted(list(hear & see)) print(len(common)) stdout.write('\n'.join(common))
Soohee410/Algorithm-in-Python
BOJ/Silver/1764.py
1764.py
py
1,094
python
en
code
6
github-code
6
17433175980
import os import sys import unittest sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from chvote.Utils.Utils import AssertList def CheckVerificationCodes(rc_bold, rc_prime_bold, s_bold): """ Algorithm 7.29: Checks if every displayed verification code RC'_i i matches with the return code RC_s_i of the selected candidate s_i as printed on the code sheet. Note that this algorithm is executed by humans. Args: rc_bold (list): Printed return codes rc_prime_bold (list): Displayed return codes rc' s_bold (list): Selections Returns: bool """ AssertList(rc_bold) AssertList(rc_prime_bold) AssertList(s_bold) for i in range(len(s_bold)): if rc_bold[s_bold[i]] != rc_prime_bold[i]: return False return True class CheckVerificationCodesTest(unittest.TestCase): def testCheckVerificationCodes(self): self.assertTrue(False) if __name__ == '__main__': unittest.main()
nextgenevoting/visualizer
backend/chvote/VotingClient/CheckVerificationCodes.py
CheckVerificationCodes.py
py
1,079
python
en
code
3
github-code
6
25760579432
from opencage.geocoder import OpenCageGeocode import xlrd import xlwt from xlwt import Workbook import pandas as pd key ="fd4f682cf2014f3fbd321ab141454138" # get api key from: https://opencagedata.com geocoder = OpenCageGeocode(key) loc = ("/Users/ashwinisriram/Documents/Lat long/corrected.xlsx") wb = xlrd.open_workbook(loc) sheet = wb.sheet_by_index(0) sheet.cell_value(0, 0) # Workbook is created wb = Workbook() # add_sheet is used to create sheet. sheet1 = wb.add_sheet('Sheet 1') # Define a dictionary containing data data={'Customer_code':[],'City':[],'State':[]} branch_district = "" for r in range(4000,4500): customer_code=str(sheet.cell_value(r, 0)) # sheet1.write(i, 1, sheet.cell_value(r, 1)) # sheet1.write(i, 2, sheet.cell_value(r, 2)) branch = str(sheet.cell_value(r, 1)) district= str(sheet.cell_value(r, 2)) data['Customer_code'].append(customer_code) data['City'].append(branch) data['State'].append(district) df=pd.DataFrame(data) # Convert the dictionary into DataFrame # Observe the result print(df) list_lat = [] # create empty lists list_long = [] link=[] for index, row in df.iterrows(): # iterate over rows in dataframe City = row['City'] State = row['State'] query = str(City)+','+str(State) results = geocoder.geocode(query) try: lat = results[0]['geometry']['lat'] long = results[0]['geometry']['lng'] list_lat.append(lat) list_long.append(long) link.append("http://www.google.com/maps/place/"+str(lat)+','+str(long)) except IndexError: list_lat.append('Nan') list_long.append('Nan') link.append("link unavailable") # create new columns from lists df['lat'] = list_lat df['lon'] = list_long df['link']=link # function to find the coordinate # of a given city print(df) # create excel writer object writer = pd.ExcelWriter('output2.xlsx') # write dataframe to excel df.to_excel(writer,'sheet2') # save the excel writer.save() print('DataFrame is written successfully to Excel File.')
Ashwini-Sriram/Latlong
alter.py
alter.py
py
2,116
python
en
code
0
github-code
6
38703775254
import json def getAdminAccount(): with open("./Data/admins.json", "r") as file: JSON = file.read() accounts = json.loads(JSON) return accounts def getAccount(): with open("./Data/accounts.json", "r") as file: JSON = file.read() accounts = json.loads(JSON) return accounts
Coincoin008/DrawPlz-localhost-version-
getAccounts.py
getAccounts.py
py
333
python
en
code
0
github-code
6
29528497286
#!/usr/bin/python3 import html import re import random import json import requests from bs4 import BeautifulSoup PATTERN = re.compile(r'/video(\d+)/.*') def _fetch_page(page_number): url = 'https://www.xvideos.com/porn/portugues/' + str(page_number) res = requests.get(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) return BeautifulSoup(res.text, 'html.parser') def _find_videos(soup): for element in soup.select('.thumb-block > .thumb-under > p > a'): try: reference = PATTERN.match(element['href']).group(1) except AttributeError: pass yield element['title'], reference, element['href'] def _get_comments(video_ref): url_mask = 'https://www.xvideos.com/threads/video-comments/get-posts/top/{0}/0/0' url = url_mask.format(video_ref) res = requests.post(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) json_obj = json.loads(res.text)['posts'] json_obj = json_obj['posts'] try: for attr, val in json_obj.items(): content = html.unescape(val['message']) author = html.unescape(val['name']) if '<a href=' not in content: yield author, content except (AttributeError, IndexError) as e: raise IndexError def choose_random_porn_comment(): for _ in range(10): page = _fetch_page(random.randint(1, 40)) videos = _find_videos(page) try: title, reference, url = random.choice(list(videos)) comments = _get_comments(reference) author, content = random.choice(list(comments)) except IndexError: continue return author, content, title, url raise Exception('Too hard') def _fetch_tag_page(page_number, tag): if tag is not None: url = 'https://www.xvideos.com/?k='+ str(tag) +'&p=' + str(page_number) else: url = 'https://www.xvideos.com/new/' + str(page_number) res = requests.get(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) return BeautifulSoup(res.text, 'html.parser') def choose_random_video(tag=None): for _ in range(10): page = _fetch_tag_page(random.randint(1, 4), tag) videos = _find_videos(page) try: title, reference, url = random.choice(list(videos)) url = 'https://xvideos.com'+url return url except IndexError: raise Exception('Response Error: Bad search term') raise Exception('Too hard') def main(): # comment = choose_random_porn_comment() # print(*comment, sep='\n') video = choose_random_video() print(video, sep='\n') if __name__ == '__main__': main()
marquesgabriel/bot-xvideos-telegram
xvideos.py
xvideos.py
py
2,846
python
en
code
2
github-code
6
41589531993
L = [("Rimm",100), ("FengFeng",95), ("Lisi", 87), ("Ubuntu", 111)] def by_name(n): x = sorted(n[0], key=str.lower) return x out = sorted(L, key=by_name) print(out) def by_score(n): x = sorted(range(n[1]), key=abs) return x o = sorted(L, key=by_score, reverse=True) print(o)
Wainemo/PythonPractice
tuple表示学生名和成绩 用sorted排序.py
tuple表示学生名和成绩 用sorted排序.py
py
295
python
en
code
0
github-code
6
29608054037
''' NEURAL NETWORK FOR DIGIT DETECTION This program is a shallow Neural Network that is trained to recognize digits written in a 5x3 box ''' import random import math import csv # Hyperparameters: # speed (magnitude) at which algorithm adjusts weights LEARNING_RATE = 0.3 # Feature –> individual and independent variables that measure a property or characteristic # AKA input size (input is 3x5 box thus input size is 15) FEATURE_SIZE = 15 # number of nodes in hidden layer HIDDEN_SIZE = 12 # Class –> output variables in a classification model are referred to as classes (or labels) # AKA output size (number of digits from 0-9 is 10 thus output size is 10) CLASS_SIZE = 10 # range of random intiialized values centered around 0 INITIALIZATION_RANGE = 0.4 # number of iterations over all NUM_ITERATIONS = 1000 # initializing weights from the trainingData and Validation .csv files using the csv library trainingDataPath = 'NumberClassifierNN/TrainingData.csv' with open(trainingDataPath, newline='') as f: reader = csv.reader(f) trainingData = [tuple(row) for row in reader] validationDatapath = 'NumberClassifierNN/ValidationData.csv' with open(validationDatapath, newline='') as f: reader = csv.reader(f) validationData = [tuple(row) for row in reader] # fill weights with random numbers from -0.2 to 0.2 def initializeWeights(IKweights, KHweights): for i in range(FEATURE_SIZE): currentNodeWeights = [] for j in range(HIDDEN_SIZE): currentNodeWeights.append( random.random()*INITIALIZATION_RANGE - INITIALIZATION_RANGE/2) IKweights.append(currentNodeWeights) for i in range(HIDDEN_SIZE): currentNodeWeights = [] for j in range(CLASS_SIZE): currentNodeWeights.append( random.random()*INITIALIZATION_RANGE - INITIALIZATION_RANGE/2) KHweights.append(currentNodeWeights) return IKweights, KHweights # set the input nodes for a given training input def setInputNodes(trainingExample): inputNodes = [] currentExample = trainingExample[0] for i in range(FEATURE_SIZE): inputNodes.append(currentExample[i]) return inputNodes # getting values of all nodes in j layer using the sum of previous i layer and weights from i to j # xⱼ = ∑(xᵢ * wᵢ) # actual operation is an implementation of dot product of matrices def sumWeights(prevLayer, weights, currentLayerSize): currentLayer = [] for i in range(currentLayerSize): sum = 0 for j in range(len(prevLayer)): sum += float(prevLayer[j])*weights[j][i] currentLayer.append(sum) return currentLayer # sigmoid activation function that "squishes" the node values to be between 0 and 1 # used to allow slow and steady learning def sigmoidFunction(nodes): for i in range(len(nodes)): power = pow(math.e, -1*nodes[i]) nodes[i] = 1/(1+power) return nodes # main forward propogation function def forwardPropogation(currentExample, inputWeights, outputWeights): inputNodes = setInputNodes(currentExample) hiddenNodes = sumWeights(inputNodes, inputWeights, HIDDEN_SIZE) hiddenNodes = sigmoidFunction(hiddenNodes) outputNodes = sumWeights(hiddenNodes, outputWeights, CLASS_SIZE) outputNodes = sigmoidFunction(outputNodes) return inputNodes, outputNodes, hiddenNodes # find the error for each output node: σ(h) def outputLayerError(trainingExample, outputNodes): error = [] for i in range(len(outputNodes)): expectedOutputString = trainingExample[1] expectedOutput = int(expectedOutputString[i]) actualOutput = outputNodes[i] error.append(actualOutput * (1 - actualOutput) * (expectedOutput - actualOutput)) return error # find the error for each hidden node: σ(j) def hiddenLayerError(hiddenNodes, outputNodes, outputWeights, outputError): error = [] for i in range(len(hiddenNodes)): alpha = 0 # get the value of alpha (calculated using all the output nodes that are connected from hidden node k: ⍺ = Σ(outputWeights * outputError)) for j in range(len(outputNodes)): alpha += outputWeights[i][j]*outputError[j] actualOutput = hiddenNodes[i] error.append(actualOutput * (1 - actualOutput) * alpha) return error # adjust each weight between i and j layers using learning rate, error from j layer, and node value from i layer def adjustWeights(learningRate, error, weights, prevNode): for i in range(len(weights)): for j in range(len(weights[i])): deltaWeight = learningRate * error[j] * float(prevNode[i]) weights[i][j] = weights[i][j] + deltaWeight return weights # main backwards propogation function def backwardsPropogation(currentExample, inputNodes, output, outputWeights, hiddenNodes, hiddenWeights): # calulate error of final, output layer using the expected value outputError = outputLayerError(currentExample, output) # adjust weights from hidden layer to output layer using output layer error and values from hidden layer nodes outputWeights = adjustWeights( LEARNING_RATE, outputError, outputWeights, hiddenNodes) # calculate error of hidden layer using output error hiddenError = hiddenLayerError( hiddenNodes, output, outputWeights, outputError) # adjust weights from input layer to hiddne layer using hidden layer error and values from input layer nodes hiddenWeights = adjustWeights( LEARNING_RATE, hiddenError, hiddenWeights, inputNodes) return hiddenWeights, outputWeights def main(): # 1d arrays that hold the value of the nodes hiddenNodes = [] outputNodes = [] # Input is layer I, hidden layer is layer K, output layer is layer H # Each weights list is a 2D array with Row = stem node, Column = outgoing weight IKweights = [] KHweights = [] # initialize weights with random numbers IKweights, KHweights = initializeWeights(IKweights, KHweights) inputWeights = IKweights outputWeights = KHweights ''' #TESTING FOR LOOP for i in range(10): #print("current example is " + str(currentExample)) inputNodes, outputNodes, hiddenNodes = forwardPropogation(trainingData[0], inputWeights, outputWeights) inputWeights, outputWeights = backwardsPropogation(trainingData[0], inputNodes, outputNodes, outputWeights, hiddenNodes, inputWeights) #print("current example is " + str(currentExample)) inputNodes, outputNodes, hiddenNodes = forwardPropogation(trainingData[0], inputWeights, outputWeights) print("output for example " + str(0)) print(outputNodes) ''' # main function that forward propogates and backward propogates for a set number of iterations for i in range(NUM_ITERATIONS): #shuffle the list to add randomization and prevent overfitting random.shuffle(trainingData) #train the model on each training example in the training set for j in range(len(trainingData)): exampleSelection = j currentExample = trainingData[exampleSelection] # forward propogate through the neural network using the input and weights to recieve an output inputNodes, outputNodes, hiddenNodes = forwardPropogation( currentExample, inputWeights, outputWeights) # backward propogate through the data, finding the error and adjusting weights accordingly inputWeights, outputWeights = backwardsPropogation( currentExample, inputNodes, outputNodes, outputWeights, hiddenNodes, inputWeights) showResults(validationData, inputWeights, outputWeights) # function that returns the output of the NN and the expected output from the validation data def returnResults(actualOutput, expectedOutput, example): actualDigit = 0 expectedDigit = 0 confidence = 0 correctGuess = False # Find the algorithm's predicted digit by finding the largest value in the output node for i in range(len(actualOutput)): if (actualOutput[i] > actualOutput[actualDigit]): actualDigit = i confidence = actualOutput[actualDigit] * 100 confidence = round(confidence, 2) # Find the expected output by finding which output is 1 for i in range(len(expectedOutput[example][1])): if (expectedOutput[example][1][i:i+1] == "1"): expectedDigit = i if (actualDigit == expectedDigit): correctGuess = True return actualDigit, expectedDigit, confidence, correctGuess def showResults(validationData, inputWeights, outputWeights): accuracy = 0 for i in range(len(validationData)): correctnessString = 'incorreclty' inputNodes, outputNodes, hiddenNodes = forwardPropogation( validationData[i], inputWeights, outputWeights) actualOutput, expectedOutput, confidence, correctness = returnResults( outputNodes, validationData, i) if (correctness == True): accuracy += 1 correctnessString = 'correctly' print(str(i) + ": model " + correctnessString + " predicted " + str(actualOutput) + " with a confidence of " + str(confidence) + "% actual digit was " + str(expectedOutput)) print("accuracy for the model was " + str(accuracy/len(validationData)*100) + "%") if __name__ == "__main__": main()
DinglyCoder/Neural_Network_Digit_Classifier
Digit_NN.py
Digit_NN.py
py
9,468
python
en
code
0
github-code
6
33828906255
import subprocess import os from concurrent.futures import ThreadPoolExecutor spiders = subprocess.run(["scrapy", "list"], stdout=subprocess.PIPE, text=True).stdout.strip().split('\n') def run_spider(spider_name): log_file = f"logs/{spider_name}_logs.txt" os.makedirs(os.path.dirname(log_file), exist_ok=True) with open(log_file, 'w') as file: file.truncate() subprocess.run( ["scrapy", "crawl", spider_name], check=True, stdout=file, stderr=subprocess.STDOUT ) print(f"{spider_name} completed and logged to {log_file}") for spider in spiders: run_spider(spider)
hassaan-ahmed-brainx/enpak_scrappers
run_spiders.py
run_spiders.py
py
615
python
en
code
0
github-code
6
71362184827
import os import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = 'PythonPDB' copyright = '2023, Benjamin McMaster' author = 'Benjamin McMaster' # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon'] templates_path = ['_templates'] exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_theme = 'sphinx_rtd_theme' html_static_path = ['_static']
benjiemc/PythonPDB
docs/conf.py
conf.py
py
864
python
en
code
0
github-code
6
5308859090
# 예상등수 A , 실제등수 B, 불만도 = |A-B| # 불만도 최소값 -> 학생등수매기기 # 1 5 3 1 2 -> sorting 1 1 2 3 5 # 1 2 3 4 5 n = int(input()) guess_rank = [int(input()) for _ in range(n)] rank = [i for i in range(1, n+1)] worst_score = 0 for a, b in zip(rank, sorted(guess_rank)): worst_score += abs(a - b) print(worst_score)
louisuss/Algorithms-Code-Upload
Python/FastCampus/greedy/2012.py
2012.py
py
352
python
en
code
0
github-code
6
71455581947
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve import matplotlib.pyplot as plt from pathlib import Path from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler class ClassifierComparison: def __init__(self, dataset_path): self.dataset_path = dataset_path self.data = None self.data_test = None self.target_test = None self.target = None self.model_lr = None self.model_knn = None self.model_mlp = None def load_data(self): df = pd.read_csv(self.dataset_path) df1 = df.copy(deep=True) # making a copy of the dataframe to protect original data # define the columns to be encoded and scaled categorical_columns = ['sex', 'exng', 'caa', 'cp', 'fbs', 'restecg', 'slp', 'thall'] continious_columns = ["age", "trtbps", "chol", "thalachh", "oldpeak"] # encoding the categorical columns df1 = pd.get_dummies(df1, columns=categorical_columns, drop_first=True) # %% # # defining the features and target X = df1.drop(['output'], axis=1) y = df1[['output']] # # instantiating the scaler scaler = RobustScaler() # # scaling the continuous featuree X[continious_columns] = scaler.fit_transform( X[continious_columns]) # Transform the continious column to have unit variance and zero mean X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) self.data = X_train self.target = y_train self.data_test = X_test self.target_test = y_test def train_models(self): self.model_lr = LogisticRegression() self.model_lr.fit(self.data, self.target) self.model_knn = KNeighborsClassifier() self.model_knn.fit(self.data, self.target) self.model_mlp = MLPClassifier() self.model_mlp.fit(self.data.astype(float), self.target) def predict(self): lr_predictions = self.model_lr.predict(self.data_test) knn_predictions = self.model_knn.predict(self.data_test) mlp_predictions = self.model_mlp.predict(self.data_test) return lr_predictions, knn_predictions, mlp_predictions def compare_metrics(self): lr_predictions, knn_predictions, mlp_predictions = self.predict() lr_accuracy = accuracy_score(self.target_test, lr_predictions) knn_accuracy = accuracy_score(self.target_test, knn_predictions) mlp_accuracy = accuracy_score(self.target_test, mlp_predictions) print(f"Logistic Regression Accuracy: {lr_accuracy:.4f}") print(f"KNN Accuracy: {knn_accuracy:.4f}") print(f"MLP Accuracy: {mlp_accuracy:.4f}") def plot_roc_auc_curves(self): lr_probabilities = self.model_lr.predict_proba(self.data_test)[:, 1] knn_probabilities = self.model_knn.predict_proba(self.data_test)[:, 1] mlp_probabilities = self.model_mlp.predict_proba(self.data_test)[:, 1] lr_auc = roc_auc_score(self.target_test, lr_probabilities) knn_auc = roc_auc_score(self.target_test, knn_probabilities) mlp_auc = roc_auc_score(self.target_test, mlp_probabilities) fpr_lr, tpr_lr, _ = roc_curve(self.target_test, lr_probabilities) fpr_knn, tpr_knn, _ = roc_curve(self.target_test, knn_probabilities) fpr_mlp, tpr_mlp, _ = roc_curve(self.target_test, mlp_probabilities) plt.figure(figsize=(6, 3)) plt.plot(fpr_lr, tpr_lr, label=f"Logistic Regression (AUC = {lr_auc:.2f})") plt.plot(fpr_knn, tpr_knn, label=f"KNN (AUC = {knn_auc:.2f})") plt.plot(fpr_mlp, tpr_mlp, label=f"MLP (AUC = {mlp_auc:.2f})") plt.plot([0, 1], [0, 1], linestyle='--', color='black') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curves') plt.legend() plt.tight_layout() plt.show() # Usage Example cc = ClassifierComparison(Path('/Users/anmolgorakshakar/Downloads/heart.csv')) cc.load_data() cc.train_models() cc.compare_metrics() cc.plot_roc_auc_curves()
anmol6536/binder_project
hw6_comparing_models.py
hw6_comparing_models.py
py
4,387
python
en
code
0
github-code
6
42455383816
from model.contact import Contact from model.group import Group import random def test_add_contact_to_group(app, db, check_ui): # checks whether there are contacts available. If not - create one if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname="Name for deletion")) # check whether there are groups available. If not - create one if len(db.get_group_list()) == 0: app.group.create(Group(name="azazazaz")) # check whether there are free contacts (not part of any group) if len(db.get_contacts_not_in_any_of_groups()) == 0: app.contact.create(Contact(firstname="Contact not in groups")) # check whether there are free groups (do not have any contacts inside) if len(db.get_groups_without_contacts()) == 0: app.group.create(Group(name="Group without contacts")) # choose random contact to add random_contact = random.choice(db.get_contacts_not_in_any_of_groups()) # choose random group for contact addition random_group = random.choice(db.get_groups_without_contacts()) # add contact to group app.contact.add_contact_to_group(random_contact.id, random_group.id) # assert that random_contact is in list of contacts of random_group assert random_contact in db.get_contact_in_group(random_group)
1kpp/python_trainnig
test/test_add_contact_to_group.py
test_add_contact_to_group.py
py
1,312
python
en
code
0
github-code
6
21881567037
# app.py from fastapi import FastAPI, HTTPException from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import pandas as pd import uvicorn app = FastAPI() # This middleware is required in order to accept requests from other domains such as a React app running on 'localhost:3000' origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) df = pd.read_csv('./sentiment140/training.1600000.processed.noemoticon.csv', names=['score', 'id', 'date', 'col4', 'author', 'tweet']) # Load your trained model model = MultinomialNB() vectorizer = CountVectorizer() # Assuming df is your DataFrame from which you trained the model X_train_vectorized = vectorizer.fit_transform(df['tweet']) y_train = df['score'].astype(str) model.fit(X_train_vectorized, y_train) class SentimentRequest(BaseModel): text: str class SentimentResponse(BaseModel): prediction: int @app.post("/predict_sentiment", response_model=SentimentResponse) def predict_sentiment(request: SentimentRequest): global df # declare df as global so we can use it in this endpoint text = request.text # Vectorize the input text text_vectorized = vectorizer.transform([text]) # Make prediction prediction = model.predict(text_vectorized)[0] # Append this prediction to the model new_entry = pd.DataFrame({'score': [prediction], 'tweet': [text]}) df = pd.concat([df, new_entry], ignore_index=True) df.to_csv('./sentiment140/training.1600000.processed.noemoticon.csv', index=False) return {"prediction": prediction} @app.get("/get_last_5") def get_last_5(): global df last_5_entries = df.tail(5) last_5_entries_trimmed = last_5_entries[['score', 'tweet']].to_dict(orient='records') return last_5_entries_trimmed if __name__ == "__main__": uvicorn.run("app:app", port=8000, reload=True)
pnavab/tweet-sentiment-NLP
app.py
app.py
py
2,079
python
en
code
0
github-code
6
43391996015
import os; from random import shuffle def create_data_sets(): imagesPath = "ImagesTrain_Sorted/" textFilesPath = "" classifiers = {} classifierIndex = 0 images_per_folder = [] for folderName in os.listdir(imagesPath): classifiers.update({folderName: classifierIndex}) classifierIndex += 1 images_per_folder.append(len(os.listdir(imagesPath+"//"+folderName))) images_per_class = min(images_per_folder) percent_testing = .2 testingNum = percent_testing * images_per_class trainingList = [] testingList = [] for folderName in os.listdir(imagesPath): currPath = imagesPath.__add__("/%s" % folderName) imageslist = os.listdir(currPath) shuffle(imageslist) for x in range(0, images_per_class): entry = imagesPath + folderName + "/" + imageslist[x] + "," + str(classifiers[folderName]) if (x < testingNum): testingList.append(entry) else: trainingList.append(entry) shuffle(trainingList) shuffle(testingList) # Creates/overwrites existing text files for training and testing training = open(textFilesPath + "train.txt", "w+") testing = open(textFilesPath + "test.txt", "w+") # writes to training and testing text files for entry in trainingList: training.write(entry + "\n") for entry in testingList: testing.write(entry + "\n") # Closes the text files training.close() testing.close()
lealex262/Machine-Learned-Image-Classification-
createdatasets.py
createdatasets.py
py
1,519
python
en
code
1
github-code
6
21312898418
import math class Point: """ Represents a point in 2-D geometric space """ def __init__(self, x=0, y=0): """ Initializes the position of a new point. If they are not specified, the point defaults to the origin :param x: x coordinate :param y: y coordinate """ self.x = x self.y = y def reset(self): """ Reset the point to the origin in 2D space :return: nothing """ self.move(0, 0) def move(self, x, y): """ Move a point to a new location in 2D space :param x: x coordinate :param y: y coordinate :return: nothing """ self.x = x self.y = y def calculate_distance(self, other_point): """ Calculate distance between this point and parameter point :other_point: second point :return: the distance as a float """ return math.sqrt((other_point.x - self.x)**2 + (other_point.y - self.y)**2) def main(): p1 = Point() print(p1.x, p1.y) p2 = Point(5, 8) print(p2.x, p2.y) p2.reset() print(p2.x, p2.y) p2.move(9, 10) print(p2.x, p2.y) print(p1.calculate_distance(p2)) assert(p2.calculate_distance(p1) == p1.calculate_distance(p2)) if __name__ == "__main__": main() exit(0)
matthewkirk203/intermediatePython
python/day1/testLiveTemplate.py
testLiveTemplate.py
py
1,363
python
en
code
0
github-code
6
2794147606
#ENTRENAMIENTO DE RED CONVOLUCIONAL 2D - CLASIFICACION HSI #Se utiliza PCA para reduccion dimensional y estraccion de caracteristicas espectrales. A la red convolucional se introduce #una ventana sxs de la imagen original para la generacion de caracteristicas espaciales a partir de la convolucion. #Se utiliza como capa de salida un clasificador tipo Multinomial logistic regression. Todas las capas utilizan entrenamiento supervisado. import warnings warnings.filterwarnings('ignore') from package.cargarHsi import CargarHsi from package.prepararDatos import PrepararDatos from package.PCA import princiapalComponentAnalysis from package.MorphologicalProfiles import morphologicalProfiles from package.dataLogger import DataLogger from keras import layers from keras import models from keras import regularizers from keras import backend as K import matplotlib.pyplot as plt import numpy as np import os #CARGAR IMAGEN HSI Y GROUND TRUTH numTest = 10 dataSet = 'Urban' test = 'pcaCNN2D' # pcaCNN2D eapCNN2D fe_eap = False # false for PCA, true for EAP ventana = 9 #VENTANA 2D de PROCESAMIENTO data = CargarHsi(dataSet) imagen = data.imagen groundTruth = data.groundTruth #CREAR FICHERO DATA LOGGER logger = DataLogger(fileName = dataSet, folder = test, save = True) #ANALISIS DE COMPONENTES PRINCIPALES pca = princiapalComponentAnalysis() #imagenFE = pca.pca_calculate(imagen, varianza=0.95) imagenFE = pca.pca_calculate(imagen, componentes=18) print(imagenFE.shape) #ESTIMACIÓN DE EXTENDED ATTRIBUTE PROFILES if fe_eap: mp = morphologicalProfiles() imagenFE = mp.EAP(imagenFE, num_thresholds=6) ##################### print(imagenFE.shape) OA = 0 vectOA = np.zeros(numTest) for i in range(0, numTest): #PREPARAR DATOS PARA ENTRENAMIENTO preparar = PrepararDatos(imagenFE, groundTruth, False) datosEntrenamiento, etiquetasEntrenamiento, datosValidacion, etiquetasValidacion = preparar.extraerDatos2D(50,30,ventana) datosPrueba, etiquetasPrueba = preparar.extraerDatosPrueba2D(ventana) #DEFINICION RED CONVOLUCIONAL model = models.Sequential() model.add(layers.Conv2D(48, (5, 5), kernel_regularizer=regularizers.l2(0.001),activation='relu', input_shape=(datosEntrenamiento.shape[1],datosEntrenamiento.shape[2],datosEntrenamiento.shape[3]))) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) model.add(layers.Conv2D(96, (3, 3), kernel_regularizer=regularizers.l2(0.001),activation='relu')) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) model.add(layers.Conv2D(96, (3, 3), kernel_regularizer=regularizers.l2(0.001),activation='relu')) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) #CAPA FULLY CONNECTED model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1024, kernel_regularizer=regularizers.l2(0.001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1024, kernel_regularizer=regularizers.l2(0.001), activation='relu')) #AÑADE UN CLASIFICADOR MLR EN EL TOPE DE LA CONVNET model.add(layers.Dense(groundTruth.max()+1, activation='softmax')) print(model.summary()) #ENTRENAMIENTO DE LA RED CONVOLUCIONAL model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(datosEntrenamiento,etiquetasEntrenamiento,epochs=35,batch_size=512,validation_data=(datosValidacion, etiquetasValidacion)) #EVALUAR MODELO test_loss, test_acc = model.evaluate(datosPrueba, etiquetasPrueba) vectOA[i] = test_acc OA = OA+test_acc #LOGGER DATOS DE ENTRENAMIENTO logger.savedataTrain(history) #GUARDAR MODELO DE RED CONVOLUCIONAL model.save(os.path.join(logger.path,test+str(i)+'.h5')) #GENERAR MAPA FINAL DE CLASIFICACIÓN print('dataOA = '+ str(vectOA)) print('OA = '+ str(OA/numTest)) datosSalida = model.predict(datosPrueba) datosSalida = preparar.predictionToImage(datosSalida) #GRAFICAS data.graficarHsi_VS(groundTruth, datosSalida) data.graficar_history(history) K.clear_session() logger.close()
davidruizhidalgo/unsupervisedRemoteSensing
2_Redes Supervisadas/hsi_CNN2D.py
hsi_CNN2D.py
py
4,213
python
es
code
13
github-code
6
19399678889
class Solution: def backspaceCompare(self, S: str, T: str) -> bool: s = self.simulate(S) t = self.simulate(T) # print(s, t) return s == t def simulate(self,S): arr = list(S) result = [] for each in arr: if each == '#': if len(result): result.pop() else: result.append(each) return result S = "ab#c" T = "ad#c" s = Solution().backspaceCompare(S, T) print(s)
Yigang0622/LeetCode
backspaceCompare.py
backspaceCompare.py
py
507
python
en
code
1
github-code
6
27259910110
"""We are the captains of our ships, and we stay 'till the end. We see our stories through. """ """617. Merge Two Binary Trees """ class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class Solution: def mergeTrees(self, t1, t2): if not t1: return t2 if not t2: return t1 t1.val += t2.val t1.left = self.mergeTrees(t1.left, t2.left) t1.right = self.mergeTrees(t1.right, t2.right) return t1
asperaa/back_to_grind
Trees/merge_trees.py
merge_trees.py
py
537
python
en
code
1
github-code
6
6018276646
# https://pypi.org/project/emoji/ from PIL import Image, ImageDraw, ImageFont import emoji print(emoji.demojize('Python 👍')) print(emoji.emojize("Python :thumbs_up:")) # 创建一个空白的RGBA模式图像 img = Image.new('RGBA', (200, 200), color='white') # 获取Emoji字符的Unicode字符串 emoji_unicode = emoji.emojize(':thumbs_up:') # 获取绘制对象和字体 draw = ImageDraw.Draw(img) font_path = r'H:\Snippets\Program-Learning\Python\modules\utils\SourceHanSansCN-Medium.otf' emoji_font_path = r'H:\Snippets\Program-Learning\Python\modules\utils\SEGUIEMJ.TTF' font = ImageFont.truetype(font_path, 24, encoding='unic') emoji_font = ImageFont.truetype(emoji_font_path, 24) # 创建图像和绘图对象 image = Image.new("RGB", (200, 200), (255, 255, 255)) draw = ImageDraw.Draw(image) # 绘制文本 text = "Hello, 世界 👍" x, y = 50, 50 for char in text: # 如果是 emoji if char.encode('unicode_escape').decode('utf-8').startswith('\\U'): draw.text((x, y+8), char, font=emoji_font, fill=None, embedded_color=True) size = draw.textlength(char, font=emoji_font) else: draw.text((x, y), char, font=font, fill=(0, 0, 0)) size = draw.textlength(char, font=font) x += size # 显示图像 # image.show() original_list = ['❤❤️'] new_list = ["".join([char for char in string if char.encode( 'unicode_escape').decode('utf-8') != '\\ufe0f']) for string in original_list] print(new_list)
Yuelioi/Program-Learning
Python/modules/utils/_emoji.py
_emoji.py
py
1,542
python
en
code
0
github-code
6
42411367389
# -*- coding: utf-8 -*- # # File: BPDProgramable.py # # Copyright (c) 2011 by Conselleria de Infraestructuras y Transporte de la # Generalidad Valenciana # # GNU General Public License (GPL) # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. # # __author__ = """acv <[email protected]>""" __docformat__ = 'plaintext' from AccessControl import ClassSecurityInfo from Products.Archetypes.atapi import * from Products.gvSIGbpd.config import * ##code-section module-header #fill in your manual code here ##/code-section module-header schema = Schema(( ComputedField( name='sumarioProgramas', widget=ComputedField._properties['widget']( label="Resumenes de Programas", label2="Programs Summary", description="Un resumen de los tipos del programas y el codigo fuente de los programas especificados en este elemento.", description2="A summary of the programs types and source codes of the programs specified for this element.", label_msgid='gvSIGbpd_BPDProgramable_attr_sumarioProgramas_label', description_msgid='gvSIGbpd_BPDProgramable_attr_sumarioProgramas_help', i18n_domain='gvSIGbpd', ), exclude_from_values_paragraph="True", description="Un resumen de los tipos del programas y el codigo fuente de los programas especificados en este elemento.", duplicates="0", label2="Programs Summary", ea_localid="627", derived="0", precision=0, collection="false", styleex="volatile=0;IsLiteral=0;", description2="A summary of the programs types and source codes of the programs specified for this element.", ea_guid="{B50FFB52-5276-4846-931D-747DFFAB639C}", exclude_from_values_form="True", scale="0", label="Resumenes de Programas", length="0", containment="Not Specified", position="2", owner_class_name="BPDProgramable", expression="'; '.join( [ '%s:%s' %(( aPrg.getTipoPrograma() or ''), ( aPrg.getFuentePrograma() or ''))[:64] for aPrg in context.getProgramas()])", computed_types="string", exclude_from_copyconfig="True", exclude_from_exportconfig="True" ), ComputedField( name='programas', widget=ComputedWidget( label="Programas", label2="Programs", description="Programas implementando el comportamiento de este elemento.", description2="Programs implementing the behavior of this element.", label_msgid='gvSIGbpd_BPDProgramable_contents_programas_label', description_msgid='gvSIGbpd_BPDProgramable_contents_programas_help', i18n_domain='gvSIGbpd', ), contains_collections=False, label2='Programs', additional_columns=['tipoPrograma', 'fuentePrograma'], label='Programas', represents_aggregation=True, description2='Programs implementing the behavior of this element.', multiValued=1, owner_class_name="BPDProgramable", expression="context.objectValues(['BPDPrograma'])", computed_types=['BPDPrograma'], non_framework_elements=False, description='Programas implementando el comportamiento de este elemento.' ), ), ) ##code-section after-local-schema #fill in your manual code here ##/code-section after-local-schema BPDProgramable_schema = schema.copy() ##code-section after-schema #fill in your manual code here ##/code-section after-schema class BPDProgramable: """ """ security = ClassSecurityInfo() allowed_content_types = ['BPDPrograma'] _at_rename_after_creation = True schema = BPDProgramable_schema ##code-section class-header #fill in your manual code here ##/code-section class-header # Methods # end of class BPDProgramable ##code-section module-footer #fill in your manual code here ##/code-section module-footer
carrascoMDD/gvSIG-bpd
gvSIGbpd/BPDProgramable.py
BPDProgramable.py
py
4,774
python
en
code
0
github-code
6
25055000504
#!/usr/bin/env python # -*- coding: utf-8 -*- import urllib, urllib2 from urllib2 import HTTPError class HttpRequest(object): ''' HTTP 호출 ''' def param_encode(self, params): return urllib.urlencode(params) def request(self, request_url, request_type="GET", params=None, headers={}, data=None): opener = urllib2.build_opener(urllib2.HTTPHandler) if params: request_url = "{0}?{1}".format(request_url, self.param_encode(params)) req = urllib2.Request(request_url, data, headers) req.get_method = lambda: request_type try: response = opener.open(req) except HTTPError as hpe: # fail return HttpResponse(hpe) return HttpResponse(response) class HttpResponse(object): __CONTENT__TYPE__ = "Content-Type" def __init__(self, info): self.info = info self.headers = info.headers self.code = info.code self.msg = info.msg self.body = info.read() self.isok = True if not isinstance(info, HTTPError) else False if __name__ == "__main__": http = HttpRequest() response = http.request("http://localhost:11000/oozie") print(response.headers["Content-Type"])
developer-sdk/oozie-webservice-api
oozie-webservice-api/oozie/httputil2.py
httputil2.py
py
1,335
python
en
code
1
github-code
6
2714558577
#상속 # : 클래스들이 중복된 코드를 제거하고 유지보수를 # 편하게 하기 위해 사용. # 부모 클래스 class Monster: def __init__(self,name, health, attack): self.name = name self.health = health self.attack = attack def move(self): print(f"[{self.name}]지상에서 이동하기") # 자식 클래스 class Wolf(Monster): pass class Shark(Monster): def move(self): print(f"[{self.name}]헤엄치기") # 메소드 오버라이딩 class Dragon(Monster): def move(self): print(f"[{self.name}]날기") wolf = Wolf("울프",1500, 200) wolf.move() Shark = Shark("울프",1500, 200) Shark.move() Dragon = Dragon("울프",1500, 200) Dragon.move()
Monsangter/pythonweb
python_basic/myvenv/chapter8/04.상속.py
04.상속.py
py
731
python
ko
code
0
github-code
6
12746754821
import requests from bs4 import BeautifulSoup as bs import smtplib URL = "https://www.amazon.in/9500-15-6-inch-i7-10750H-NVIDIA1650-Graphics/dp/B08BZPRWR5/ref=sr_1_4?dchild=1&keywords=Dell+XPS+15&qid=1602254565&sr=8-4" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36", } def check_price(): """Check Price of Product""" page = requests.get(URL, headers=headers) soup = bs(page.content, 'html.parser') title = soup.find(id="productTitle").get_text() price = soup.find(id="priceblock_ourprice").get_text() price.replace("₹", "") price.replace(",", "") price.replace(" ", "") price.replace("\\xa;", "") converted_price = float(price[0:5]) if (converted_price < 2000000.00): send_mail() print(converted_price) def send_mail(): server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.ehlo() server.login("[email protected]", "Baahubali") subject = "Price went down for DELL XPS 15" body = ("Check it out: https://www.amazon.de/Dell-Generation-i7-10750H-N18P-G62-DDR4-2933MHz/dp/B088TWQ1V8/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1QODNEAOK4F7R&dchild=1&keywords=dell+xps+15&qid=1602067797&quartzVehicle=93-295&replacementKeywords=dell+xps&sprefix=Dell+XPS+%2Caps%2C281&sr=8-1") msg = f"Subject: {subject} \n\n {body}" server.sendmail( "[email protected]", "[email protected]", msg ) print("Email sent") server.quit() check_price()
Programmer-X31/PythonProjects
Project Amazon Scraper/main.py
main.py
py
1,679
python
en
code
0
github-code
6
39485139620
#!/usr/bin/env python3 """lc3_achi.py -- achivements module""" import time import dataset from flask import session lc3_achivements = [{'id': 0, 'hidden': False, 'title': 'Sleepless', 'desc': 'Submit a correct flag at night'}, {'id': 3, 'hidden': False, 'title': 'CTF Initiate', 'desc': 'Solve one problem'} ] def check_and_set(dbfile, id): db = dataset.connect('sqlite:///ctf.db') achis = db.query('''select a.achi_id from achivements a where a.user_id = :user_id''', user_id=session['user_id']) achi = [a['achi_id'] for a in list(achis)] if id in achi: db.executable.close() return False else: new_achi = dict(achi_id=id, user_id=session['user_id']) db['achivements'].insert(new_achi) db.executable.close() return True def chkachi(dbfile, action, **kw): new_achi = False return new_achi
Himanshukr000/CTF-DOCKERS
lc3ctf/examples/lc3achi/lc3achi.py
lc3achi.py
py
922
python
en
code
25
github-code
6
24199870907
# -*- coding: utf-8 -*- """ Created on Fri Jul 12 15:21:43 2019 @author: Administrator """ class Solution: def uniquePathsWithObstacles(self, obstacleGrid): m = len(obstacleGrid) if not m: return n = len(obstacleGrid[0]) memo = [[0 for _ in range(n)] for _ in range(m)] if obstacleGrid[-1][-1] == 0: memo[-1][-1] = 1 else: return 0 for i in range(n - 2, -1, -1): if obstacleGrid[-1][i] == 1: memo[-1][i] = 0 else: memo[-1][i] = memo[-1][i + 1] for i in range(m - 2, -1, -1): if obstacleGrid[i][-1] == 1: memo[i][-1] = 0 else: memo[i][-1] = memo[i + 1][-1] for i in range(m - 2, -1, -1): for j in range(n - 2, -1, -1): if obstacleGrid[i][j] == 1: memo[i][j] = 0 else: memo[i][j] = memo[i + 1][j] + memo[i][j + 1] return memo[0][0] if __name__ == '__main__': obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] res = Solution().uniquePathsWithObstacles(obstacleGrid)
AiZhanghan/Leetcode
code/63. Unique Paths II.py
63. Unique Paths II.py
py
1,255
python
en
code
0
github-code
6
73590131389
"""__author__ = 余婷""" # 1.文本文件相关的操作 def get_text_file_content(file_path): """ 获取文本文件的内容 :param file_path: 文件路径 :return: 文件的内容 """ try: with open(file_path, 'r', encoding='utf-8') as f: return f.read() except FileNotFoundError: print('Error:文件不存在!!!') return None def write_text_file(content, file_path): """ 将数据写到指定的文本文件中 :param content: 写入的内容 :param file_path: 文件路径 :return: 返回写操作是否成功 """ try: with open(file_path, 'wb', encoding='utf-8') as f: f.write(content) f.write() return True except TypeError: print('Error:内容必须是字符串!!!') return False if __name__ == '__main__': get_text_file_content('./aa.txt') write_text_file(str(True), './aa.txt')
gilgameshzzz/learn
day10Python_pygame/day10-管理系统/system/fileManager.py
fileManager.py
py
960
python
zh
code
0
github-code
6
4041441314
__author__ = 'yueli' import numpy as np import matplotlib.pyplot as plt from config.config import * mrList = np.linspace(1, 13, 13) negativeList = [-1, -1, -10, -10, -1, -1, -1, -10 ,-1, -1, -1, -10, -10] noMapReplyList = np.linspace(0, 0, 13) rlocSet1 = [-10, 1, 1, 1, -10, -10, 1, 1, 1, -10, 1, 1, 1] rlocSet2 = [-10, 2, 2, 2, 2, 2, 2, 2, 2, -10, 2, 2, 2] rlocSet3 = [-10, -10, 3, 3, -10, -10, -10, 3, -10, -10, -10, 3, 3] plt.xlim(0.5, 13.5) plt.ylim(-1.5, 3.5) plt.scatter(mrList,negativeList, color = 'blue') plt.scatter(mrList,noMapReplyList, color = 'yellow') plt.scatter(mrList,rlocSet1, color = 'purple') plt.scatter(mrList,rlocSet2, color = 'red') plt.scatter(mrList,rlocSet3, color = 'green') plt.xlabel("13 different Map Resolvers") plt.ylabel("Responses from MRs") plt.title("Responses from 13 MRs for EID-153.16.49.112 at liege(by MR)") plt.xticks(mrList, ['MR1', 'MR2', 'MR3', 'MR4', 'MR5', 'MR6', 'MR7', 'MR8', 'MR9', 'MR10', 'MR11', 'MR12', 'MR13', 'MR14', 'MR15']) plt.yticks([-1, 0, 1, 2, 3], ['Negative Reply', 'No Map Reply', '82.121.231.67', '192.168.1.66', '132.227.85.231']) # plt.savefig( # os.path.join(PLOT_DIR, 'Plot_variable_MR', 'Plot_variable_MR.eps'), # dpi=300, # transparent=True # ) plt.show()
hansomesong/TracesAnalyzer
Plot/Plot_variable_MR/Plot_variable_MR.py
Plot_variable_MR.py
py
1,248
python
en
code
1
github-code
6
35031212514
import io import webbrowser video_links_dict = {} video_links = open("C:\\users\lcrum\documents\mypythonprograms\musicvideolinks.txt", "r") for i in video_links: var = video_links.readline() varKey, varExcess, varVal = var.partition(' ') video_links_dict[varKey] = varVal video_links.close def song_selection(): userSelection = input("Please enter the title from the list you want to play: ") song_url = video_links_dict[userSelection] webbrowser.open(song_url) def song_list(): for titles in video_links_dict: print(titles) print("Welcome to the kids music videos.Here is a selection of movie titles you can choose from ...") song_list() song_selection() user_response = input("Do you wish to select another video?: Y or N") while user_response == 'Y': song_list() song_selection() else: print("Thanks for using our service. Bye for now")
linseycurrie/FilmMusicVideos
MusicVideos.py
MusicVideos.py
py
893
python
en
code
0
github-code
6
18266500320
"""This is Slate's Linear Algebra Compiler. This module is responsible for generating C++ kernel functions representing symbolic linear algebra expressions written in Slate. This linear algebra compiler uses both Firedrake's form compiler, the Two-Stage Form Compiler (TSFC) and COFFEE's kernel abstract syntax tree (AST) optimizer. TSFC provides this compiler with appropriate kernel functions (in C) for evaluating integral expressions (finite element variational forms written in UFL). COFFEE's AST base helps with the construction of code blocks throughout the kernel returned by: `compile_expression`. The Eigen C++ library (http://eigen.tuxfamily.org/) is required, as all low-level numerical linear algebra operations are performed using this templated function library. """ from coffee import base as ast from firedrake.constant import Constant from firedrake.tsfc_interface import SplitKernel, KernelInfo from firedrake.slate.slac.kernel_builder import LocalKernelBuilder from firedrake import op2 from itertools import chain from pyop2.utils import get_petsc_dir from pyop2.datatypes import as_cstr from tsfc.parameters import SCALAR_TYPE import firedrake.slate.slate as slate import numpy as np __all__ = ['compile_expression'] PETSC_DIR = get_petsc_dir() cell_to_facets_dtype = np.dtype(np.int8) def compile_expression(slate_expr, tsfc_parameters=None): """Takes a Slate expression `slate_expr` and returns the appropriate :class:`firedrake.op2.Kernel` object representing the Slate expression. :arg slate_expr: a :class:'TensorBase' expression. :arg tsfc_parameters: an optional `dict` of form compiler parameters to be passed onto TSFC during the compilation of ufl forms. Returns: A `tuple` containing a `SplitKernel(idx, kinfo)` """ if not isinstance(slate_expr, slate.TensorBase): raise ValueError("Expecting a `TensorBase` object, not %s" % type(slate_expr)) # TODO: Get PyOP2 to write into mixed dats if slate_expr.is_mixed: raise NotImplementedError("Compiling mixed slate expressions") if len(slate_expr.ufl_domains()) > 1: raise NotImplementedError("Multiple domains not implemented.") # If the expression has already been symbolically compiled, then # simply reuse the produced kernel. if slate_expr._metakernel_cache is not None: return slate_expr._metakernel_cache # Create a builder for the Slate expression builder = LocalKernelBuilder(expression=slate_expr, tsfc_parameters=tsfc_parameters) # Keep track of declared temporaries declared_temps = {} statements = [] # Declare terminal tensor temporaries terminal_declarations = terminal_temporaries(builder, declared_temps) statements.extend(terminal_declarations) # Generate assembly calls for tensor assembly subkernel_calls = tensor_assembly_calls(builder) statements.extend(subkernel_calls) # Create coefficient temporaries if necessary if builder.action_coefficients: coefficient_temps = coefficient_temporaries(builder, declared_temps) statements.extend(coefficient_temps) # Create auxiliary temporaries if necessary if builder.aux_exprs: aux_temps = auxiliary_temporaries(builder, declared_temps) statements.extend(aux_temps) # Generate the kernel information with complete AST kinfo = generate_kernel_ast(builder, statements, declared_temps) # Cache the resulting kernel idx = tuple([0]*slate_expr.rank) kernel = (SplitKernel(idx, kinfo),) slate_expr._metakernel_cache = kernel return kernel def generate_kernel_ast(builder, statements, declared_temps): """Glues together the complete AST for the Slate expression contained in the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg statements: A list of COFFEE objects containing all assembly calls and temporary declarations. :arg declared_temps: A `dict` containing all previously declared temporaries. Return: A `KernelInfo` object describing the complete AST. """ slate_expr = builder.expression if slate_expr.rank == 0: # Scalars are treated as 1x1 MatrixBase objects shape = (1,) else: shape = slate_expr.shape # Now we create the result statement by declaring its eigen type and # using Eigen::Map to move between Eigen and C data structs. statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n")) result_sym = ast.Symbol("T%d" % len(declared_temps)) result_data_sym = ast.Symbol("A%d" % len(declared_temps)) result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape) result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape)) result_statement = ast.FlatBlock("%s %s((%s *)%s);\n" % (result_type, result_sym, SCALAR_TYPE, result_data_sym)) statements.append(result_statement) # Generate the complete c++ string performing the linear algebra operations # on Eigen matrices/vectors statements.append(ast.FlatBlock("/* Linear algebra expression */\n")) cpp_string = ast.FlatBlock(metaphrase_slate_to_cpp(slate_expr, declared_temps)) statements.append(ast.Incr(result_sym, cpp_string)) # Generate arguments for the macro kernel args = [result, ast.Decl("%s **" % SCALAR_TYPE, builder.coord_sym)] # Orientation information if builder.oriented: args.append(ast.Decl("int **", builder.cell_orientations_sym)) # Coefficient information expr_coeffs = slate_expr.coefficients() for c in expr_coeffs: if isinstance(c, Constant): ctype = "%s *" % SCALAR_TYPE else: ctype = "%s **" % SCALAR_TYPE args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)]) # Facet information if builder.needs_cell_facets: args.append(ast.Decl("%s *" % as_cstr(cell_to_facets_dtype), builder.cell_facet_sym)) # NOTE: We need to be careful about the ordering here. Mesh layers are # added as the final argument to the kernel. if builder.needs_mesh_layers: args.append(ast.Decl("int", builder.mesh_layer_sym)) # Macro kernel macro_kernel_name = "compile_slate" stmts = ast.Block(statements) macro_kernel = ast.FunDecl("void", macro_kernel_name, args, stmts, pred=["static", "inline"]) # Construct the final ast kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel]) # Now we wrap up the kernel ast as a PyOP2 kernel and include the # Eigen header files include_dirs = builder.include_dirs include_dirs.extend(["%s/include/eigen3/" % d for d in PETSC_DIR]) op2kernel = op2.Kernel(kernel_ast, macro_kernel_name, cpp=True, include_dirs=include_dirs, headers=['#include <Eigen/Dense>', '#define restrict __restrict']) # Send back a "TSFC-like" SplitKernel object with an # index and KernelInfo kinfo = KernelInfo(kernel=op2kernel, integral_type=builder.integral_type, oriented=builder.oriented, subdomain_id="otherwise", domain_number=0, coefficient_map=tuple(range(len(expr_coeffs))), needs_cell_facets=builder.needs_cell_facets, pass_layer_arg=builder.needs_mesh_layers) return kinfo def auxiliary_temporaries(builder, declared_temps): """Generates statements for assigning auxiliary temporaries for nodes in an expression with "high" reference count. Expressions which require additional temporaries are provided by the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` containing all previously declared temporaries. This dictionary is updated as auxiliary expressions are assigned temporaries. """ statements = [ast.FlatBlock("/* Auxiliary temporaries */\n")] results = [ast.FlatBlock("/* Assign auxiliary temps */\n")] for exp in builder.aux_exprs: if exp not in declared_temps: t = ast.Symbol("auxT%d" % len(declared_temps)) result = metaphrase_slate_to_cpp(exp, declared_temps) tensor_type = eigen_matrixbase_type(shape=exp.shape) statements.append(ast.Decl(tensor_type, t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) results.append(ast.Assign(t, result)) declared_temps[exp] = t statements.extend(results) return statements def coefficient_temporaries(builder, declared_temps): """Generates coefficient temporary statements for assigning coefficients to vector temporaries. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` keeping track of all declared temporaries. This dictionary is updated as coefficients are assigned temporaries. Action computations require creating coefficient temporaries to compute the matrix-vector product. The temporaries are created by inspecting the function space of the coefficient to compute node and dof extents. The coefficient is then assigned values by looping over both the node extent and dof extent (double FOR-loop). A double FOR-loop is needed for each function space (if the function space is mixed, then a loop will be constructed for each component space). The general structure of each coefficient loop will be: FOR (i1=0; i1<node_extent; i1++): FOR (j1=0; j1<dof_extent; j1++): wT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1] wT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1] . . . where wT0, wT1, ... are temporaries for coefficients sharing the same node and dof extents. The offset is computed based on whether the function space is mixed. The offset is always 0 for non-mixed coefficients. If the coefficient is mixed, then the offset is incremented by the total number of nodal unknowns associated with the component spaces of the mixed space. """ statements = [ast.FlatBlock("/* Coefficient temporaries */\n")] i_sym = ast.Symbol("i1") j_sym = ast.Symbol("j1") loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")] for (nodes, dofs), cinfo_list in builder.action_coefficients.items(): # Collect all coefficients which share the same node/dof extent assignments = [] for cinfo in cinfo_list: fs_i = cinfo.space_index offset = cinfo.offset_index c_shape = cinfo.shape actee = cinfo.coefficient if actee not in declared_temps: # Declare and initialize coefficient temporary c_type = eigen_matrixbase_type(shape=c_shape) t = ast.Symbol("wT%d" % len(declared_temps)) statements.append(ast.Decl(c_type, t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) declared_temps[actee] = t # Assigning coefficient values into temporary coeff_sym = ast.Symbol(builder.coefficient(actee)[fs_i], rank=(i_sym, j_sym)) index = ast.Sum(offset, ast.Sum(ast.Prod(dofs, i_sym), j_sym)) coeff_temp = ast.Symbol(t, rank=(index,)) assignments.append(ast.Assign(coeff_temp, coeff_sym)) # Inner-loop running over dof extent inner_loop = ast.For(ast.Decl("unsigned int", j_sym, init=0), ast.Less(j_sym, dofs), ast.Incr(j_sym, 1), assignments) # Outer-loop running over node extent loop = ast.For(ast.Decl("unsigned int", i_sym, init=0), ast.Less(i_sym, nodes), ast.Incr(i_sym, 1), inner_loop) loops.append(loop) statements.extend(loops) return statements def tensor_assembly_calls(builder): """Generates a block of statements for assembling the local finite element tensors. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information and assembly calls. """ statements = [ast.FlatBlock("/* Assemble local tensors */\n")] # Cell integrals are straightforward. Just splat them out. statements.extend(builder.assembly_calls["cell"]) if builder.needs_cell_facets: # The for-loop will have the general structure: # # FOR (facet=0; facet<num_facets; facet++): # IF (facet is interior): # *interior calls # ELSE IF (facet is exterior): # *exterior calls # # If only interior (exterior) facets are present, # then only a single IF-statement checking for interior # (exterior) facets will be present within the loop. The # cell facets are labelled `1` for interior, and `0` for # exterior. statements.append(ast.FlatBlock("/* Loop over cell facets */\n")) int_calls = list(chain(*[builder.assembly_calls[it_type] for it_type in ("interior_facet", "interior_facet_vert")])) ext_calls = list(chain(*[builder.assembly_calls[it_type] for it_type in ("exterior_facet", "exterior_facet_vert")])) # Compute the number of facets to loop over domain = builder.expression.ufl_domain() if domain.cell_set._extruded: num_facets = domain.ufl_cell()._cells[0].num_facets() else: num_facets = domain.ufl_cell().num_facets() if_ext = ast.Eq(ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym,)), 0) if_int = ast.Eq(ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym,)), 1) body = [] if ext_calls: body.append(ast.If(if_ext, (ast.Block(ext_calls, open_scope=True),))) if int_calls: body.append(ast.If(if_int, (ast.Block(int_calls, open_scope=True),))) statements.append(ast.For(ast.Decl("unsigned int", builder.it_sym, init=0), ast.Less(builder.it_sym, num_facets), ast.Incr(builder.it_sym, 1), body)) if builder.needs_mesh_layers: # In the presence of interior horizontal facet calls, an # IF-ELIF-ELSE block is generated using the mesh levels # as conditions for which calls are needed: # # IF (layer == bottom_layer): # *bottom calls # ELSE IF (layer == top_layer): # *top calls # ELSE: # *top calls # *bottom calls # # Any extruded top or bottom calls for extruded facets are # included within the appropriate mesh-level IF-blocks. If # no interior horizontal facet calls are present, then # standard IF-blocks are generated for exterior top/bottom # facet calls when appropriate: # # IF (layer == bottom_layer): # *bottom calls # # IF (layer == top_layer): # *top calls # # The mesh level is an integer provided as a macro kernel # argument. # FIXME: No variable layers assumption statements.append(ast.FlatBlock("/* Mesh levels: */\n")) num_layers = builder.expression.ufl_domain().topological.layers - 1 int_top = builder.assembly_calls["interior_facet_horiz_top"] int_btm = builder.assembly_calls["interior_facet_horiz_bottom"] ext_top = builder.assembly_calls["exterior_facet_top"] ext_btm = builder.assembly_calls["exterior_facet_bottom"] bottom = ast.Block(int_top + ext_btm, open_scope=True) top = ast.Block(int_btm + ext_top, open_scope=True) rest = ast.Block(int_btm + int_top, open_scope=True) statements.append(ast.If(ast.Eq(builder.mesh_layer_sym, 0), (bottom, ast.If(ast.Eq(builder.mesh_layer_sym, num_layers - 1), (top, rest))))) return statements def terminal_temporaries(builder, declared_temps): """Generates statements for assigning auxiliary temporaries for nodes in an expression with "high" reference count. Expressions which require additional temporaries are provided by the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` keeping track of all declared temporaries. This dictionary is updated as terminal tensors are assigned temporaries. """ statements = [ast.FlatBlock("/* Declare and initialize */\n")] for exp in builder.temps: t = builder.temps[exp] statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) declared_temps[exp] = t return statements def parenthesize(arg, prec=None, parent=None): """Parenthesizes an expression.""" if prec is None or parent is None or prec >= parent: return arg return "(%s)" % arg def metaphrase_slate_to_cpp(expr, temps, prec=None): """Translates a Slate expression into its equivalent representation in the Eigen C++ syntax. :arg expr: a :class:`slate.TensorBase` expression. :arg temps: a `dict` of temporaries which map a given expression to its corresponding representation as a `coffee.Symbol` object. :arg prec: an argument dictating the order of precedence in the linear algebra operations. This ensures that parentheticals are placed appropriately and the order in which linear algebra operations are performed are correct. Returns This function returns a `string` which represents the C/C++ code representation of the `slate.TensorBase` expr. """ # If the tensor is terminal, it has already been declared. # Coefficients in action expressions will have been declared by now, # as well as any other nodes with high reference count. if expr in temps: return temps[expr].gencode() elif isinstance(expr, slate.Transpose): tensor, = expr.operands return "(%s).transpose()" % metaphrase_slate_to_cpp(tensor, temps) elif isinstance(expr, slate.Inverse): tensor, = expr.operands return "(%s).inverse()" % metaphrase_slate_to_cpp(tensor, temps) elif isinstance(expr, slate.Negative): tensor, = expr.operands result = "-%s" % metaphrase_slate_to_cpp(tensor, temps, expr.prec) return parenthesize(result, expr.prec, prec) elif isinstance(expr, (slate.Add, slate.Sub, slate.Mul)): op = {slate.Add: '+', slate.Sub: '-', slate.Mul: '*'}[type(expr)] A, B = expr.operands result = "%s %s %s" % (metaphrase_slate_to_cpp(A, temps, expr.prec), op, metaphrase_slate_to_cpp(B, temps, expr.prec)) return parenthesize(result, expr.prec, prec) elif isinstance(expr, slate.Action): tensor, = expr.operands c, = expr.actee result = "(%s) * %s" % (metaphrase_slate_to_cpp(tensor, temps, expr.prec), temps[c]) return parenthesize(result, expr.prec, prec) else: raise NotImplementedError("Type %s not supported.", type(expr)) def eigen_matrixbase_type(shape): """Returns the Eigen::Matrix declaration of the tensor. :arg shape: a tuple of integers the denote the shape of the :class:`slate.TensorBase` object. Returns: Returns a string indicating the appropriate declaration of the `slate.TensorBase` object in the appropriate Eigen C++ template library syntax. """ if len(shape) == 0: rows = 1 cols = 1 elif len(shape) == 1: rows = shape[0] cols = 1 else: if not len(shape) == 2: raise NotImplementedError( "%d-rank tensors are not supported." % len(shape) ) rows = shape[0] cols = shape[1] if cols != 1: order = ", Eigen::RowMajor" else: order = "" return "Eigen::Matrix<double, %d, %d%s>" % (rows, cols, order)
hixio-mh/firedrake
firedrake/slate/slac/compiler.py
compiler.py
py
22,060
python
en
code
null
github-code
6
6018330446
from playwright.sync_api import sync_playwright def test_props(): with sync_playwright() as p: browser = p.chromium.launch(headless=False) page = browser.new_page() page.goto("https://image.baidu.com/") # 上传文件 file_path = r"C:/Users/yl/Desktop/1.png" page.locator("input[type=file]").set_input_files(file_path) # # 填充 # page.fill("#username", "yuellili") # # 点击 # page.click("#submit") # # 获取 iframe 元素 # page.frame_locator("iframe") # 获取classs属性 # page.get_attribute(selector=".video-title.tit", name="class") # 设置下拉列表 page.select_option(".province", label="湖南省") page.select_option(".city", value="长沙市") def main(): # test_xpath() # test_css() # test_playwright_selector() test_props() if __name__ == "__main__": main()
Yuelioi/Program-Learning
Python/modules/web/Playwright/元素操作.py
元素操作.py
py
987
python
en
code
0
github-code
6
30502016476
from django.urls import path from . import views app_name = 'home' urlpatterns = [ path('', views.index, name='index'), path('login/', views.login_view, name='login'), path('registration/', views.registration, name='registration'), path('logout/', views.logout_view, name='logout'), path('profile/', views.profile_view, name='profile'), path('profile/edit/', views.edit_profile_view, name='profile_edit') ]
Arctik124/tekken_league
home/urls.py
urls.py
py
434
python
en
code
0
github-code
6
21833663632
from flask import Flask, render_template, request from werkzeug.utils import redirect from scrapper import weather_search app = Flask("Weather Scrapper") @app.route("/") def home(): area = request.args.get('area') if area: weather_element = weather_search(area) print(weather_element) return render_template("index.html", searchingBy=area, today_temp=weather_element[0], high_temp=weather_element[3], low_temp=weather_element[2]) app.run ('0.0.0.0', port=5000)
Sunggjinn/weather-closet
app.py
app.py
py
509
python
en
code
0
github-code
6