seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
38348533917
#!/usr/bin/python3 import sys, getopt, os import pandas as pd import numpy as np from analytical_settings import HAP1_control_1, HAP1_control_2, HAP1_control_3, HAP1_control_4 from analytical_settings import grouping from analytical_settings import cauchy_compatibility from global_functions import read_csv, write_csv from create_phenosaurus_reference import build_phenosaurus_reference ################################## # Function 'normalize_to_median' ################################## # Arguments: reference <pandas DataFrame with accumulated counts sense and antisense> # sample <pandas DataFrame with sense and antisense counts for # sample that requires normalization> # Returns: ns <pandas DataFrame with identical structure to sample but with normalized counts> ################################## def normalize_to_median(raw, reference): # Calculate sense/total ratio for reference dataset and store in 'ref_ratio' column in DataFrame reference = reference.assign(ref_ratio=(reference['sense_reference'] + 1) / (reference['sense_reference'] + reference['antisense_reference'] + 2)) normalized_data = pd.DataFrame(columns=['gene']) if cauchy_compatibility: print("original Cauchy.R algorithm...", end='') else: print("latest algorithm...", end='') subset = ['gene', 'sense', 'antisense'] s = pd.merge(reference, raw, on='gene', how='outer') # Split sample(s) into part of sample that can be normalized (sn) and the part the cannot be normalized (scn) sn = s[((s['sense'] + s['antisense']) > 0) & ( (s.sense_reference + s.antisense_reference) > 0)] # meaning counts in reference and sample scn = s[((s['sense'] + s['antisense']) > 0) & ( (s.sense_reference + s.antisense_reference) == 0)] # meaning counts in sample but not in reference # Calculate sense-ratio for current sample and sort DataFrame based on sense-ratio of reference set sn = sn.assign(ratio=(s[subset[1]] + 1) / (s[subset[1]] + s[subset[2]] + 2)) sn = sn.sort_values(by='ref_ratio') # Create empty dataframe for the normalized sample (ns) ns = pd.DataFrame(columns=subset) if not cauchy_compatibility: # Calculate optimal grouping value based on requested grouping (to create equal groups and hence identical normalization for every gene) divider = np.round(sn.shape[0] / grouping) groupsize = (sn.shape[0] / divider) # Group sorted DataFrame in equally sized groups and loop over these groups for g, df in sn.groupby(np.arange(len(sn)) // groupsize): ref_median = df['ref_ratio'].median() sample_median = df['ratio'].median() df = df.assign(norm_sense=np.where(df['ratio'] <= sample_median , np.where( np.round((df['ratio'] / (sample_median) * ref_median * (df[subset[1]] + df[subset[2]]))) > ( df[subset[1]] + df[subset[2]]) # ie. the normalized sense count is higer than the total counts , (df[subset[1]] + df[subset[2]]) , np.round((df['ratio'] / (sample_median) * ref_median * (df[subset[1]] + df[subset[2]])))) , np.where(np.round(((1 - (1 - df['ratio']) / (1 - sample_median) * ( 1 - ref_median)) * (df[subset[1]] + df[subset[2]]))) > (df[subset[1]] + df[subset[2]]) , (df[subset[1]] + df[subset[2]]) , np.round(((1 - (1 - df['ratio']) / (1 - sample_median) * ( 1 - ref_median)) * (df[subset[1]] + df[subset[2]])))))) df = df.assign(norm_antisense=(df[subset[1]] + df[subset[2]] - df['norm_sense'])) df[['norm_sense', 'norm_antisense']] = df[['norm_sense', 'norm_antisense']].astype(np.int32) df = df[['gene', 'norm_sense', 'norm_antisense']] df.columns = subset ns = ns.append(df) # Append to DataFrame with normalized counts of previous group else: # If cauchy_compatibility==True, grouping of genes will be performed according to the previous version of # the pipeline as in 'cauchy.R' # Calculate the number of groups divider = int(np.ceil(sn.shape[0] / grouping)) # The total number of groups genes = sn.shape[0] i = 1 # Current index of input dataframe for g in range(0, divider): # Loop over the groups of genes df = pd.DataFrame() # Create temporary dataframe for current group for gi in range(0, grouping): # Append the genes to the current group i = gi + g * grouping # DataFrame Index if i <= genes: # For the last group df = df.append(sn[i:i + 1]) ref_median = df['ref_ratio'].median() sample_median = df['ratio'].median() df = df.assign(norm_sense=np.where(df['ratio'] <= sample_median , np.where( np.round((df['ratio'] / (sample_median) * ref_median * (df[subset[1]] + df[subset[2]]))) > ( df[subset[1]] + df[subset[2]]) # ie. the normalized sense count is higer than the total counts , (df[subset[1]] + df[subset[2]]) , np.round((df['ratio'] / (sample_median) * ref_median * (df[subset[1]] + df[subset[2]])))) , np.where(np.round(((1 - (1 - df['ratio']) / (1 - sample_median) * ( 1 - ref_median)) * (df[subset[1]] + df[subset[2]]))) > (df[subset[1]] + df[subset[2]]) , (df[subset[1]] + df[subset[2]]) , np.round(((1 - (1 - df['ratio']) / (1 - sample_median) * ( 1 - ref_median)) * (df[subset[1]] + df[subset[2]])))))) df = df.assign(norm_antisense=(df[subset[1]] + df[subset[2]] - df['norm_sense'])) df = df[['gene', 'norm_sense', 'norm_antisense']] df.columns = subset ns = ns.append(df) # Append to DataFrame with normalized counts of previous group # Merge the normalized sample with the datapoint of the sample that could not be normalized because of absense # of these genes in the reference ns = ns.append(scn[subset]) normalized_data = pd.merge(ns, normalized_data, on='gene', how='outer') normalized_data[['sense', 'antisense']] = normalized_data[['sense', 'antisense']].astype(np.int32) return normalized_data def process_controls(controls): controls = controls.copy() reference_cols = ['gene', 'sense_reference', 'antisense_reference'] reference = pd.DataFrame(columns=reference_cols) for c, f in controls.items(): # c is control, f = file controls[c] = pd.read_csv(f, sep='\t')[['gene', 'sense', 'antisense']] # Read the file and overwrite the value of the name of the with the actual data reference = pd.merge(controls[c], reference, on='gene', how='outer').fillna(0) reference = reference.assign( sense_reference=(reference[['sense', 'sense_reference']].sum(axis=1)).astype(np.int32)) reference = reference.assign( antisense_reference=(reference[['antisense', 'antisense_reference']].sum(axis=1)).astype(np.int32)) reference.drop(['sense', 'antisense'], axis=1, inplace=True) return controls, reference def main(argv): syntax = 'normalize.py -n <controls or directory of replicate> -o <directory where normalized control will be saved>' try: opts, args = getopt.getopt(argv, "hnosr:", ["normalize=", "outdir=", "screenname=", "refname="]) except getopt.GetoptError: print(syntax) sys.exit(2) for opt, arg in opts: if opt == '-h': print(syntax) sys.exit() elif opt in ("-n", "--normalize"): data = arg elif opt in ("-o", "--outdir"): outdir = arg elif opt in ("-s", "--screenname"): screenname = arg elif opt in ("-r", "--refname"): refname = arg else: assert False, "unhandled option" # Create dictionary to store the names of the controls (keys) and their associated records (values) control_files = {'HAP1_control_1': HAP1_control_1, 'HAP1_control_2': HAP1_control_2, 'HAP1_control_3': HAP1_control_3, 'HAP1_control_4': HAP1_control_4} # Read in controls and calculate aggregate reference counts controls, reference = process_controls(control_files) if data == 'controls': for c, d in controls.items(): # c = control, d = data print("Normalizing control using ", end='') norm = normalize_to_median(d, reference).sort_values(by='gene') write_csv(''.join([screenname, "_replicate_", str(int(c[-1:])), "_sense_vs_antisense_counts_normalized.csv"]), os.path.join(outdir, ''), norm) # Create file for normalization of samples print(control_files[c]) build_phenosaurus_reference(norm, read_csv(control_files[c]), screenname, refname, outdir, int(c[-1:])) print("done") else: data = os.path.join(data, '') raw = read_csv(''.join([data, 'sense_vs_antisense_counts.csv']))[['gene', 'sense', 'antisense']] print("Normalizing sample using ", end='') norm = normalize_to_median(raw, reference).sort_values(by='gene') write_csv('sense_vs_antisense_counts_normalized.csv', data, norm) print("done") if __name__ == "__main__": main(sys.argv[1:])
BrummelkampResearch/HAP1_Synthetic_Lethality_pipeline
sub/normalize.py
normalize.py
py
9,869
python
en
code
1
github-code
6
34905834189
import shutil import tempfile from django.conf import settings from django.contrib.auth import get_user_model from django.core.files.uploadedfile import SimpleUploadedFile from django.test import Client, TestCase, override_settings from django.urls import reverse from ..forms import PostForm from ..models import Post User = get_user_model() TEMP_MEDIA_ROOT = tempfile.mkdtemp(dir=settings.BASE_DIR) small_gif = ( b'\x47\x49\x46\x38\x39\x61\x02\x00' b'\x01\x00\x80\x00\x00\x00\x00\x00' b'\xFF\xFF\xFF\x21\xF9\x04\x00\x00' b'\x00\x00\x00\x2C\x00\x00\x00\x00' b'\x02\x00\x01\x00\x00\x02\x02\x0C' b'\x0A\x00\x3B' ) @override_settings(MEDIA_ROOT=TEMP_MEDIA_ROOT) class PostFormTests(TestCase): @classmethod def setUpTestData(cls): cls.user = User.objects.create_user(username='username') cls.uploaded = SimpleUploadedFile( name='small.gif', content=small_gif, content_type='image/gif' ) cls.form = PostForm() @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(TEMP_MEDIA_ROOT, ignore_errors=True) def setUp(self): self.authorized_client = Client() self.authorized_client.force_login(self.user) def test_create_post(self): """Валидная форма создает запись в Post.""" # Подсчитаем количество записей в Post posts_count = Post.objects.count() form_data = { 'text': 'Тестовый пост', 'image': PostFormTests.uploaded, } self.uploaded.seek(0) # Отправляем POST-запрос response = self.authorized_client.post( reverse('posts:post_create'), data=form_data, follow=True ) # Проверяем, сработал ли редирект self.assertRedirects(response, reverse( 'posts:profile', kwargs={'username': 'username'}) ) # Проверяем, увеличилось ли число постов self.assertEqual(Post.objects.count(), posts_count + 1) # Проверяем, что создалась запись с заданным id self.assertTrue( Post.objects.filter( text='Тестовый пост', pk=1, image='posts/small.gif', ).exists() ) def test_edit_post(self): Post.objects.create( text='Тестовый пост', author=self.user, pk=1, image=self.uploaded, ) form_data = { 'text': 'Тестовый пост изменился', } # Отправляем POST-запрос response = self.authorized_client.post( reverse('posts:post_edit', kwargs={'post_id': 1}), data=form_data, follow=True ) post_changed = Post.objects.get(pk=1) # Проверяем, сработал ли редирект c тем же id self.assertRedirects(response, reverse( 'posts:post_detail', kwargs={'post_id': 1}) ) self.assertEqual(post_changed.text, 'Тестовый пост изменился') class CommentFormTests(TestCase): @classmethod def setUpTestData(cls): cls.user = User.objects.create_user(username='username') cls.guest_client = Client() cls.authorized_client = Client() cls.authorized_client.force_login(cls.user) Post.objects.create( text='Тестовый пост', author=cls.user, pk=1, ) def test_add_comment(self): """Комментировать посты может только авторизованный пользователь.""" form_data = { 'text': 'Тестовый комментарий', } response1 = self.authorized_client.post( reverse('posts:add_comment', kwargs={'post_id': 1}), data=form_data, follow=True ) response2 = self.guest_client.post( reverse('posts:add_comment', kwargs={'post_id': 1}), data=form_data, follow=True ) # Проверяем, сработал ли редирект self.assertRedirects(response1, reverse( 'posts:post_detail', kwargs={'post_id': 1}) ) self.assertRedirects(response2, '/auth/login/?next=/posts/1/comment/' )
DianaKab/hw05_final_new
yatube/posts/tests/test_forms.py
test_forms.py
py
4,715
python
ru
code
0
github-code
6
11428296984
"""Tool pack for email. emails.py in: 2021-12-11. This module exports the following functions: -> is_valid - Check if the string is a valid email. -> is_same - Check if the two emails are the same. """ import doctest from re import match # File with the configuration of the loguru logger from logs.loguru_conf import logger # public symbols __all__ = [ 'is_valid', 'is_same', ] def is_valid(email: str) -> bool: """-> Checks to see if the email address is valid. The email address is valid if it has the following format: <username>@<domain>.<tld> Test: >>> is_valid('[email protected]') True >>> is_valid('[email protected]') True >>> is_valid('[email protected]') True >>> is_valid('[email protected]') True >>> is_valid('[email protected]') True >>> is_valid('[email protected]') True >>> is_valid('mail') False >>> is_valid('john.doe@domain') False >>> is_valid('john.doe@ domain.com') False >>> is_valid('jane_doe @domain.com') False >>> is_valid('jane [email protected]') False >>> is_valid('[email protected] ') False >>> is_valid('[email protected].') False :param email: email to validate :return: True if valid, False if not :rtype: bool """ logger.debug(f'email: {email}') return bool( match(r'^[\w.+]+@[\w.-]+\.[a-zA-Z]{2,3}(?:.[a-zA-Z]{2})?$', email)) def is_same(email_1: str, email_2: str) -> bool: """-> Checks to see if the two emails are the same. The two emails are the same if they have the same username, domain name and the same tld. Test: >>> is_same('jane.doe@domain', 'jane.doe@domain') False >>> is_same('[email protected]', ' [email protected]') False >>> is_same('[email protected]', '[email protected]') False >>> is_same('[email protected]', '[email protected]') True :param email_1: First email address to compare :param email_2: Second email address to compare :return: True if the two email addresses are the same, False if not :rtype: bool """ logger.debug(f'email_1: {email_1}') logger.debug(f'email_2: {email_2}') regular_expression = r'^[\w.+]+@[\w.-]+\.[a-zA-Z]{2,3}(?:.[a-zA-Z]{2})?$' return bool( match(regular_expression, email_1) and match(regular_expression, email_2) and email_1.split('@')[0] == email_2.split('@')[0] and email_1.split('@')[1] == email_2.split('@')[1] ) def main(): """Main function.""" doctest.testmod() list_mails = [ 'jane.doe@domain', 'jane.doe@domain.', '[email protected]', '[email protected]', '[email protected]', ] for email in list_mails: print( f'Is {email} valid? {is_valid(email)}; ' f'Is same? {is_same(email, email)}', end='\n\n', ) if __name__ == '__main__': logger.info('Running') main() logger.info('Ending')
cicerohr/python_template
tools/emails.py
emails.py
py
3,063
python
en
code
0
github-code
6
1907238463
#Haz un programa que lea un numero y te duvukeva la suma de sus cifras, tratando el numero como un numero natural. #Ejemplo: #Si leemos 123 la suma de sus cifras es 6. #Si leemos 5 la suma de sus cifras es 5. numero = int(input("Ingrese un número: ")) suma_cifras = 0 while numero > 0: cifra = numero % 10 suma_cifras += cifra numero //= 10 print("La suma de las cifras es:", suma_cifras)
ANDRESTOBAJAS/Carpeta-de-Python
sumador de cifras.py
sumador de cifras.py
py
406
python
es
code
0
github-code
6
23525022654
from matplotlib import pyplot as plt import numpy as np import collections import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import matplotlib.pyplot as plt # Get cpu or gpu device for training. device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) # class_names = ['airplane','automobile','bird','cat','deer', # 'dog','frog','horse','ship','truck'] # not needed AFTER getting mean and standard deviation # cifar10_train = datasets.CIFAR10( # root='data', train=True, download=True, # transform=transforms.ToTensor()) # # cifar10_val = datasets.CIFAR10( # root='data', train=False, download=True, # transform=transforms.ToTensor()) # imgs_train = torch.stack([img_t for img_t, _ in cifar10_train], dim=3) # imgs_val = torch.stack([img_t for img_t, _ in cifar10_val], dim=3) # train_mean = imgs_train.view(3,-1).mean(dim=1) # train_std = imgs_train.view(3,-1).std(dim=1) # # val_mean = imgs_val.view(3,-1).mean(dim=1) # val_std = imgs_val.view(3,-1).std(dim=1) # load data, no think cifar10_train = datasets.CIFAR10( root='data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4915, 0.4823, 0.4468), (0.2470, 0.2435, 0.2616))])) train_length = len(cifar10_train) train_size = int(0.8 *train_length) val_size = train_length - train_size # make trai and validation set cifar10_train, cifar10_val = torch.utils.data.random_split(cifar10_train, [train_size, val_size]) cifar10_test = datasets.CIFAR10( root='data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4915, 0.4823, 0.4468), (0.2470, 0.2435, 0.2616))])) # comment this and change output neurons (and dataloader far below) if you want only to find difference beetwenn planes and birds # get only birds and planes label_map = {0: 0, 2: 1} class_names = ['airplane', 'bird'] cifar10_train_ = [(img, label_map[label]) for img, label in cifar10_train if label in [0, 2]] cifar10_val_ = [(img, label_map[label]) for img, label in cifar10_val if label in [0, 2]] cifar10_test_ = [(img, label_map[label]) for img, label in cifar10_test if label in [0, 2]] # store train and val loss train_loss_list = [] val_loss_list = [] epoch_list = [] # make network architecture class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1) # convolution layer (in_chl, out_chl,...) self.conv1_batchnorm = nn.BatchNorm2d(16) self.act1 = nn.Tanh() # activation function self.pool1 = nn.MaxPool2d(2) # pooling (kernel size 2x2) self.conv2 = nn.Conv2d(16, 8, kernel_size=3, padding=1) self.conv2_batchnorm = nn.BatchNorm2d(8) self.act2 = nn.Tanh() self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(8 * 8 * 8, 32) # first 8 from conv2, next 8's from pooling (32->16->8) self.act3 = nn.Tanh() self.fc2 = nn.Linear(32, 2) # self.act4 = nn.Softmax(dim=1) def forward(self, x): out = self.conv1_batchnorm(self.conv1(x)) out = self.pool1(((self.act1(out)))) out = self.conv2_batchnorm(self.conv2(out)) out = self.pool2(((self.act2(out)))) out = out.view(-1, 8 * 8 * 8) # not sure why reshape out = self.act3(self.fc1(out)) out = self.fc2(out) return out import datetime # to measure time def training_loop(n_epochs, optimizer, model, loss_fn, train_loader, val_loader, epoch_num_of_no_improve): epoch_no_improve = 0 for epoch in range(1, n_epochs+1): loss_train = 0.0 for imgs, labels in train_loader: # move tensors to gpu if available imgs = imgs.to(device=device) labels = labels.to(device=device) outputs = model(imgs) loss = loss_fn(outputs, labels) l2_lambda = 0.001 l2_norm = sum(p.pow(2.0).sum() for p in model.parameters()) loss = loss + l2_lambda * l2_norm optimizer.zero_grad() loss.backward() optimizer.step() loss_train += loss.item() epoch_list.append(epoch) train_loss_list.append(loss_train / len(train_loader)) # to track loss # get loss of validation data with torch.no_grad(): loss_val = 0.0 for imgs, labels in val_loader: # move tensors to gpu if available imgs = imgs.to(device=device) labels = labels.to(device=device) outputs = model(imgs) loss_v = loss_fn(outputs, labels) loss_val += loss_v.item() val_loss_list.append(loss_val / len(val_loader)) # set when to print info about training progress if epoch == 1 or epoch % 1 == 0: print('Epoch {}, Training loss {}, Validation loss {}'.format(epoch, loss_train / len(train_loader), loss_val / len(val_loader))) # early stopping if epoch > 1: if val_loss_list[-1] >= val_loss_list[-2]: epoch_no_improve += 1 else: epoch_no_improve = 0 if epoch_no_improve == epoch_num_of_no_improve: print('Early stopping:') print('Epoch {}, Training loss {}, Validation loss {}'.format(epoch, loss_train / len(train_loader), loss_val / len(val_loader))) break def validate_on_test(model, train_loader, val_loader, test_loader): for name, loader in [("train", train_loader), ("val", val_loader), ('test', test_loader)]: correct = 0 total = 0 with torch.no_grad(): # <1> for imgs, labels in loader: # move to gpu imgs = imgs.to(device=device) labels = labels.to(device=device) outputs = model(imgs) _, predicted = torch.max(outputs, dim=1) # Gives us the index of the highest value total += labels.shape[0] # Counts the number of examples, so total is increased by the batch size correct += int((predicted == labels).sum()) print("Accuracy {}: {:.2f} %".format(name , 100 * (correct / total))) n_epochs = 100 model = Net().to(device=device) optimizer = optim.ASGD(model.parameters(), lr=1e-2) loss_fn = nn.CrossEntropyLoss() train_loader = torch.utils.data.DataLoader(cifar10_train_, batch_size=64, shuffle=False) val_loader = torch.utils.data.DataLoader(cifar10_val_, batch_size=64, shuffle=False) test_loader = torch.utils.data.DataLoader(cifar10_test_, batch_size=64, shuffle=False) epoch_num_of_no_improve = 5 training_loop( n_epochs = n_epochs, optimizer = optimizer, model = model, loss_fn = loss_fn, train_loader = train_loader, val_loader = val_loader, epoch_num_of_no_improve=epoch_num_of_no_improve) validate_on_test(model, train_loader, val_loader, test_loader) plt.plot(epoch_list, train_loss_list, color='blue', label='train_loss') plt.plot(epoch_list, val_loss_list, color='green', label='validation loss') plt.xlabel('epoch') plt.ylabel('loss') plt.legend() plt.show()
lewiis252/machine_learning
cifar10_nn.py
cifar10_nn.py
py
7,791
python
en
code
0
github-code
6
8909155137
""" Command line tool to search image sources. """ import sys sys.path.insert(0, '../..') from searcher import database, image if __name__ == "__main__": if len(sys.argv) != 4: print("Invalid number of arguments.") exit() db = database.Database(sys.argv[1]) reference_url = sys.argv[2] distance = int(sys.argv[3]) print(f"Loading {reference_url}") results = db.search(str(image.Image(reference_url).dhash()), distance) if results: print("Results:") for result in results: print(f" - {result.url} ({result.distance})") else: print("No Results.")
SebastianBach/searcher
apps/search/search.py
search.py
py
640
python
en
code
0
github-code
6
73952557948
import os today = '02-06-19_' import numpy as np import treecorr def parse_args(): import argparse parser = argparse.ArgumentParser(description='Produce Tau correlations, i.e correlation among galaxies and reserved stars') parser.add_argument('--metacal_cat', #default='/home2/dfa/sobreira/alsina/catalogs/y3_master/Y3_mastercat_v2_6_20_18_subsampled.h5', #default='/home2/dfa/sobreira/alsina/catalogs/y3_master/Y3fullmaster/Y3_mastercat_v2_6_20_18.h5', default='/home/dfa/sobreira/alsina/catalogs/Y3_mastercat_7_24/Y3_mastercat_7_24_19.h5', help='Full Path to the Metacalibration catalog') parser.add_argument('--piff_cat', default='/home/dfa/sobreira/alsina/catalogs/y3a1-v29', help='Full Path to the Only stars Piff catalog') parser.add_argument('--exps_file', default='/home/dfa/sobreira/alsina/Y3_shearcat_tests/alpha-beta-eta-test/code/ally3.grizY', #default='/home/dfa/sobreira/alsina/DESWL/psf/testexp', help='list of exposures (in lieu of separate exps)') parser.add_argument('--bands', default='riz', type=str, help='Limit to the given bands') parser.add_argument('--use_reserved', default=True, action='store_const', const=True, help='just use the objects with the RESERVED flag') parser.add_argument('--frac', default=1., type=float, help='Choose a random fraction of the input stars') parser.add_argument('--mod', default=True, action='store_const', const=True, help='If true it substracts the mean to each field before calculate correlations') parser.add_argument('--obs', default=False, action='store_const', const=True, help='If true it uses psf_e stars for tau0') parser.add_argument('--weights', default=False, action='store_const', const=True, help='Use weights in the reading of Metacal') parser.add_argument('--bin_config', default=None, help='bin_config file for running taus') parser.add_argument('--outpath', default='/home/dfa/sobreira/alsina/Y3_shearcat_tests/alpha-beta-eta-test/measured_correlations/', help='location of the output of the files') parser.add_argument('--filename', default='TAUS_zbin_n.fits', type=str, help='filename of the tau output file') parser.add_argument('--zbin', default=None,type=int, help='Run particular tomobin') parser.add_argument('--nz_source', #default='/home/dfa/sobreira/alsina/catalogs/y3_master/nz_source_zbin.h5', default='/home/dfa/sobreira/alsina/catalogs/Y3_mastercat_7_24/nz_source_zbin.h5', help='Indexes catalog to select galaxies in a particular redshift bin in Metacal') args = parser.parse_args() return args def main(): import sys; sys.path.append(".") from src.read_cats import read_data_stars, toList, read_metacal from src.runcorr import measure_tau from astropy.io import fits import treecorr args = parse_args() #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise #Reading Mike stars catalog keys = ['ra', 'dec','obs_e1', 'obs_e2', 'obs_T', 'piff_e1', 'piff_e2', 'piff_T', 'mag'] galkeys = ['ra','dec','e_1','e_2','R11','R22'] data_stars = read_data_stars(toList(args.exps_file),args.piff_cat, keys,limit_bands=args.bands,use_reserved=args.use_reserved) if args.bin_config is not None: print("Using external bin config") bin_config = treecorr.read_config(args.bin_config) print(bin_config) else: #bin_config = dict( sep_units = 'arcmin', min_sep = 0.1, max_sep = 250, nbins = 20, bin_slop=0.03 ) bin_config = dict( sep_units = 'arcmin', min_sep = 0.1, max_sep = 250, nbins = 20, ) #bin_config = dict( sep_units = 'arcmin', min_sep = 1.0, max_sep = 250, nbins = 20,) #bin_config = dict(sep_units = 'arcmin' , bin_slop = 0.1, min_sep = 0.1, max_sep = 300, bin_size = 0.2) if args.zbin is not None: print('STARTING TOMOPRAPHIC TAUS!, measuring tau for zbin=', args.zbin) data_galaxies = read_metacal(args.metacal_cat, galkeys, zbin=args.zbin,nz_source_file=args.nz_source, weights=args.weights) else: print("STARTING NON TOMOGRAPHIC TAUS") data_galaxies = read_metacal(args.metacal_cat, galkeys, weights=args.weights ) tau0, tau2, tau5= measure_tau( data_stars , data_galaxies, bin_config, mod=args.mod) tau0marr = tau0.xim; tau2marr = tau2.xim; tau5marr = tau5.xim; tau0parr = tau0.xip; tau2parr = tau2.xip; tau5parr = tau5.xip; taus = [tau0parr, tau0marr, tau2parr, tau2marr, tau5parr, tau5marr] taus_names = ['TAU0P', 'TAU0M','TAU2P','TAU2M', 'TAU5P', 'TAU5M'] ##Format of the fit file output names=['BIN1', 'BIN2','ANGBIN', 'VALUE', 'ANG'] forms = ['i4', 'i4', 'i4', 'f8', 'f8'] dtype = dict(names = names, formats=forms) nrows = len(tau0marr) outdata = np.recarray((nrows, ), dtype=dtype) covmat = np.diag(np.concatenate( (tau0.varxip, tau0.varxim, tau2.varxip, tau2.varxim, tau5.varxip, tau5.varxim ) )) hdu = fits.PrimaryHDU() hdul = fits.HDUList([hdu]) covmathdu = fits.ImageHDU(covmat, name='COVMAT') hdul.insert(1, covmathdu) bin1array = np.array([ -999]*nrows) bin2array = np.array([ -999]*nrows) angbinarray = np.arange(nrows) angarray = np.exp(tau0.meanlogr) for j, nam in enumerate(taus_names): array_list = [bin1array, bin2array, angbinarray,np.array(taus[j]), angarray ] for array, name in zip(array_list, names): outdata[name] = array corrhdu = fits.BinTableHDU(outdata, name=nam) hdul.insert(j+2, corrhdu) hdul[1].header['COVDATA'] = True hdul[1].header['EXTNAME'] = 'COVMAT' hdul[1].header['NAME_0'] = 'TAU0P' hdul[1].header['STRT_0'] = 0 hdul[1].header['LEN_0'] = nrows hdul[1].header['NAME_1'] = 'TAU0M' hdul[1].header['STRT_1'] = nrows hdul[1].header['LEN_1'] = nrows hdul[1].header['NAME_2'] = 'TAU2P' hdul[1].header['STRT_2'] = 2*nrows hdul[1].header['LEN_2'] = nrows hdul[1].header['NAME_3'] = 'TAU2M' hdul[1].header['STRT_3'] = 3*nrows hdul[1].header['LEN_3'] = nrows hdul[1].header['NAME_4'] = 'TAU5P' hdul[1].header['STRT_4'] = 4*nrows hdul[1].header['LEN_4'] = nrows hdul[1].header['NAME_5'] = 'TAU5M' hdul[1].header['STRT_5'] = 5*nrows hdul[1].header['LEN_5'] = nrows hdul[2].header['QUANT1'] = 'GeR'; hdul[3].header['QUANT1'] = 'GeR' hdul[2].header['QUANT2'] = 'PeR'; hdul[3].header['QUANT2'] = 'PeR' hdul[4].header['QUANT1'] = 'GeR'; hdul[5].header['QUANT1'] = 'GeR' hdul[4].header['QUANT2'] = 'PqR'; hdul[5].header['QUANT2'] = 'PqR' hdul[6].header['QUANT1'] = 'GeR'; hdul[7].header['QUANT1'] = 'GeR' hdul[6].header['QUANT2'] = 'PwR'; hdul[7].header['QUANT2'] = 'PwR' filename = os.path.join(outpath, args.filename) print("Printing file:", filename) hdul.writeto(filename, overwrite=True) if __name__ == "__main__": main()
des-science/Y3_shearcat_tests
alpha-beta-eta-test/code/essentials/taus.py
taus.py
py
7,792
python
en
code
1
github-code
6
15362206849
from generator import Generator from discriminator import Discriminator from speaker_encoder import SPEncoder import torch import torch.nn.functional as F import os from os.path import join, basename, exists import time import datetime import numpy as np from tqdm import tqdm import numpy as np import copy class Solver(object): def __init__(self, train_loader, config): """Initialize configurations.""" self.train_loader = train_loader self.sampling_rate = config.sampling_rate self.D_name = config.discriminator self.SPE_name = config.spenc self.G_name = config.generator self.g_hidden_size = config.g_hidden_size self.num_speakers = config.num_speakers self.spk_emb_dim = config.spk_emb_dim self.lambda_rec = config.lambda_rec self.lambda_id = config.lambda_id self.lambda_adv = config.lambda_adv self.batch_size = config.batch_size self.num_iters = config.num_iters self.g_lr = config.g_lr self.d_lr = config.d_lr self.beta1 = config.beta1 self.beta2 = config.beta2 self.resume_iters = config.resume_iters self.use_ema = config.use_ema self.auto_resume = config.auto_resume self.kernel = config.kernel self.num_heads = config.num_heads self.num_res_blocks = config.num_res_blocks self.use_tensorboard = config.use_tensorboard self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.log_dir = config.log_dir self.model_save_dir = config.model_save_dir self.log_step = config.log_step self.sample_step = config.sample_step self.model_save_step = config.model_save_step self.build_model() if self.use_tensorboard: self.build_tensorboard() def build_model(self): """Create a generator and a discriminator.""" self.generator = eval(self.G_name)(num_speakers=self.num_speakers, kernel = self.kernel, num_heads = self.num_heads, num_res_blocks = self.num_res_blocks, spk_emb_dim = self.spk_emb_dim, ) self.discriminator = eval(self.D_name)(num_speakers=self.num_speakers) self.sp_enc = eval(self.SPE_name)(num_speakers = self.num_speakers, spk_emb_dim = self.spk_emb_dim) self.sp_enc.to(self.device) self.generator.to(self.device) self.discriminator.to(self.device) g_params = list(self.generator.parameters()) g_params += list(self.sp_enc.parameters()) d_params = list(self.discriminator.parameters()) self.g_optimizer = torch.optim.Adam(g_params, self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(d_params, self.d_lr, [self.beta1, self.beta2]) # restore model if not self.auto_resume: if self.resume_iters and not self.resume_ft: print("resuming step %d ..."% self.resume_iters, flush=True) self.restore_model(self.resume_iters) else: ckpt_files = [ int(x.split('-')[0]) for x in os.listdir(self.model_save_dir)] last_step = sorted(ckpt_files, reverse = True)[0] print("auto resuming step %d ..."% last_step, flush=True) self.restore_model(last_step) self.resume_iters = last_step if self.use_ema: self.generator_ema = copy.deepcopy(self.generator) self.sp_enc_ema = copy.deepcopy(self.sp_enc) self.print_network(self.generator, 'Generator') self.print_network(self.discriminator, 'Discriminator') self.print_network(self.sp_enc, 'SpeakerEncoder') if self.use_ema: self.generator_ema.to(self.device) self.sp_enc_ema.to(self.device) def print_network(self, model, name): """Print out the network information.""" num_params = 0 for p in model.parameters(): num_params += p.numel() print(model, flush=True) print(name,flush=True) print("The number of parameters: {}".format(num_params), flush=True) def moving_average(self, model, model_test, beta = 0.999): for param, param_test in zip(model.parameters(), model_test.parameters()): param_test.data = torch.lerp(param.data, param_test.data, beta) def restore_model(self, resume_iters, resume_ft = False): """Restore the trained generator and discriminator.""" print('Loading the trained models from step {}...'.format(resume_iters), flush=True) g_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters)) d_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters)) sp_path = os.path.join(self.model_save_dir, '{}-sp.ckpt'.format(resume_iters)) g_opt_path = os.path.join(self.model_save_dir, '{}-g_opt.ckpt'.format(resume_iters)) d_opt_path = os.path.join(self.model_save_dir, '{}-d_opt.ckpt'.format(resume_iters)) self.generator.load_state_dict(torch.load(g_path, map_location=lambda storage, loc: storage)) self.discriminator.load_state_dict(torch.load(d_path, map_location=lambda storage, loc: storage)) self.sp_enc.load_state_dict(torch.load(sp_path, map_location=lambda storage, loc: storage)) print("loading optimizer",flush=True) if exists(g_opt_path): self.g_optimizer.load_state_dict(torch.load(g_opt_path, map_location = lambda storage, loc: storage)) if exists(d_opt_path): self.d_optimizer.load_state_dict(torch.load(d_opt_path, map_location = lambda storage, loc: storage)) def build_tensorboard(self): """Build a tensorboard logger.""" from logger import Logger self.logger = Logger(self.log_dir) def update_lr(self, g_lr, d_lr): """Decay learning rates of the generator and discriminator.""" for param_group in self.g_optimizer.param_groups: param_group['lr'] = g_lr for param_group in self.d_optimizer.param_groups: param_group['lr'] = d_lr def reset_grad(self): """Reset the gradientgradient buffers.""" self.g_optimizer.zero_grad() self.d_optimizer.zero_grad() def label2onehot(self, labels, dim): """Convert label indices to one-hot vectors.""" batch_size = labels.size(0) out = torch.zeros(batch_size, dim) out[np.arange(batch_size), labels.long()] = 1 return out def sample_spk_c(self, size): spk_c = np.random.randint(0, self.num_speakers, size=size) spk_c_cat = to_categorical(spk_c, self.num_speakers) return torch.LongTensor(spk_c), torch.FloatTensor(spk_c_cat) def classification_loss(self, logit, target): """Compute softmax cross entropy loss.""" return F.cross_entropy(logit, target) def load_wav(self, wavfile, sr=16000): wav, _ = librosa.load(wavfile, sr=sr, mono=True) return wav_padding(wav, sr=16000, frame_period=5, multiple = 4) def load_mel(self, melfile): tmp_mel = np.load(melfile) return tmp_mel def train(self): # Set data loader. train_loader = self.train_loader data_iter = iter(train_loader) g_lr = self.g_lr d_lr = self.d_lr start_iters = 0 if self.resume_iters: start_iters = self.resume_iters print('Start training...', flush=True) start_time = time.time() for i in range(start_iters, self.num_iters): try: mc_src, spk_label_org, spk_c_org, mc_trg, spk_label_trg, spk_c_trg = next(data_iter) except: data_iter = iter(train_loader) mc_src, spk_label_org, spk_c_org, mc_trg, spk_label_trg, spk_c_trg = next(data_iter) mc_src.unsqueeze_(1) mc_trg.unsqueeze_(1) mc_src = mc_src.to(self.device) mc_trg = mc_trg.to(self.device) spk_label_org = spk_label_org.to(self.device) spk_c_org = spk_c_org.to(self.device) spk_label_trg = spk_label_trg.to(self.device) spk_c_trg = spk_c_trg.to(self.device) spk_c_trg = self.sp_enc(mc_trg, spk_label_trg) spk_c_org = self.sp_enc(mc_src, spk_label_org) d_out_src = self.discriminator(mc_src, spk_label_trg, spk_label_org) d_loss_real = torch.mean( (1.0 - d_out_src)**2 ) mc_fake = self.generator(mc_src, spk_c_org, spk_c_trg) d_out_fake = self.discriminator(mc_fake.detach(), spk_label_org, spk_label_trg) d_loss_fake = torch.mean(d_out_fake ** 2) # Backward and optimize. d_loss = d_loss_real + d_loss_fake self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss'] = d_loss.item() spk_c_trg = self.sp_enc(mc_trg, spk_label_trg) spk_c_org = self.sp_enc(mc_src, spk_label_org) mc_fake = self.generator(mc_src, spk_c_org, spk_c_trg) g_out_src = self.discriminator(mc_fake, spk_label_org, spk_label_trg) g_loss_fake = torch.mean((1.0 - g_out_src)**2) mc_reconst = self.generator(mc_fake, spk_c_trg, spk_c_org) g_loss_rec = torch.mean(torch.abs(mc_src - mc_reconst)) mc_fake_id = self.generator(mc_src, spk_c_org, spk_c_org) g_loss_id = torch.mean(torch.abs(mc_src - mc_fake_id)) # Backward and optimize. g_loss = self.lambda_adv * g_loss_fake \ + self.lambda_rec * g_loss_rec \ + self.lambda_id * g_loss_id self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_id'] = g_loss_id.item() if self.use_ema: self.moving_average(self.generator, self.generator_ema) self.moving_average(self.sp_enc, self.sp_enc_ema) if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log, flush=True) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) if (i+1) % self.model_save_step == 0: g_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) g_path_ema = os.path.join(self.model_save_dir, '{}-G.ckpt.ema'.format(i+1)) d_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) sp_path = os.path.join(self.model_save_dir, '{}-sp.ckpt'.format(i+1)) sp_path_ema = os.path.join(self.model_save_dir, '{}-sp.ckpt.ema'.format(i+1)) g_opt_path = os.path.join(self.model_save_dir, '{}-g_opt.ckpt'.format(i+1)) d_opt_path = os.path.join(self.model_save_dir, '{}-d_opt.ckpt'.format(i+1)) torch.save(self.generator.state_dict(), g_path) if self.use_ema: torch.save(self.generator_ema.state_dict(), g_path_ema) torch.save(self.discriminator.state_dict(), d_path) torch.save(self.sp_enc.state_dict(), sp_path) if self.use_ema: torch.save(self.sp_enc_ema.state_dict(), sp_path_ema) torch.save(self.g_optimizer.state_dict(), g_opt_path) torch.save(self.d_optimizer.state_dict(), d_opt_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir), flush=True)
Mortyzhou-Shef-BIT/DYGANVC
solver.py
solver.py
py
12,824
python
en
code
null
github-code
6
24150027900
from fastapi import FastAPI, APIRouter,status, Request from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from fastapi.responses import HTMLResponse from services.connectionHobolink import Connection from routers import login app=FastAPI(title="WeatherStation") #routers app.include_router(login.router) app.mount("/static", StaticFiles(directory="static"), name="static") router=APIRouter(prefix="/home", tags=["Home page"], responses={status.HTTP_404_NOT_FOUND:{"message":"Page not found"}}) # Modificado por me! template = Jinja2Templates(directory="templates") @app.get("/", response_class=HTMLResponse) async def root(request:Request): return template.TemplateResponse("index.html", {"request": request}) @app.get("/graficas") async def root(request:Request): return template.TemplateResponse("graficas.html", {"request": request}) @app.get("/api_data") async def root(): conn = Connection() data = conn.dataSensors data['times'] = conn.timeStation return {"data":data} """ @app.get("/login") async def login(request: Request): return templates.TemplateResponse("index.html", {"request": request}) """
AlvaroCoder/WeatherStation
main.py
main.py
py
1,214
python
en
code
0
github-code
6
29644942121
from openerp import models, fields, api, _ class QcInspection(models.Model): _inherit = "qc.inspection" @api.multi def _prepare_inspection_line(self, test, line, fill=None): res = super(QcInspection, self)._prepare_inspection_line( test, line, fill=fill) res['min_value_below'] = line.min_value_below res['max_value_above'] = line.max_value_above return res class QcInspectionLine(models.Model): _inherit = 'qc.inspection.line' @api.one @api.depends('quantitative_value', 'min_value', 'max_value', 'test_uom_id', 'min_value_below', 'max_value_above', 'question_type', 'uom_id') def _compute_tolerance_status(self): self.tolerance_status = 'not_tolerable' if self.question_type == 'quantitative': if self.uom_id.id == self.test_uom_id.id: amount = self.quantitative_value else: amount = self.env['product.uom']._compute_qty( self.uom_id.id, self.quantitative_value, self.test_uom_id.id) if amount >= self.min_value_below: if amount >= self.min_value: if amount <= self.max_value: self.tolerance_status = 'optimal' elif amount <= self.max_value_above: self.tolerance_status = 'tolerable' else: self.tolerance_status = 'tolerable' elif self.question_type == 'qualitative': self.tolerance_status = self.qualitative_value.tolerance_status @api.one @api.depends('possible_ql_values', 'min_value', 'max_value', 'test_uom_id', 'question_type', 'min_value_below', 'max_value_above') def get_valid_values(self): if self.question_type == 'qualitative': super(QcInspectionLine, self).get_valid_values() self.valid_values = ", ".join([x.name for x in self.possible_ql_values if x.ok]) self.valid_values += ", " + ", ".join( [_("%s (tolerable)") % x.name for x in self.possible_ql_values if not x.ok and x.tolerance_status == 'tolerable']) elif self.question_type == 'quantitative': self.valid_values = "(%s) %s-%s (%s)" % ( self.min_value_below, self.min_value, self.max_value, self.max_value_above) if self.env.ref("product.group_uom") in self.env.user.groups_id: self.valid_values += " %s" % self.test_uom_id.name tolerance_status = fields.Selection( [('optimal', 'Optimal'), ('tolerable', 'Tolerable'), ('not_tolerable', 'Not tolerable')], string='Tolerance status', compute='_compute_tolerance_status') min_value_below = fields.Float(string='Min. tolerable') max_value_above = fields.Float(string='Max. tolerable')
odoomrp/odoomrp-wip
quality_control_tolerance/models/qc_inspection.py
qc_inspection.py
py
2,979
python
en
code
119
github-code
6
15152787587
# -*- coding: utf-8 -* #该程序用于模型测试 import os import torch import numpy as np import torch.nn as nn from evaluation import HKOEvaluation from ium_data.bj_iterator import BJIterator if __name__ == "__main__": #最佳的模型 test_model = torch.load('./checkpoints/trained_model_12000.pkl' ) test_model.eval() test_bj_iter = BJIterator(datetime_set="bj_test_set.txt",sample_mode="sequent", seq_len=15,width=600,height=600, begin_idx=None, end_idx=None) for i in range(10): frame_data, mask_dat, datetime_batch, _ = test_bj_iter.sample(batch_size=2) frame_data = torch.from_numpy(frame_data) frame_data = frame_data.permute(1, 2, 0, 3, 4).contiguous() test_input = frame_data[:, :, 0:5, :, :].cuda() test_label = frame_data[:, :, 5:15, :, :].cuda() #通过5帧预测之后的10帧,即预测后面一小时 output1 = test_model(test_input) output2 = test_model(output1) output = torch.cat((output1,output2),2) test_label = test_label * 80 output = output * 80 print('testing dataset {}'.format(i)) #计算评价指标 evaluation = HKOEvaluation(seq_len=10, use_central=False) test_label = test_label.cpu().detach().numpy().transpose(2, 0, 1, 3, 4) output = output.cpu().detach().numpy().transpose(2, 0, 1, 3, 4) evaluation.update(test_label, output, mask=None) POD, CSI, FAR = evaluation.calculate_stat() #将结果写进txt文件 evaluation.print_stat_readable() evaluation.save_txt_readable('./results/test_evaluation.txt')
LiangHe77/UNet_v1
test.py
test.py
py
1,817
python
en
code
0
github-code
6
17324365412
from motor import motor_asyncio from .model import Guild import os class Database: def __init__(self, *, letty): self.letty = letty self.connection = motor_asyncio.AsyncIOMotorClient(os.environ['DB_URL']) self.db = db = self.connection[os.environ['DB_NAME']] self.guild = db.guilds async def get_guild(self, guild_id): data = await self.guild.find_one({"_id": guild_id}) if data != None: return Guild(data, self.guild) else: return await self.register_guild(guild_id) async def register_guild(self, guild_id): data = { "_id": guild_id, "config":{"prefix":"lt.","language":"pt_BR"}, "disable":{"command":[],"channel":[],"role":[],"member":[]} } await self.guild.insert_one(data) return Guild(data, self.guild)
WhyNoLetty/Letty
database/base.py
base.py
py
890
python
en
code
7
github-code
6
17732707406
#!/usr/bin/env python import subprocess import time import socket import re from threading import Thread import tkinter as tk class TCPClient(Thread): def __init__(self, host, port, device): Thread.__init__(self) self.host = host self.port = port self.device = device self.sim = None self.running = False self.connected = False self.sock = None def connect(self): self.running = True self.start() def reconnect(self): while not self.connected: try: self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect((self.host, self.port)) self.connected = True print("Connected") except Exception: pass def disconnect(self): self.connected = False self.running = False def run(self): self.reconnect() while self.running: if not self.sim: msgs = self.scrape_data() try: self.sock.sendall(b'AT+CWLAP\n') for msg in msgs: self.sock.sendall(str.encode('+CWLAP:(5,"{}",{},"{}",{})\n'.format(msg[0], msg[1], msg[2], msg[3]))) self.sock.sendall(b'\nOK\n') except Exception as e: print(e) self.connected = False print("Try Reconnect") self.reconnect() else: try: for msg in self.sim: self.sock.sendall(b'AT+CWLAP') self.sock.sendall(str.encode(msg)) time.sleep(2) except Exception as e: print(e) self.connected = False print("Try Reconnect") self.reconnect() time.sleep(1) self.sock.close() def scrape_data(self): clean_data = [] raw_data = subprocess.Popen("iwlist " + self.device + " scanning", shell=True, stdout=subprocess.PIPE).stdout.read().decode("utf-8") raw_data_splitted = raw_data.split("Cell ")[1:] for raw_cell in raw_data_splitted: cell = raw_cell.split("Mode:")[0] # print(cell) cell_data = [] m = re.search('.*Frequency:2.4.* GHz', cell) if m: m = re.search('.*ESSID:"(.*)".*', cell) if m: cell_data.append(m.group(1)) else: cell_data.append("none") m = re.search('.* Signal level=(.\d+) dBm.*', cell) if m: cell_data.append(m.group(1)) else: cell_data.append("none") m = re.search('.+ - Address: (.+).*', cell) if m: cell_data.append(m.group(1)) else: cell_data.append("none") m = re.search('.*Channel:(\d+).*', cell) if m: cell_data.append(m.group(1)) else: cell_data.append("none") clean_data.append(cell_data) # print(clean_data) return clean_data class App(tk.Tk): def __init__(self, host, port, device, filename): tk.Tk.__init__(self) self.wm_title("Spyduino Simulator") self.protocol("WM_DELETE_WINDOW", self.on_close) self.host = host self.port = port self.device = device self.filename = filename self.TCPClient = TCPClient(self.host, self.port, self.device) # Define LEDs self.frame = tk.Frame(self, background="bisque") self.frame.pack(side="top", fill="both", expand=True) self.canvas = tk.Canvas(self.frame, bg="green") self.canvas.create_oval(10, 10, 40, 40, fill="red", tags="ledred") self.led_red_on = True self.canvas.create_oval(10, 50, 40, 80, fill="yellow", tags="ledyellow") self.led_yellow_on = False self.canvas.create_oval(10, 90, 40, 120, fill="#5EFF00", tags="ledgreen") self.led_green_on = False self.canvas.create_rectangle(20, 160, 60, 200, fill="grey", tags="s2") self.canvas.create_rectangle(20, 210, 60, 250, fill="grey", tags="s1") self.canvas.create_rectangle(280, 10, 320, 50, fill="grey", tags="rst") self.canvas.pack(side="top", fill="both", expand=True) # self.canvas.bind('<Button-1>', self.onCanvasClick) self.canvas.tag_bind('s1', '<Button-1>', self.on_S1) self.canvas.tag_bind('s2', '<Button-1>', self.on_S2) self.canvas.tag_bind('rst', '<Button-1>', self.on_RST) self.draw_light() print("Running...") # def onCanvasClick(self, event): # print('Got canvas click') # print(event.x, event.y, event.widget) # print() def on_S1(self, event): if not self.TCPClient.connected: with open(self.filename, 'r') as f: self.TCPClient.sim = f.read().split("AT+CWLAP")[1:] self.on_S2(event) def on_S2(self, event): if not self.TCPClient.connected: self.wifi() print("Try Connect") self.TCPClient.connect() else: print("Try Close") self.on_RST(None) def on_RST(self, event): self.TCPClient.disconnect() self.TCPClient.join() self.led_yellow_on = False self.led_green_on = False self.led_red_on = True self.TCPClient = TCPClient(self.host, self.port, self.device) def wifi(self): print("WIFI Simulation") self.led_red_on = False self.canvas.itemconfig("ledred", fill="white") self.canvas.itemconfig("ledgreen", fill="#5EFF00") self.led_green_on = True def draw_light(self): if self.led_red_on: self.canvas.itemconfig("ledred", fill="red") self.light_on = False else: self.canvas.itemconfig("ledred", fill="white") self.light_on = True if self.TCPClient.connected: self.canvas.itemconfig("ledyellow", fill="yellow") self.light_on = False else: self.canvas.itemconfig("ledyellow", fill="white") self.light_on = True if self.led_green_on: self.canvas.itemconfig("ledgreen", fill="#5EFF00") self.light_on = False else: self.canvas.itemconfig("ledgreen", fill="white") self.light_on = True self.after(1000, self.draw_light) def on_close(self): self.TCPClient.disconnect() self.destroy() HOST = "127.0.0.1" PORT = 1337 #DEVICE = "wlp3s0" DEVICE = "wlan0" FILENAME = "simfile.txt" app = App(HOST, PORT, DEVICE, FILENAME) app.mainloop()
Drake81/spyduino
spyduino_simulator/spyduino-simulator.py
spyduino-simulator.py
py
6,994
python
en
code
0
github-code
6
13020029275
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import ensemble def data_accuracy(predictions, real): """ Check the accuracy of the estimated prices """ # This will be a list, the ith element of this list will be abs(prediction[i] - real[i])/real[i] differences = list(map(lambda x: abs(x[0] - x[1]) / x[1], zip(predictions, real))) # Find the value for the bottom t percentile and the top t percentile f = 0 t = 90 percentiles = np.percentile(differences, [f, t]) differences_filter = [] for diff in differences: # Keep only values in between f and t percentile if percentiles[0] < diff < percentiles[1]: differences_filter.append(diff) print(f"Differences excluding outliers: {np.average(differences_filter)}") # clf = ensemble.GradientBoostingRegressor(n_estimators = 1100, max_depth = 15, min_samples_split = 9,learning_rate = 0.5, loss = 'squared_error') # clf = ensemble.GradientBoostingRegressor(n_estimators = 1000, max_depth = 15, min_samples_split = 9, learning_rate = 0.2, loss = 'squared_error') clf = ensemble.GradientBoostingRegressor(n_estimators = 600, max_depth = 7, min_samples_split = 5, learning_rate = 0.7, loss = 'squared_error') data = pd.read_csv("PROJECTS/house-prices/HousePriceDataTRAINING.csv") data.columns = ["long", "lat", "date", "price", "bed"] # conv_dates = [0 if ("2011" in values or "2012" in values or "2013" in values or "2014" in values or "2015" in values or "2016" in values) else 1 for values in data.date ] conv_dates = [] for i in range(data.date.size): conv_dates.append(abs(int(data.at[i, "date"].split("/")[0]) + int(data.at[i, "date"].split("/")[1])*31 + int(data.at[i, "date"].split("/")[2])*366 - 737691)) data['date'] = conv_dates labels = data['price'] train1 = data.drop('price', axis=1) x_train, x_test, y_train, y_test = train_test_split( train1, labels, test_size=0.10) # y_train = list(map(lambda p: np.log2(p), y_train)) clf.fit(x_train, y_train) # x_pred = list(map(lambda p: 2**p, clf.predict(x_test))) x_pred = clf.predict(x_test) # print(clf.get_params()) print(data_accuracy(y_test, x_pred))
V1K1NGbg/House-Price-Prediction-Project
testing.py
testing.py
py
2,216
python
en
code
0
github-code
6
10425091071
#-*- coding: utf-8 -*- u""" .. moduleauthor:: Martí Congost <[email protected]> """ from cocktail import schema from .block import Block class CustomBlock(Block): instantiable = True type_group = "blocks.custom" view_class = schema.String( required = True, shadows_attribute = True, before_member = "controller", member_group = "behavior" )
marticongost/woost
woost/models/customblock.py
customblock.py
py
402
python
en
code
0
github-code
6
27949370562
# String formatting/Templeting # 1 name = "Mohib" greeting = f"Hello, {name}" print(f"Hello, {name}") # 2 greeting = "Hi, {}" with_name = greeting.format(name) print(with_name) # 3 longer_phrase = "Hello, {}. Today is {}." formated = longer_phrase.format("Rahman", "Monday") print(formated)
newmohib/python-fundamental-2
string_formatting.py
string_formatting.py
py
297
python
en
code
0
github-code
6
12858137004
""" We are given a directed graph. We are given also a set of pairs of vertices. Find the shortest distance between each pair of vertices or -1 if there is no path connecting them. On the first line, you will get N, the number of vertices in the graph. On the second line, you will get P, the number of pairs between which to find the shortest distance. On the next N lines will be the edges of the graph and on the next P lines, the pairs. """ from collections import deque from typing import Dict, List, Union def build_graph(nodes: int) -> Dict[int, List[int]]: graph = {} for _ in range(nodes): node, children_str = input().split(':') node = int(node) children = [int(x) for x in children_str.split(' ')] if children_str else [] graph[node] = children return graph def bfs(graph: Dict[int, List[int]], source: int, destination: int) -> Dict[int, Union[None, int]]: queue = deque([source]) visited = {source} parent = {source: None} while queue: node = queue.popleft() if node == destination: break for child in graph[node]: if child in visited: continue queue.append(child) visited.add(child) parent[child] = node return parent def find_size(parent: Dict[int, Union[None, int]], destination: int) -> int: node = destination size = -1 while node is not None: node = parent[node] size += 1 return size nodes = int(input()) pairs = int(input()) graph = build_graph(nodes) for _ in range(pairs): source, destination = [int(x) for x in input().split('-')] parent = bfs(graph, source, destination) if destination not in parent: print(f'{{{source}, {destination}}} -> -1') continue size = find_size(parent, destination) print(f'{{{source}, {destination}}} -> {size}') # Test solution at: # https://judge.softuni.org/Contests/Practice/Index/3465#0
dandr94/Algorithms-with-Python
04. Minimum-spanning-tree-and-Shortest-path-in-Graph/02. Exercise/01. distance_between_vertices.py
01. distance_between_vertices.py
py
2,005
python
en
code
0
github-code
6
44870137636
#!/usr/bin/python3 def main(): d = { "one": 1, "two": 2, "three": 3, "four": 4, "five": 5 } print("Dictionaries: ", d) for k in d: print(k, d[k]) print("Sorted by Keys: ") for k in sorted(d.keys()): print(k, d[k]) print("Dictionaries are mutable objects") dd = dict( one = 1, two = 2, three = 3, four = 4, five = "five" ) dd["seven"] = 7 for kk in sorted(dd.keys()): print(type(kk), kk, type(dd), dd[kk]) if __name__ == "__main__" : main()
sandeepgholve/Python_Programming
Python 3 Essential Training/05 Variables/variables-dictionaries.py
variables-dictionaries.py
py
539
python
en
code
0
github-code
6
31412656744
#!/usr/bin/env python3 # -*- coding: utf-8 -*- r""" Life's pathetic, have fun ("▔□▔)/hi~♡ Nasy. Excited without bugs:: | * * | . . | . | * , | . | | * | |\___/| | ) -( . · | =\ - /= | )===( * | / - \ | |- | | / - \ 0.|.0 | NASY___\__( (__/_____(\=/)__+1s____________ | ______|____) )______|______|______|______|_ | ___|______( (____|______|______|______|____ | ______|____\_|______|______|______|______|_ | ___|______|______|______|______|______|____ | ______|______|______|______|______|______|_ | ___|______|______|______|______|______|____ author : Nasy https://nasy.moe date : Dec 23, 2018 email : Nasy <[email protected]> filename : test_nacf.py project : tests license : LGPL-3.0+ There are more things in heaven and earth, Horatio, than are dreamt. -- From "Hamlet" """ # Standard Library import unittest # Prelude from nalude import flatten # Other Packages from nacf import (css, get, gets, html, json, post, text, urls, posts, xpath, parallel, __version__,) from nacf.types import Res, Json, Iterable class NacfTest(unittest.TestCase): """Nasy crawler framework test.""" def test_version(self) -> None: """Test version of nacf.""" with open("pyproject.toml") as f: for line in f: if "version" in line: version = line.split()[-1].replace('"', "") break self.assertEqual(__version__, version) def test_get_css(self) -> None: """Test get and css.""" @get("python.org") @css(".widget-title", first=True) @text def crawler(res: str) -> str: """Test crawler.""" return res self.assertEqual(crawler(), "Get Started") def test_gets_xpath(self) -> None: """Test gets and xpath.""" @gets(["python.org", "python.org"]) @xpath("//*[@class='widget-title']", first=True) @text def crawler(res: str) -> str: """Test crawler.""" return res self.assertEqual( list(flatten(crawler())), ["Get Started", "Get Started"] ) def test_post_json(self) -> None: """Test post, posts and json.""" @post( "https://app.fakejson.com/q", json={ "token": "FOk7RjbecxtWJHljGjCNjg", "data": { "colorText": "colorText", "colorHex": "colorHex", "colorRGB": "colorRGB", "colorHSL": "colorHSL", }, }, ) @json def crawler(res: Json) -> Json: """Test crawler.""" return res self.assertEqual( crawler(), { "colorText": "tufts blue", "colorRGB": "rgb(22, 75, 56)", "colorHex": "colorHex", "colorHSL": "hsl(233, 14%, 14%)", }, ) def test_posts(self) -> None: """Test posts and json.""" @posts( ["https://app.fakejson.com/q"] * 3, jsons=[ { "token": "FOk7RjbecxtWJHljGjCNjg", "data": { "colorText": "colorText", "colorHex": "colorHex", "colorRGB": "colorRGB", "colorHSL": "colorHSL", }, } ] * 3, ) def crawler(res: Res) -> Iterable[Json]: """Test crawler.""" return map(lambda r: r.json(), res) self.assertEqual( list(flatten(crawler())), [ { "colorText": "tufts blue", "colorRGB": "rgb(22, 75, 56)", "colorHex": "colorHex", "colorHSL": "hsl(233, 14%, 14%)", } ] * 3, ) def test_urls_text(self) -> None: """Test urls and text.""" @urls(["python.org", "python.org"]) @gets() @css(".widget-title", first=True) @text def crawler(res: str) -> str: """Test crawler.""" return res self.assertEqual( list(flatten(crawler())), ["Get Started", "Get Started"] ) def test_parallel_html(self) -> None: """Test parallel.""" @urls(["python.org", "python.org"]) @parallel() @get() @html def crawler(res: Res) -> str: """Test crawler.""" return res.find(".widget-title", first=True).text self.assertEqual( list(flatten(crawler())), ["Get Started", "Get Started"] ) def run() -> None: """Run test.""" unittest.main() if __name__ == "__main__": run()
nasyxx/nacf
tests/test_nacf.py
test_nacf.py
py
5,224
python
en
code
9
github-code
6
28153506484
import json import numpy as np def load_json(file_path : str) -> dict: """ Loads .json file types. Use json python library to load a .json file. Parameters ---------- file_path : string Path to file. Returns ------- json file : dictionary .json dictionary file. See Also -------- read_GMR_file save_json_dicts Notes ----- json files are typically dictionaries, as such the function is intended for use with dictionaries stored in .json file types. Examples -------- my_dictionary = load_json(file_path="/Path/To/File") """ with open(file_path, 'r') as file: return json.load(file) def read_GMR_file(file_path): ''' Load txt output from GMRX spectrometer. Return wavelength in nm. Args: file_path: <string> path to file Returns: wavelength: <array> wavelength array intensity: <array> intensity array ''' try: wavelength, intensity = np.genfromtxt( fname=file_path, delimiter=';', unpack=True) except: wavelength, intensity = np.genfromtxt( fname=file_path, delimiter=',', unpack=True) return wavelength, intensity def convert(o): """ Check data type. Check type of data string. Parameters ---------- o : string String to check. Returns ------- TypeError : Boolean TypeError if string is not suitable. See Also -------- None. Notes ----- None. Examples -------- None. """ if isinstance(o, np.generic): return o.item() raise TypeError def save_json_dicts(out_path : str, dictionary : dict) -> None: """ Save .json file types. Use json python library to save a dictionary to a .json file. Parameters ---------- out_path : string Path to file. dictionary : dictionary Dictionary to save. Returns ------- None See Also -------- load_json Notes ----- json files are typically dictionaries, as such the function is intended for use with dictionaries stored in .json file types. Examples -------- save_json_dicts( out_path="/Path/To/File", dictionary=my_dictionary) """ with open(out_path, 'w') as outfile: json.dump( dictionary, outfile, indent=2, default=convert) outfile.write('\n') def reflectometer_in(file_path : str) -> list: """ Loads text file output from the Filmetrics spectroscopic reflectometer. Loads a 3 column, comma delimited, .fitnk file output from a Filmetrics F20 spectroscopic reflectometer. Parameters ---------- file_path: string Path to file. Returns ------- col0, col1, col2: list Typically wavelength (nm), n, k. See Also -------- numpy genfromtxt Notes ----- The .fitnk file from the Filmetrics F20 contains 5 header rows and 6 footer rows that are seemingly not useful information. The function skips over the rows. Examples -------- None """ col0, col1, col2 = np.genfromtxt( fname=file_path, delimiter=',', skip_header=5, skip_footer=6, unpack=True) return col0, col1, col2 def ellipsometer_in(file_path : str) -> list: """ Load text file output from the J.A. Woollam VASE. Loads a 5 column, comma delimited, .csv file output from a J.A. Woollam variable angle spectroscopic ellipsometer. Parameters ---------- file_path: string Path to file. Returns ------- col0, col1, col2, col3, col4: list Typically wavelength (nm), sample psi, sample delta, model psi, model delta. See Also -------- numpy genfromtxt Notes ----- None Example ------- None """ col0, col1, col2, col3, col4 = np.genfromtxt( fname=file_path, delimiter=',', skip_header=2, usecols=(0, 1, 2, 3, 4), unpack=True) return col0, col1, col2, col3, col4
jm1261/PeakFinder
src/fileIO.py
fileIO.py
py
4,274
python
en
code
0
github-code
6
25070502975
import pydoc import logging from typing import Generic, Type, Optional, Union, TypeVar, Any, NamedTuple from django.db import models from django.conf import settings from django.forms.models import model_to_dict from rest_framework import serializers logger = logging.getLogger(__name__) T = TypeVar("T") class AbstractSerializer: def create(self, validated_data, **kwargs): super().create(validated_data) def update(self, instance, validated_data, **kwargs): super().update(instance, validated_data, **kwargs) class Context(NamedTuple): user: Any org: Any = None def __getitem__(self, item): return getattr(self, item) class Serializer(serializers.Serializer, AbstractSerializer): pass class ModelSerializer(serializers.ModelSerializer, AbstractSerializer): def create(self, data: dict, **kwargs): return self.Meta.model.objects.create(**data) def update(self, instance, data: dict, **kwargs): for name, value in data.items(): if name != "created_by": setattr(instance, name, value) instance.save() return instance """ Custom serializer utilities functions """ def PaginatedResult(serializer_name: str, content_serializer: Type[Serializer]): return type( serializer_name, (Serializer,), dict( next=serializers.URLField( required=False, allow_blank=True, allow_null=True ), previous=serializers.URLField( required=False, allow_blank=True, allow_null=True ), results=content_serializer(many=True), ), ) class _SerializerDecoratorInitializer(Generic[T]): def __getitem__(self, serializer_type: Type[Serializer]): class Decorator: def __init__(self, instance=None, data: Union[str, dict] = None, **kwargs): self._instance = instance if data is None and instance is None: self._serializer = None else: self._serializer: serializer_type = ( serializer_type(data=data, **kwargs) if instance is None else serializer_type( instance, data=data, **{**kwargs, "partial": True} ) ) self._serializer.is_valid(raise_exception=True) @property def data(self) -> Optional[dict]: return ( self._serializer.validated_data if self._serializer is not None else None ) @property def instance(self): return self._instance def save(self, **kwargs) -> "Decorator": if self._serializer is not None: self._instance = self._serializer.save(**kwargs) return self return Decorator SerializerDecorator = _SerializerDecoratorInitializer() def owned_model_serializer(serializer: Type[Serializer]): class MetaSerializer(serializer): def __init__(self, *args, **kwargs): if "context" in kwargs: context = kwargs.get("context") or {} user = ( context.get("user") if isinstance(context, dict) else context.user ) org = context.get("org") if isinstance(context, dict) else context.org if settings.MULTI_ORGANIZATIONS and org is None: import purplship.server.orgs.models as orgs org = orgs.Organization.objects.filter( users__id=getattr(user, "id", None) ).first() self.__context: Context = Context(user, org) else: self.__context: Context = getattr(self, "__context", None) kwargs.update({"context": self.__context}) super().__init__(*args, **kwargs) def create(self, data: dict, **kwargs): payload = {"created_by": self.__context.user, **data} try: instance = super().create(payload, context=self.__context) link_org(instance, self.__context) # Link to organization if supported except Exception as e: logger.exception(e) raise e return instance def update(self, instance, data: dict, **kwargs): payload = {k: v for k, v in data.items()} return super().update(instance, payload, context=self.__context) return type(serializer.__name__, (MetaSerializer,), {}) def link_org(entity: ModelSerializer, context: Context): if hasattr(entity, "org") and context.org is not None and not entity.org.exists(): entity.link = entity.__class__.link.related.related_model.objects.create( org=context.org, item=entity ) entity.save( update_fields=(["created_at"] if hasattr(entity, "created_at") else []) ) def save_many_to_many_data( name: str, serializer: ModelSerializer, parent: models.Model, payload: dict = None, **kwargs, ): if not any((key in payload for key in [name])): return None collection_data = payload.get(name) collection = getattr(parent, name) if collection_data is None and any(collection.all()): for item in collection.all(): item.delete() for data in collection_data: item_instance = ( collection.filter(id=data.pop("id")).first() if "id" in data else None ) if item_instance is None: item = SerializerDecorator[serializer](data=data, **kwargs).save().instance else: item = ( SerializerDecorator[serializer]( instance=item_instance, data=data, **{**kwargs, "partial": True} ) .save() .instance ) getattr(parent, name).add(item) def save_one_to_one_data( name: str, serializer: ModelSerializer, parent: models.Model = None, payload: dict = None, **kwargs, ): if name not in payload: return None data = payload.get(name) instance = getattr(parent, name, None) if data is None and instance is not None: instance.delete() setattr(parent, name, None) if instance is None: new_instance = ( SerializerDecorator[serializer](data=data, **kwargs).save().instance ) parent and setattr(parent, name, new_instance) return new_instance return ( SerializerDecorator[serializer]( instance=instance, data=data, partial=True, **kwargs ) .save() .instance ) def allow_model_id(model_paths: []): def _decorator(serializer: Type[Serializer]): class ModelIdSerializer(serializer): def __init__(self, *args, **kwargs): for param, model_path in model_paths: content = kwargs.get("data", {}).get(param) values = content if isinstance(content, list) else [content] model = pydoc.locate(model_path) if any([isinstance(val, str) for val in values]): new_content = [] for value in values: if isinstance(value, str) and (model is not None): data = model_to_dict(model.objects.get(pk=value)) ("id" in data) and data.pop("id") new_content.append(data) kwargs.update( data={ **kwargs["data"], param: new_content if isinstance(content, list) else next(iter(new_content)), } ) super().__init__(*args, **kwargs) return type(serializer.__name__, (ModelIdSerializer,), {}) return _decorator def make_fields_optional(serializer: Type[ModelSerializer]): _name = f"Partial{serializer.__name__}" class _Meta(serializer.Meta): extra_kwargs = { **getattr(serializer.Meta, "extra_kwargs", {}), **{ field.name: {"required": False} for field in serializer.Meta.model._meta.fields }, } return type(_name, (serializer,), dict(Meta=_Meta)) def exclude_id_field(serializer: Type[ModelSerializer]): class _Meta(serializer.Meta): exclude = [*getattr(serializer.Meta, "exclude", []), "id"] return type(serializer.__name__, (serializer,), dict(Meta=_Meta))
danh91/purplship
server/modules/core/purplship/server/serializers/abstract.py
abstract.py
py
8,956
python
en
code
null
github-code
6
71968698427
import torch.nn as nn from collections import OrderedDict from graph_ter_seg.tools import utils class EdgeConvolution(nn.Module): def __init__(self, k, in_features, out_features): super(EdgeConvolution, self).__init__() self.k = k self.conv = nn.Conv2d( in_features * 2, out_features, kernel_size=1, bias=False ) self.bn = nn.BatchNorm2d(out_features) self.relu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): x = utils.get_edge_feature(x, k=self.k) x = self.relu(self.bn(self.conv(x))) x = x.max(dim=-1, keepdim=False)[0] return x class MultiEdgeConvolution(nn.Module): def __init__(self, k, in_features, mlp): super(MultiEdgeConvolution, self).__init__() self.k = k self.conv = nn.Sequential() for index, feature in enumerate(mlp): if index == 0: layer = nn.Sequential(OrderedDict([ ('conv%d' %index, nn.Conv2d( in_features * 2, feature, kernel_size=1, bias=False )), ('bn%d' % index, nn.BatchNorm2d(feature)), ('relu%d' % index, nn.LeakyReLU(negative_slope=0.2)) ])) else: layer = nn.Sequential(OrderedDict([ ('conv%d' %index, nn.Conv2d( mlp[index - 1], feature, kernel_size=1, bias=False )), ('bn%d' % index, nn.BatchNorm2d(feature)), ('relu%d' % index, nn.LeakyReLU(negative_slope=0.2)) ])) self.conv.add_module('layer%d' % index, layer) def forward(self, x): x = utils.get_edge_feature(x, k=self.k) x = self.conv(x) x = x.max(dim=-1, keepdim=False)[0] return x class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, x): return x.view(x.size(0), -1) def main(): conv = MultiEdgeConvolution(k=20, mlp=(64, 64), in_features=64) print(conv) if __name__ == '__main__': main()
gyshgx868/graph-ter
graph_ter_seg/models/layers.py
layers.py
py
2,158
python
en
code
56
github-code
6
6496477997
import os from util import build_utils def FilterProguardOutput(output): '''ProGuard outputs boring stuff to stdout (proguard version, jar path, etc) as well as interesting stuff (notes, warnings, etc). If stdout is entirely boring, this method suppresses the output. ''' ignore_patterns = [ 'ProGuard, version ', 'Reading program jar [', 'Reading library jar [', 'Preparing output jar [', ' Copying resources from program jar [', ] for line in output.splitlines(): for pattern in ignore_patterns: if line.startswith(pattern): break else: # line doesn't match any of the patterns; it's probably something worth # printing out. return output return '' class ProguardCmdBuilder(object): def __init__(self, proguard_jar): assert os.path.exists(proguard_jar) self._proguard_jar_path = proguard_jar self._test = None self._mapping = None self._libraries = None self._injars = None self._configs = None self._outjar = None def outjar(self, path): assert self._outjar is None self._outjar = path def is_test(self, enable): assert self._test is None self._test = enable def mapping(self, path): assert self._mapping is None assert os.path.exists(path), path self._mapping = path def libraryjars(self, paths): assert self._libraries is None for p in paths: assert os.path.exists(p), p self._libraries = paths def injars(self, paths): assert self._injars is None for p in paths: assert os.path.exists(p), p self._injars = paths def configs(self, paths): assert self._configs is None for p in paths: assert os.path.exists(p), p self._configs = paths def build(self): assert self._injars is not None assert self._outjar is not None assert self._configs is not None cmd = [ 'java', '-jar', self._proguard_jar_path, '-forceprocessing', ] if self._test: cmd += [ '-dontobfuscate', '-dontoptimize', '-dontshrink', '-dontskipnonpubliclibraryclassmembers', ] if self._mapping: cmd += [ '-applymapping', self._mapping, ] if self._libraries: cmd += [ '-libraryjars', ':'.join(self._libraries), ] cmd += [ '-injars', ':'.join(self._injars) ] for config_file in self._configs: cmd += ['-include', config_file] # The output jar must be specified after inputs. cmd += [ '-outjars', self._outjar, '-dump', self._outjar + '.dump', '-printseeds', self._outjar + '.seeds', '-printusage', self._outjar + '.usage', '-printmapping', self._outjar + '.mapping', ] return cmd def GetInputs(self): inputs = [self._proguard_jar_path] + self._configs + self._injars if self._mapping: inputs.append(self._mapping) if self._libraries: inputs += self._libraries return inputs def CheckOutput(self): build_utils.CheckOutput(self.build(), print_stdout=True, stdout_filter=FilterProguardOutput)
danrwhitcomb/Monarch
build/android/gyp/util/proguard_util.py
proguard_util.py
py
3,140
python
en
code
5
github-code
6
30241855772
import os from autoPyTorch.core.api import AutoNet from autoPyTorch.pipeline.base.pipeline import Pipeline from autoPyTorch.pipeline.nodes.one_hot_encoding import OneHotEncoding from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector from autoPyTorch.pipeline.nodes.ensemble import EnableComputePredictionsForEnsemble, SavePredictionsForEnsemble, BuildEnsemble, EnsembleServer from autoPyTorch.pipeline.nodes.create_dataset_info import CreateDatasetInfo class AutoNetEnsemble(AutoNet): """Build an ensemble of several neural networks that were evaluated during the architecure search""" # OVERRIDE def __init__(self, autonet, config_preset="medium_cs", **autonet_config): if isinstance(autonet, AutoNet): self.pipeline = autonet.pipeline self.autonet_type = type(autonet) self.base_config = autonet.base_config self.autonet_config = autonet.autonet_config self.fit_result = autonet.fit_result elif issubclass(autonet, AutoNet): self.pipeline = autonet.get_default_ensemble_pipeline() self.autonet_type = autonet self.base_config = dict() self.autonet_config = None self.fit_result = None else: raise("Invalid autonet argument") assert EnableComputePredictionsForEnsemble in self.pipeline assert SavePredictionsForEnsemble in self.pipeline assert EnsembleServer in self.pipeline assert BuildEnsemble in self.pipeline self.base_config.update(autonet_config) self.trained_autonets = None self.dataset_info = None if config_preset is not None: parser = self.get_autonet_config_file_parser() c = parser.read(os.path.join(os.path.dirname(__file__), "presets", autonet.preset_folder_name, config_preset + ".txt")) c.update(self.base_config) self.base_config = c # OVERRIDE def fit(self, X_train, Y_train, X_valid=None, Y_valid=None, refit=True, **autonet_config): X_train, Y_train, X_valid, Y_valid = self.check_data_array_types(X_train, Y_train, X_valid, Y_valid) self.autonet_config = self.pipeline.get_pipeline_config(**dict(self.base_config, **autonet_config)) self.fit_result = self.pipeline.fit_pipeline(pipeline_config=self.autonet_config, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid) self.dataset_info = self.pipeline[CreateDatasetInfo.get_name()].fit_output["dataset_info"] self.pipeline.clean() if refit: self.refit(X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid) return self.fit_result # OVERRIDE def refit(self, X_train, Y_train, X_valid=None, Y_valid=None, ensemble_configs=None, ensemble=None, autonet_config=None): X_train, Y_train, X_valid, Y_valid = self.check_data_array_types(X_train, Y_train, X_valid, Y_valid) if (autonet_config is None): autonet_config = self.autonet_config if (autonet_config is None): autonet_config = self.base_config if (ensemble_configs is None and self.fit_result): ensemble_configs = self.fit_result["ensemble_configs"] if (ensemble is None and self.fit_result): ensemble = self.fit_result["ensemble"] if (autonet_config is None or ensemble_configs is None or ensemble is None): raise ValueError("You have to specify ensemble and autonet config in order to be able to refit") identifiers = ensemble.get_selected_model_identifiers() self.trained_autonets = dict() for identifier in identifiers: config_id = tuple(identifier[:3]) budget = identifier[3] hyperparameter_config = ensemble_configs[config_id] autonet = self.autonet_type(pipeline=self.pipeline.clone()) autonet.refit(X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, hyperparameter_config=hyperparameter_config, autonet_config=autonet_config, budget=budget) self.trained_autonets[tuple(identifier)] = autonet # OVERRIDE def predict(self, X, return_probabilities=False, return_metric=False): # run predict pipeline X, = self.check_data_array_types(X) prediction = None models_with_weights = self.fit_result["ensemble"].get_models_with_weights(self.trained_autonets) autonet_config = self.autonet_config or self.base_config for weight, autonet in models_with_weights: current_prediction = autonet.pipeline.predict_pipeline(pipeline_config=autonet_config, X=X)["Y"] prediction = current_prediction if prediction is None else prediction + weight * current_prediction OHE = autonet.pipeline[OneHotEncoding.get_name()] metric = autonet.pipeline[MetricSelector.get_name()].fit_output['optimize_metric'] # reverse one hot encoding result = OHE.reverse_transform_y(prediction, OHE.fit_output['y_one_hot_encoder']) if not return_probabilities and not return_metric: return result result = [result] if return_probabilities: result.append(prediction) if return_metric: result.append(metric) return tuple(result) # OVERRIDE def score(self, X_test, Y_test): # run predict pipeline X_test, Y_test = self.check_data_array_types(X_test, Y_test) _, Y_pred, metric = self.predict(X_test, return_probabilities=True, return_metric=True) Y_test, _ = self.pipeline[OneHotEncoding.get_name()].complete_y_tranformation(Y_test) return metric(Y_pred, Y_test)
RitchieAlpha/Auto-PyTorch
autoPyTorch/core/ensemble.py
ensemble.py
py
5,843
python
en
code
null
github-code
6
12805757281
import os import cv2 import matplotlib.pyplot as plt import numpy as np import random import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers Datadirectory = "train\\" Classes = ["0", "1", "2", "3", "4", "5", "6"] img_size = 224 training_data = [] counter = 0 def createtrainingset(): for category in Classes: path = os.path.join(Datadirectory, category) class_num = Classes.index(category) for img in os.listdir(path): try: img_arr = cv2.imread(os.path.join(path, img)) new_arr = cv2.resize(img_arr, (img_size, img_size)) training_data.append([new_arr, class_num]) except Exception as e: pass createtrainingset() print(len(training_data)) random.shuffle(training_data) X = [] # Images (features) y = [] # Labels for feature, label in training_data: X.append(feature) y.append(label) y = np.array(y) X = np.array(X) X = X.reshape(-1, img_size, img_size, 3) X = X / 255.0 # Normalize the image data between 0 and 1 print(X.shape) print(y.shape) plt.imshow(X[0]) plt.show() model = tf.keras.applications.MobileNetV2() #TRANSFER LEARNING - TUNING ,weights will start from lasr check point base_input = model.layers[0].input base_output = model.layers[-2].output final_output = layers.Dense(128)(base_output) final_output = layers.Activation('relu')(final_output) final_output = layers.Dense(64)(final_output) final_output = layers.Activation('relu')(final_output) final_output = layers.Dense(7, activation = 'softmax')(final_output) new_model = keras.Model(inputs = base_input, outputs = final_output) new_model.compile(loss = "sparse_categorical_crossentropy", optimizer = "adam", metrics = ["accuracy"]) new_model.fit(X,y, epochs=10, batch_size = 8) new_model.save('onbes_epoch.h5')
Mudaferkaymak/Detecting-Faces-and-Analyzing-Them-with-Computer-Vision
Detecting-Faces-and-Analyzing-Them-with-Computer-Vision/training_themodel.py
training_themodel.py
py
1,867
python
en
code
1
github-code
6
17536523132
import pystan import stan_utility import matplotlib import matplotlib.pyplot as plot ################################################## ##### Simulate data and write to file ################################################## model = stan_utility.compile_model('gen_data.stan') fit = model.sampling(seed=194838, algorithm='Fixed_param', iter=1, chains=1,n_jobs=1) data = dict(N = 25, M = 3, X=fit.extract()['X'][0,:,:], y = fit.extract()['y'][0,:]) pystan.stan_rdump(data, 'lin_regr.data.R') ################################################## ##### Fit model and check diagnostics ################################################## # Read in data from Rdump file data = pystan.read_rdump('lin_regr.data.R') # Fit posterior with Stan model = stan_utility.compile_model('lin_regr.stan') fit = model.sampling(data=data, seed=194838,n_jobs=1) # Check sampler diagnostics print(fit) sampler_params = fit.get_sampler_params(inc_warmup=False) stan_utility.check_div(sampler_params) stan_utility.check_treedepth(sampler_params) stan_utility.check_energy(sampler_params) # Check visual diagnostics fit.plot() plot.show() ################################################## ##### Visualize posterior ################################################## light="#DCBCBC" light_highlight="#C79999" mid="#B97C7C" mid_highlight="#A25050" dark="#8F2727" dark_highlight="#7C0000" # Plot parameter posteriors params = fit.extract() f, axarr = plot.subplots(2, 3) for a in axarr[0,:]: a.xaxis.set_ticks_position('bottom') a.yaxis.set_ticks_position('none') for a in axarr[1,:]: a.xaxis.set_ticks_position('bottom') a.yaxis.set_ticks_position('none') axarr[0, 0].set_title("beta_1") axarr[0, 0].hist(params['beta'][:,0], bins = 25, color = dark, ec = dark_highlight) axarr[0, 0].axvline(x=5, linewidth=2, color=light) axarr[0, 1].set_title("beta_2") axarr[0, 1].hist(params['beta'][:,1], bins = 25, color = dark, ec = dark_highlight) axarr[0, 1].axvline(x=-3, linewidth=2, color=light) axarr[0, 2].set_title("beta_3") axarr[0, 2].hist(params['beta'][:,2], bins = 25, color = dark, ec = dark_highlight) axarr[0, 2].axvline(x=2, linewidth=2, color=light) axarr[1, 0].set_title("alpha") axarr[1, 0].hist(params['alpha'], bins = 25, color = dark, ec = dark_highlight) axarr[1, 0].axvline(x=10, linewidth=2, color=light) axarr[1, 1].set_title("sigma") axarr[1, 1].hist(params['sigma'], bins = 25, color = dark, ec = dark_highlight) axarr[1, 1].axvline(x=1, linewidth=2, color=light) plot.show() # Perform a posterior predictive check by plotting # posterior predictive distributions against data f, axarr = plot.subplots(2, 2) for a in axarr[0,:]: a.xaxis.set_ticks_position('bottom') a.yaxis.set_ticks_position('none') for a in axarr[1,:]: a.xaxis.set_ticks_position('bottom') a.yaxis.set_ticks_position('none') axarr[0, 0].set_title("y_1") axarr[0, 0].hist(params['y_ppc'][:,0], bins = 25, color = dark, ec = dark_highlight) axarr[0, 0].axvline(x=data['y'][0], linewidth=2, color=light) axarr[0, 1].set_title("y_5") axarr[0, 1].hist(params['y_ppc'][:,4], bins = 25, color = dark, ec = dark_highlight) axarr[0, 1].axvline(x=data['y'][4], linewidth=2, color=light) axarr[1, 0].set_title("y_10") axarr[1, 0].hist(params['y_ppc'][:,9], bins = 25, color = dark, ec = dark_highlight) axarr[1, 0].axvline(x=data['y'][9], linewidth=2, color=light) axarr[1, 1].set_title("y_15") axarr[1, 1].hist(params['y_ppc'][:,14], bins = 25, color = dark, ec = dark_highlight) axarr[1, 1].axvline(x=data['y'][14], linewidth=2, color=light) plot.show()
MiyainNYC/Rose
stan/wimlds/1/lin_regr.py
lin_regr.py
py
3,574
python
en
code
0
github-code
6
23048935694
from sqlalchemy.orm import Session from .. import models, schemas from fastapi.encoders import jsonable_encoder def get_score(db: Session): score = db.query(models.Score).first() if not score: new_score = create_score() db.add(new_score) db.commit() db.refresh(new_score) return new_score return score def post_goal(request: schemas.Goal, db: Session): score = db.query(models.Score).first() if not score: new_score = create_score() db.add(new_score) db.commit() db.refresh(new_score) score = db.query(models.Score).first() query = jsonable_encoder(request) if query["team"] == "home": score.home += 1 else: score.away += 1 db.commit() return score def create_score(): new_score = models.Score(home=0, away=0) return new_score
hooglander/fastapi-get-and-post
app/repository/score.py
score.py
py
873
python
en
code
0
github-code
6
70939280508
import os import argparse import pickle import scipy import trajnetplusplustools class TrajnetEvaluator: def __init__(self, reader_gt, scenes_gt, scenes_id_gt, scenes_sub, indexes, sub_indexes, args): self.reader_gt = reader_gt ##Ground Truth self.scenes_gt = scenes_gt self.scenes_id_gt = scenes_id_gt ##Prediction self.scenes_sub = scenes_sub ## Dictionary of type of trajectories self.indexes = indexes self.sub_indexes = sub_indexes ## The 4 types of Trajectories self.static_scenes = {'N': len(indexes[1])} self.linear_scenes = {'N': len(indexes[2])} self.forced_non_linear_scenes = {'N': len(indexes[3])} self.non_linear_scenes = {'N': len(indexes[4])} ## The 4 types of Interactions self.lf = {'N': len(sub_indexes[1])} self.ca = {'N': len(sub_indexes[2])} self.grp = {'N': len(sub_indexes[3])} self.others = {'N': len(sub_indexes[4])} ## The 4 metrics ADE, FDE, ColI, ColII self.average_l2 = {'N': len(scenes_gt)} self.final_l2 = {'N': len(scenes_gt)} ## Multimodal Prediction self.overall_nll = {'N': len(scenes_gt)} self.topk_ade = {'N': len(scenes_gt)} self.topk_fde = {'N': len(scenes_gt)} num_predictions = 0 for track in self.scenes_sub[0][0]: if track.prediction_number and track.prediction_number > num_predictions: num_predictions = track.prediction_number self.num_predictions = num_predictions self.pred_length = args.pred_length self.obs_length = args.obs_length self.enable_col1 = True self.ade_list = {} self.fde_list = {} def aggregate(self, name, disable_collision): ## Overall Single Mode Scores average = 0.0 final = 0.0 ## Overall Multi Mode Scores average_topk_ade = 0 average_topk_fde = 0 average_nll = 0 ## Aggregates ADE, FDE and Collision in GT & Pred, Topk ADE-FDE , NLL for each category & sub_category score = {1: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], 2: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], \ 3: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], 4: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0]} sub_score = {1: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], 2: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], \ 3: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0], 4: [0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0]} ## Iterate for i in range(len(self.scenes_gt)): ground_truth = self.scenes_gt[i] ## Get Keys and Sub_keys keys = [] sub_keys = [] ## Main for key in list(score.keys()): if self.scenes_id_gt[i] in self.indexes[key]: keys.append(key) # ## Sub for sub_key in list(sub_score.keys()): if self.scenes_id_gt[i] in self.sub_indexes[sub_key]: sub_keys.append(sub_key) ## Extract Prediction Frames primary_tracks_all = [t for t in self.scenes_sub[i][0] if t.scene_id == self.scenes_id_gt[i]] neighbours_tracks_all = [[t for t in self.scenes_sub[i][j] if t.scene_id == self.scenes_id_gt[i]] for j in range(1, len(self.scenes_sub[i]))] ##### --------------------------------------------------- SINGLE -------------------------------------------- #### primary_tracks = [t for t in primary_tracks_all if t.prediction_number == 0] neighbours_tracks = [[t for t in neighbours_tracks_all[j] if t.prediction_number == 0] for j in range(len(neighbours_tracks_all))] frame_gt = [t.frame for t in ground_truth[0]][-self.pred_length:] frame_pred = [t.frame for t in primary_tracks] ## To verify if same scene if frame_gt != frame_pred: print("Frame id Groud truth: ", frame_gt) print("Frame id Predictions: ", frame_pred) raise Exception('frame numbers are not consistent') average_l2 = trajnetplusplustools.metrics.average_l2(ground_truth[0], primary_tracks, n_predictions=self.pred_length) final_l2 = trajnetplusplustools.metrics.final_l2(ground_truth[0], primary_tracks) self.ade_list[self.scenes_id_gt[i]] = average_l2 self.fde_list[self.scenes_id_gt[i]] = final_l2 if not disable_collision: ground_truth = self.drop_post_obs(ground_truth, self.obs_length) ## Collisions in GT # person_radius=0.1 for j in range(1, len(ground_truth)): if trajnetplusplustools.metrics.collision(primary_tracks, ground_truth[j], n_predictions=self.pred_length): for key in keys: score[key][2] += 1 ## Sub for sub_key in sub_keys: sub_score[sub_key][2] += 1 break ## Collision in Predictions # [Col-I] only if neighs in gt = neighs in prediction num_gt_neigh = len(ground_truth) - 1 num_predicted_neigh = len(neighbours_tracks) if num_gt_neigh != num_predicted_neigh: self.enable_col1 = False for key in score: score[key][4] = 0 score[key][3] = 0 for sub_key in sub_score: sub_score[sub_key][4] = 0 sub_score[sub_key][3] = 0 if self.enable_col1: for key in keys: score[key][4] += 1 for j in range(len(neighbours_tracks)): if trajnetplusplustools.metrics.collision(primary_tracks, neighbours_tracks[j], n_predictions=self.pred_length): score[key][3] += 1 break ## Sub for sub_key in sub_keys: sub_score[sub_key][4] += 1 for j in range(len(neighbours_tracks)): if trajnetplusplustools.metrics.collision(primary_tracks, neighbours_tracks[j], n_predictions=self.pred_length): sub_score[sub_key][3] += 1 break # aggregate FDE and ADE average += average_l2 final += final_l2 for key in keys: score[key][0] += average_l2 score[key][1] += final_l2 ## Sub for sub_key in sub_keys: sub_score[sub_key][0] += average_l2 sub_score[sub_key][1] += final_l2 ##### --------------------------------------------------- SINGLE -------------------------------------------- #### ##### --------------------------------------------------- Top 3 -------------------------------------------- #### if self.num_predictions > 1: topk_ade, topk_fde = trajnetplusplustools.metrics.topk(primary_tracks_all, ground_truth[0], n_predictions=self.pred_length) average_topk_ade += topk_ade ##Key for key in keys: score[key][5] += topk_ade ## SubKey for sub_key in sub_keys: sub_score[sub_key][5] += topk_ade average_topk_fde += topk_fde ##Key for key in keys: score[key][6] += topk_fde ## SubKey for sub_key in sub_keys: sub_score[sub_key][6] += topk_fde ##### --------------------------------------------------- Top 3 -------------------------------------------- #### ##### --------------------------------------------------- NLL -------------------------------------------- #### if self.num_predictions > 48: nll = trajnetplusplustools.metrics.nll(primary_tracks_all, ground_truth[0], n_predictions=self.pred_length, n_samples=50) average_nll += nll ##Key for key in keys: score[key][7] += nll ## SubKey for sub_key in sub_keys: sub_score[sub_key][7] += nll ##### --------------------------------------------------- NLL -------------------------------------------- #### ## Average ADE and FDE average /= len(self.scenes_gt) final /= len(self.scenes_gt) ## Average TopK ADE and Topk FDE and NLL average_topk_ade /= len(self.scenes_gt) average_topk_fde /= len(self.scenes_gt) average_nll /= len(self.scenes_gt) ## Average categories for key in list(score.keys()): if self.indexes[key]: score[key][0] /= len(self.indexes[key]) score[key][1] /= len(self.indexes[key]) score[key][5] /= len(self.indexes[key]) score[key][6] /= len(self.indexes[key]) score[key][7] /= len(self.indexes[key]) ## Average subcategories ## Sub for sub_key in list(sub_score.keys()): if self.sub_indexes[sub_key]: sub_score[sub_key][0] /= len(self.sub_indexes[sub_key]) sub_score[sub_key][1] /= len(self.sub_indexes[sub_key]) sub_score[sub_key][5] /= len(self.sub_indexes[sub_key]) sub_score[sub_key][6] /= len(self.sub_indexes[sub_key]) sub_score[sub_key][7] /= len(self.sub_indexes[sub_key]) # ##Adding value to dict self.average_l2[name] = average self.final_l2[name] = final ##APPEND to overall keys self.overall_nll[name] = average_nll self.topk_ade[name] = average_topk_ade self.topk_fde[name] = average_topk_fde ## Main self.static_scenes[name] = score[1] self.linear_scenes[name] = score[2] self.forced_non_linear_scenes[name] = score[3] self.non_linear_scenes[name] = score[4] ## Sub_keys self.lf[name] = sub_score[1] self.ca[name] = sub_score[2] self.grp[name] = sub_score[3] self.others[name] = sub_score[4] return self def result(self): return self.average_l2, self.final_l2, \ self.static_scenes, self.linear_scenes, self.forced_non_linear_scenes, self.non_linear_scenes, \ self.lf, self.ca, self.grp, self.others, \ self.topk_ade, self.topk_fde, self.overall_nll def save_distance_lists(self, input_file): distance_file = os.path.dirname(input_file).replace('test_pred', 'ade_fde_list') os.makedirs(distance_file) with open(distance_file + '/ade_fde.pkl', 'wb') as handle: pickle.dump([self.ade_list, self.fde_list], handle, protocol=pickle.HIGHEST_PROTOCOL) ## drop pedestrians that appear post observation def drop_post_obs(self, ground_truth, obs_length): obs_end_frame = ground_truth[0][obs_length].frame ground_truth = [track for track in ground_truth if track[0].frame < obs_end_frame] return ground_truth def collision_test(list_sub, name, args): """ Simple Collision Test """ submit_datasets = [args.path + name + '/' + f for f in list_sub if 'collision_test.ndjson' in f] if len(submit_datasets): # Scene Prediction reader_sub = trajnetplusplustools.Reader(submit_datasets[0], scene_type='paths') scenes_sub = [s for _, s in reader_sub.scenes()] if trajnetplusplustools.metrics.collision(scenes_sub[0][0], scenes_sub[0][1], n_predictions=args.pred_length): return "Fail" return "Pass" return "NA" def eval(gt, input_file, args): # Ground Truth reader_gt = trajnetplusplustools.Reader(gt, scene_type='paths') scenes_gt = [s for _, s in reader_gt.scenes()] scenes_id_gt = [s_id for s_id, _ in reader_gt.scenes()] # Scene Predictions reader_sub = trajnetplusplustools.Reader(input_file, scene_type='paths') scenes_sub = [s for _, s in reader_sub.scenes()] ## indexes is dictionary deciding which scenes are in which type indexes = {} for i in range(1, 5): indexes[i] = [] ## sub-indexes sub_indexes = {} for i in range(1, 5): sub_indexes[i] = [] for scene in reader_gt.scenes_by_id: tags = reader_gt.scenes_by_id[scene].tag main_tag = tags[0:1] sub_tags = tags[1] for ii in range(1, 5): if ii in main_tag: indexes[ii].append(scene) if ii in sub_tags: sub_indexes[ii].append(scene) # Evaluate evaluator = TrajnetEvaluator(reader_gt, scenes_gt, scenes_id_gt, scenes_sub, indexes, sub_indexes, args) evaluator.aggregate('kf', args.disable_collision) ## Save Lists # evaluator.save_distance_lists(input_file) return evaluator.result()
lzz970818/Trajectory-Prediction
Trajectory-Prediction-master/evaluator.py
evaluator.py
py
13,202
python
en
code
12
github-code
6
17284176875
# Calculates the number of trees that are visibile from outside the grid def part1(): ROW, COLUMN = [99, 99] # Dimensions for the forest map forest_grid = [[] for _ in range(COLUMN)] # Forest map represented by a 2D Array (99x99) trees_visible = 0 # Number of trees visible # === Helper Functions Start === # # Inserts tree heights into forest_grid def grid_setup(forest_grid): for row, line in enumerate(file): for tree_height in line.strip(): forest_grid[row].append(int(tree_height)) return forest_grid # Checks downwards def check_row_down(row, column, tree_house_height, forest_grid): for x in range(row + 1, ROW, 1): if((forest_grid[x][column] < tree_house_height) and (x == (ROW - 1))): # Tree search reaches the edge return True elif(forest_grid[x][column] >= tree_house_height): # Tree gets blocked return False # Checks upwards def check_row_up(row, column, tree_house_height, forest_grid): for x in reversed(range(row)): if((forest_grid[x][column] < tree_house_height) and (x == 0)): # Tree search reaches the edge return True elif(forest_grid[x][column] >= tree_house_height): # Tree gets blocked return False # Checks to the right def check_column_right(row, column, tree_house_height, forest_grid): for y in range(column + 1, COLUMN, 1): if((forest_grid[row][y] < tree_house_height) and (y == (COLUMN - 1))): # Tree search reaches the edge return True elif(forest_grid[row][y] >= tree_house_height): # Tree gets blocked return False # Checks to the left def check_column_left(row, column, tree_house_height, forest_grid): for y in reversed(range(column)): if((forest_grid[row][y] < tree_house_height) and (y == 0)): # Tree search reaches the edge return True elif(forest_grid[row][y] >= tree_house_height): # Tree gets blocked return False # === Helper Functions End === # # Program Start # with open('forest_map.txt') as file: forest_grid = grid_setup(forest_grid) for x in range(ROW): for y in range(COLUMN): if((x == 0) or (y == 0) or (x == (ROW - 1)) or (y == (COLUMN - 1))): trees_visible += 1 else: tree_house_height = forest_grid[x][y] # Spot from which we are comparing other tree heights # Checks to see if a tree would be visible from any direction if (check_row_down(x, y, tree_house_height,forest_grid) or (check_row_up(x, y, tree_house_height,forest_grid)) or (check_column_left(x, y, tree_house_height,forest_grid)) or (check_column_right(x, y, tree_house_height,forest_grid))): trees_visible += 1 print(trees_visible, "trees are visible")
kianlak/Advent-Of-Code-2022
Day8/Day8Part1.py
Day8Part1.py
py
3,196
python
en
code
0
github-code
6
25528262922
#!/usr/bin/python3 # 3-infinite_add.py # Simon Tagbor <[email protected]> if __name__ == "__main__": import sys result = 0 for i in range(len(sys.argv) - 1): result += int(sys.argv[i+1]) print("{:d}".format(result))
Simontagbor/alx-higher_level_programming
0x02-python-import_modules/3-infinite_add.py
3-infinite_add.py
py
248
python
en
code
2
github-code
6
21840251334
"""Order views module""" from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters from rest_framework import status as st from rest_framework import generics from rest_framework.renderers import JSONRenderer, BrowsableAPIRenderer from rest_framework.parsers import JSONParser from rest_framework.response import Response from rest_framework.exceptions import MethodNotAllowed, NotFound from rest_framework.decorators import api_view from orders.models import Order, STATUS_CHOICES from orders.serializers import OrderSerializer from orders.pagination import CustomPagination from order_flow.settings import DEBUG class OrderAPIListCreate(generics.ListCreateAPIView): """ Returns list of orders in JSON format and gave an option to create orders """ if DEBUG: renderer_classes = [JSONRenderer, BrowsableAPIRenderer] else: renderer_classes = [JSONRenderer] queryset = Order.objects.all() serializer_class = OrderSerializer pagination_class = CustomPagination filter_backends = [DjangoFilterBackend, filters.OrderingFilter] filterset_fields = ['external_id', 'status'] ordering_fields = ['id', 'status', 'created_at'] class OrderAPIRetrieveUpdateDestroy(generics.RetrieveUpdateDestroyAPIView): """ Returns distinct order JSON info and gave an option to update and delete it """ if DEBUG: renderer_classes = [JSONRenderer, BrowsableAPIRenderer] else: renderer_classes = [JSONRenderer] parser_classes = [JSONParser] queryset = Order.objects.all() serializer_class = OrderSerializer def put(self, request, *args, **kwargs): """Add a possibility of partial update, using put method""" return self.partial_update(request, *args, **kwargs) def perform_destroy(self, instance): """Protect order from delete if its status is 'accepted'.""" if instance.status == 'accepted': raise MethodNotAllowed( 'delete', detail="You can not delete orders with status 'accepted'.", ) instance.delete() @api_view(['POST']) def status_change(request, pk, status): """Change order status""" try: order = Order.objects.get(id=pk) except Order.DoesNotExist: raise NotFound(f'Order with id {pk} does not exist.') if status not in [statuses[0] for statuses in STATUS_CHOICES]: raise MethodNotAllowed( 'post', detail="You can change order status" " only to 'accepted' or 'failed'", ) if order.status != 'new': raise MethodNotAllowed( 'post', detail="You can not change order status if it is not 'new'", ) order.status = status order.save() return Response(status=st.HTTP_200_OK)
GunGalla/order-flow-test
orders/views.py
views.py
py
2,855
python
en
code
0
github-code
6
18246562040
class nomatch(Exception): '''Thrown when parsing fails. Almost always caught and almost never fatal''' def parse(string): '''Parse a full string and return a lego piece. Fail if the whole string wasn't parsed''' p, i = pattern.match(string, 0) if i != len(string): raise Exception("Could not parse '" + string + "' beyond index " + str(i)) return p.reduce() class lego: ''' Parent class for all lego pieces. All lego pieces have some things in common. This parent class mainly hosts documentation though. ''' def __setattr__(self, name, value): ''' Lego pieces are immutable. It caused some pretty serious problems when I didn't have this. ''' raise Exception("Can't set " + str(self) + " attribute " + str(name) + " to " + str(value)) def fsm(self, alphabet): ''' Return the present lego piece in the form of a finite state machine, as imported from the fsm module. If no alphabet is explicitly supplied, which seems quite probable, we use the lego.alphabet() method (later) to list all the characters mentioned in self. However, if we intend to connect this FSM to another one which uses different characters, we may need to supply an alphabet which is a superset of both sets. ''' def __repr__(self): ''' Return a string approximating the instantiation line for the present lego piece. ''' def __str__(self): ''' Render the present lego piece in the form of a regular expression. Some lego pieces may be created which cannot be rendered in this way. In particular: a pattern containing no concs; a multiplier of zero. ''' def match(cls, string, i): ''' Start at index i in the supplied string and try to match one of the present class. Elementary recursive descent parsing with very little need for flair. The opposite of __str__(), above. (In most cases.) Throws a nomatch in the event of failure. ''' def reduce(self): ''' The most important and algorithmically complex method. Takes the current lego piece and simplifies it in every way possible, returning a simpler lego piece which is quite probably not of the same class as the original. Approaches vary by the class of the present lego piece. It is critically important to (1) always call reduce() on whatever you're returning before you return it and therefore (2) always return something STRICTLY SIMPLER than the current object. Otherwise, infinite loops become possible in reduce() calls. ''' def __add__(self, other): ''' Concatenate any two lego pieces, regardless of differing classes. Because reduce() (above) is always called afterwards, the result is as simplified as possible. Call using "a = b + c" ''' def __mul__(self, multiplier): ''' Equivalent to repeated concatenation. Multiplier consists of a minimum and a maximum; maximum may be infinite (for Kleene star closure). Call using "a = b * qm" Reduce() is always called afterwards. ''' def __or__(self, other): ''' Alternate between any two lego pieces, regardless of differing classes. Again, reduce() is called afterwards, usually with excellent results. Call using "a = b | c" ''' def __and__(self, other): ''' Intersection function. Return a lego piece that can match any string that both self and other can match. Fairly elementary results relating to regular languages and finite state machines show that this is possible, but implementation is a BEAST in many cases. Here, we convert both lego pieces to FSMs (see fsm(), above) for the intersection, then back to lego afterwards. Call using "a = b & c" ''' def alphabet(self): ''' Return a set of all unique characters used in this lego piece. In theory this could be a static property, self.alphabet, not a function, self.alphabet(), but in the vast majority of cases this will never be queried so it's a waste of computation to calculate it every time a lego piece is instantiated. By convention, otherchars is always included in this result. ''' pass def everythingbut(self): ''' Return a lego object which will match any string not matched by self, and which will not match any string matched by self. Another task which is very difficult in general (and typically returns utter garbage when actually printed), but becomes trivial to code thanks to FSM routines. ''' return self.fsm().everythingbut().lego().reduce() def empty(self): ''' Return False if there exists a string which the present lego piece can match. Return True if no such string exists. Examples of empty lego pieces are charclass() and pattern() ''' pass @classmethod def matchStatic(cls, string, i, static): if string[i:len(static)+i] == static: return i+len(static) raise nomatch( "Can't find '" + static + "' at index " + str(i) + " in '" + string + "'" ) class multiplicand(lego): ''' This class only exists so that it can be a parent to both charclass and pattern, which can both be used in multipliers. ''' class charclass(multiplicand): ''' A charclass is basically a frozenset of symbols. The reason for the charclass object instead of using frozenset directly is to allow us to set a "negated" flag. A charclass with the negation flag set is assumed to contain every symbol that is in the alphabet of all symbols but not explicitly listed inside the frozenset. e.g. [^a]. This is very handy if the full alphabet is extremely large, but also requires dedicated combination functions. ''' def __init__(self, chars=set(), negateMe=False): # chars should consist only of chars if otherchars in set(chars): raise Exception("Can't put non-character 'otherchars' in a charclass") self.__dict__["chars"] = frozenset(chars) self.__dict__["negated"] = negateMe def __eq__(self, other): try: return self.chars == other.chars \ and self.negated == other.negated except AttributeError: return False def __hash__(self): return hash((self.chars, self.negated)) def __mul__(self, ier): # e.g. "a" * {0,1} = "a?" if ier == one: return self.reduce() return mult(self, ier).reduce() # These are the characters carrying special meanings when they appear "outdoors" # within a regular expression. To be interpreted literally, they must be # escaped with a backslash. allSpecial = set("\\[]|().?*+{}") # These are the characters carrying special meanings when they appear INSIDE a # character class (delimited by square brackets) within a regular expression. # To be interpreted literally, they must be escaped with a backslash. # Notice how much smaller this class is than the one above; note also that the # hyphen and caret do NOT appear above. classSpecial = set("\\[]^-") # these are the character ranges which can be used inside square brackets e.g. # "[a-z]", "[F-J]". These ranges should be disjoint. allowableRanges = { "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz", "0123456789", } def __str__(self): # e.g. \w if self in shorthand.keys(): return shorthand[self] # e.g. [^a] if self.negated: return "[^" + self.escape() + "]" # single character, not contained inside square brackets. if len(self.chars) == 1: # Python lacks the Axiom of Choice char = "".join(self.chars) # e.g. if char is "\t", return "\\t" if char in escapes.keys(): return escapes[char] if char in charclass.allSpecial: return "\\" + char return char # multiple characters (or possibly 0 characters) return "[" + self.escape() + "]" def escape(self): def escapeChar(char): if char in charclass.classSpecial: return "\\" + char if char in escapes.keys(): return escapes[char] return char def recordRange(): nonlocal currentRange nonlocal output # there's no point in putting a range when the whole thing is # 3 characters or fewer. if len(currentRange) in {0, 1, 2, 3}: output += "".join(escapeChar(char) for char in currentRange) else: output += escapeChar(currentRange[0]) + "-" + escapeChar(currentRange[-1]) currentRange = "" output = "" # look for ranges currentRange = "" for char in sorted(self.chars, key=str): # range is not empty: new char must fit after previous one if len(currentRange) > 0: # find out if this character appears in any of the # charclass.allowableRanges listed above. superRange = None for allowableRange in charclass.allowableRanges: if char in allowableRange: superRange = allowableRange break if superRange is None: # if this character doesn't appear above, then any existing # currentRange should be sorted and filed now # if there is one recordRange() else: i = superRange.index(char) # char doesn't fit old range: restart if i == 0 or superRange[i-1] != currentRange[-1]: recordRange() currentRange += char recordRange() return output def fsm(self, alphabet=None): from fsm import fsm if alphabet is None: alphabet = self.alphabet() # 0 is initial, 1 is final, 2 is oblivion # If negated, make a singular FSM accepting any other characters if self.negated: map = { 0: dict([(symbol, 2 if symbol in self.chars else 1) for symbol in alphabet]), 1: dict([(symbol, 2) for symbol in alphabet]), 2: dict([(symbol, 2) for symbol in alphabet]), } # If normal, make a singular FSM accepting only these characters else: map = { 0: dict([(symbol, 1 if symbol in self.chars else 2) for symbol in alphabet]), 1: dict([(symbol, 2) for symbol in alphabet]), 2: dict([(symbol, 2) for symbol in alphabet]), } return fsm( alphabet = alphabet, states = {0, 1, 2}, initial = 0, finals = {1}, map = map, ) def __repr__(self): string = "" if self.negated is True: string += "~" string += "charclass(" if len(self.chars) > 0: string += "\"" + "".join(str(char) for char in sorted(self.chars, key=str)) + "\"" string += ")" return string def reduce(self): # Charclasses cannot be reduced() return self def __add__(self, other): return (mult(self, one) + other).reduce() def alphabet(self): return {otherchars} | self.chars def empty(self): return len(self.chars) == 0 and self.negated == False @classmethod def match(cls, string, i): # wildcard ".", "\\w", "\\d", etc. for key in shorthand.keys(): try: return key, cls.matchStatic(string, i, shorthand[key]) except nomatch: pass # "[^dsgsdg]" try: j = cls.matchStatic(string, i, "[^") chars, j = cls.matchClassInterior(string, j) j = cls.matchStatic(string, j, "]") return ~charclass(chars), j except nomatch: pass # "[sdfsf]" try: j = cls.matchStatic(string, i, "[") chars, j = cls.matchClassInterior(string, j) j = cls.matchStatic(string, j, "]") return charclass(chars), j except nomatch: pass # e.g. if seeing "\\t", return "\t" for key in escapes.keys(): try: return charclass(key), cls.matchStatic(string, i, escapes[key]) except nomatch: pass # e.g. if seeing "\\{", return "{" for char in charclass.allSpecial: try: return charclass(char), cls.matchStatic(string, i, "\\" + char) except nomatch: pass # single non-special character, not contained inside square brackets char, i = cls.matchAny(string, i) if char in charclass.allSpecial: raise nomatch return charclass(char), i @classmethod def matchAny(cls, string, i): if i >= len(string): raise nomatch return string[i], i+1 @classmethod def matchClassInterior(cls, string, i): internals = "" try: while True: internal, i = cls.matchRange(string, i) internals += internal except nomatch: pass return internals, i @classmethod def matchRange(cls, string, i): first, i = cls.matchInternalChar(string, i) try: j = cls.matchStatic(string, i, "-") last, j = cls.matchInternalChar(string, j) for allowableRange in charclass.allowableRanges: if first in allowableRange: # first and last must be in the same character range if last not in allowableRange: raise nomatch("Char '" + last + "' not allowed as end of range") firstIndex = allowableRange.index(first) lastIndex = allowableRange.index(last) # and in order i.e. a < b if firstIndex >= lastIndex: raise nomatch( "Disordered range ('" + first + "' !< '" + last + "')" ) # OK return allowableRange[firstIndex:lastIndex + 1], j raise nomatch("Char '" + first + "' not allowed as start of a range") except nomatch: return first, i @classmethod def matchInternalChar(cls, string, i): # e.g. if we see "\\t", return "\t" for key in escapes.keys(): try: return key, cls.matchStatic(string, i, escapes[key]) except nomatch: pass # special chars e.g. "\\-" returns "-" for char in charclass.classSpecial: try: return char, cls.matchStatic(string, i, "\\" + char) except nomatch: pass # single non-special character, not contained # inside square brackets char, j = cls.matchAny(string, i) if char in charclass.classSpecial: raise nomatch return char, j # self output methods: def escape(self): def escapeChar(char): if char in charclass.classSpecial: return "\\" + char if char in escapes.keys(): return escapes[char] return char def recordRange(): nonlocal currentRange nonlocal output # there's no point in putting a range when the whole thing is # 3 characters or fewer. if len(currentRange) < 4: output += "".join(escapeChar(char) for char in currentRange) else: output += escapeChar(currentRange[0]) + "-" + escapeChar(currentRange[-1]) currentRange = "" output = "" # use shorthand for known character ranges # note the nested processing order. DO NOT process \d before processing # \w. if more character class constants arise which do not nest nicely, # a problem will arise because there is no clear ordering to use... # look for ranges currentRange = "" for char in sorted(self.chars, key=str): # range is not empty: new char must fit after previous one if len(currentRange) > 0: # find out if this character appears in any of the # charclass.allowableRanges listed above. superRange = None for allowableRange in charclass.allowableRanges: if char in allowableRange: superRange = allowableRange break if superRange is None: # if this character doesn't appear above, then any existing # currentRange should be sorted and filed now # if there is one recordRange() else: i = superRange.index(char) # char doesn't fit old range: restart if i == 0 or superRange[i-1] != currentRange[-1]: recordRange() currentRange += char recordRange() return output # set operations def __invert__(self): ''' Negate the current charclass. e.g. [ab] becomes [^ab]. Call using "charclass2 = ~charclass1" ''' return charclass(self.chars, negateMe=not self.negated) def __or__(self, other): try: # ¬A OR ¬B = ¬(A AND B) # ¬A OR B = ¬(A - B) # A OR ¬B = ¬(B - A) # A OR B if self.negated: if other.negated: return ~charclass(self.chars & other.chars) return ~charclass(self.chars - other.chars) if other.negated: return ~charclass(other.chars - self.chars) return charclass(self.chars | other.chars) # "other" lacks attribute "negated" or "chars" # "other" is not a charclass # Never mind! except AttributeError: return mult(self, one) | other def __and__(self, other): try: # ¬A AND ¬B = ¬(A OR B) # ¬A AND B = B - A # A AND ¬B = A - B # A AND B if self.negated: if other.negated: return ~charclass(self.chars | other.chars) return charclass(other.chars - self.chars) if other.negated: return charclass(self.chars - other.chars) return charclass(self.chars & other.chars) # "other" lacks attribute "negated" or "chars" # "other" is not a charclass # Never mind! except AttributeError: return (mult(self, one) & other).reduce() class bound: '''An integer but sometimes also possibly infinite (None)''' def __init__(self, v): if v is not None and v < 0: raise Exception("Value must be >= 0 or None") self.__dict__['v'] = v def __repr__(self): if self == inf: return "inf" return repr(self.v) def __str__(self): if self == inf: # This only happens for an unlimited upper bound return "" return str(self.v) def __eq__(self, other): try: return self.v == other.v except AttributeError: return False def __hash__(self): return hash(self.v) def __lt__(self, other): if self == inf: return False if other == inf: return True return self.v < other.v def __gt__(self, other): if other == inf: return False if self == inf: return True return self.v > other.v def __mul__(self, other): '''Multiply this bound by another''' if self == inf or other == inf: return inf return bound(self.v * other.v) def __add__(self, other): '''Add this bound to another''' if self == inf or other == inf: return inf return bound(self.v + other.v) def __sub__(self, other): ''' Subtract another bound from this one. Caution: this operation is not meaningful for all bounds. ''' if other == inf: if self == inf: # Infinity minus infinity is zero. This has to be true so that # we can for example subtract multiplier(bound(0), inf) from # multiplier(bound(1), inf) to get multiplier(bound(1), bound(1)) return bound(0) raise Exception("Can't subtract " + str(other) + " from " + str(self)) if self == inf: return self return bound(self.v - other.v) def common(self, other): ''' Find the minimum of two bounds. This is the largest bound which can be legally subtracted from both of the originals. This could return bound(0) very easily. ''' if self == inf: return other if other == inf: return self return bound(min(self.v, other.v)) class multiplier(lego): ''' A min and a max. The vast majority of characters in regular expressions occur without a specific multiplier, which is implicitly equivalent to a min of 1 and a max of 1, but many more have explicit multipliers like "*" (min = 0, max = inf) and so on. Although it seems odd and can lead to some confusing edge cases, we do also permit a max of 0 (iff min is 0 too). This allows the multiplier "zero" to exist, which actually are quite useful in their own special way. ''' def __init__(self, min, max): if min == inf: raise Exception("Can't have an infinite lower bound") if max < min: raise Exception( "max '" + str(max) + "' must match or exceed min '" + str(min) + "'" ) # More useful than "min" and "max" in many situations # are "mandatory" and "optional". mandatory = min optional = max - min self.__dict__['min'] = min self.__dict__['max'] = max self.__dict__['mandatory'] = mandatory self.__dict__['optional'] = optional def __eq__(self, other): try: return self.min == other.min \ and self.max == other.max except AttributeError: return False def __hash__(self): return hash((self.min, self.max)) def __repr__(self): return "multiplier(" + repr(self.min) + ", " + repr(self.max) + ")" def __str__(self): if self.max == bound(0): raise Exception("No regex available for " + repr(self)) if self in symbolic.keys(): return symbolic[self] if self.max == inf: return "{" + str(self.min) + ",}" if self.min == self.max: return "{" + str(self.min) + "}" return "{" + str(self.min) + "," + str(self.max) + "}" @classmethod def match(cls, string, i): # {2,3} try: j = cls.matchStatic(string, i, "{") min, j = cls.matchInteger(string, j) j = cls.matchStatic(string, j, ",") max, j = cls.matchInteger(string, j) j = cls.matchStatic(string, j, "}") return multiplier(bound(min), bound(max)), j except nomatch: pass # {2,} try: j = cls.matchStatic(string, i, "{") min, j = cls.matchInteger(string, j) j = cls.matchStatic(string, j, ",}") return multiplier(bound(min), inf), j except nomatch: pass # {2} try: j = cls.matchStatic(string, i, "{") min, j = cls.matchInteger(string, j) j = cls.matchStatic(string, j, "}") return multiplier(bound(min), bound(min)), j except nomatch: pass # "?"/"*"/"+"/"" # we do these in reverse order of symbol length, because # that forces "" to be done last for key in sorted(symbolic, key=lambda key: -len(symbolic[key])): try: return key, cls.matchStatic(string, i, symbolic[key]) except nomatch: pass raise nomatch @classmethod def matchInteger(cls, string, i): try: return 0, cls.matchStatic(string, i, "0") except nomatch: pass digit, i = cls.matchAnyOf(string, i, "123456789") integer = int(digit) try: while True: digit, i = cls.matchAnyOf(string, i, "0123456789") integer *= 10 integer += int(digit) except nomatch: return integer, i @classmethod def matchAnyOf(cls, string, i, collection): for char in collection: try: return char, cls.matchStatic(string, i, char) except nomatch: pass raise nomatch("Can't find any of '" + str(collection) + "' at index " + str(i) + " in '" + string + "'") def __mul__(self, other): '''Multiply this multiplier by another''' return multiplier(self.min * other.min, self.max * other.max) def __add__(self, other): '''Add two multipliers together''' return multiplier(self.min + other.min, self.max + other.max) def __sub__(self, other): ''' Subtract another multiplier from this one. Caution: multipliers are not totally ordered. This operation is not meaningful for all pairs of multipliers. ''' mandatory = self.mandatory - other.mandatory optional = self.optional - other.optional return multiplier(mandatory, mandatory + optional) def __and__(self, other): ''' Find the intersection of two multipliers: that is, a third multiplier expressing the range covered by both of the originals. This is not defined for all multipliers. ''' a = max(self.min, other.min) b = min(self.max, other.max) return multiplier(a, b) def common(self, other): ''' Find the shared part of two multipliers. This is the largest multiplier which can be safely subtracted from both the originals. This may return the "zero" multiplier. ''' mandatory = self.mandatory.common(other.mandatory) optional = self.optional.common(other.optional) return multiplier(mandatory, mandatory + optional) class mult(lego): ''' A mult is a combination of a multiplicand with a multiplier (a min and a max). The vast majority of characters in regular expressions occur without a specific multiplier, which is implicitly equivalent to a min of 1 and a max of 1, but many more have explicit multipliers like "*" (min = 0, max = inf) and so on. e.g. a, b{2}, c?, d*, [efg]{2,5}, f{2,}, (anysubpattern)+, .*, and so on ''' def __init__(self, cand, ier): self.__dict__["multiplicand"] = cand self.__dict__["multiplier"] = ier def __eq__(self, other): try: return self.multiplicand == other.multiplicand \ and self.multiplier == other.multiplier except AttributeError: return False def __hash__(self): return hash((self.multiplicand, self.multiplier)) def __repr__(self): string = "mult(" string += repr(self.multiplicand) string += ", " + repr(self.multiplier) string += ")" return string def __mul__(self, multiplier): if multiplier == one: return self.reduce() return mult(self.multiplicand, self.multiplier * multiplier).reduce() def __add__(self, other): return (conc(self) + other).reduce() def __or__(self, other): return (conc(self) | other).reduce() def __sub__(self, other): ''' Subtract another mult from this one and return the result. The reverse of concatenation. This is a lot trickier. e.g. a{4,5} - a{3} = a{1,2} ''' if other.multiplicand != self.multiplicand: raise Exception("Can't subtract " + str(other) + " from " + str(self)) return mult(self.multiplicand, self.multiplier - other.multiplier) def common(self, other): ''' Return the common part of these two mults. This is the largest mult which can be safely subtracted from both the originals. The multiplier on this mult could be zero: this is the case if, for example, the multiplicands disagree. ''' if self.multiplicand == other.multiplicand: return mult(self.multiplicand, self.multiplier.common(other.multiplier)) # Multiplicands disagree, no common part at all. return mult(nothing, zero) def __and__(self, other): if isinstance(other, charclass): other = mult(other, one) # If two mults are given which have a common multiplicand, the shortcut # is just to take the intersection of the two multiplicands. try: if self.multiplicand == other.multiplicand: return mult(self.multiplicand, self.multiplier & other.multiplier).reduce() except AttributeError: # "other" isn't a mult; lacks either a multiplicand or a multiplier. # Never mind! pass # This situation is substantially more complicated if the multiplicand is, # for example, a pattern. It's difficult to reason sensibly about this # kind of thing. return (conc(self) & other).reduce() def alphabet(self): return {otherchars} | self.multiplicand.alphabet() def empty(self): if self.multiplicand.empty() \ and self.multiplier.min > bound(0): return True return False def reduce(self): # Can't match anything: reduce to nothing if self.empty(): return nothing.reduce() # If our multiplicand is a pattern containing an empty conc() # we can pull that "optional" bit out into our own multiplier # instead. # e.g. (A|B|C|)D -> (A|B|C)?D # e.g. (A|B|C|){2} -> (A|B|C){0,2} try: if emptystring in self.multiplicand.concs: return mult( pattern( *self.multiplicand.concs.difference({emptystring}) ), self.multiplier * qm, ).reduce() except AttributeError: # self.multiplicand has no attribute "concs"; isn't a pattern; never mind pass # If we have an empty multiplicand, we can only match it # zero times if self.multiplicand.empty() \ and self.multiplier.min == bound(0): return emptystring.reduce() # Failing that, we have a positive multiplicand which we # intend to match zero times. In this case the only possible # match is the empty string. if self.multiplier == zero: return emptystring.reduce() # no point multiplying in the singular if self.multiplier == one: return self.multiplicand.reduce() # Try recursively reducing our internal. reduced = self.multiplicand.reduce() # "bulk up" smaller lego pieces to pattern if need be if isinstance(reduced, mult): reduced = conc(reduced) if isinstance(reduced, conc): reduced = pattern(reduced) if reduced != self.multiplicand: return mult(reduced, self.multiplier).reduce() # If our multiplicand is a pattern containing a single conc # containing a single mult, we can separate that out a lot # e.g. ([ab])* -> [ab]* try: if len(self.multiplicand.concs) == 1: singleton = [c for c in self.multiplicand.concs][0] if len(singleton.mults) == 1: return mult( singleton.mults[0].multiplicand, singleton.mults[0].multiplier * self.multiplier ).reduce() except AttributeError: # self.multiplicand has no attribute "concs"; isn't a pattern; never mind pass return self def __str__(self): # recurse into subpattern if isinstance(self.multiplicand, pattern): output = "(" + str(self.multiplicand) + ")" else: output = str(self.multiplicand) suffix = str(self.multiplier) # Pick whatever is shorter/more comprehensible. # e.g. "aa" beats "a{2}", "ababab" beats "(ab){3}" if self.multiplier.min == self.multiplier.max \ and len(output) * self.multiplier.min.v <= len(output) + len(suffix): return output * self.multiplier.min.v return output + suffix def fsm(self, alphabet=None): from fsm import epsilon if alphabet is None: alphabet = self.alphabet() # worked example: (min, max) = (5, 7) or (5, inf) # (mandatory, optional) = (5, 2) or (5, inf) unit = self.multiplicand.fsm(alphabet) # accepts e.g. "ab" # accepts "ababababab" mandatory = unit * self.multiplier.mandatory.v # unlimited additional copies if self.multiplier.optional == inf: optional = unit.star() # accepts "(ab)*" else: optional = epsilon(alphabet) | unit # accepts "(ab)?" optional *= self.multiplier.optional.v # accepts "(ab)?(ab)?" return mandatory + optional @classmethod def match(cls, string, i): try: j = cls.matchStatic(string, i, "(") cand, j = pattern.match(string, j) j = cls.matchStatic(string, j, ")") except nomatch: cand, j = charclass.match(string, i) ier, j = multiplier.match(string, j) return mult(cand, ier), j class conc(lego): ''' A conc (short for "concatenation") is a tuple of mults i.e. an unbroken string of mults occurring one after the other. e.g. abcde[^fg]*h{4}[a-z]+(subpattern)(subpattern2) To express the empty string, use an empty conc, conc(). ''' def __init__(self, *mults): self.__dict__["mults"] = tuple(mults) def __eq__(self, other): try: return self.mults == other.mults except AttributeError: return False def __hash__(self): return hash(self.mults) def __repr__(self): string = "conc(" string += ", ".join(repr(m) for m in self.mults) string += ")" return string def __mul__(self, multiplier): if multiplier == one: return self # Have to replace self with a pattern unfortunately return pattern(self) * multiplier def __add__(self, other): # other must be a conc too if isinstance(other, multiplicand): other = mult(other, one) if isinstance(other, mult): other = conc(other) return conc(*(self.mults + other.mults)).reduce() def __or__(self, other): return (pattern(self) | other).reduce() def __and__(self, other): return (pattern(self) & other).reduce() def reduce(self): # Can't match anything if self.empty(): return nothing.reduce() # no point concatenating one thing (note: concatenating 0 things is # entirely valid) if len(self.mults) == 1: return self.mults[0].reduce() # Try recursively reducing our internals reduced = [m.reduce() for m in self.mults] # "bulk up" smaller lego pieces to concs if need be reduced = [ pattern(x) if isinstance(x, conc) else x for x in reduced ] reduced = [ mult(x, one) if isinstance(x, multiplicand) else x for x in reduced ] reduced = tuple(reduced) if reduced != self.mults: return conc(*reduced).reduce() # multiple mults with identical multiplicands in a row? # squish those together # e.g. ab?b?c -> ab{0,2}c if len(self.mults) > 1: for i in range(len(self.mults)-1): if self.mults[i].multiplicand == self.mults[i+1].multiplicand: squished = mult( self.mults[i].multiplicand, self.mults[i].multiplier + self.mults[i+1].multiplier ) new = self.mults[:i] + (squished,) + self.mults[i+2:] return conc(*new).reduce() # Conc contains (among other things) a *singleton* mult containing a pattern # with only one internal conc? Flatten out. # e.g. "a(d(ab|a*c))" -> "ad(ab|a*c)" # BUT NOT "a(d(ab|a*c)){2,}" # AND NOT "a(d(ab|a*c)|y)" for i in range(len(self.mults)): m = self.mults[i] try: if m.multiplier == one and len(m.multiplicand.concs) == 1: single = [c for c in m.multiplicand.concs][0] new = self.mults[:i] + single.mults + self.mults[i+1:] return conc(*new).reduce() except AttributeError: # m.multiplicand has no attribute "concs"; isn't a pattern; never mind pass return self def fsm(self, alphabet=None): from fsm import epsilon if alphabet is None: alphabet = self.alphabet() # start with a component accepting only the empty string fsm1 = epsilon(alphabet) for m in self.mults: fsm1 += m.fsm(alphabet) return fsm1 def alphabet(self): return {otherchars}.union(*[m.alphabet() for m in self.mults]) def empty(self): for m in self.mults: if m.empty(): return True return False def __str__(self): return "".join(str(m) for m in self.mults) @classmethod def match(cls, string, i): mults = list() try: while True: m, i = mult.match(string, i) mults.append(m) except nomatch: pass return conc(*mults), i def common(self, other, suffix=False): ''' Return the common prefix of these two concs; that is, the largest conc which can be safely beheaded() from the front of both. The result could be emptystring. "ZYAA, ZYBB" -> "ZY" "CZ, CZ" -> "CZ" "YC, ZC" -> "" With the "suffix" flag set, works from the end. E.g.: "AAZY, BBZY" -> "ZY" "CZ, CZ" -> "CZ" "CY, CZ" -> "" ''' mults = [] indices = range(min(len(self.mults), len(other.mults))) # e.g. [0, 1, 2, 3] # Work backwards from the end of both concs instead. if suffix: indices = [-i - 1 for i in indices] # e.g. [-1, -2, -3, -4] for i in indices: common = self.mults[i].common(other.mults[i]) # Happens when multiplicands disagree (e.g. "A.common(B)") or if # the multiplicand is shared but the common multiplier is zero # (e.g. "ABZ*.common(CZ)".) if common.multiplier == zero: break mults.append(common) # If we did not remove the entirety of both mults, we cannot continue. if common != self.mults[i] \ or common != other.mults[i]: break if suffix: mults = reversed(mults) return conc(*mults) def __sub__(self, other): ''' Subtract another conc from this one. This is the opposite of concatenation. For example, if ABC + DEF = ABCDEF, then logically ABCDEF - DEF = ABC. ''' # e.g. self has mults at indices [0, 1, 2, 3, 4, 5, 6] len=7 # e.g. other has mults at indices [0, 1, 2] len=3 new = list(self.mults) for i in reversed(range(len(other.mults))): # [2, 1, 0] # e.g. i = 1, j = 7 - 3 + 1 = 5 j = len(self.mults) - len(other.mults) + i new[j] -= other.mults[i] if new[j].multiplier == zero: # omit that mult entirely since it has been factored out del new[j] # If the subtraction is incomplete but there is more to # other.mults, then we have a problem. For example, "ABC{2} - BC" # subtracts the C successfully but leaves something behind, # then tries to subtract the B too, which isn't possible else: if i != 0: raise Exception return conc(*new) def behead(self, other): ''' As with __sub__ but the other way around. For example, if ABC + DEF = ABCDEF, then ABCDEF.behead(AB) = CDEF. ''' # e.g. self has mults at indices [0, 1, 2, 3, 4, 5, 6] # e.g. other has mults at indices [0, 1, 2] new = list(self.mults) for i in range(len(other.mults)): new[0] -= other.mults[i] if new[0].multiplier == zero: # omit that mult entirely since it has been factored out new.pop(0) # If the subtraction is incomplete but there is more to # other.mults, then we have a problem. For example, "C{2}BA.behead(CB)" # subtracts the C successfully but leaves something behind, # then tries to subtract the B too, which isn't possible else: if i != len(other.mults) - 1: raise Exception return conc(*new) class pattern(multiplicand): ''' A pattern (also known as an "alt", short for "alternation") is a set of concs. A pattern expresses multiple alternate possibilities. When written out as a regex, these would separated by pipes. A pattern containing no possibilities is possible and represents a regular expression matching no strings whatsoever (there is no conventional string form for this). e.g. "abc|def(ghi|jkl)" is an alt containing two concs: "abc" and "def(ghi|jkl)". The latter is a conc containing four mults: "d", "e", "f" and "(ghi|jkl)". The latter in turn is a mult consisting of an upper bound 1, a lower bound 1, and a multiplicand which is a new subpattern, "ghi|jkl". This new subpattern again consists of two concs: "ghi" and "jkl". ''' def __init__(self, *concs): self.__dict__["concs"] = frozenset(concs) def __eq__(self, other): try: return self.concs == other.concs except AttributeError: return False def __hash__(self): return hash(self.concs) def __repr__(self): string = "pattern(" string += ", ".join(repr(c) for c in self.concs) string += ")" return string def __mul__(self, multiplier): if multiplier == one: return self return mult(self, multiplier).reduce() def __add__(self, other): return mult(self, one) + other def alphabet(self): return {otherchars}.union(*[c.alphabet() for c in self.concs]) def empty(self): for c in self.concs: if not c.empty(): return False return True def __and__(self, other): # A deceptively simple method for an astoundingly difficult operation alphabet = self.alphabet() | other.alphabet() # Which means that we can build finite state machines sharing that alphabet combined = self.fsm(alphabet) & other.fsm(alphabet) return combined.lego().reduce() def __or__(self, other): # other must be a pattern too if isinstance(other, charclass): other = mult(other, one) if isinstance(other, mult): other = conc(other) if isinstance(other, conc): other = pattern(other) return pattern(*(self.concs | other.concs)).reduce() def __str__(self): if len(self.concs) < 1: raise Exception("Can't print an empty pattern.") # take the alternation of the input collection of regular expressions. # i.e. jam "|" between each element # 1+ elements. return "|".join(sorted(str(c) for c in self.concs)) def reduce(self): # emptiness if self.empty(): return nothing.reduce() # If one of our internal concs is empty, remove it for c in self.concs: if c.empty(): new = self.concs - {c} return pattern(*new).reduce() # no point alternating among one possibility if len(self.concs) == 1: return [e for e in self.concs][0].reduce() # Try recursively reducing our internals first. reduced = [c.reduce() for c in self.concs] # "bulk up" smaller lego pieces to concs if need be reduced = [ mult(x, one) if isinstance(x, multiplicand) else x for x in reduced ] reduced = [ conc(x) if isinstance(x, mult) else x for x in reduced ] reduced = frozenset(reduced) if reduced != self.concs: return pattern(*reduced).reduce() # If this pattern contains several concs each containing just 1 mult # each containing just a charclass, with a multiplier of 1, # then we can merge those branches together. # e.g. "0|[1-9]|ab" -> "[0-9]|ab" changed = False merger = None rest = [] for c in self.concs: if len(c.mults) == 1 \ and c.mults[0].multiplier == one \ and isinstance(c.mults[0].multiplicand, charclass): if merger is None: merger = c.mults[0].multiplicand else: merger |= c.mults[0].multiplicand changed = True else: rest.append(c) if changed: rest.append(conc(mult(merger, one))) return pattern(*rest).reduce() # If one of the present pattern's concs is the empty string, and # there is another conc with a single mult whose lower bound is 0, we # can omit the empty string. # E.g. "|(ab)*|def" => "(ab)*|def". # If there is another conc with a single mult whose lower bound is 1, # we can merge the empty string into that. # E.g. "|(ab)+|def" => "(ab)*|def". if conc() in self.concs: for c in self.concs: if len(c.mults) != 1: continue m = c.mults[0] if m.multiplier.min == bound(0): rest = self.concs - {conc()} return pattern(*rest).reduce() if m.multiplier.min == bound(1): rest = self.concs - {conc(), c} | {m * qm} return pattern(*rest).reduce() # If the present pattern's concs all have a common prefix, split # that out. This increases the depth of the object # but it is still arguably simpler/ripe for further reduction # e.g. "abc|ade" -> a(bc|de)" prefix = self._commonconc() if prefix != emptystring: leftovers = self.behead(prefix) mults = prefix.mults + (mult(leftovers, one),) return conc(*mults).reduce() # Same but for suffixes. # e.g. "xyz|stz -> (xy|st)z" suffix = self._commonconc(suffix=True) if suffix != emptystring: leftovers = self - suffix mults = (mult(leftovers, one),) + suffix.mults return conc(*mults).reduce() return self @classmethod def match(cls, string, i): concs = list() # first one c, i = conc.match(string, i) concs.append(c) # the rest while True: try: i = cls.matchStatic(string, i, "|") c, i = conc.match(string, i) concs.append(c) except nomatch: return pattern(*concs), i def __sub__(self, other): ''' The opposite of concatenation. Remove a common suffix from the present pattern; that is, from each of its constituent concs. AYZ|BYZ|CYZ - YZ = A|B|C. ''' return pattern(*[c - other for c in self.concs]) def behead(self, other): ''' Like __sub__ but the other way around. Remove a common prefix from the present pattern; that is, from each of its constituent concs. ZA|ZB|ZC.behead(Z) = A|B|C ''' return pattern(*[c.behead(other) for c in self.concs]) def _commonconc(self, suffix=False): ''' Find the longest conc which acts as prefix to every conc in this pattern. This could be the empty string. Return the common prefix along with all the leftovers after truncating that common prefix from each conc. "ZA|ZB|ZC" -> "Z", "(A|B|C)" "ZA|ZB|ZC|Z" -> "Z", "(A|B|C|)" "CZ|CZ" -> "CZ", "()" If "suffix" is True, the same result but for suffixes. ''' # There's probably a way to do this as a one-liner result = None for c in self.concs: if result is None: result = c else: result = result.common(c, suffix=suffix) if result is None: raise Exception return result def fsm(self, alphabet=None): from fsm import null if alphabet is None: alphabet = self.alphabet() fsm1 = null(alphabet) for c in self.concs: fsm1 |= c.fsm(alphabet) return fsm1 # Special and useful values go here. # We need to add an extra character in the alphabet which can stand for # "everything else". For example, if the regex is "abc.", then at the moment # our alphabet is {"a", "b", "c"}. But "." could match anything else not yet # specified. This extra letter stands for that ("[^abc]" in this case). otherchars = None # Standard character classes w = charclass("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz") d = charclass("0123456789") s = charclass("\t\n\v\f\r ") W = ~w D = ~d S = ~s dot = ~charclass() # This charclasses expresses "no possibilities at all" # and can never match anything. nothing = charclass() # Textual representations of standard character classes shorthand = { w : "\\w", d : "\\d", s : "\\s", W : "\\W", D : "\\D", S : "\\S", dot : ".", } # Characters which users may escape in a regex instead of inserting them # literally. In ASCII order: escapes = { "\t" : "\\t", # tab "\n" : "\\n", # line feed "\v" : "\\v", # vertical tab "\f" : "\\f", # form feed "\r" : "\\r", # carriage return } # Use this for cases where no upper bound is needed inf = bound(None) # Preset multipliers. These get used ALL THE TIME in unit tests zero = multiplier(bound(0), bound(0)) # has some occasional uses qm = multiplier(bound(0), bound(1)) one = multiplier(bound(1), bound(1)) star = multiplier(bound(0), inf) plus = multiplier(bound(1), inf) # Symbol lookup table for preset multipliers. symbolic = { qm : "?", one : "" , star : "*", plus : "+", } # A very special conc expressing the empty string, "" emptystring = conc() # Unit tests. if __name__ == '__main__': # "AAZY, BBZY" -> "ZY" assert conc( mult(charclass("A"), one), mult(charclass("A"), one), mult(charclass("Z"), one), mult(charclass("Y"), one), ).common( conc( mult(charclass("B"), one), mult(charclass("B"), one), mult(charclass("Z"), one), mult(charclass("Y"), one), ), suffix=True ) == conc( mult(charclass("Z"), one), mult(charclass("Y"), one), ) # "CZ, CZ" -> "CZ" assert conc( mult(charclass("C"), one), mult(charclass("Z"), one), ).common( conc( mult(charclass("C"), one), mult(charclass("Z"), one), ), suffix=True ) == conc( mult(charclass("C"), one), mult(charclass("Z"), one), ) # "CY, CZ" -> "" assert conc( mult(charclass("C"), one), mult(charclass("Y"), one), ).common( conc( mult(charclass("C"), one), mult(charclass("Z"), one), ), suffix=True ) == emptystring # AZ, BZ -> Z assert conc( mult(charclass("A"), one), mult(charclass("Z"), one), ).common( conc( mult(charclass("B"), one), mult(charclass("Z"), one), ), suffix=True ) == conc( mult(charclass("Z"), one) ) # AZ*, BZ -> () assert conc( mult(charclass("A"), one), mult(charclass("Z"), star), ).common( conc( mult(charclass("B"), one), mult(charclass("Z"), one), ), suffix=True ) == emptystring # A, B -> no common part assert conc( mult(charclass("A"), one), ).common( conc( mult(charclass("B"), one), ), suffix=True ) == emptystring # Conc subtraction # AZ - Z = A assert conc( mult(charclass("A"), one), mult(charclass("Z"), one), ) - conc( mult(charclass("Z"), one) ) == conc( mult(charclass("A"), one) ) # ABXY+Z - XY+Z = AB assert conc( mult(charclass("A"), one), mult(charclass("B"), one), mult(charclass("X"), one), mult(charclass("Y"), plus), mult(charclass("Z"), one), ) - conc( mult(charclass("X"), one), mult(charclass("Y"), plus), mult(charclass("Z"), one), ) == conc( mult(charclass("A"), one), mult(charclass("B"), one), ) # ABXY+Z.behead(ABXY+) = Z assert conc( mult(charclass("A"), one), mult(charclass("B"), one), mult(charclass("X"), one), mult(charclass("Y"), plus), mult(charclass("Z"), one), ).behead( conc( mult(charclass("A"), one), mult(charclass("B"), one), mult(charclass("X"), one), mult(charclass("Y"), plus), ) )== conc( mult(charclass("Z"), one), ) # X{2}Y+Z.behead(XY+) = exception try: conc( mult(charclass("X"), multiplier), mult(charclass("Y"), plus), mult(charclass("Z"), one), ).behead( conc( mult(charclass("X"), one), mult(charclass("Y"), plus), ) ) assert(False) except: pass # A - () = A assert conc( mult(charclass("A"), one), ) - emptystring == conc( mult(charclass("A"), one), ) # Odd bug with ([bc]*c)?[ab]* int5A = mult(charclass("bc"), star).fsm({"a", "b", "c", otherchars}) assert int5A.accepts("") int5B = mult(charclass("c"), one).fsm({"a", "b", "c", otherchars}) assert int5B.accepts("c") int5C = int5A + int5B assert (int5A + int5B).accepts("c") # Empty mult suppression assert conc( mult(nothing, one), # this mult can never actually match anything mult(charclass("0"), one), mult(charclass("0123456789"), one), ).reduce() == nothing assert conc( mult(pattern(), one), # this mult can never actually match anything mult(charclass("0"), one), mult(charclass("0123456789"), one), ).reduce() == nothing # Empty conc suppression in patterns. assert pattern( conc( mult(nothing, one), # this mult can never actually match anything mult(charclass("0"), one), mult(charclass("0123456789"), one), ) # so neither can this conc ).reduce() == nothing assert pattern( conc( mult(pattern(), one), # this mult can never actually match anything mult(charclass("0"), one), mult(charclass("0123456789"), one), ) # so neither can this conc ).reduce() == nothing # Empty pattern suppression in mults assert mult(nothing, qm).reduce() == emptystring assert mult(pattern(), qm).reduce() == emptystring # empty pattern behaviour assert pattern().reduce() == charclass() # pattern.fsm() # "a[^a]" anota = pattern( conc( mult(charclass("a"), one), mult(~charclass("a"), one), ) ).fsm("ab") assert not anota.accepts("a") assert not anota.accepts("b") assert not anota.accepts("aa") assert anota.accepts("ab") assert not anota.accepts("ba") assert not anota.accepts("bb") # "0\\d" zeroD = pattern( conc( mult(charclass("0"), one), mult(charclass("123456789"), one) ) ).fsm(d.chars) assert zeroD.accepts("01") assert not zeroD.accepts("10") # "\\d{2}" d2 = pattern( conc( mult( d, multiplier(bound(2), bound(2)) ) ) ).fsm(d.chars) assert not d2.accepts("") assert not d2.accepts("1") assert d2.accepts("11") assert not d2.accepts("111") # abc|def(ghi|jkl) conventional = pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("d"), one), mult(charclass("e"), one), mult(charclass("f"), one), mult( pattern( conc( mult(charclass("g"), one), mult(charclass("h"), one), mult(charclass("i"), one), ), conc( mult(charclass("j"), one), mult(charclass("k"), one), mult(charclass("l"), one), ), ), one ), ), ).fsm(w.chars) assert not conventional.accepts("a") assert not conventional.accepts("ab") assert conventional.accepts("abc") assert not conventional.accepts("abcj") assert conventional.accepts("defghi") assert conventional.accepts("defjkl") # A subtlety in mult reduction. # ([$%\^]|){1} should become ([$%\^])? then [$%\^]?, # ([$%\^]|){1} should NOT become ([$%\^]|) (the pattern alone) assert mult( pattern( conc(), conc( mult(charclass("$%^"), one) ) ), one ).reduce() == mult(charclass("$%^"), qm) # nested pattern reduction in a conc # a(d(ab|a*c)) -> ad(ab|a*c) assert conc( mult(charclass("a"), one), mult( pattern( # must contain only one conc. Otherwise, we have e.g. "a(zz|d(ab|a*c))" conc( # can contain anything mult(charclass("d"), one), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ), ), ), one # must be one. Otherwise, we have e.g. "a(d(ab|a*c)){2}" ) ).reduce() == conc( mult(charclass("a"), one), mult(charclass("d"), one), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ), ) # "(aa)".behead("a") = "a" assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), ).behead(conc(mult(charclass("a"), one))) == pattern( conc( mult(charclass("a"), one) ), ) # (abc|aa).behead(a) = (a|bc) assert pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("a"), one), mult(charclass("a"), one), ), ).behead(conc(mult(charclass("a"), one))) == pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) # (cf{1,2}|cf) - c = (f|f?) assert pattern( conc( mult(charclass("c"), one), mult(charclass("f"), multiplier(bound(1), bound(2))), ), conc( mult(charclass("c"), one), mult(charclass("f"), one), ), ).behead(conc(mult(charclass("c"), one))) == pattern( conc( mult(charclass("f"), multiplier(bound(1), bound(2))), ), conc( mult(charclass("f"), one), ), ) # pattern._commonconc() tests # aa, aa -> aa assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), mult(charclass("a"), one), ), )._commonconc() == conc( mult(charclass("a"), one), mult(charclass("a"), one), ) # (aa|aa).behead(aa) = () assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), mult(charclass("a"), one), ), ).behead( conc( mult(charclass("a"), one), mult(charclass("a"), one), ) ) == pattern(emptystring) # abc, aa -> a assert pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("a"), one), mult(charclass("a"), one), ), )._commonconc() == conc( mult(charclass("a"), one), ) # (abc|aa).behead(a) = (a|bc) assert pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("a"), one), mult(charclass("a"), one), ), ).behead( conc( mult(charclass("a"), one), ) ) == pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) # a, bc -> emptystring assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), )._commonconc() == emptystring # (a|bc).behead(emptystring) = (a|bc) assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ).behead(emptystring) == pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) # cf{1,2}, cf -> cf, (f?|) assert pattern( conc( mult(charclass("c"), one), mult(charclass("f"), multiplier(bound(1), bound(2))), ), conc( mult(charclass("c"), one), mult(charclass("f"), one), ), )._commonconc() == conc( mult(charclass("c"), one), mult(charclass("f"), one), ) # (cf{1,2}|cf).behead(cf) = (f?|) assert pattern( conc( mult(charclass("c"), one), mult(charclass("f"), multiplier(bound(1), bound(2))), ), conc( mult(charclass("c"), one), mult(charclass("f"), one), ), ).behead( conc( mult(charclass("c"), one), mult(charclass("f"), one), ) ) == pattern( emptystring, conc( mult(charclass("f"), qm), ), ) # ZA|ZB|ZC -> Z assert pattern( conc( mult(charclass("Z"), one), mult(charclass("A"), one), ), conc( mult(charclass("Z"), one), mult(charclass("B"), one), ), conc( mult(charclass("Z"), one), mult(charclass("C"), one), ), )._commonconc() == conc(mult(charclass("Z"), one)) # ZA|ZB|ZC.behead(Z) = A|B|C assert pattern( conc( mult(charclass("Z"), one), mult(charclass("A"), one), ), conc( mult(charclass("Z"), one), mult(charclass("B"), one), ), conc( mult(charclass("Z"), one), mult(charclass("C"), one), ), ).behead( conc(mult(charclass("Z"), one)) ) == pattern( conc(mult(charclass("A"), one)), conc(mult(charclass("B"), one)), conc(mult(charclass("C"), one)), ) # Z+A|ZB|ZZC -> Z assert pattern( conc( mult(charclass("Z"), plus), mult(charclass("A"), one), ), conc( mult(charclass("Z"), one), mult(charclass("B"), one), ), conc( mult(charclass("Z"), one), mult(charclass("Z"), one), mult(charclass("C"), one), ), )._commonconc() == conc(mult(charclass("Z"), one)) # Z+A|ZB|ZZC.behead(Z) = Z*A|B|ZC assert pattern( conc( mult(charclass("Z"), plus), mult(charclass("A"), one), ), conc( mult(charclass("Z"), one), mult(charclass("B"), one), ), conc( mult(charclass("Z"), one), mult(charclass("Z"), one), mult(charclass("C"), one), ), ).behead( conc(mult(charclass("Z"), one)) ) == pattern( conc( mult(charclass("Z"), star), mult(charclass("A"), one), ), conc( mult(charclass("B"), one), ), conc( mult(charclass("Z"), one), mult(charclass("C"), one), ), ) # a{2}b|a+c -> a assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ) )._commonconc() == conc(mult(charclass("a"), one)) # a{2}b|a+c.behead(a) = (ab|a*c) assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ) ).behead( conc(mult(charclass("a"), one)) ) == pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ) # make sure recursion problem in reduce() # has gone away emptystring + mult( pattern( conc(mult(charclass("123456789"), one)), conc(mult(charclass("0"), one)) ), one ) # charclass equality assert charclass("a") == charclass("a") assert ~charclass("a") == ~charclass("a") assert ~charclass("a") != charclass("a") assert charclass("ab") == charclass("ba") # str(charclass) assert str(w) == "\\w" assert str(d) == "\\d" assert str(s) == "\\s" assert str(charclass("a")) == "a" assert str(charclass("{")) == "\\{" assert str(charclass("\t")) == "\\t" assert str(charclass("ab")) == "[ab]" assert str(charclass("a{")) == "[a{]" assert str(charclass("a\t")) == "[\\ta]" assert str(charclass("a-")) == "[\\-a]" assert str(charclass("a[")) == "[\\[a]" assert str(charclass("a]")) == "[\\]a]" assert str(charclass("ab")) == "[ab]" assert str(charclass("abc")) == "[abc]" assert str(charclass("abcd")) == "[a-d]" assert str(charclass("abcdfghi")) == "[a-df-i]" assert str(charclass("^")) == "^" assert str(charclass("\\")) == "\\\\" assert str(charclass("a^")) == "[\\^a]" assert str(charclass("0123456789a")) == "[0-9a]" assert str(charclass("\t\n\v\f\r A")) == "[\\t\\n\\v\\f\\r A]" assert str(charclass("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz|")) == "[0-9A-Z_a-z|]" assert str(W) == "\\W" assert str(D) == "\\D" assert str(S) == "\\S" assert str(dot) == "." assert str(~charclass("")) == "." assert str(~charclass("a")) == "[^a]" assert str(~charclass("{")) == "[^{]" assert str(~charclass("\t")) == "[^\\t]" assert str(~charclass("^")) == "[^\\^]" # charclass parsing assert charclass.match("a", 0) == (charclass("a"), 1) assert charclass.match("aa", 1) == (charclass("a"), 2) assert charclass.match("a$", 1) == (charclass("$"), 2) assert charclass.match(".", 0) == (dot, 1) try: charclass.match("[", 0) assert False except nomatch: pass try: charclass.match("a", 1) assert False except nomatch: pass # charclass set operations # charclass negation assert ~~charclass("a") == charclass("a") assert charclass("a") == ~~charclass("a") # charclass union # [ab] u [bc] = [abc] assert charclass("ab") | charclass("bc") == charclass("abc") # [ab] u [^bc] = [^c] assert charclass("ab") | ~charclass("bc") == ~charclass("c") # [^a] u [bc] = [^a] assert ~charclass("ab") | charclass("bc") == ~charclass("a") # [^ab] u [^bc] = [^b] assert ~charclass("ab") | ~charclass("bc") == ~charclass("b") # charclass intersection # [ab] n [bc] = [b] assert charclass("ab") & charclass("bc") == charclass("b") # [ab] n [^bc] = [a] assert charclass("ab") & ~charclass("bc") == charclass("a") # [^ab] n [bc] = [c] assert ~charclass("ab") & charclass("bc") == charclass("c") # [^ab] n [^bc] = [^abc] assert ~charclass("ab") & ~charclass("bc") == ~charclass("abc") # mult equality assert mult(charclass("a"), one) == mult(charclass("a"), one) assert mult(charclass("a"), one) != mult(charclass("b"), one) assert mult(charclass("a"), one) != mult(charclass("a"), qm) assert mult(charclass("a"), one) != mult(charclass("a"), multiplier(bound(1), bound(2))) # str(mult) tests a = charclass("a") assert str(mult(a, one)) == "a" assert str(mult(a, multiplier(bound(2), bound(2)))) == "aa" assert str(mult(a, multiplier(bound(3), bound(3)))) == "aaa" assert str(mult(a, multiplier(bound(4), bound(4)))) == "aaaa" assert str(mult(a, multiplier(bound(5), bound(5)))) == "a{5}" assert str(mult(a, qm)) == "a?" assert str(mult(a, star)) == "a*" assert str(mult(a, plus)) == "a+" assert str(mult(a, multiplier(bound(2), bound(5)))) == "a{2,5}" assert str(bound(2)) == "2" assert str(inf) == "" assert str(multiplier(bound(2), inf)) == "{2,}" assert str(mult(a, multiplier(bound(2), inf))) == "a{2,}" assert str(mult(d, one)) == "\\d" assert str(mult(d, multiplier(bound(2), bound(2)))) == "\\d\\d" assert str(mult(d, multiplier(bound(3), bound(3)))) == "\\d{3}" # mult parsing assert mult.match("[a-g]+", 0) == ( mult(charclass("abcdefg"), plus), 6 ) assert mult.match("[a-g0-8$%]+", 0) == ( mult(charclass("abcdefg012345678$%"), plus), 11 ) assert mult.match("[a-g0-8$%\\^]+", 0) == ( mult(charclass("abcdefg012345678$%^"), plus), 13 ) assert mult.match("abcde[^fg]*", 5) == ( mult(~charclass("fg"), star), 11 ) assert mult.match("abcde[^fg]*h{5}[a-z]+", 11) == ( mult(charclass("h"), multiplier(bound(5), bound(5))), 15 ) assert mult.match("abcde[^fg]*h{5}[a-z]+T{1,}", 15) == ( mult(charclass("abcdefghijklmnopqrstuvwxyz"), plus), 21 ) assert mult.match("abcde[^fg]*h{5}[a-z]+T{2,}", 21) == ( mult(charclass("T"), multiplier(bound(2), inf)), 26 ) # mult.reduce() tests # mult -> mult # mult -> charclass assert mult(charclass("a"), one).reduce() == charclass("a") assert mult(charclass("a"), qm).reduce() == mult(charclass("a"), qm) assert mult(charclass("a"), zero).reduce() == emptystring assert mult(nothing, one).reduce() == nothing assert mult(nothing, qm).reduce() == emptystring assert mult(nothing, zero).reduce() == emptystring assert mult(nothing, multiplier(bound(0), bound(5))).reduce() == emptystring assert mult(pattern(), one).reduce() == nothing assert mult(pattern(), qm).reduce() == emptystring assert mult(pattern(), zero).reduce() == emptystring assert mult(pattern(), multiplier(bound(0), bound(5))).reduce() == emptystring # mult contains a pattern containing an empty conc? Pull the empty # part out where it's external assert mult( pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("b"), star)), emptystring ), multiplier(bound(2), bound(2)) ).reduce() == mult( pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("b"), star)), ), multiplier(bound(0), bound(2)) ) # This happens even if emptystring is the only thing left inside the mult assert mult( pattern( emptystring ), multiplier(bound(2), bound(2)) ).reduce() == emptystring # mult contains a pattern containing a single conc containing a single mult? # that can be reduced greatly # e.g. "([ab])*" -> "[ab]*" assert mult( pattern( conc( mult(charclass("ab"), one) ) ), star ).reduce() == mult(charclass("ab"), star) # e.g. "(c{1,2}){3,4}" -> "c{3,8}" assert mult( pattern( conc( mult(charclass("c"), multiplier(bound(1), bound(2))) ) ), multiplier(bound(3), bound(4)) ).reduce() == mult(charclass("c"), multiplier(bound(3), bound(8))) # recursive mult reduction assert mult( pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("b"), one)), ), star ).reduce() == mult(charclass("ab"), star) # mult subtraction # a{4,5} - a{3} = a{1,2} assert mult( charclass("a"), multiplier(bound(4), bound(5)) ) - mult( charclass("a"), multiplier(bound(3), bound(3)) ) == mult( charclass("a"), multiplier(bound(1), bound(2)) ) # conc equality assert conc(mult(charclass("a"), one)) == conc(mult(charclass("a"), one)) assert conc(mult(charclass("a"), one)) != conc(mult(charclass("b"), one)) assert conc(mult(charclass("a"), one)) != conc(mult(charclass("a"), qm)) assert conc(mult(charclass("a"), one)) != conc(mult(charclass("a"), multiplier(bound(1), bound(2)))) assert conc(mult(charclass("a"), one)) != emptystring # str(conc) tests assert str(conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("d"), one), mult(charclass("e"), one), mult(~charclass("fg"), star), mult(charclass("h"), multiplier(bound(5), bound(5))), mult(charclass("abcdefghijklmnopqrstuvwxyz"), plus), )) == "abcde[^fg]*h{5}[a-z]+" # conc parsing assert conc.match("abcde[^fg]*h{5}[a-z]+", 0) == ( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("d"), one), mult(charclass("e"), one), mult(~charclass("fg"), star), mult(charclass("h"), multiplier(bound(5), bound(5))), mult(charclass("abcdefghijklmnopqrstuvwxyz"), plus), ), 21 ) assert conc.match("[bc]*[ab]*", 0) == ( conc( mult(charclass("bc"), star), mult(charclass("ab"), star), ), 10 ) assert conc.match("abc...", 0) == ( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(dot, one), mult(dot, one), mult(dot, one), ), 6 ) assert conc.match("\\d{4}-\\d{2}-\\d{2}", 0) == ( conc( mult(charclass("0123456789"), multiplier(bound(4), bound(4))), mult(charclass("-"), one), mult(charclass("0123456789"), multiplier(bound(2), bound(2))), mult(charclass("-"), one), mult(charclass("0123456789"), multiplier(bound(2), bound(2))), ), 17 ) # conc.reduce() assert conc( mult(charclass("a"), one), mult(charclass(), one), mult(charclass("b"), one), ).reduce() == nothing # conc -> conc assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ).reduce() == conc( mult(charclass("a"), one), mult(charclass("b"), one), ) # conc -> mult assert conc( mult(charclass("a"), multiplier(bound(3), bound(4))), ).reduce() == mult(charclass("a"), multiplier(bound(3), bound(4))) # conc -> charclass assert conc( mult(charclass("a"), one), ).reduce() == charclass("a") # sequence squooshing of mults within a conc # e.g. "[$%\\^]?[$%\\^]" -> "[$%\\^]{1,2}" assert conc( mult(charclass("a"), one), mult(charclass("$%^"), qm), mult(charclass("$%^"), one), mult(charclass("b"), one), ).reduce() == conc( mult(charclass("a"), one), mult(charclass("$%^"), multiplier(bound(1), bound(2))), mult(charclass("b"), one) ) # recursive conc reduction # (a){2}b -> a{2}b assert conc( mult( pattern( conc( mult(charclass("a"), qm) ) ), plus ), mult(charclass("b"), one) ).reduce() == conc( mult(charclass("a"), star), mult(charclass("b"), one) ).reduce() # pattern equality assert pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("b"), one)), ) == pattern( conc(mult(charclass("b"), one)), conc(mult(charclass("a"), one)), ) assert pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("a"), one)), ) == pattern( conc(mult(charclass("a"), one)), ) # str(pattern) assert str(pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("b"), one)), )) == "a|b" assert str(pattern( conc(mult(charclass("a"), one)), conc(mult(charclass("a"), one)), )) == "a" assert str(pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("d"), one), mult(charclass("e"), one), mult(charclass("f"), one), mult( pattern( conc( mult(charclass("g"), one), mult(charclass("h"), one), mult(charclass("i"), one), ), conc( mult(charclass("j"), one), mult(charclass("k"), one), mult(charclass("l"), one), ), ), one ), ), )) == "abc|def(ghi|jkl)" # pattern.reduce() tests # pattern -> pattern # (ab|cd) -> (ab|cd) assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), multiplier(bound(2), bound(2))), ), conc( mult(charclass("c"), multiplier(bound(2), bound(2))), mult(charclass("d"), multiplier(bound(2), bound(2))), ), ).reduce() == pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), multiplier(bound(2), bound(2))), ), conc( mult(charclass("c"), multiplier(bound(2), bound(2))), mult(charclass("d"), multiplier(bound(2), bound(2))), ), ) # pattern -> conc assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), multiplier(bound(2), bound(2))), ), ).reduce() == conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), multiplier(bound(2), bound(2))), ) # pattern -> mult assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), ), ).reduce() == mult(charclass("a"), multiplier(bound(2), bound(2))) # pattern -> charclass assert pattern( conc( mult(charclass("a"), one), ), ).reduce() == charclass("a") # special pattern reduction technique. # 0|[1-9]|a{5,7} -> [0-9]|a{5,7} assert pattern( conc(mult(charclass("0"), one)), conc(mult(charclass("123456789"), one)), conc(mult(charclass("a"), multiplier(bound(5), bound(7)))), ).reduce() == pattern( conc(mult(charclass("0123456789"), one)), conc(mult(charclass("a"), multiplier(bound(5), bound(7)))), ) # recursive pattern reduction assert pattern( conc(mult(charclass("0"), one)), conc( mult( pattern( conc(mult(charclass("0"), one)), conc(mult(charclass("123456789"), one)), conc(mult(charclass("a"), multiplier(bound(5), bound(7)))), ), one ) ) ).reduce() == pattern( conc(mult(charclass("0"), one)), conc( mult( pattern( conc(mult(charclass("0123456789"), one)), conc(mult(charclass("a"), multiplier(bound(5), bound(7)))), ), one ) ) ) # common prefix reduction of pattern # a{2}b|a+c -> a{2}(ab|a*c) assert pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ) ).reduce() == conc( mult(charclass("a"), one), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ) ) # pattern parsing assert pattern.match("abc|def(ghi|jkl)", 0) == ( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), conc( mult(charclass("d"), one), mult(charclass("e"), one), mult(charclass("f"), one), mult( pattern( conc( mult(charclass("g"), one), mult(charclass("h"), one), mult(charclass("i"), one), ), conc( mult(charclass("j"), one), mult(charclass("k"), one), mult(charclass("l"), one), ), ), one ), ) ), 16 ) # charclass multiplication # a * 1 = a assert charclass("a") * one == charclass("a") # a * {1,3} = a{1,3} assert charclass("a") * multiplier(bound(1), bound(3)) == mult(charclass("a"), multiplier(bound(1), bound(3))) # a * {4,} = a{4,} assert charclass("a") * multiplier(bound(4), inf) == mult(charclass("a"), multiplier(bound(4), inf)) # mult multiplication # a{2,3} * 1 = a{2,3} assert mult( charclass("a"), multiplier(bound(2), bound(3)) ) * one == mult(charclass("a"), multiplier(bound(2), bound(3))) # a{2,3} * {4,5} = a{8,15} assert mult( charclass("a"), multiplier(bound(2), bound(3)) ) * multiplier(bound(4), bound(5)) == mult(charclass("a"), multiplier(bound(8), bound(15))) # a{2,} * {2,} = a{4,} assert mult( charclass("a"), multiplier(bound(2), inf) ) * multiplier(bound(2), inf) == mult(charclass("a"), multiplier(bound(4), inf)) # conc multiplication # ab? * {0,1} = (ab?)? assert conc( mult(charclass("a"), one), mult(charclass("b"), qm), ) * qm == mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), qm), ), ), qm ) # pattern multiplication # (ab?|ba?) * {2,3} = (ab?|ba?){2,3} assert pattern( conc( mult(charclass("a"), one), mult(charclass("b"), qm), ), conc( mult(charclass("b"), one), mult(charclass("a"), qm), ), ) * multiplier(bound(2), bound(3)) == mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), qm), ), conc( mult(charclass("b"), one), mult(charclass("a"), qm), ), ), multiplier(bound(2), bound(3)) ) # bound class tests assert bound(0).common(inf) == bound(0) assert bound(1).common(inf) == bound(1) assert qm.mandatory == bound(0) assert qm.optional == bound(1) # multiplier intersection operator tests assert zero.common(zero) == zero assert zero.common(qm ) == zero assert zero.common(one ) == zero assert zero.common(star) == zero assert zero.common(plus) == zero assert qm .common(zero) == zero assert qm .common(qm ) == qm assert qm .common(one ) == zero assert qm .common(star) == qm assert qm .common(plus) == qm assert one .common(zero) == zero assert one .common(qm ) == zero assert one .common(one ) == one assert one .common(star) == zero assert one .common(plus) == one assert star.common(zero) == zero assert star.common(qm ) == qm assert star.common(one ) == zero assert star.common(star) == star assert star.common(plus) == star assert plus.common(zero) == zero assert plus.common(qm ) == qm assert plus.common(one ) == one assert plus.common(star) == star assert plus.common(plus) == plus # a{3,4}, a{2,5} -> a{2,3} (with a{1,1}, a{0,2} left over) assert multiplier(bound(3), bound(4)).common(multiplier(bound(2), bound(5))) == multiplier(bound(2), bound(3)) assert multiplier(bound(3), bound(4)) - multiplier(bound(2), bound(3)) == one assert multiplier(bound(2), bound(5)) - multiplier(bound(2), bound(3)) == multiplier(bound(0), bound(2)) # a{2,}, a{1,5} -> a{1,5} (with a{1,}, a{0,0} left over) assert multiplier(bound(2), inf).common(multiplier(bound(1), bound(5))) == multiplier(bound(1), bound(5)) assert multiplier(bound(2), inf) - multiplier(bound(1), bound(5)) == plus assert multiplier(bound(1), bound(5)) - multiplier(bound(1), bound(5)) == zero # a{3,}, a{2,} -> a{2,} (with a, epsilon left over) assert multiplier(bound(3), inf).common(multiplier(bound(2), inf)) == multiplier(bound(2), inf) assert multiplier(bound(3), inf) - multiplier(bound(2), inf) == one assert multiplier(bound(2), inf) - multiplier(bound(2), inf) == zero # a{3,}, a{3,} -> a{3,} (with zero, zero left over) assert multiplier(bound(3), inf).common(multiplier(bound(3), inf)) == multiplier(bound(3), inf) assert multiplier(bound(3), inf) - multiplier(bound(3), inf) == zero # mult intersection ("&") tests # a & b? = nothing assert mult(charclass("a"), one) & mult(charclass("b"), qm) == charclass() assert mult(charclass("a"), one) & mult(charclass("b"), qm) == nothing # a & a? = nothing assert mult(charclass("a"), one) & mult(charclass("a"), qm) == charclass("a") # a{2} & a{2,} = a{2} assert mult(charclass("a"), multiplier(bound(2), bound(2))) \ & mult(charclass("a"), multiplier(bound(2), inf)) \ == mult(charclass("a"), multiplier(bound(2), bound(2))) # a & b -> no intersection. assert mult(charclass("a"), one) & mult(charclass("b"), one) == nothing # a & a -> a assert mult(charclass("a"), one) & mult(charclass("a"), one) == charclass("a") # a* & a -> no intersection assert mult(charclass("a"), star) & mult(charclass("a"), one) == charclass("a") # a* & b* -> emptystring assert mult(charclass("a"), star) & mult(charclass("b"), star) == emptystring # a* & a+ -> a+ assert mult(charclass("a"), star) & mult(charclass("a"), plus) == mult(charclass("a"), plus) # a{3,4} & a{2,5} -> a{2,3} assert mult( charclass("a"), multiplier(bound(3), bound(4)) ).common(mult( charclass("a"), multiplier(bound(2), bound(5)) )) == mult(charclass("a"), multiplier(bound(2), bound(3))) # a{2,} & a{1,5} -> a{1,5} assert mult( charclass("a"), multiplier(bound(2), inf) ).common(mult( charclass("a"), multiplier(bound(1), bound(5)) )) == mult(charclass("a"), multiplier(bound(1), bound(5))) # a{3,}, a{2,} -> a{2,} (with a, epsilon left over) assert mult( charclass("a"), multiplier(bound(3), inf) ).common(mult( charclass("a"), multiplier(bound(2), inf) )) == mult(charclass("a"), multiplier(bound(2), inf)) # a{3,}, a{3,} -> a{3,} (with inf, inf left over) assert mult( charclass("a"), multiplier(bound(3), inf) ) & mult( charclass("a"), multiplier(bound(3), inf) ) == mult(charclass("a"), multiplier(bound(3), inf)) # pattern._commonconc(suffix=True) tests # a | bc -> emptystring assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), )._commonconc(suffix=True) == emptystring # (a|bc) - () = (a|bc) assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) - emptystring == pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) # (aa|bca) -> a assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("a"), one), ), )._commonconc(suffix=True) == conc(mult(charclass("a"), one)) # (aa|bca) - a = (a|bc) assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("a"), one), ), ) - conc(mult(charclass("a"), one)) == pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) # xyza | abca | a -> a assert pattern( conc( mult(charclass("x"), one), mult(charclass("y"), one), mult(charclass("z"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), ), )._commonconc(suffix=True) == conc(mult(charclass("a"), one)) # (xyza|abca|a) - a = (xyz|abc|) assert pattern( conc( mult(charclass("x"), one), mult(charclass("y"), one), mult(charclass("z"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("a"), one), ), conc( mult(charclass("a"), one), ), ) - conc(mult(charclass("a"), one)) == pattern( emptystring, conc( mult(charclass("x"), one), mult(charclass("y"), one), mult(charclass("z"), one), ), conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ), ) # f{2,3}c, fc -> fc assert pattern( conc( mult(charclass("f"), multiplier(bound(2), bound(3))), mult(charclass("c"), one), ), conc( mult(charclass("f"), one), mult(charclass("c"), one), ), )._commonconc(suffix=True) == conc( mult(charclass("f"), one), mult(charclass("c"), one), ) # (f{2,3}c|fc) - fc = (f{1,2}|) assert pattern( conc( mult(charclass("f"), multiplier(bound(2), bound(3))), mult(charclass("c"), one), ), conc( mult(charclass("f"), one), mult(charclass("c"), one), ), ) - conc( mult(charclass("f"), one), mult(charclass("c"), one), ) == pattern( emptystring, conc( mult(charclass("f"), multiplier(bound(1), bound(2))), ), ) # (aa) -> aa assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), )._commonconc(suffix=True) == conc( mult(charclass("a"), one), mult(charclass("a"), one), ) # (aa) - aa = () assert pattern( conc( mult(charclass("a"), one), mult(charclass("a"), one), ), ) - conc( mult(charclass("a"), one), mult(charclass("a"), one), ) == pattern(emptystring) # concatenation tests (__add__()) # empty conc + empty conc assert emptystring + emptystring == emptystring # charclass + charclass # a + b = ab assert charclass("a") + charclass("b") == conc( mult(charclass("a"), one), mult(charclass("b"), one), ) # a + a = a{2} assert charclass("a") + charclass("a") == mult(charclass("a"), multiplier(bound(2), bound(2))) # charclass + mult # a + a = a{2} assert charclass("a") + mult(charclass("a"), one) == mult(charclass("a"), multiplier(bound(2), bound(2))) # a + a{2,} = a{3,} assert charclass("a") + mult(charclass("a"), multiplier(bound(2), inf)) == mult(charclass("a"), multiplier(bound(3), inf)) # a + a{,8} = a{1,9} assert charclass("a") + mult(charclass("a"), multiplier(bound(0), bound(8))) == mult(charclass("a"), multiplier(bound(1), bound(9))) # a + b{,8} = ab{,8} assert charclass("a") + mult(charclass("b"), multiplier(bound(0), bound(8))) == conc( mult(charclass("a"), one), mult(charclass("b"), multiplier(bound(0), bound(8))), ) # mult + charclass # b + b = b{2} assert mult(charclass("b"), one) + charclass("b") == mult(charclass("b"), multiplier(bound(2), bound(2))) # b* + b = b+ assert mult(charclass("b"), star) + charclass("b") == mult(charclass("b"), plus) # b{,8} + b = b{1,9} assert mult(charclass("b"), multiplier(bound(0), bound(8))) + charclass("b") == mult(charclass("b"), multiplier(bound(1), bound(9))) # b{,8} + c = b{,8}c assert mult(charclass("b"), multiplier(bound(0), bound(8))) + charclass("c") == conc( mult(charclass("b"), multiplier(bound(0), bound(8))), mult(charclass("c"), one), ) # charclass + conc # a + nothing = a assert charclass("a") + emptystring == charclass("a") # a + bc = abc assert charclass("a") + conc( mult(charclass("b"), one), mult(charclass("c"), one), ) == conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ) # a + ab = a{2}b assert charclass("a") + conc( mult(charclass("a"), one), mult(charclass("b"), one), ) == conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ) # conc + charclass # nothing + a = a assert emptystring + charclass("a") == charclass("a") # ab + c = abc assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + charclass("c") == conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), ) # ab + b = ab{2} assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + charclass("b") == conc( mult(charclass("a"), one), mult(charclass("b"), multiplier(bound(2), bound(2))), ) # pattern + charclass # (a|bd) + c = (a|bd)c assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("d"), one), ), ) + charclass("c") == conc( mult( pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("d"), one), ), ), one ), mult(charclass("c"), one), ) # (ac{2}|bc+) + c = (ac|bc*)c{2} assert pattern( conc( mult(charclass("a"), one), mult(charclass("c"), multiplier(bound(2), bound(2))), ), conc( mult(charclass("b"), one), mult(charclass("c"), plus), ), ) + charclass("c") == conc( mult( pattern( conc( mult(charclass("a"), one), mult(charclass("c"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), star), ), ), one ), mult(charclass("c"), multiplier(bound(2), bound(2))), ) # charclass + pattern # a + (b|cd) = a(b|cd) assert charclass("a") + pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ) == conc( mult(charclass("a"), one), mult( pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ), one ) ) # a + (a{2}b|a+c) = a{2}(ab|a*c) assert charclass("a") + pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ), ) == conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ), ) # mult + mult # a{3,4} + b? = a{3,4}b? assert mult(charclass("a"), multiplier(bound(3), bound(4))) + mult(charclass("b"), qm) == conc( mult(charclass("a"), multiplier(bound(3), bound(4))), mult(charclass("b"), qm), ) # a* + a{2} = a{2,} assert mult(charclass("a"), star) + mult(charclass("a"), multiplier(bound(2), bound(2))) == mult(charclass("a"), multiplier(bound(2), inf)) # mult + conc # a{2} + bc = a{2}bc assert mult(charclass("a"), multiplier(bound(2), bound(2))) + conc( mult(charclass("b"), one), mult(charclass("c"), one), ) == conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), mult(charclass("c"), one), ) # a? + ab = a{1,2}b assert mult(charclass("a"), qm) + conc( mult(charclass("a"), one), mult(charclass("b"), one), ) == conc( mult(charclass("a"), multiplier(bound(1), bound(2))), mult(charclass("b"), one), ) # conc + mult # ab + c* = abc* assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + mult(charclass("c"), star) == conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), star), ) # ab + b* = ab+ assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + mult(charclass("b"), star) == conc( mult(charclass("a"), one), mult(charclass("b"), plus), ) # mult + pattern # a{2,3} + (b|cd) = a{2,3}(b|cd) assert mult(charclass("a"), multiplier(bound(2), bound(3))) + pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ) == conc( mult(charclass("a"), multiplier(bound(2), bound(3))), mult( pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ), one ) ) # a{2,3} + (a{2}b|a+c) = a{3,4}(ab|a*c) assert mult(charclass("a"), multiplier(bound(2), bound(3))) + pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ), ) == conc( mult(charclass("a"), multiplier(bound(3), bound(4))), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ), ) # pattern + mult # (b|cd) + a{2,3} = (b|cd)a{2,3} assert pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ) + mult(charclass("a"), multiplier(bound(2), bound(3))) == conc( mult( pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ), one ), mult(charclass("a"), multiplier(bound(2), bound(3))), ) # (ba{2}|ca+) + a{2,3} = (ba|ca*)a{3,4} assert pattern( conc( mult(charclass("b"), one), mult(charclass("a"), multiplier(bound(2), bound(2))), ), conc( mult(charclass("c"), one), mult(charclass("a"), plus), ), ) + mult(charclass("a"), multiplier(bound(2), bound(3))) == conc( mult( pattern( conc( mult(charclass("b"), one), mult(charclass("a"), one), ), conc( mult(charclass("c"), one), mult(charclass("a"), star), ), ), one ), mult(charclass("a"), multiplier(bound(3), bound(4))), ) # conc + conc # ab + cd = abcd assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + conc( mult(charclass("c"), one), mult(charclass("d"), one), ) == conc( mult(charclass("a"), one), mult(charclass("b"), one), mult(charclass("c"), one), mult(charclass("d"), one), ) # ab + bc = ab{2}c assert conc( mult(charclass("a"), one), mult(charclass("b"), one), ) + conc( mult(charclass("b"), one), mult(charclass("c"), one), ) == conc( mult(charclass("a"), one), mult(charclass("b"), multiplier(bound(2), bound(2))), mult(charclass("c"), one), ) # conc + pattern # za{2,3} + (b|cd) = za{2,3}(b|cd) assert conc( mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(2), bound(3))), ) + pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ) == conc( mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(2), bound(3))), mult( pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ), one, ) ) # za{2,3} + (a{2}b|a+c) = za{3,4}(ab|a*c) assert conc( mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(2), bound(3))), ) + pattern( conc( mult(charclass("a"), multiplier(bound(2), bound(2))), mult(charclass("b"), one), ), conc( mult(charclass("a"), plus), mult(charclass("c"), one), ), ) == conc( mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(3), bound(4))), mult( pattern( conc( mult(charclass("a"), one), mult(charclass("b"), one), ), conc( mult(charclass("a"), star), mult(charclass("c"), one), ), ), one ), ) # pattern + conc # (b|cd) + za{2,3} = (b|cd)za{2,3} assert pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ) + conc( mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(2), bound(3))), ) == conc( mult( pattern( conc( mult(charclass("b"), one), ), conc( mult(charclass("c"), one), mult(charclass("d"), one), ), ), one ), mult(charclass("z"), one), mult(charclass("a"), multiplier(bound(2), bound(3))), ) # (ba{2}|ca+) + a{2,3}z = (ba|ca*)a{3,4}z assert pattern( conc( mult(charclass("b"), one), mult(charclass("a"), multiplier(bound(2), bound(2))), ), conc( mult(charclass("c"), one), mult(charclass("a"), plus), ), ) + conc( mult(charclass("a"), multiplier(bound(2), bound(3))), mult(charclass("z"), one), ) == conc( mult( pattern( conc( mult(charclass("b"), one), mult(charclass("a"), one), ), conc( mult(charclass("c"), one), mult(charclass("a"), star), ), ), one ), mult(charclass("a"), multiplier(bound(3), bound(4))), mult(charclass("z"), one), ) # pattern + pattern # (a|bc) + (c|de) = (a|bc)(c|de) assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) + pattern( conc( mult(charclass("c"), one), ), conc( mult(charclass("d"), one), mult(charclass("e"), one), ), ) == conc( mult( pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ), one ), mult( pattern( conc( mult(charclass("c"), one), ), conc( mult(charclass("d"), one), mult(charclass("e"), one), ), ), one ), ) # (a|bc) + (a|bc) = (a|b){2} assert pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) + pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ) == mult( pattern( conc( mult(charclass("a"), one), ), conc( mult(charclass("b"), one), mult(charclass("c"), one), ), ), multiplier(bound(2), bound(2)) ) assert nothing.empty() assert charclass().empty() assert not dot.empty() assert not mult(charclass("a"), zero).empty() assert mult(charclass(), one).empty() assert not mult(charclass(), qm).empty() assert conc(mult(charclass("a"), one), mult(charclass(), one)).empty() assert not conc(mult(charclass("a"), one), mult(charclass(), qm)).empty() assert pattern().empty() assert not pattern(conc(mult(charclass("a"), zero))).empty() assert not pattern(conc(mult(charclass(), qm))).empty() assert str(parse("a.b")) == "a.b" # not "a[ab]b" assert str(parse("\\d{4}")) == "\\d{4}" # Intersection tests assert str(parse("a*") & parse("b*")) == "" assert str(parse("a") & parse("b")) == "[]" assert str(parse("\\d") & parse(".")) == "\\d" assert str(parse("\\d{2}") & parse("0.")) == "0\\d" assert str(parse("\\d{2}") & parse("19.*")) == "19" assert str(parse("\\d{3}") & parse("19.*")) == "19\\d" assert str(parse("abc...") & parse("...def")) == "abcdef" assert str(parse("[bc]*[ab]*") & parse("[ab]*[bc]*")) == "([ab]*a|[bc]*c)?b*" assert str(parse("\\W*") & parse("[a-g0-8$%\\^]+") & parse("[^d]{2,8}")) == "[$%\\^]{2,8}" assert str(parse("\\d{4}-\\d{2}-\\d{2}") & parse("19.*")) == "19\\d\\d-\\d\\d-\\d\\d" # Reduction tests # ARGH, they need to be FSMed!! assert str(parse("(|(|(|(|(|(|[$%\^])[$%\^])[$%\^])[$%\^])[$%\^])[$%\^])[$%\^][$%\^]")) == "[$%\^]{2,8}" assert str(parse("[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F]")) == "[0-9A-Fa-f]{3}" long = \ "(aa|bb*aa)a*|((ab|bb*ab)|(aa|bb*aa)a*b)((ab|bb*ab)|(aa|bb*aa)a*b)*" + \ "(aa|bb*aa)a*|((ab|bb*ab)|(aa|bb*aa)a*b)((ab|bb*ab)|(aa|bb*aa)a*b)*" assert str(parse(".*") & parse(long).reduce()) == "[ab]*a[ab]" short = "[ab]*a?b*|[ab]*b?a*" assert str(parse(".*") & parse(short).reduce()) == "[ab]*" # DEFECT: "0{2}|1{2}" was erroneously reduced() to "[01]{2}" bad = parse("0{2}|1{2}").fsm({"0", "1", otherchars}) assert bad.accepts("00") assert bad.accepts("11") assert not bad.accepts("01") assert str(parse("0|[1-9]|ab")) == "\d|ab" # lego.alphabet() should include "otherchars" assert parse("").alphabet() == {otherchars} # You should be able to fsm() a single lego piece without supplying a specific # alphabet. That should be determinable from context. assert str(parse("a.b").fsm().lego()) == "a.b" # not "a[ab]b" # A suspiciously familiar example bad = parse("0{2}|1{2}").fsm() assert bad.accepts("00") assert bad.accepts("11") assert not bad.accepts("01") assert str(parse("0|[1-9]|ab")) == "\d|ab" # everythingbut(). # Regexes are usually gibberish but we make a few claims a = parse("a") notA = a.everythingbut().fsm() assert notA.accepts("") assert not notA.accepts("a") assert notA.accepts("aa") # everythingbut(), called twice, should take us back to where we started. beer = parse("beer") notBeer = beer.everythingbut() beer2 = notBeer.everythingbut() assert str(beer2) == "beer" # ".*" becomes "[]" and vice versa under this call. everything = parse(".*") assert str(everything.everythingbut()) == str(nothing) assert str(nothing.everythingbut()) == str(everything) # epsilon reduction in patterns. assert parse("|(ab)*|def").reduce() == parse("(ab)*|def") assert parse("|(ab)+|def").reduce() == parse("(ab)*|def") assert parse("|.+").reduce() == parse(".*") assert parse("|a+|b+") in {parse("a+|b*"), parse("a*|b+")} print("OK")
Honghe/greenery
lego.py
lego.py
py
95,333
python
en
code
null
github-code
6
2156579897
from crsql_correctness import connect, close, min_db_v from pprint import pprint # exploratory tests to debug changes def sync_left_to_right(l, r, since): changes = l.execute( "SELECT * FROM crsql_changes WHERE db_version > ? ORDER BY db_version, seq ASC", (since,)) ret = 0 for change in changes: ret = change[5] r.execute( "INSERT INTO crsql_changes VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)", change) r.commit() return ret def test_sync(): def setup(): c = connect(":memory:") c.execute("CREATE TABLE item (id PRIMARY KEY NOT NULL, width INTEGER, height INTEGER, name TEXT, dscription TEXT, weight INTEGER)") c.execute("SELECT crsql_as_crr('item')") c.commit() return c def insert_item(c, args): c.execute("INSERT INTO item VALUES (?, ?, ?, ?, ?, ?)", args) c.commit() a = setup() b = setup() insert_item(a, ('9838abbe-6fa8-4755-af2b-9f0484888809', None, None, None, None, None)) insert_item(b, ('f94ef174-459f-4b07-bc7a-c1104a97ceb5', None, None, None, None, None)) since_a = sync_left_to_right(a, b, 0) a.execute("DELETE FROM item WHERE id = '9838abbe-6fa8-4755-af2b-9f0484888809'") a.commit() insert_item(a, ('d5653f10-b858-46c7-97e5-5660eca47d28', None, None, None, None, None)) sync_left_to_right(a, b, since_a) sync_left_to_right(b, a, 0) # pprint("A") # pprint(a.execute("SELECT * FROM item").fetchall()) # pprint("B") # pprint(b.execute("SELECT * FROM item").fetchall()) # pprint("A changes") # pprint(a.execute("SELECT * FROM crsql_changes").fetchall())
vlcn-io/cr-sqlite
py/correctness/tests/test_sandbox.py
test_sandbox.py
py
1,707
python
en
code
2,036
github-code
6
75188719226
# 초기 거리를 1로 지정 # 가까운 곳부터 수행하는 bfs이기에 이미 최단거리가 기록된 경우에는 거리가 갱신되지 않도록 설정 from collections import deque def bfs(x, y): # 큐 구현을 위해 deque 라이브러리 사용 queue = deque() # 초기 좌표 설정 queue.append((x, y)) # 큐가 빌 때까지 반복 while queue: x, y = queue.popleft() # 현재 위치에서 4가지 방향으로 위치 확인 for i in range(4): nx = x + dx[i] ny = y + dy[i] # 미로 찾기 공간을 벗어난 경우 무시 if nx < 0 or nx >= N or ny < 0 or ny >= M: continue # 벽인 경우 무시 if graph[nx][ny] == 0: continue # 해당 노드를 처음 방문한 경우에만 최단거리 기록 if graph[nx][ny] == 1: graph[nx][ny] = graph[x][y] + 1 queue.append((nx, ny)) # 가장 오른쪽 아래까지의 최단거리 반환 return graph[N-1][M-1] N, M = map(int, input().split()) # 2차원 리스트 맵 정보 입력 graph = [] for i in range(N): graph.append(list(map(int, input()))) # 상하좌우 dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] # BFS를 수행한 결과 출력 print(bfs(0, 0))
zacinthepark/Problem-Solving-Notes
na/02/DFS-BFS/미로탈출.py
미로탈출.py
py
1,348
python
ko
code
0
github-code
6
16351053586
from bs4 import BeautifulSoup as bs import requests from cardBeta import CardBeta from cardWitj import CardWitj urls = { 'beta': 'https://beta.gouv.fr/recrutement/developpement?', 'witj': 'https://www.welcometothejungle.com/fr/companies/communaute-beta-gouv/jobs' } divs = {'beta': 'fr-card__body', 'witj': 'sc-1peil1v-4'} class Crawler: """Crawler class""" def __init__(self, type): self.type = type self.stack = { 'total' : 0 } def run(self): print('... start crawl ' + self.type) response = requests.get(urls[self.type]) html = response.content soup = bs(html, "lxml") if hasattr(self, f'crawl_{self.type}'): getattr(self, f'crawl_{self.type}')(soup) def crawl_witj(self, soup): myCards = [] print(' title : ' + soup.title.get_text()) cards = soup.find_all("div", class_=divs[self.type]) print(' total found : {}'.format(len(cards))) for data in cards: myCard = CardWitj(data) myCards.append(myCard) print(' >>> loop myCards') for card in myCards: result = card.loadPage() for key in result: if key in self.stack : self.stack[key] += 1 self.stack['total'] += 1 else : self.stack[key] = 1 print(' resume stack ::::') for key in self.stack: print(' tech : {} : {}'.format(key, self.stack[key])) def crawl_beta(self, soup): myCards = [] print(' title : ' + soup.title.get_text()) cards = soup.find_all("div", class_=divs[self.type]) print(' total found : {}'.format(len(cards))) for data in cards: myCard = CardBeta(data) myCards.append(myCard) print(' >>> loop myCards') for card in myCards: card.loadPage()
apimobi/witj-beta-replit
crawler.py
crawler.py
py
1,963
python
en
code
0
github-code
6
14956977226
import argparse import os from scipy.interpolate import griddata import numpy as np from tqdm import tqdm import cv2 import scipy.ndimage as sp import matplotlib.pyplot as plt from matplotlib import cm, patches # Argument Parser parser = argparse.ArgumentParser(description="Time-series Heatmap Generator") parser.add_argument( "--dataset_path", type=str, default="./data/dataset_08-12-2023_05-02-59", help="Folder containing time-series data", ) args = parser.parse_args() # Data Load dataset_path = args.dataset_path data_file_path = os.path.join(dataset_path, "timeseries.txt") data = np.loadtxt(data_file_path) # Split Data pos = data[:, :3] force = data[:, -3:] Frms = np.sqrt(np.sum(force**2, axis=1)) # Video Writer Setup # fourcc = cv2.VideoWriter_fourcc(*"mp4v") # out = cv2.VideoWriter("heatmap_video.mp4", fourcc, 20.0, (640, 480)) # Gaussian Smoothing # Circle Data point1 = [0.61346058, 0.07027999, 0.05241557] # magnet radius1 = 0.01732 / 2 point2 = [0.60665408, 0.09511717, 0.05193599] # 3d print radius2 = 0.005 pos_x = pos[Frms > 5, 1] pos_y = pos[Frms > 5, 0] pos_z = pos[Frms > 5, 2] print("pos_y", pos_y.std()) print("pos_x", pos_x.std()) x_min, x_max = np.min(pos_x), np.max(pos_x) y_min, y_max = np.min(pos_y), np.max(pos_y) dim_x = 30 dim_y = 30 # Frms = Frms[pos[:, 2] < 0.055] pos_palp = pos[pos[:, 2] < 0.06] plt.axis("equal") x = np.linspace(x_min, x_max, dim_x) y = np.linspace(y_min, y_max, dim_y) X, Y = np.meshgrid(x, y) # Interpolate (x,y,z) points [mat] over a normal (x,y) grid [X,Y] # Depending on your "error", you may be able to use other methods Z = griddata((pos_x, pos_y), pos_z, (X, Y), method="nearest") plt.pcolormesh(X, Y, Z) # plt.scatter(pos_palp[:, 1], pos_palp[:, 0], marker="x") # Add circles circle1 = patches.Circle( (point1[1], point1[0]), radius1, fill=False, color="blue", ) circle2 = patches.Circle( (point2[1], point2[0]), radius2, fill=False, color="green", ) # plt.gca().add_patch(circle1) # plt.gca().add_patch(circle2) plt.title("Heatmap with smoothing") plt.xlabel("Y (m)") plt.ylabel("X (m)") cbar = plt.colorbar() cbar.set_label("Z (m)", rotation=270, labelpad=15) plt.draw() # Convert to OpenCV fig = plt.gcf() fig.canvas.draw() img_arr = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img_arr = img_arr.reshape(fig.canvas.get_width_height()[::-1] + (3,)) img_arr = cv2.cvtColor(img_arr, cv2.COLOR_RGB2BGR) dataset_name = dataset_path.split("/")[-1] cv2.imwrite(f"{dataset_path}/{dataset_name}_2d_heatmap.png", img_arr)
raghavauppuluri13/robot-palpation
rpal/scripts/visualize_heatmap.py
visualize_heatmap.py
py
2,568
python
en
code
0
github-code
6
10958770997
import os import csv import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from torch.utils.data import Dataset, DataLoader from torchvision.io import read_image import torchvision.datasets as datasets import torchvision.transforms as transforms from torchvision.io import read_image, ImageReadMode np.random.seed(0) DATA_FOLDER_PATH = "YOURPATH\\\Animals_with_Attributes2\\" JPEGIMAGES_FOLDER_PATH = "YOURPATH\\JPEGImages\\" labels_dirs = os.listdir(JPEGIMAGES_FOLDER_PATH) ANNOTATIONS_FILENAME = 'annotations.csv' def find_num_images_per_label(img_dir = JPEGIMAGES_FOLDER_PATH) -> tuple[dict,dict]: """ USEFUL FOR SAMPLING. Return a dict with keys as the 50 labels, and values being the number of images in each subdirectory corresponding to label and a second dict with the relative numbers (proportion) for every label compared to the total number of images (useful for sampling)""" labels_dirs = os.listdir(img_dir) num_images_per_label = dict.fromkeys(labels_dirs) proportions_images_per_label = dict.fromkeys(labels_dirs) total_num_images = 0 # Update absolute number of images per label for i, label in enumerate(labels_dirs) : specific_label_path = os.path.join(img_dir, labels_dirs[i]) num_images_label = len(os.listdir(specific_label_path)) total_num_images += num_images_label num_images_per_label[label] = num_images_label # Update relative number of images per label (proportion) for i, label in enumerate(labels_dirs) : num_images_label = num_images_per_label[label] proportion_label = round(num_images_label / total_num_images, 4) proportions_images_per_label[label] = proportion_label return num_images_per_label, proportions_images_per_label labels_dict = {} with open(DATA_FOLDER_PATH+"classes.txt") as f: for line in f: (key,val) = line.split() labels_dict[val] = int(key)-1 print(labels_dict) def create_annotations_csv_file(annotations_filename = ANNOTATIONS_FILENAME, img_dir = JPEGIMAGES_FOLDER_PATH) : """ Create a csv annotations_file, annotations.csv, with two columns, in the format : path/to/image, label The annotation csv is necessary for DataLoader. """ labels_dirs:list = os.listdir(img_dir) if os.path.exists(annotations_filename): os.remove(annotations_filename) print(f'Deleted existent {ANNOTATIONS_FILENAME} file.\n ---------------------------') with open(annotations_filename, 'w', newline='') as file : writer = csv.writer(file, dialect='excel', delimiter=',') for i, label in enumerate(labels_dirs) : specific_label_path = os.path.join(img_dir, label) images_names = os.listdir(specific_label_path) for j, image_name in enumerate(images_names): full_path_to_img= os.path.join(specific_label_path, image_name) full_path_to_img= os.path.join(label, image_name) row = [full_path_to_img, label] writer.writerow(row) print(f'Sucessfully created {ANNOTATIONS_FILENAME} file.') create_annotations_csv_file() class AWA2Dataset(Dataset): # Dataset class to serve as input for the DataLoader. """ Dataset class to serve as input for the DataLoader. Implements all the required methods and more. """ def __init__(self, annotations_file=ANNOTATIONS_FILENAME, img_dir=JPEGIMAGES_FOLDER_PATH, transform=None, target_transform=None): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform numbers_infos_dicts: tuple[dict,dict] = find_num_images_per_label(img_dir=JPEGIMAGES_FOLDER_PATH) self.num_images_per_label = numbers_infos_dicts[0] self.proportions_images_per_label = numbers_infos_dicts[1] def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) # img_path = self.img_labels.iloc[idx, 0] key = self.img_labels.iloc[idx, 1] # Mapping the labels from string to tensor label = labels_dict[key] image = read_image(path = img_path, mode = ImageReadMode.RGB) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label class Subset_(AWA2Dataset) : def __init__(self, dataset, indices, transform=None): super().__init__() self.dataset = dataset self.indices = indices self.transform = transform def __len__(self): return len(self.indices) def __getitem__(self, index): original_index_in_AWA2Dataset = self.indices[index] image, label = self.dataset[original_index_in_AWA2Dataset] if self.transform: image = self.transform(image) return image, label ''' Procedure to Create Dataloader objects, and train-test split ''' # With Data augmentation to remedy overfitting transforms_pipeline_train = transforms.Compose([ ## Input size transforms.ToPILImage(), transforms.Resize((256,256)), ## Data augmentation transforms.RandomRotation(15), transforms.RandomHorizontalFlip(p=0.4), transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), transforms.RandomCrop((224,224)), ## Normalize transforms.ToTensor(), transforms.Normalize(mean = [0.4643, 0.4640, 0.3985] , std=[0.2521, 0.2425, 0.2538]) # real mean and std of AwA2 ]) transforms_pipeline_test = transforms.Compose([ ## Input size transforms.ToPILImage(), transforms.Resize((256,256)), transforms.CenterCrop((224,224)), ## Normalize transforms.ToTensor(), # Already a tensor as implemented in Dataset class with the transforms.Normalize(mean = [0.4643, 0.4640, 0.3985] , std=[0.2521, 0.2425, 0.2538]) # real mean and std of AwA2 ]) # Initialize dataset and train/valid/test split from sklearn.model_selection import train_test_split dataset = AWA2Dataset() n_images = len(dataset) # Split all indices into training/testing sets train_indices, test_indices = train_test_split(range(n_images), test_size=0.2, random_state=1) # Split training indices into training/validation sets. train_indices, valid_indices = train_test_split(train_indices, test_size=0.2, random_state=1) # Initialize the 3 DataSet objects (as Subset_) and apply the relevant Transforms to each subset (train/test/valid) train_data = Subset_(dataset, train_indices, transform = transforms_pipeline_train) valid_data = Subset_(dataset, valid_indices, transform = transforms_pipeline_test) test_data = Subset_(dataset, test_indices, transform = transforms_pipeline_test) # Initalize DataLoaders batch_size = 32 train_loader = DataLoader(dataset = train_data, batch_size=batch_size, shuffle=True, num_workers=6, pin_memory=True) valid_loader = DataLoader(dataset = valid_data, batch_size=batch_size, shuffle=False, num_workers=6, pin_memory=True) test_loader = DataLoader(dataset = test_data, batch_size=batch_size, shuffle=False, num_workers=6, pin_memory=True)
K-kiron/animal-detect
Helpers/AWA2_Dataloader.py
AWA2_Dataloader.py
py
7,864
python
en
code
1
github-code
6
26113397145
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "08/09/2017" import weakref from silx.gui import qt from silx.gui.icons import getQIcon from .. import actions class ViewpointToolButton(qt.QToolButton): """A toolbutton with a drop-down list of ways to reset the viewpoint. :param parent: See :class:`QToolButton` """ def __init__(self, parent=None): super(ViewpointToolButton, self).__init__(parent) self._plot3DRef = None menu = qt.QMenu(self) menu.addAction(actions.viewpoint.FrontViewpointAction(parent=self)) menu.addAction(actions.viewpoint.BackViewpointAction(parent=self)) menu.addAction(actions.viewpoint.TopViewpointAction(parent=self)) menu.addAction(actions.viewpoint.BottomViewpointAction(parent=self)) menu.addAction(actions.viewpoint.RightViewpointAction(parent=self)) menu.addAction(actions.viewpoint.LeftViewpointAction(parent=self)) menu.addAction(actions.viewpoint.SideViewpointAction(parent=self)) self.setMenu(menu) self.setPopupMode(qt.QToolButton.InstantPopup) self.setIcon(getQIcon('cube')) self.setToolTip('Reset the viewpoint to a defined position') def setPlot3DWidget(self, widget): """Set the Plot3DWidget this toolbar is associated with :param ~silx.gui.plot3d.Plot3DWidget.Plot3DWidget widget: The widget to control """ self._plot3DRef = None if widget is None else weakref.ref(widget) for action in self.menu().actions(): action.setPlot3DWidget(widget) def getPlot3DWidget(self): """Return the Plot3DWidget associated to this toolbar. If no widget is associated, it returns None. :rtype: ~silx.gui.plot3d.Plot3DWidget.Plot3DWidget or None """ return None if self._plot3DRef is None else self._plot3DRef()
silx-kit/silx
src/silx/gui/plot3d/tools/ViewpointTools.py
ViewpointTools.py
py
1,903
python
en
code
106
github-code
6
27002025081
from work1_wangb import DataSampling_wangb from work2_wangb import foo_wangb from work3_wangb import weather_wangb def show(): print(u"请输入数字abc来选择查看作业1~3,输入字母d退出程序") while True: try: x = str(input()) if x == 'a': DataSampling_wangb.show() elif x == 'b': foo_wangb.show() elif x == 'c': weather_wangb.show() elif x == 'd': break else: print(u'字母的范围是a,b,c') except ValueError: print(u'请输入一个字母') if __name__ == '__main__': show()
wanghan79/2023_Python
python_wangb/theLastwork_wangb.py
theLastwork_wangb.py
py
717
python
en
code
8
github-code
6
14431348416
from concurrent import futures import threading words = ['hello', 'world'] result = [] def letter_by_letter(my_word): for letter in my_word: # proof that we are using 2 threads print(threading.current_thread().getName()) result.append(letter) # thanks to `with`, script will wait until all threads in executor stops with futures.ThreadPoolExecutor(max_workers=2) as executor: [executor.submit(letter_by_letter, word) for word in words] print(''.join(result))
cuZzior/python-multithreading-helloworld
hello_world.py
hello_world.py
py
498
python
en
code
0
github-code
6
42156059489
import pytest import responses from repositories.app import APP @pytest.fixture def client(): with APP.test_client() as client: APP.extensions["cache"].clear() yield client @responses.activate def test_get_repo(client): url = f"https://api.github.com/repos/owner/repo" response = { "full_name": "test/name", "description": "description", "clone_url": "clone url", "stargazers_count": 500, "created_at": "2020-01-17T22:24:45Z", } responses.add(responses.GET, url, json=response) r = client.get("/repositories/owner/repo") assert r.get_json() == { "fullName": "test/name", "description": "description", "cloneUrl": "clone url", "stars": 500, "createdAt": "2020-01-17T22:24:45+00:00", } assert r.status_code == 200 assert r.is_json @responses.activate def test_404_error(client): url = f"https://api.github.com/repos/owner/repo" responses.add(responses.GET, url, status=404) r = client.get("/repositories/owner/repo") assert r.get_json() == { "status": 404, "error": "Not Found", "message": "requested repository does not exist", } assert r.status_code == 404 @responses.activate def test_500_error(client): url = f"https://api.github.com/repos/owner/repo" responses.add(responses.GET, url, status=500) r = client.get("/repositories/owner/repo") assert r.get_json() == { "status": 500, "error": "Internal Server Error", "message": "the server encountered an unexpected internal server error", } assert r.status_code == 500
lukaszmenc/get-repository-data
tests/test_app.py
test_app.py
py
1,667
python
en
code
0
github-code
6
23850509915
from datasets import load_dataset,load_metric from transformers import AutoTokenizer,AutoModelForSeq2SeqLM,Seq2SeqTrainingArguments,DataCollatorForSeq2Seq,Seq2SeqTrainer import numpy as np metric=load_metric("BLEU.py") max_input_length = 64 max_target_length = 64 src_lang = "zh" tag_lang = "en" model_path = "Helsinki-NLP/opus-mt-zh-en" # model_path = "translations/checkpoint-1500/" batch_size = 4 learning_rate = 1e-5 output_dir = "translations" def preprocess_function(examples): inputs = [eval(ex)[src_lang] for ex in examples["text"]] targets = [eval(ex)[tag_lang] for ex in examples["text"]] model_inputs=tokenizer(inputs,max_length=max_input_length,truncation=True) with tokenizer.as_target_tokenizer(): labels=tokenizer(targets,max_length=max_target_length,truncation=True) model_inputs["labels"]=labels["input_ids"] return model_inputs def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels def compute_metrics(eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels) result = {"bleu": result["score"]} print(result) prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 4) for k, v in result.items()} return result train_dataset = load_dataset("text",data_files="data/train.txt") val_dataset = load_dataset("text",data_files="data/val.txt") tokenizer = AutoTokenizer.from_pretrained(model_path) tokenized_train_datasets = train_dataset.map(preprocess_function, batched=True) tokenized_val_datasets = val_dataset.map(preprocess_function, batched=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_path) data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) args = Seq2SeqTrainingArguments( auto_find_batch_size = True, learning_rate = learning_rate, output_dir = output_dir, predict_with_generate=True ) trainer = Seq2SeqTrainer( model, args, train_dataset=tokenized_train_datasets["train"], eval_dataset=tokenized_val_datasets["train"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics ) trainer.train() trainer.predict(test_dataset=tokenized_val_datasets["train"])
Scpjoker/NLP-Course-Homework-2022
translate.py
translate.py
py
2,866
python
en
code
1
github-code
6
3709328599
import os from cloudservice import add_file, add_dir, get_dir_subs, get_root_dir_id from pathlib import Path import pandas as pd def test(): uploadfile(os.path.join('我文件夹', 'test1.docx'), dirid=39, projid=36) print() def create_dir_test(): add_dir('addsub', 39, 36) def uploadfile(fpath, dirid, projid): # fpath = os.path.join(config.batch_file_upload_root, relative_fpath) fdir, fname = os.path.split(fpath) ftype = os.path.splitext(fname)[-1] fsize = os.path.getsize(fpath) fdata = { "name": fname, "remark": "", "keyWord": "", "abstract": "", "url": fpath, "fileSize": fsize, "fileType": ftype, "directoryId": dirid, "creatorId": 1, "uploaderId": 0, "newWords": "", "wordFrequency": "", "phrases": "" } r = add_file(fdata, projid) return r def do_batch_upload(dpath: Path, projid, rootid): for thing in dpath.iterdir(): # 是文件夹则递归 if thing.is_dir(): name = str(thing).split('\\')[-1] if name.startswith('__'): # 双下划线跳过 print('skip ' + str(thing)) continue do_batch_upload(thing, projid, get_dirid(str(thing), rootid, projid)) # 是文件则上传 if thing.is_file(): try: uploadfile(str(thing), rootid, projid) print('upload ' + str(thing)) except: try: print('failed ' + str(thing)) except: print('solid failed') # if exist return id, if not exist create it then return id def get_dirid(p, curdirid, projid): subs = get_dir_subs(curdirid, projid) for sd in subs: if sd['name'] == p.split('\\')[-1]: return sd['id'] # 如果没返回 就是没这个文件夹 创建一个 createname = p.split('\\')[-1] add_dir(createname, curdirid, projid) print('create ' + p) # 再找到文件夹ID subs = get_dir_subs(curdirid, projid) for sd in subs: if sd['name'] == createname: return sd['id'] return 0 if __name__ == '__main__': pass # do_batch_upload(Path(r'F:\402\004 小洋山资料备份-晓莉'), 240, 42) # do_batch_upload(Path(r'F:\402\testupload'), 36, 200) # do_batch_upload(Path(r'F:\402\001 交响乐团20130311需合并'), 434, 202) # do_batch_upload(Path(r'F:\dfyyfile\东方医院'), projid=230, rootid=2211) # do_batch_upload(Path(r'D:\技术群文档'), projid=687, rootid=2370) # http:\\10.6.0.50:6789\files\工程资料 01\01 工程资料\404\008 解放日报-张雷\1.txt # do_batch_upload(Path(r'\\192.168.11.70\工程资料 02\03 工程资料\404\国金资料'), projid=183, rootid=4000) # uploadfile(r'E:\work\论文\空调故障诊断与风险评估.pdf',projid=33,dirid=38292) # proj_infos = [['401', '001 中国馆', 196]] # proj_infos = pd.read_csv(r'.\projs.csv') # for indx, info in proj_infos.iterrows(): # subdir = str(info['sub']) # projname = info['name'] # projid = info['pid'] # # pathstr = os.path.join(r'\\192.168.11.70\工程资料 01\01 工程资料', subdir, projname) # test = Path(pathstr) # # try: # add_dir(projname, None, projid) # except: # pass # rootid = get_root_dir_id(projid) # # do_batch_upload(Path(pathstr), projid=projid, rootid=rootid)
pengyang486868/PY-read-Document
batch_upload.py
batch_upload.py
py
3,549
python
en
code
0
github-code
6
31108358568
import tushare as ts import pandas as pd #当列太多时,显示不换行 pd.set_option('expand_frame_repr',False) #显示所有的列 pd.set_option('display.max_columns', None) ''' Created on 2020年12月24日 @author: My ''' ts.set_token('b869861b624139897d87db589b6782ca0313e0e9378b2dd73a4baff5') pro=ts.pro_api() #data = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date') """stock='300001.SZ' df=pro.daily(ts_code=stock, start_date='20091001', end_date='20161214') df.rename(columns={'trade_date':'date'},inplace=True) print(df) df.to_csv('./data/日行情_特锐德_tushare.csv', encoding='gbk', index=False)""" df=pd.read_csv('./data/日行情_特锐德_tushare.csv',encoding='gbk') df.sort_values(by=['date',],inplace=True) df['pct_chg']=df['pct_chg']/100.0 df['pct_chg_2']=df['close'].pct_change() print(df[abs(df['pct_chg_2']-df['pct_chg'])>0.0001]) del df['pct_chg_2'] df['factor']=(df['pct_chg']+1).cumprod() #print(df) initi_price=df.iloc[0]['close']/df['factor'].iloc[0] #print(initi_price) df['close_post']=initi_price*df['factor'] #print(df) initi_price_pre=df.iloc[-1]['close']/df['factor'].iloc[-1] df['close_pre']=initi_price_pre*df['factor'] #print(df) #df.sort_values(by=['date'],inplace=True) print(df)
geekzhp/zhpLiangHua
tmp/tushareStudy.py
tushareStudy.py
py
1,356
python
en
code
0
github-code
6
41969655941
import cv2 as cv src = cv.imread("./img_input/266679.png") #读取图片 # 新建一个窗口并展示 cv.namedWindow("input image", cv.WINDOW_AUTOSIZE) cv.imshow("input image", src) cv.waitKey(0) cv.destroyAllWindows() print("hello")
RMVision/study-opencv
chapter01/test.py
test.py
py
237
python
zh
code
1
github-code
6
75226774588
import logging from kiteconnect import KiteConnect import datetime import pymongo instrument_token = "738561" from_date = "2021-04-01" to_date = "2021-06-30" interval = '5minute' logging.basicConfig(level=logging.DEBUG) api_key = "kpgos7e4vbsaam5x" api_secret = "t9092opsldr1huxk1bgopmitovurftto" request_token = "qRQhzRYukvQetbXDhiRYJI4XgLhwX51k" access_token = "gP5gr51tDMpYiPBKTH95oNluvzS20c6Y" kite = KiteConnect(api_key=api_key) # data = kite.generate_session(request_token, api_secret=api_secret) # print(data) kite.set_access_token(access_token) print(kite.quote(['NSE:INFY'])) myclient = pymongo.MongoClient("mongodb://localhost:27017/") functional_col =myclient["core"]["functional"] functional_data = {} functional_data['description'] = 'Price limit for trading' functional_data['variable'] = 'price_limit' functional_data['values'] = 20 functional_col.insert_one(functional_data) #print(kite.historical_data(instrument_token, from_date, to_date, interval, continuous=False, oi=True)) # print(datetime.datetime.now().strftime('%H:%M')) # print(datetime.datetime.strptime('13:19', '%H:%M').strftime(('%H:%M'))) # print(datetime.datetime.now().strftime('%H:%M') == datetime.datetime.strptime('13:19', '%H:%M').strftime(('%H:%M')))
prashanth470/trading
source/sample.py
sample.py
py
1,284
python
en
code
0
github-code
6
34572128931
import random,server,time,istatistik,settings import sqlite3 as sql server_list=server.Server() patlayan_power=6.5;kartopu_power=7;oyuk_power=2 _35power=10;_25power=9;_15power=5 def randomplayer(): global first,two while True: first=random.choice(server_list) two=random.choice(server_list) if first!=two: break return [first,two] def fight(a=0,b=0): x=a;xx=b firstall=list();twoall=list() players=randomplayer() connect=sql.connect("C:\\Users\path\PycharmProjects\pythonProject\dosya\\denemetaban.db") cursor=connect.cursor() cursor.execute("SELECT * FROM players WHERE id={}".format(players[0])) first=cursor.fetchall() for i in range(len(first[0])): firstall.append(first[0][i]) cursor.execute("SELECT * FROM players WHERE id={}".format(players[1])) two=cursor.fetchall() for i in range(len(two[0])): twoall.append(two[0][i]) first_name=firstall[1];two_name=twoall[1] first_35=firstall[5];two_35=twoall[5];first_25=firstall[6];two_25=twoall[6];first_15=firstall[7];two_15=twoall[7];first_kartopu=firstall[9] two_kartopu=twoall[9];first_patlayan=firstall[10];two_patlayan=twoall[10];first_oyuk=firstall[11];two_oyuk=twoall[11];first_batirma=firstall[13] two_batirma=twoall[13] firstpower=((int(first_35)*kartopu_power*_35power+int(first_25)*kartopu_power*_25power+int(first_15)*kartopu_power*_15power)) twopower=((int(two_35) * kartopu_power * _35power+int(two_25) * kartopu_power * _25power+int(two_15) * kartopu_power * _15power)) first_hp=10000 two_hp=10000 a=6;b=5 kazanan="" while True: if first_hp > 0 and two_hp > 0: if a % 6 == 0: time.sleep(x) if two_hp <= firstpower: #print("{} Oyuncusu {} vurdu rakip battı".format(first_name, two_hp)) two_hp=0 break #print("{} Oyuncusu {} vurdu".format(first_name, firstpower)) two_hp-=int(firstpower) #print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(first_name, first_hp, two_name, two_hp)) time.sleep(x) if b % 5 == 0: if first_hp <= twopower: #print("{} Oyuncusu {} vurdu rakip battı".format(two_name, first_hp)) first_hp=0 break #print("{} Oyuncusu {} vurdu".format(two_name, twopower)) first_hp-=int(twopower) #print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(first_name, first_hp, two_name, two_hp)) time.sleep(xx) a+=1 b+=1 else: time.sleep(xx) a+=1 b+=1 else: break if first_hp >= two_hp: #print("Kazanan {} {} oyuncusunun gemisi battı".format(first_name, two_name)) kazanan=first_name else: #print("Kazanan {} {} oyuncusunun gemisi battı".format(two_name, first_name)) kazanan=two_name return kazanan def xpfight(): try: loop=0 while True: print(loop) winner=fight() connect=sql.connect("C:\\Users\path\PycharmProjects\pythonProject\dosya\\denemetaban.db") cursor=connect.cursor() cursor.execute("SELECT xp,sunk,money FROM players WHERE username='{}'".format(winner)) data=cursor.fetchall() xp=int(data[0][0]) + random.randint(1000, 1400) sunk=int(data[0][1]) + 1 money=data[0][2] + random.randint(4000, 8000) xp=str(xp) sunk=str(sunk) cursor.execute( "UPDATE players SET xp='{}',sunk='{}',money={} WHERE username='{}'".format(xp, sunk, money, winner)) connect.commit() loop+=1 except KeyboardInterrupt: print("you are not allowed to quit right now") exit() def GetMoney(a=0,b=0): x=a;xx=b loop=0 while True: for i in range(len(server_list)): print(loop) connect=sql.connect("C:\\Users\path\PycharmProjects\pythonProject\dosya\\denemetaban.db") cursor=connect.cursor() cursor.execute("SELECT level,cannon1,cannon2,cannon3,username,xp,money,npcsunk FROM players WHERE id={}".format(server_list[i])) data=cursor.fetchall() level=(data[0][0]) cannon1=data[0][1] cannon2=data[0][2] cannon3=data[0][3] playername=data[0][4] playerxp=int(data[0][5]) money=int(data[0][6]) npcsunk=int(data[0][7]) playerhp=10000 power=((int(cannon1)*kartopu_power*_35power+int(cannon2)*kartopu_power*_25power+int(cannon3)*kartopu_power*_15power)) npc_name=npc_list[0][0] npc_hp=int(npc_list[0][1]) npc_power=140 npc_prize=int(npc_list[0][2]) npc_xp=int(npc_list[0][3]) a=6 b=5 while True: if playerhp > 0 and npc_hp > 0: if a % 6 == 0: time.sleep(x) if npc_hp <= power: #print("{} Oyuncusu {} vurdu rakip battı".format(playername, npc_hp)) npc_hp=0 break #print("{} Oyuncusu {} vurdu".format(playername, power)) npc_hp-=int(power) #print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(playername, playerhp, npc_name,npc_hp)) time.sleep(x) if b % 5 == 0: if playerhp <= npc_power: #print("{} Oyuncusu {} vurdu rakip battı".format(npc_name, playerhp)) playerhp=0 break #print("{} Oyuncusu {} vurdu".format(npc_name, npc_power)) playerhp-=int(npc_power) #print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(playername, playerhp, npc_name,npc_hp)) time.sleep(xx) a+=1 b+=1 else: time.sleep(xx) a+=1 b+=1 else: break if playerhp >= npc_hp: playerxp+=npc_xp money+=npc_prize npcsunk+=1 #print("Kazanan {} {} oyuncusunun gemisi battı".format(playername, npc_name)) cursor.execute("UPDATE players SET money={},xp={},npcsunk={} WHERE username='{}'".format(money,playerxp,npcsunk,playername)) connect.commit() else: print("Kazanan {} {} oyuncusunun gemisi battı".format(npc_name, playername)) loop+=1 i=0 def Event(a=0,b=0): x=a;xx=b loop=0 try: while True: npc_list=server.Npc() print(loop) connect=sql.connect("C:\\Users\path\PycharmProjects\pythonProject\dosya\\denemetaban.db") cursor=connect.cursor() cursor.execute( "SELECT level,cannon1,cannon2,cannon3,username,xp,money,npcsunk FROM players WHERE id={}".format( random.choice(server_list))) data=cursor.fetchall() level=(data[0][0]) cannon1=data[0][1] cannon2=data[0][2] cannon3=data[0][3] playername=data[0][4] playerxp=int(data[0][5]) money=int(data[0][6]) npcsunk=int(data[0][7]) playerhp=10000 power=((int(cannon1) * kartopu_power * _35power + int(cannon2) * kartopu_power * _25power + int( cannon3) * kartopu_power * _15power)) npc_name=npc_list[9][0] npc_hp=int(npc_list[9][1]) npc_power=4200 npc_prize=int(npc_list[9][2]) npc_xp=int(npc_list[9][3]) a=6 b=5 while True: if playerhp > 0 and npc_hp > 0: if a % 6 == 0: time.sleep(x) if npc_hp <= power: # print("{} Oyuncusu {} vurdu rakip battı".format(playername, npc_hp)) npc_hp=0 break # print("{} Oyuncusu {} vurdu".format(playername, power)) npc_hp-=int(power) # print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(playername, playerhp, npc_name,npc_hp)) time.sleep(x) if b % 5 == 0: if playerhp <= npc_power: # print("{} Oyuncusu {} vurdu rakip battı".format(npc_name, playerhp)) playerhp=0 break # print("{} Oyuncusu {} vurdu".format(npc_name, npc_power)) playerhp-=int(npc_power) # print("{} oyuncusunun canı {}, {} oyuncusunun canı {}".format(playername, playerhp, npc_name,npc_hp)) time.sleep(xx) a+=1 b+=1 else: time.sleep(xx) a+=1 b+=1 else: break if playerhp >= npc_hp: playerxp+=npc_xp money+=npc_prize npcsunk+=1 print("Etkinliği Kazanan {} {} gemisi battı.{} {} altın ve {} xp kazandı".format(playername, npc_name, playername, npc_prize, npc_xp)) cursor.execute( "UPDATE players SET money={},xp={},npcsunk={} WHERE username='{}'".format(money, playerxp, npcsunk, playername)) connect.commit() quit() else: npc_hp=npc_hp print("Kazanan {} {} oyuncusunun gemisi battı".format(npc_name, playername)) cursor.execute("UPDATE npc SET hp={} WHERE npc='{}'".format(npc_hp, npc_name)) connect.commit() loop+=1 except KeyboardInterrupt: quit()
zeminkat/Game
savas.py
savas.py
py
11,157
python
en
code
0
github-code
6
71174596349
from __future__ import unicode_literals import re import os import io import sys PY3 = sys.version_info.major > 2 try: from urllib.parse import quote # py3 from urllib.request import urlopen from urllib.error import HTTPError, URLError except ImportError: # py2 from urllib import quote from urllib2 import urlopen, HTTPError, URLError import logging from collections import namedtuple from wx import GetTranslation as _ try: from html import escape # py3 except ImportError: from cgi import escape # py2 from abc_character_encoding import abc_text_to_unicode if PY3: unichr = chr # this file contains many regular expression patterns # for understanding these regular expressions: # https://regex101.com/#python # http://abcnotation.com/wiki/abc:standard:v2.1#information_field_definition # keyword | name |file header | tune header | tune body | inline | type abc_keywords = """\ A:|area |yes |yes |no |no |string B:|book |yes |yes |no |no |string C:|composer |yes |yes |no |no |string D:|discography |yes |yes |no |no |string F:|file url |yes |yes |no |no |string G:|group |yes |yes |no |no |string H:|history |yes |yes |no |no |string I:|instruction |yes |yes |yes |yes |instruction K:|key |no |last |yes |yes |instruction L:|unit note length |yes |yes |yes |yes |instruction M:|meter |yes |yes |yes |yes |instruction m:|macro |yes |yes |yes |yes |instruction N:|notes |yes |yes |yes |yes |string O:|origin |yes |yes |no |no |string P:|parts |no |yes |yes |yes |instruction Q:|tempo |no |yes |yes |yes |instruction R:|rhythm |yes |yes |yes |yes |string r:|remark |yes |yes |yes |yes |string S:|source |yes |yes |no |no |string s:|symbol line |no |no |yes |no |instruction T:|tune title |no |second |yes |no |string U:|user defined |yes |yes |yes |yes |instruction V:|voice |no |yes |yes |yes |instruction W:|words (at the end) |no |yes |yes |no |string w:|words (note aligned) |no |no |yes |no |string X:|reference number |no |first |no |no |instruction Z:|transcription |yes |yes |no |no |string """ clef_name_pattern = 'treble|bass3|bass|tenor|auto|baritone|soprano|mezzosoprano|alto2|alto1|alto|perc|none|C[1-5]|F[1-5]|G[1-5]' simple_note_pattern = "[a-gA-G][',]*" clef_pattern = ' *?(?P<clef>(?: (?P<clefprefix>(?:clef=)?)(?P<clefname>{1})(?P<stafftranspose>(?:[+^_-]8)?))?) *?(?P<octave>(?: octave=-?\d+)?) *?(?P<stafflines>(?: stafflines=\d+)?) *?(?P<playtranspose>(?: transpose=-?\d+)?) *?(?P<score>(?: score={0}{0})?) *?(?P<sound>(?: sound={0}{0})?) *?(?P<shift>(?: shift={0}{0})?) *?(?P<instrument>(?: instrument={0}(?:/{0})?)?)'.format(simple_note_pattern, clef_name_pattern) key_ladder = 'Fb Cb Gb Db Ab Eb Bb F C G D A E B F# C# G# D# A# E# B#'.split(' ') whitespace_chars = u' \r\n\t' abc_inner_pattern = { 'K:': r' ?(?:(?P<tonic>(?:[A-G][b#]?|none)) ??(?P<mode>(?:[MmDdPpLl][A-Za-z]*)?)(?P<accidentals>(?: +(?P<accidental>_{1,2}|=|\^{1,2})(?P<note>[a-g]))*)'+clef_pattern+')?', 'Q:': r'(?P<pre_text>(?: ?"(?P<pre_name>(?:\\"|[^"])*)")?)(?P<metronome>(?: ?(?P<note1>\d+/\d+) ?(?P<note2>\d+/\d+)? ?(?P<note3>\d+/\d+)? ?(?P<note4>\d+/\d+)?=(?P<bpm>\d+))?)(?P<post_text>(?: ?"(?P<post_name>\w*)")?)', 'V:': r' ?(?P<name>\w+)' + clef_pattern } name_to_display_text = { 'staves' : _('Staff layout' ), 'area' : _('Area' ), 'book' : _('Book' ), 'composer' : _('Composer' ), 'discography' : _('Discography' ), 'file url' : _('File url' ), 'group' : _('Group' ), 'history' : _('History' ), 'instruction' : _('Instruction' ), 'key' : _('Key' ), 'unit note length' : _('Unit note length' ), 'meter' : _('Meter' ), 'macro' : _('Macro' ), 'notes' : _('Notes' ), 'origin' : _('Origin' ), 'parts' : _('Parts' ), 'tempo' : _('Tempo' ), 'rhythm' : _('Rhythm' ), 'remark' : _('Remark' ), 'source' : _('Source' ), 'symbol line' : _('Symbol line' ), 'tune title' : _('Tune title' ), 'user defined' : _('User defined' ), 'voice' : _('Voice' ), 'words (note aligned)' : _('Words (note aligned)'), 'words (at the end)' : _('Words (at the end)'), 'reference number' : _('Reference number' ), 'transcription' : _('Transcription' ), } def enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) if PY3: return type('Enum', (), enums) else: return type(b'Enum', (), enums) TuneScope = enum('FullText', 'SelectedText', 'SelectedLines', 'TuneHeader', 'TuneBody', 'Tune', 'TuneUpToSelection', 'BodyUpToSelection', 'BodyAfterSelection', 'LineUpToSelection', 'FileHeader', 'PreviousLine', 'MatchText', 'InnerText', 'PreviousCharacter', 'NextCharacter') TuneScopeInfo = namedtuple('TuneScopeInfo', 'text start stop encoded_text') InnerMatch = namedtuple('InnerMatch', 'match offset') class ValueDescription(object): def __init__(self, value, description, common=True, show_value=False, alternate_values=None): super(ValueDescription, self).__init__() self.value = value self.description = description self.show_value = show_value self.common = common self.alternate_values = alternate_values or [] class CodeDescription(ValueDescription): def __init__(self, value, description, common=True, alternate_values=None): super(CodeDescription, self).__init__(value, description, common=common, show_value=True, alternate_values=alternate_values) class ValueImageDescription(ValueDescription): def __init__(self, value, image_name, description, common=True, show_value=False): super(ValueImageDescription, self).__init__(value, description, common=common, show_value=show_value) self.image_name = image_name class CodeImageDescription(ValueImageDescription): def __init__(self, value, image_name, description, common=True): super(CodeImageDescription, self).__init__(value, image_name, description, common=common, show_value=True) decoration_aliases = { '!>!' : '!accent!', '!^!' : '!marcato!', '!emphasis!': '!accent!', '!<(!' : '!crescendo(!', '!<)!' : '!crescendo)!', '!>(!' : '!diminuendo(!', '!>)!' : '!diminuendo)!', '!+!' : '!plus!', } decoration_to_description = { '.' : _('staccato mark'), '~' : _('Irish roll'), 'H' : _('fermata'), 'L' : _('accent or emphasis'), 'M' : _('lowermordent'), 'O' : _('coda'), 'P' : _('uppermordent'), 'S' : _('segno'), 'T' : _('trill'), 'u' : _('down-bow'), 'v' : _('up-bow'), '!trill!' : _('trill'), '!trill(!' : _('start of an extended trill'), '!trill)!' : _('end of an extended trill'), '!lowermordent!' : _('lower mordent'), '!uppermordent!' : _('upper mordent'), '!mordent!' : _('mordent'), '!pralltriller!' : _('pralltriller'), '!roll!' : _('Irish roll'), '!turn!' : _('turn or gruppetto'), '!turnx!' : _('a turn mark with a line through it'), '!invertedturn!' : _('an inverted turn mark'), '!invertedturnx!' : _('an inverted turn mark with a line through it'), '!arpeggio!' : _('arpeggio'), '!>!' : _('accent or emphasis'), '!accent!' : _('accent or emphasis'), '!emphasis!' : _('accent or emphasis'), '!^!' : _('marcato'), '!marcato!' : _('marcato'), '!fermata!' : _('fermata or hold'), '!invertedfermata!': _('upside down fermata'), '!tenuto!' : _('tenuto'), '!0!' : _('no finger'), '!1!' : _('thumb'), '!2!' : _('index finger'), '!3!' : _('middle finger'), '!4!' : _('ring finger'), '!5!' : _('little finger'), '!+!' : _('left-hand pizzicato'), '!plus!' : _('left-hand pizzicato'), '!snap!' : _('snap-pizzicato'), '!slide!' : _('slide up to a note'), '!wedge!' : _('staccatissimo or spiccato'), '!upbow!' : _('up-bow'), '!downbow!' : _('down-bow'), '!open!' : _('open string or harmonic'), '!thumb!' : _('cello thumb symbol'), '!breath!' : _('breath mark'), '!pppp!' : _('pianissimo possibile'), '!ppp!' : _('pianississimo'), '!pp!' : _('pianissimo'), '!p!' : _('piano'), '!mp!' : _('mezzopiano'), '!mf!' : _('mezzoforte'), '!f!' : _('forte'), '!ff!' : _('fortissimo'), '!fff!' : _('fortississimo'), '!ffff!' : _('fortissimo possibile'), '!sfz!' : _('sforzando'), '!crescendo(!' : _('start of a < crescendo mark'), '!<(!' : _('start of a < crescendo mark'), '!crescendo)!' : _('end of a < crescendo mark'), '!<)!' : _('end of a < crescendo mark'), '!diminuendo(!' : _('start of a > diminuendo mark'), '!>(!' : _('start of a > diminuendo mark'), '!diminuendo)!' : _('end of a > diminuendo mark'), '!>)!' : _('end of a > diminuendo mark'), '!segno!' : _('segno'), '!coda!' : _('coda'), '!D.S.!' : _('the letters D.S. (=Da Segno)'), '!D.C.!' : _('the letters D.C. (=either Da Coda or Da Capo)'), '!dacoda!' : _('the word "Da" followed by a Coda sign'), '!dacapo!' : _('the words "Da Capo"'), '!D.C.alcoda!' : _('the words "D.C. al Coda"'), '!D.C.alfine!' : _('the words "D.C. al Fine"'), '!D.S.alcoda!' : _('the words "D.S. al Coda"'), '!D.S.alfine!' : _('the words "D.S. al Fine"'), '!fine!' : _('the word "fine"'), '!shortphrase!' : _('vertical line on the upper part of the staff'), '!mediumphrase!' : _('vertical line on the upper part of the staff, extending down to the centre line'), '!longphrase!' : _('vertical line on the upper part of the staff, extending 3/4 of the way down'), '!ped!' : _('sustain pedal down'), '!ped-up!' : _('sustain pedal up'), '!editorial!' : _('editorial accidental above note'), '!courtesy!' : _('courtesy accidental between parentheses'), } ABC_TUNE_HEADER_NO = 0 ABC_TUNE_HEADER_FIRST = 1 ABC_TUNE_HEADER_SECOND = 2 ABC_TUNE_HEADER_YES = 3 ABC_TUNE_HEADER_LAST = 4 tune_header_lookup = {'no': ABC_TUNE_HEADER_NO, 'first': ABC_TUNE_HEADER_FIRST, 'second': ABC_TUNE_HEADER_SECOND, 'yes': ABC_TUNE_HEADER_YES, 'last': ABC_TUNE_HEADER_LAST} AbcSection = enum('FileHeader', 'TuneHeader', 'TuneBody', 'OutsideTune') ABC_SECTIONS = [ AbcSection.FileHeader, AbcSection.TuneHeader, AbcSection.TuneBody, AbcSection.OutsideTune ] chord_notes = { '' : ( 0, 4, 7 ), # 'Major' 'm' : ( 0, 3, 7 ), # 'Minor' 'dim' : ( 0, 3, 6 ), # 'Diminished' '+' : ( 0, 4, 8 ), # 'Augmented' 'sus' : ( 0, 5, 7 ), # 'Suspended' 'sus2' : ( 0, 2, 7 ), # 'Suspended (2nd) '7' : ( 0, 4, 7, 10 ), # 'Seventh' 'M7' : ( 0, 4, 7, 11 ), # 'Major seventh' 'mM7' : ( 0, 3, 7, 11 ), # 'Minor-major seventh' 'm7' : ( 0, 3, 7, 10 ), # 'Minor seventh' 'augM7' : ( 0, 4, 8, 11 ), # 'Augmented-major seventh' 'aug7' : ( 0, 4, 8, 10 ), # 'Augmented seventh' '6' : ( 0, 4, 7, 9 ), # 'Major sixth' 'm6' : ( 0, 3, 7, 9 ), # 'Minor sixth' 'm7b5' : ( 0, 3, 6, 10 ), # 'Half-diminished seventh' 'dim7' : ( 0, 3, 6, 9 ), # 'Diminished seventh' '7b5' : ( 0, 4, 6, 10 ), # 'Seventh flat five' '5' : ( 0, 7 ), # 'Power-chord (no third '7sus' : ( 0, 5, 7, 10 ), # 'Seventh suspended' '7sus2' : ( 0, 2, 7, 10 ), # 'Seventh suspended (2nd 'M9' : ( 0, 4, 7, 11, 14 ), # 'Major 9th' '9' : ( 0, 4, 7, 10, 14 ), # 'Dominant 9th' 'mM9' : ( 0, 3, 7, 11, 14 ), # 'Minor Major 9th' 'm9' : ( 0, 3, 7, 10, 14 ), # 'Minor Dominant 9th' '+M9' : ( 0, 4, 8, 11, 14 ), # 'Augmented Major 9th' '+9' : ( 0, 4, 8, 10, 14 ), # 'Augmented Dominant 9th' 'o/9' : ( 0, 3, 6, 10, 14 ), # 'Half-Diminished 9th' 'o/9b' : ( 0, 3, 6, 10, 13 ), # 'Half-Diminished Minor 9th' 'dim9' : ( 0, 3, 6, 9, 14 ), # 'Diminished 9th' 'dim9b' : ( 0, 3, 6, 9, 13 ), # 'Diminished Minor 9th' '11' : ( 0, 4, 7, 10, 14, 17 ), # 'Dominant 11th' } def replace_text(text, replacements): """ :param text: text that requires replacements :param replacements: A sequence of tuples in the form (compiled regular expression object, replacement value) :return: the original text with all replacements applied """ for regex, replace_value in replacements: text = regex.sub(replace_value, text) return text def remove_named_groups(pattern): """ :param pattern: regular expression pattern :return: regular expression pattern where named groups are removed """ return re.sub(r'(?<=\(\?)P<[^>]+>', ':', pattern) def replace_named_group(pattern, old_group, new_group=None): """ :param pattern: regular expression pattern (containing named groups) :param old_group: original groupname :param new_group: desired groupname :return: regular expression pattern where named group old_group is replaced by new_group """ if new_group is None: replace_value = ':' else: replace_value = 'P<{0}>'.format(new_group) return re.sub(r'(?<=\(\?)P<{0}>'.format(old_group), replace_value, pattern) def get_html_from_url(url): result = u'' try: result = urlopen(url).read() except HTTPError as ex: pass except URLError as ex: pass return result class AbcElement(object): """ Base class for each element in abc-code where element is a piece of structured abc-code """ rest_of_line_pattern = r'(?P<inner>.*?)(?:(?<!\\)%.*)?$' def __init__(self, name, keyword=None, display_name=None, description=None, validation_pattern=None): self.name = name self.keyword = keyword if display_name is None: self.__display_name = name_to_display_text.get(name, name[:1].upper() + name[1:]) else: self.__display_name = display_name self.description = description self.mandatory = False self.default = None self.rest_of_line_pattern = AbcElement.rest_of_line_pattern self._search_pattern = {} self._search_re = {} # compiled regex self.params = [] self.validation_pattern = validation_pattern self.__validation_re = None self.supported_values = None self.tune_scope = TuneScope.SelectedLines self.visible_match_group = None self.removable_match_groups = {} @staticmethod def get_inline_pattern(keyword): return r'\[' + re.escape(keyword) + r'([^\]\n\r]*)\]' def freeze(self): for section in ABC_SECTIONS: pattern = self._search_pattern.get(section, None) if pattern is not None: self._search_re[section] = re.compile(pattern) if self.validation_pattern is not None: self.__validation_re = re.compile(self.validation_pattern) @property def valid_sections(self): return [section for section in ABC_SECTIONS if self._search_pattern.get(section) is not None] def matches(self, context): regex = self._search_re.get(context.abc_section, None) if regex is None: return None result = None scope_info = context.get_scope_info(self.tune_scope) encoded_text = scope_info.encoded_text text = scope_info.text p1, p2 = context.get_selection_within_scope(self.tune_scope) if len(text) != len(encoded_text): p1 = len(encoded_text[:p1].decode('utf-8')) p2 = len(encoded_text[:p2].decode('utf-8')) if p1 == p2 and 0 < p1 <= len(text) and text[p1 - 1] not in whitespace_chars: p1 -= 1 for m in regex.finditer(text): if m.start() <= p1 < m.end(): result = m break else: # if p1 > len(text): # print(u'Selection ({0}) past length ({1})'.format(p1, len(text))) for m in regex.finditer(text): if m.start() <= p1 <= p2 <= m.end(): result = m break return result def get_regex_for_section(self, section): return self._search_re.get(section, None) def matches_text(self, context, text): regex = self._search_re.get(context.abc_section, None) if regex is not None: return regex.search(text) return None def replace_text(self, context, text, replace_value): return self._search_re[context.abc_section].sub(replace_value, text) @property def display_name(self): return self.__display_name def get_description_url(self, context): return None def get_header_text(self, context): return self.__display_name def get_description_text(self, context): return self.description def get_description_html(self, context): result = None url = self.get_description_url(context) if url: result = get_html_from_url(url) if not result: result = u'<h1>%s</h1>' % escape(self.get_header_text(context)) description = self.get_description_text(context) if description: result += u'{0}<br>'.format(escape(description)) if self.visible_match_group is not None: # groups = context.current_match.groups() # element_text = context.match_text # if len(groups) == 1 and groups[0]: # element_text = groups[0] element_text = context.get_matchgroup(self.visible_match_group) if element_text: element_text = abc_text_to_unicode(element_text).strip() if element_text: result += u'<code>{0}</code><br>'.format(escape(element_text)) #for matchtext in context.current_match.groups(): # if matchtext: # result += '<code>%s</code><br>' % escape(matchtext) return result def get_inner_element(self, context): return self class CompositeElement(AbcElement): def __init__(self, name, keyword=None, display_name=None, description=None): super(CompositeElement, self).__init__(name, keyword, display_name=display_name, description=description) self._elements = {} def add_element(self, element): if element.keyword: self._elements[element.keyword] = element else: raise Exception('Element has no keyword') def get_element(self, keyword): return self._elements.get(keyword) def get_element_from_context(self, context): inner_text = context.current_match.group(1) if inner_text is None: inner_text = context.current_match.group(2) return self.get_element_from_inner_text(inner_text) def get_element_from_inner_text(self, inner_text): parts = inner_text.split(' ', 1) keyword = parts[0] result = self._elements.get(keyword) if isinstance(result, CompositeElement) and len(parts) > 1: subelement = result.get_element_from_inner_text(parts[1]) if subelement is not None: result = subelement return result def get_header_text(self, context): element = self.get_element_from_context(context) if element: return element.get_header_text(context) return super(CompositeElement, self).get_header_text(context) def get_description_text(self, context): element = self.get_element_from_context(context) if element: return element.get_description_text(context) return super(CompositeElement, self).get_description_text(context) def get_inner_element(self, context): return self.get_element_from_context(context) or self class AbcUnknown(AbcElement): pattern = '' def __init__(self): super(AbcUnknown, self).__init__('Unknown', display_name=_('Unknown')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcUnknown.pattern class AbcInformationField(AbcElement): def __init__(self, keyword, name, file_header, tune_header, tune_body, inline, inner_pattern=None): super(AbcInformationField, self).__init__(name, keyword) self.file_header = file_header self.tune_header = tune_header self.tune_body = tune_body self.inline = inline self.inner_pattern = inner_pattern self.inner_re = None self.visible_match_group = 1 if inner_pattern: self.visible_match_group = 0 line_pattern = r'(?m)^' + re.escape(self.keyword) + self.rest_of_line_pattern if file_header: self._search_pattern[AbcSection.FileHeader] = line_pattern if tune_header in [ABC_TUNE_HEADER_YES, ABC_TUNE_HEADER_FIRST, ABC_TUNE_HEADER_SECOND, ABC_TUNE_HEADER_LAST]: self._search_pattern[AbcSection.TuneHeader] = line_pattern if tune_body or inline: pattern = line_pattern if inline: pattern += '|' + self.get_inline_pattern(keyword) self._search_pattern[AbcSection.TuneBody] = pattern def freeze(self): super(AbcInformationField, self).freeze() if self.inner_pattern: self.inner_re = re.compile(self.inner_pattern) def matches(self, context): match = super(AbcInformationField, self).matches(context) result = match if self.inner_re and match is not None: i = 1 inner_text = match.group(i) if inner_text is None: i += 1 inner_text = match.group(i) m = self.inner_re.search(inner_text) if m: result = (match, InnerMatch(m, match.start(i))) return result class AbcDirective(CompositeElement): def __init__(self): super(AbcDirective, self).__init__('Stylesheet directive', display_name=_('Stylesheet directive'), description=_('A stylesheet directive is a line that starts with %%, followed by a directive that gives instructions to typesetting or player programs.')) pattern = r'(?m)^(?:%%|I:)(?!%)' + self.rest_of_line_pattern + '|' + self.get_inline_pattern('I:') for section in ABC_SECTIONS: self._search_pattern[section] = pattern class AbcStringField(AbcInformationField): def __init__(self, keyword, name, file_header, tune_header, tune_body, inline): super(AbcStringField, self).__init__(name, keyword, file_header, tune_header, tune_body, inline) class AbcInstructionField(AbcInformationField): def __init__(self, keyword, name, file_header, tune_header, tune_body, inline, inner_pattern=None): super(AbcInstructionField, self).__init__(name, keyword, file_header, tune_header, tune_body, inline, inner_pattern) class AbcMidiDirective(CompositeElement): def __init__(self): super(AbcMidiDirective, self).__init__('MIDI directive', 'MIDI', display_name=_('MIDI directive'), description=_('A directive that gives instructions to player programs.')) class AbcMidiProgramDirective(AbcElement): pattern = r'(?m)^(?:%%|I:)MIDI program(?P<channel>(?:\s+\d+(?=\s+\d))?)(?:(?P<instrument>\s*\d*))?' + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiProgramDirective, self).__init__('MIDI_program', display_name=_('Instrument'), description=_('Sets the instrument for a MIDI channel.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiProgramDirective.pattern class AbcMidiChordProgramDirective(AbcElement): pattern = r'(?m)^(?:%%|I:)MIDI chordprog(?:(?P<instrument>\s*\d*))?' + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiChordProgramDirective, self).__init__('MIDI_chordprog', display_name=_('Chord instrument'), description=_('Sets the instrument for playing chords.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiChordProgramDirective.pattern class AbcMidiBaseProgramDirective(AbcElement): pattern = r'(?m)^(?:%%|I:)MIDI bassprog(?:(?P<instrument>\s*\d*))?' + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiBaseProgramDirective, self).__init__('MIDI_bassprog', display_name=_('Bass instrument'), description=_('Sets the instrument for the base.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiBaseProgramDirective.pattern class AbcMidiChannelDirective(AbcElement): pattern = r'(?m)^(?:%%|I:)MIDI channel(?P<channel>\s*\d*)' + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiChannelDirective, self).__init__('MIDI_channel', display_name=_('Channel'), description=_('Sets the MIDI channel for the current voice.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiChannelDirective.pattern class AbcMidiDrumMapDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)(?:MIDI drummap|percmap)\s+(?P<note>[_^]*\w[,']*)\s+(?P<druminstrument>\d+)" + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiDrumMapDirective, self).__init__('MIDI_drummap', display_name=_('Drum mapping'), description=_('Maps a note to an instrument.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiDrumMapDirective.pattern class AbcMidiVolumeDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)MIDI (?:control 7|chordvol|bassvol)\s+(?P<volume>\d*)" + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiVolumeDirective, self).__init__('MIDI_volume', display_name=_('Volume'), description=_('Volume for current voice.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiVolumeDirective.pattern class AbcMidiGuitarChordDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)MIDI gchord (?P<pattern>\w*)" + AbcElement.rest_of_line_pattern def __init__(self): super(AbcMidiGuitarChordDirective, self).__init__('MIDI_gchord', display_name=_('Guitar chords'), description=_('Play guitar chords')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcMidiGuitarChordDirective.pattern class ScoreDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)(?:score|staves)\b"+ AbcElement.rest_of_line_pattern def __init__(self): super(ScoreDirective, self).__init__('score', display_name=_('Score layout'), description=_('Defines which staves are displayed.')) for section in ABC_SECTIONS: self._search_pattern[section] = ScoreDirective.pattern class MeasureNumberDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)(?:measurenb|barnumbers) (?P<interval>-?\d*)"+ AbcElement.rest_of_line_pattern def __init__(self): super(MeasureNumberDirective, self).__init__('measurenb', display_name=_('Measure numbering'), description=_('Defines if and how measures are numbered.')) for section in ABC_SECTIONS: self._search_pattern[section] = MeasureNumberDirective.pattern class HideFieldsDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)writefields\s+(?P<fields>[A-Za-z_]+)\s+(?:0|false)"+ AbcElement.rest_of_line_pattern def __init__(self): super(HideFieldsDirective, self).__init__('hide_fields', display_name=_('Hide fields'), description=_('Defines which fields should be hidden.')) for section in ABC_SECTIONS: self._search_pattern[section] = HideFieldsDirective.pattern class ShowFieldsDirective(AbcElement): pattern = r"(?m)^(?:%%|I:)writefields\s+(?P<fields>[A-Za-z]+)"+ AbcElement.rest_of_line_pattern def __init__(self): super(ShowFieldsDirective, self).__init__('show_fields', display_name=_('Show fields'), description=_('Defines which fields should be shown.')) for section in ABC_SECTIONS: self._search_pattern[section] = ShowFieldsDirective.pattern class Abcm2psDirective(AbcElement): """ Elements defined by abcm2ps """ anchor_replacement = (re.compile('<a (?:href|name)="[^"]*">|</a>', re.IGNORECASE), '') table_replacement = (re.compile('<table>.*?</table>', re.IGNORECASE | re.DOTALL), '') def __init__(self, keyword, name, description=None): super(Abcm2psDirective, self).__init__(keyword, name, description=description) self.html_replacements = [ Abcm2psDirective.anchor_replacement, Abcm2psDirective.table_replacement ] def get_description_url(self, context): return 'http://moinejf.free.fr/abcm2ps-doc/%s.xhtml' % quote(self.name) def get_html_from_url(self, url): result = get_html_from_url(url) result = replace_text(result, self.html_replacements) return result class AbcVersionDirective(AbcElement): pattern = r'^%abc-(?P<version>[\d\.]+)' def __init__(self): super(AbcVersionDirective, self).__init__('abcversion', display_name=_('ABC version'), description=_('It starts with the version of the ABC specification this file conforms to.')) self._search_pattern[AbcSection.FileHeader] = AbcVersionDirective.pattern class AbcComment(AbcElement): #pattern = r'(?<!\\|^)%\s*(.*)|^%(?!%)\s*(.*)$' pattern = r'(?<!\\)%\s*(.*)$' def __init__(self): super(AbcComment, self).__init__('Comment', '%', display_name=_('Comment')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcComment.pattern self.visible_match_group = 1 def get_header_text(self, context): if context.match_text and context.match_text.startswith('%%'): return _('Stylesheet directive') else: return super(AbcComment, self).get_header_text(context) def get_description_text(self, context): if context.match_text and context.match_text.startswith('%%'): return _('A stylesheet directive is a line that starts with %%, followed by a directive that gives instructions to typesetting or player programs.') else: return super(AbcComment, self).get_description_text(context) def remove_comments(self, abc): return self._search_re[AbcSection.TuneBody].sub('', abc) class AbcBeam(AbcElement): pattern = r'`+' def __init__(self): super(AbcBeam, self).__init__('Beam', '`', display_name=_('Beam'), description=_('Back quotes ` may be used freely between notes to be beamed, to increase legibility.')) self._search_pattern[AbcSection.TuneBody] = AbcBeam.pattern class AbcEmptyDocument(AbcElement): pattern = r'^$' def __init__(self): super(AbcEmptyDocument, self).__init__('empty_document', display_name=_('Welcome to EasyABC'), description=_('Creating an abc-file from scratch can be difficult. This assist panel tries to help by providing hints and actions. But remember, typing is usually faster.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcEmptyLine.pattern self.tune_scope = TuneScope.FullText def matches(self, context): if context.contains_text: return None else: regex = self._search_re.get(context.abc_section, None) return regex.match('') class AbcEmptyLine(AbcElement): pattern = r'^\s*$' def __init__(self): super(AbcEmptyLine, self).__init__('empty_line', display_name=_('Empty line'), description=_('An empty line separates tunes.')) for section in ABC_SECTIONS: self._search_pattern[section] = AbcEmptyLine.pattern class AbcEmptyLineWithinTuneHeader(AbcElement): def __init__(self): super(AbcEmptyLineWithinTuneHeader, self).__init__('empty_line_header', display_name=_('Empty line in header'), description=_('More directives can be added here in the tune header. After K: the music code begins.')) self._search_pattern[AbcSection.TuneHeader] = AbcEmptyLine.pattern class AbcEmptyLineWithinTuneBody(AbcElement): def __init__(self): super(AbcEmptyLineWithinTuneBody, self).__init__('empty_line_tune', display_name=_('Empty line'), description=_('Notes, rests, or directives can be added.')) self._search_pattern[AbcSection.TuneBody] = AbcEmptyLine.pattern class AbcEmptyLineWithinFileHeader(AbcElement): def __init__(self): super(AbcEmptyLineWithinFileHeader, self).__init__('empty_line_file_header', display_name=_('File header'), description=_('Everything above the first X: is the file header. The directives here apply to all the tunes that follow.')) self._search_pattern[AbcSection.FileHeader] = AbcEmptyLine.pattern class AbcBodyElement(AbcElement): def __init__(self, name, pattern, display_name=None, description=None): super(AbcBodyElement, self).__init__(name, display_name=display_name, description=description) self._search_pattern[AbcSection.TuneBody] = pattern self.pattern = pattern class AbcSpace(AbcBodyElement): pattern = r'\s+' def __init__(self): super(AbcSpace, self).__init__('Whitespace', AbcSpace.pattern, display_name=_('Whitespace'), description=_('Space is used to improve legibility and to prevent notes from sharing the same beam.')) class AbcAnnotation(AbcBodyElement): pattern = r'(?P<annotation>"(?P<pos>[\^_<>@])(?P<text>(?:\\"|[^"])*)")' def __init__(self): super(AbcAnnotation, self).__init__('Annotation', AbcAnnotation.pattern, display_name=_('Annotation')) self.visible_match_group = 'text' class AbcChordOrAnnotation(AbcBodyElement): pattern = r'"(?P<pos>[\^_<>@])?(?P<text>(?:\\"|[^"])*)"' def __init__(self): super(AbcChordOrAnnotation, self).__init__('Chord or annotation', AbcChordOrAnnotation.pattern, display_name=_('Chord symbol or annotation')) class AbcSlur(AbcBodyElement): pattern = r'(?P<dash>\.?)\((?!\d)|\)' def __init__(self): super(AbcSlur, self).__init__('Slur', AbcSlur.pattern, display_name=_('Slur')) class TypesettingSpace(AbcBodyElement): pattern = 'y' def __init__(self): super(TypesettingSpace, self).__init__('Typesetting extra space', TypesettingSpace.pattern, display_name=_('Typesetting extra space'), description=_('y can be used to add extra space between the surrounding notes; moreover, chord symbols and decorations can be attached to it, to separate them from notes.')) class RedefinableSymbol(AbcBodyElement): pattern = '[H-Wh-w~]' def __init__(self): super(RedefinableSymbol, self).__init__('Redefinable symbol', RedefinableSymbol.pattern, display_name=_('Redefinable symbol'), description=_('The letters H-W and h-w and the symbol ~ can be assigned with the U: field to provide a shortcut for the !symbol! syntax. For example, to assign the letter T to represent the trill, you can write: U: T = !trill!')) class AbcDecoration(AbcBodyElement): pattern = r"!([^!]+)!|\+([^!]+)\+|\." values = decoration_to_description def __init__(self, name=None, subset=None, display_name=None): if name is None: name = 'Decoration' if subset is None: pattern = AbcDecoration.pattern else: with_exclamation = '|'.join(re.escape(value[1:-1]) for value in subset if value[0] == '!') without_exclamation = '|'.join(re.escape(value) for value in subset if value[0] != '!') if without_exclamation: without_exclamation = '|' + without_exclamation pattern = r'(?P<decoration>(?P<decomark>\+|!)(?P<deconame>{0})(?P=decomark){1})'.format(with_exclamation, without_exclamation) super(AbcDecoration, self).__init__(name, pattern, display_name=display_name) def get_description_html(self, context): html = super(AbcDecoration, self).get_description_html(context) html += '<br>' symbol = context.match_text if symbol and symbol[0] == symbol[-1] == '+': # convert old notation to new symbol = '!%s!' % symbol[1:-1] html += escape(decoration_to_description.get(symbol, _('Unknown symbol'))) html += '<br>' return html class AbcDynamicsDecoration(AbcDecoration): values = [ '!ffff!', '!fff!', '!ff!', '!f!', '!mf!', '!mp!', '!p!', '!pp!', '!ppp!', '!pppp!', '!sfz!', '!crescendo(!', '!<(!', '!crescendo)!', '!<)!', '!diminuendo(!', '!>(!', '!diminuendo)!', '!>)!' ] def __init__(self): super(AbcDynamicsDecoration, self).__init__('Dynamics', AbcDynamicsDecoration.values, display_name=_('Dynamics')) class AbcFingeringDecoration(AbcDecoration): values = ['!0!', '!1!', '!2!', '!3!', '!4!', '!5!'] def __init__(self): super(AbcFingeringDecoration, self).__init__('Fingering', AbcFingeringDecoration.values, display_name=_('Fingering')) class AbcOrnamentDecoration(AbcDecoration): values = [ '!trill!', '!trill(!', '!trill)!', '!mordent!', #'!lowermordent!', '!pralltriller!', #'!uppermordent!', '!roll!', '!turn!', '!turnx!', '!invertedturn!', '!invertedturnx!', '!arpeggio!' ] def __init__(self): super(AbcOrnamentDecoration, self).__init__('Ornament', AbcOrnamentDecoration.values, display_name=_('Ornament')) class AbcDirectionDecoration(AbcDecoration): values = [ '!segno!', '!coda!', '!D.S.!', '!D.C.!', '!dacoda!', '!dacapo!', '!D.C.alcoda!', '!D.C.alfine!', '!D.S.alcoda!', '!D.S.alfine!', '!fine!' ] def __init__(self): super(AbcDirectionDecoration, self).__init__('Direction', AbcDirectionDecoration.values, display_name=_('Direction')) class AbcArticulationDecoration(AbcDecoration): values = [ '.', '!tenuto!', '!accent!', '!>!', '!emphasis!', '!marcato!', '!^!', '!wedge!', '!invertedfermata!', '!fermata!', '!plus!', '!+!', '!snap!', '!slide!', '!upbow!', '!downbow!', '!open!', '!thumb!', '!breath!', '!ped!', '!ped-up!', ] def __init__(self): super(AbcArticulationDecoration, self).__init__('Articulation', AbcArticulationDecoration.values, display_name=_('Articulation')) class AbcBrokenRhythm(AbcBodyElement): pattern = r'\<+|\>+' def __init__(self): super(AbcBrokenRhythm, self).__init__('Broken rhythm', AbcBrokenRhythm.pattern) def get_description_html(self, context): html = super(AbcBrokenRhythm, self).get_description_html(context) if '>' in context.match_text: html += 'The previous note is dotted, the next note halved' else: # if '<' in context.match_text: html += 'The previous note is halved, the next dotted' return html class AbcTuplet(AbcBodyElement): pattern = r"\([1-9](?:\:[1-9]?)?(?:\:[1-9]?)?" def __init__(self): super(AbcTuplet, self).__init__('Tuplet', AbcTuplet.pattern, display_name=_('Tuplet'), description=_('Duplets, triplets, quadruplets, etc.')) class AbcBar(AbcBodyElement): pattern = r"(?:\.?\|\||:*\|\]|\[\|:*|::|:+\||\|:+|\.?\||\[\|\])[1-9]?" def __init__(self): super(AbcBar, self).__init__('Bar', AbcBar.pattern, display_name=_('Bar'), description=_('Separates measures.')) class AbcVariantEnding(AbcBodyElement): pattern = r'\[[1-9](?:[,-][1-9])*|\|[1-9]' def __init__(self): super(AbcVariantEnding, self).__init__('Variant ending', AbcVariantEnding.pattern, display_name=_('Variant ending'), description=_('To play a different ending each time')) class AbcVoiceOverlay(AbcBodyElement): pattern = '&' def __init__(self): super(AbcVoiceOverlay, self).__init__('Voice overlay', AbcVoiceOverlay.pattern, display_name=_('Voice overlay'), description=_("The & operator may be used to temporarily overlay several voices within one measure. Each & operator sets the time point of the music back by one bar line, and the notes which follow it form a temporary voice in parallel with the preceding one. This may only be used to add one complete bar's worth of music for each &. ")) class AbcInvalidCharacter(AbcBodyElement): pattern = r'[^\d\w\s%s]' % re.escape('!"#$%&\'()*+,-./:;<=>?@[\]^_`{|}~') def __init__(self): super(AbcInvalidCharacter, self).__init__('Invalid character', AbcInvalidCharacter.pattern, display_name=_('Invalid character'), description=_("This character is not allowed within the body of an abc tune.")) class AbcChordSymbol(AbcBodyElement): basic_pattern = r'(?P<chordsymbol>"(?P<chordname>[^\^_<>@"\\](?:[^"\\]|\\.)*)")' #pattern = ur'(?P<chordsymbol>"(?P<chordnote>[A-G][b#\u266D\u266E\u266F]?)(?P<quality>[^/\d]*)(?P<th>2|4|5|6|7|9|11|13)?(?P<sus>sus[2|4|9]?)?(?P<additional>.*?)(?P<bassnote>(?:/[A-Ga-g][b#\u266D\u266E\u266F]?)?)")' pattern = r'"(?P<chordsymbol>(?P<chordnote>(?:[A-G][b#\u266D\u266E\u266F]?)?)(?P<chordname>.*?)(?P<bassnote>(?:/[A-Ga-g][b#\u266D\u266E\u266F]?)?))"' def __init__(self): super(AbcChordSymbol, self).__init__('Chord symbol', AbcChordSymbol.pattern, display_name=_('Chord symbol')) class AbcBaseNote(AbcBodyElement): accidental_pattern = r'(?P<accidental>(?:[_^](?:3/2?|1?/2?)|\^{1,2}|_{1,2}|=)?)?' length_pattern = r'(?P<length>\d{0,3}(?:/\d{0,3})*)' octave_pattern = r"(?P<octave>[',]*)" pair_pattern = r'(?P<pair>(?:\s*>+|\s*<+)?)' tie_pattern = r'(?P<tie>-?)' basic_note_pattern_without_len = r'{0}(?P<note>[A-Ga-g]){1}'.format(accidental_pattern, octave_pattern) basic_note_pattern = basic_note_pattern_without_len + length_pattern basic_rest_pattern_without_len = '(?P<rest>[zx])' basic_rest_pattern = basic_rest_pattern_without_len + length_pattern basic_note_or_rest_pattern = '(?:{0}|{1})'.format(basic_note_pattern_without_len, basic_rest_pattern_without_len) + length_pattern basic_measure_rest_pattern = '(?P<rest>[ZX])(?P<length>(?:[1-9][0-9]*)?)' def __init__(self, name, pattern, display_name=None, description=None): super(AbcBaseNote, self).__init__(name, pattern, display_name=display_name, description=description) class AbcGraceNotes(AbcBaseNote): pattern = r'(?P<grace>{(?P<acciaccatura>/?)(?P<gracenote>[^}]*)})' def __init__(self): super(AbcBaseNote, self).__init__('Grace notes', AbcGraceNotes.pattern, display_name=_('Grace notes')) self.visible_match_group = 'gracenote' class AbcNoteGroup(AbcBaseNote): note_group_pattern_prefix = r'(?P<gracenotes>{0}?)(?P<chordsymbols>{1}?)(?P<decoanno>(?P<decorations>{2})|(?P<annotations>{3})*)'.format( AbcGraceNotes.pattern, AbcChordSymbol.basic_pattern, AbcDecoration.pattern, AbcAnnotation.pattern) note_group_pattern_postfix = AbcBaseNote.pair_pattern + AbcBaseNote.tie_pattern note_pattern = note_group_pattern_prefix + AbcBaseNote.basic_note_pattern + note_group_pattern_postfix normal_rest_pattern = note_group_pattern_prefix + AbcBaseNote.basic_rest_pattern + AbcBaseNote.pair_pattern note_or_rest_pattern = note_group_pattern_prefix + AbcBaseNote.basic_note_or_rest_pattern chord_pattern = r'(?P<chord>{0}\[(?:{1}\s*)*\])'.format(note_group_pattern_prefix, remove_named_groups(note_or_rest_pattern)) + AbcBaseNote.length_pattern + note_group_pattern_postfix note_or_chord_pattern = r'({0}|{1})'.format(remove_named_groups(note_or_rest_pattern), remove_named_groups(chord_pattern)) + note_group_pattern_postfix def __init__(self): super(AbcNoteGroup, self).__init__('Note group', AbcNoteGroup.note_or_chord_pattern, display_name=_('Note group')) # '^{0}$'.format(AbcNoteGroup.pattern)) #self.exact_match_required = True self.visible_match_group = 1 class AbcNoteOrChord(AbcBaseNote): pattern = AbcNoteGroup.note_or_chord_pattern def __init__(self): super(AbcBaseNote, self).__init__('Note or chord', AbcNoteOrChord.pattern, display_name=_('Note or chord')) class AbcChord(AbcBaseNote): pattern = AbcNoteGroup.chord_pattern def __init__(self): super(AbcBaseNote, self).__init__('Chord', AbcChord.pattern, display_name=_('Chord')) self.visible_match_group = 'chord' class AbcNote(AbcBaseNote): pattern = AbcNoteGroup.note_pattern def __init__(self): super(AbcNote, self).__init__('Note', '({0})'.format(AbcNote.pattern), display_name=_('Note')) self.removable_match_groups = { 'grace': _('Grace notes'), 'chordsymbol': _('Chord symbol'), 'annotations': _('Annotation') } self.visible_match_group = 1 class AbcNormalRest(AbcBaseNote): pattern = AbcNoteGroup.normal_rest_pattern def __init__(self): super(AbcNormalRest, self).__init__('Rest', AbcNormalRest.pattern, display_name=_('Rest')) self.visible_match_group = 0 class AbcMeasureRest(AbcBaseNote): pattern = AbcBaseNote.basic_measure_rest_pattern def __init__(self): super(AbcMeasureRest, self).__init__('Measure rest', AbcMeasureRest.pattern, display_name=_('Measure rest')) # _('This rest spans one or more measures.') self.visible_match_group = 0 class AbcMultipleNotesAndChords(AbcBaseNote): pattern = '(?:' + AbcNoteGroup.note_or_chord_pattern + '[ `]*){2,}' def __init__(self): super(AbcMultipleNotesAndChords, self).__init__('Multiple notes/chords', '^{0}$'.format(AbcMultipleNotesAndChords.pattern), display_name=_('Multiple notes/chords')) self.tune_scope = TuneScope.SelectedText # a line always contains multiple notes so limit to selected text class AbcMultipleNotes(AbcBaseNote): pattern = '(?:' + AbcNoteGroup.note_or_rest_pattern + '[ `]*){2,}' def __init__(self): super(AbcMultipleNotes, self).__init__('Multiple notes', '^{0}$'.format(AbcMultipleNotes.pattern), display_name=_('Multiple notes')) self.tune_scope = TuneScope.SelectedText # a line always contains multiple notes so limit to selected text class AbcBackslash(AbcBodyElement): pattern = r'\\[ \t]*$' def __init__(self): super(AbcBackslash, self).__init__('Backslash', AbcBackslash.pattern, display_name=_('Backslash'), description=_('In abc music code, by default, line-breaks in the code generate line-breaks in the typeset score and these can be suppressed by using a backslash.')) class AbcStructure(object): # static variables replace_regexes = None valid_directive_re = None from_to_directive_re = None abc_field_re = None @staticmethod def get_sections(cwd): # [1.3.6.2 [JWDJ] bugfix This fixes 'str>ng' in Fields and Command Reference reference_content = io.open(os.path.join(cwd, 'reference.txt'), 'rU', encoding='latin-1').read() if AbcStructure.replace_regexes is None: AbcStructure.replace_regexes = [ (re.compile(r'\bh((?:bass/chord|length|logical|string|int|fl-?\n?oat\s?|command|str|text|vol|h|n|char|clef|bass|chord)\d*\s?(?: (?:string|int|float)\d*?)*)i\b'), r'<\1>'), # enclose types with < and > (re.compile(r'\[((?:bass/chord|length|logical|string|int|float|command|str|text|vol)\d*)\]'), r'<\1>'), # replace types enclosed [ and ] with < and > (re.compile(r'(?m)\b(?<![- ])1\d\d[\s\n]+[A-Z]+[A-Z\s\.&]+$'), ''), # strip left page header (re.compile(r'\bA\.\d+\.[\s\n]+[A-Z &]*1\d\d\b'), ''), # strip right page header (re.compile(r'[\.,;]\s[\w\n\s]+Section\s(\d\.|[\d\w\s&:])*\.'), '.'), # removes references to sections (re.compile(r' as was seen in Section \d+(\.\d+)*\.'), '.'), # removes references to sections (re.compile(r'(?m)^(\w:)\s+((?:[a-z]+\s(?:in|of)\s)?(?:header(?:,\s?body)?|body))\s+(.*)$'), r'\1 \3 (\2)'), # places where-field at the end of description (re.compile(r'\bh(\d+-\d+)i\b'), '(\1)') # fix midi numbers (0-127) ] AbcStructure.valid_directive_re = re.compile(r'^%%\w+(\s[^:\n]*|\.\.\.[^:\n]*)?:') # 1.3.6.2 [JWDJ] 2015-03 fixes false positives AbcStructure.from_to_directive_re = re.compile(r'(%%\w+)\.\.\.(%%\w+)') AbcStructure.abc_field_re = re.compile(r'[A-Za-z]:') reference_content = reference_content.replace(unichr(150), '-') reference_content = replace_text(reference_content, AbcStructure.replace_regexes) lines = reference_content.splitlines() for i in range(len(lines)): lines[i] = lines[i].replace('hinti', '<int>') lines[i] = lines[i].replace('%%MIDI drumoff turns', '%%MIDI drumoff: turns') lines[i] = lines[i].replace('%%MIDI drumon turns', '%%MIDI drumon: turns') sections = [] cur_section = [] abc_fields_done = False for line in lines: line = line.rstrip() if line.startswith('A.'): title = line.split(' ', 1)[1] cur_section = [] sections.append((title, cur_section)) elif AbcStructure.valid_directive_re.search(line): # 1.3.6.2 [JWDJ] 2015-03 fixes false positives abc_fields_done = True cur_section.append(line) elif not abc_fields_done and AbcStructure.abc_field_re.match(line): cur_section.append(line) elif cur_section: # join two lines if cur_section[-1].endswith('-'): cur_section[-1] = cur_section[-1][:-1] + line else: cur_section[-1] = cur_section[-1] + ' ' + line for i in range(len(sections)): section_name, lines = sections[i] tuples = [] for line in lines: if AbcStructure.abc_field_re.match(line): name, desc = line.split(' ', 1) tuples.append((name, desc)) elif len(line.split(': ', 1)) == 2: name, desc = tuple(line.split(': ', 1)) m = AbcStructure.from_to_directive_re.match(name) if m: tuples.append((m.group(1), desc)) tuples.append((m.group(2), desc)) else: tuples.append((name, desc)) sections[i] = section_name, tuples return sections @staticmethod def generate_abc_elements(cwd): directive = AbcDirective() midi_directive = AbcMidiDirective() directive.add_element(midi_directive) # [JWDJ] the order of elements in result is very important, because they get evaluated first to last result = [ AbcEmptyDocument(), AbcEmptyLineWithinTuneHeader(), AbcEmptyLineWithinTuneBody(), AbcEmptyLineWithinFileHeader(), AbcEmptyLine(), AbcVersionDirective(), AbcMidiProgramDirective(), AbcMidiChordProgramDirective(), AbcMidiBaseProgramDirective(), AbcMidiChannelDirective(), AbcMidiDrumMapDirective(), AbcMidiVolumeDirective(), AbcMidiGuitarChordDirective(), ScoreDirective(), MeasureNumberDirective(), HideFieldsDirective(), ShowFieldsDirective(), directive, AbcComment(), AbcBeam(), AbcBackslash(), ] elements_by_keyword = {} lines = abc_keywords.splitlines() for line in lines: parts = line.split('|') keyword = parts[0].strip() name = parts[1].strip() file_header = parts[2].strip() == 'yes' tune_header = tune_header_lookup[parts[3].strip()] tune_body = parts[4].strip() == 'yes' inline = parts[5].strip() == 'yes' abc_type = parts[6].strip() if abc_type == 'instruction': element = AbcInstructionField(name, keyword, file_header, tune_header, tune_body, inline, abc_inner_pattern.get(keyword, '.*')) elif abc_type == 'string': element = AbcStringField(name, keyword, file_header, tune_header, tune_body, inline) else: raise Exception('Unknown abc-type') result.append(element) elements_by_keyword[element.keyword] = element for (title, fields) in AbcStructure.get_sections(cwd): for (field_name, description) in fields: parts = field_name.split('<', 1) keyword = parts[0].rstrip() name = keyword element_holder = None if name.startswith('%%'): name = name[2:] if name[0:4] == 'MIDI': element_holder = midi_directive name = name[5:] keyword = name else: element_holder = directive if element_holder: existing_element = element_holder.get_element(keyword) else: existing_element = elements_by_keyword.get(keyword) if existing_element is not None: element.description = description else: if element_holder: if element_holder == midi_directive: element = AbcElement(field_name, name, description=description) midi_directive.add_element(element) else: element = Abcm2psDirective(field_name, name, description=description) directive.add_element(element) else: if len(name) == 2 and name[-1] == ':': element = AbcElement(field_name, name, description=description) elements_by_keyword[keyword] = element result.append(element) for part in parts[1:]: param = part.strip() if param[-1] == '>': param = param[:-1] element.params.append(param) # elements = sorted(elements, key=lambda element: -len(element.keyword)) # longest match first symbol_line = [element for element in result if element.keyword == 's:'][0] result = [element for element in result if element.keyword != 's:'] # [JWDJ] the order of elements in result is very important, because they get evaluated first to last result += [ AbcAnnotation(), AbcChordSymbol(), AbcChordOrAnnotation(), AbcTuplet(), AbcVariantEnding(), AbcBar(), AbcDynamicsDecoration(), AbcFingeringDecoration(), AbcOrnamentDecoration(), AbcDirectionDecoration(), AbcArticulationDecoration(), AbcDecoration(), symbol_line, AbcGraceNotes(), AbcSlur(), AbcMultipleNotes(), AbcMultipleNotesAndChords(), AbcChord(), AbcNote(), AbcNormalRest(), AbcMeasureRest(), AbcVoiceOverlay(), AbcBrokenRhythm(), AbcInvalidCharacter(), TypesettingSpace(), RedefinableSymbol(), AbcSpace(), AbcUnknown() ] elements_by_keyword['V:'].visible_match_group = 'name' for element in result: try: element.freeze() except Exception as ex: print('Exception in element {0}: {1}'.format(element.name, ex)) logging.exception(ex) return result
jwdj/EasyABC
tune_elements.py
tune_elements.py
py
58,593
python
en
code
67
github-code
6
23748260373
import os import sys from functools import partial from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from toolBar import ToolBar from Canvas.canvas import Canvas import cv2 import numpy as np from grab_cut import Grab_cut from choiceDiaGen import ChoiceDiaGen from choiceDiaStyle import ChoiceDiaStyle from zoomWidget import ZoomWidget from birdDialog import BirdDialog from generator import Generator from styleChanger import StyleChanger __appname__ = 'grab_cut' class ResizesQWidget(QWidget): def sizeHint(self): return QSize(100, 150) class struct(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) # 菜单栏和工具栏 class WindowMixin(object): # 根据名字和action列表创建一个菜单,比如File,[new,edit] def menu(self, title, actions=None): menu = self.menuBar().addMenu(title) if actions: addActions(menu, actions) return menu def toolbar(self, title, actions=None): toolbar = ToolBar(title) toolbar.setObjectName('{}ToolBar'.format(title)) toolbar.setToolButtonStyle(Qt.ToolButtonTextUnderIcon) if actions: addActions(toolbar, actions) self.addToolBar(Qt.LeftToolBarArea, toolbar) # 加到布局左侧 return toolbar # 创建一个新Action def newAction(parent, text, slot=None, shortcut=None, tip=None, icon=None, checkable=False, enable=True): a = QAction(text, parent) if icon is not None: a.setIcon(QIcon(icon)) if shortcut is not None: a.setShortcut(shortcut) if tip is not None: a.setToolTip(tip) a.setStatusTip(tip) if slot is not None: a.triggered.connect(slot) if checkable: a.setChecked(True) a.setEnabled(enable) return a # 讲actions加入到父控件 def addActions(widget, actions): for action in actions: if action is None: widget.addSeparator() widget.addAction(action) # weidget is toolBar or menu # 主界面 class MainWindow(QMainWindow, WindowMixin): FIT_WINDOW, FIT_WIDTH, MANUAL_ZOOM = list(range(3)) def __init__(self, defaultFilename=None): super().__init__() self.dirty = True # 文件是否已保存 self.mImgList = [] # 图片列表 self.dirname = None # 文件名 self._beginner = True # self.image_out_np = None # 提取结果 self.default_save_dir = None # 默认保存路径 self.filePath = None # 当前载入的图片路径 self.mattingFile = None # 垂直布局, listLayout = QVBoxLayout() listLayout.setContentsMargins(0, 0, 0, 0) # ---#显示图片的label pic matResultShow = ResizesQWidget() # 返回是是Qwidget matResultShow.resize(150, 150) self.pic = QLabel(matResultShow) self.pic.resize(150, 150) self.setGeometry(50, 20, 150, 150) matResultShow.setLayout(listLayout) # 建一个dockwidget放图片label self.resultdock = QDockWidget('输出结果', self) self.resultdock.setObjectName('result') self.resultdock.setWidget(matResultShow) self.resultdock.resize(150, 150) # self.resultdock.setFeatures(QDockWidget.DockWidgetFloatable) # 建一个fileDoc放文件 self.fileListWidget = QListWidget() # 列表布局 self.fileListWidget.itemDoubleClicked.connect( self.fileItemDoubleClicked) fileListLayout = QVBoxLayout() fileListLayout.setContentsMargins(0, 0, 0, 0) fileListLayout.addWidget(self.fileListWidget) fileListContainer = QWidget() fileListContainer.setLayout(fileListLayout) self.filedock = QDockWidget('导入文件列表', self) self.filedock.setObjectName('Files') self.filedock.setWidget(fileListContainer) self.zoomWidget = ZoomWidget() self.canvas = Canvas(parent=self) scroll = QScrollArea() scroll.setWidget(self.canvas) scroll.setWidgetResizable(True) self.scrollBars = { Qt.Vertical: scroll.verticalScrollBar(), Qt.Horizontal: scroll.horizontalScrollBar() } self.scrollArea = scroll self.canvas.scrollRequest.connect(self.scrollRequest) self.setCentralWidget(scroll) self.addDockWidget(Qt.RightDockWidgetArea, self.resultdock) self.addDockWidget(Qt.RightDockWidgetArea, self.filedock) # self.filedock.setFeatures(QDockWidget.DockWidgetFloatable) self.dockFeatures = QDockWidget.DockWidgetClosable | QDockWidget.DockWidgetFloatable self.resultdock.setFeatures( self.resultdock.features() ^ self.dockFeatures) # Actions action = partial(newAction, self) open_file = action('导入图片', self.openFile, 'Ctrl+O', '导入图片') open_dir = action('导入文件夹', self.openDir, 'Ctrl+D', '导入文件夹中的所有图片到列表') change_save_dir = action('&更改预设的保存路径', self.changeSavedirDialog) # open_next_img = action('&Next Image', self.openNextImg, # 'Ctrl+N', 'Open next image') # open_pre_img = action('&Previous Image', self.openPreImg, # 'Ctrl+M', 'Open previous image') save = action('保存结果', self.saveFile, 'Crl+S', '保存输出结果图') create = action('指定区域', self.createShape, 'w', '框选ROI') mark = action('标记微调', self.markDown, None, '左键白色,标记前景;右键黑色,标记后景') matting = action('迭代一次', self.grabcutMatting, 'e', '用当前标记迭代一次获取前景算法') # 用预训练模型生成图片 generate = action('生成图片', self.generate, None, '输入文字,生成图片素材') # 用预训练模型进行风格迁移 style = action('风格转换', self.styleChange, None, '选择一个风格,进行图像风格转换') # 字典,对应一个放缩比 self.scalers = { self.FIT_WINDOW: self.scaleFitWindow, self.FIT_WIDTH: self.scaleFitWidth, # Set to one to scale to 100% when loading files. self.MANUAL_ZOOM: lambda: 1, } # store actions for further handling self.actions = struct(save=save, open_file=open_file, open_dir=open_dir, change_save_dir=change_save_dir, # open_next_img=open_next_img, open_pre_img=open_pre_img, create=create, mark=mark, matting=matting, generate=generate, style=style) # Auto saving: enable auto saving if pressing next # self.autoSaving = QAction('Auto Saving', self) # self.autoSaving.setCheckable(True) # self.autoSaving.setChecked() # set toolbar self.tools = self.toolbar('Tools') self.actions.all = (open_file, open_dir, change_save_dir, create, # open_pre_img, open_next_img, mark, matting, generate, style, save) addActions(self.tools, self.actions.all) # set status self.statusBar().showMessage('{} 已就绪.'.format(__appname__)) def okToContinue(self): if self.dirty: reply = QMessageBox.question(self, "Attention", "you have unsaved changes, proceed anyway?", QMessageBox.Yes | QMessageBox.No | QMessageBox.Cancel) if reply == QMessageBox.Cancel: return False elif reply == QMessageBox.Yes: return self.fileSave return True def resetState(self): self.canvas.resetState() def errorMessage(self, title, message): return QMessageBox.critical(self, title, '<p><b>%s</b></p>%s' % (title, message)) def beginner(self): return self._beginner def advanced(self): return not self.beginner() def openFile(self, _value=False): path = os.path.dirname(self.filePath) if self.filePath else '.' formats = ['*.%s' % fmt.data().decode("ascii").lower() for fmt in QImageReader.supportedImageFormats()] filters = "Image (%s)" % ' '.join(formats) filename = QFileDialog.getOpenFileName( self, '%s - Choose Image or Label file' % __appname__, path, filters) if filename: if isinstance(filename, (tuple, list)): filename = filename[0] self.loadFile(filename) def openDir(self, dirpath=None): defaultOpenDirPath = dirpath if dirpath else '.' targetDirPath = QFileDialog.getExistingDirectory(self, '%s - Open Directory' % __appname__, defaultOpenDirPath, QFileDialog.ShowDirsOnly | QFileDialog.DontResolveSymlinks) self.importDirImages(targetDirPath) # 将导入图片显示在列表栏 def importDirImages(self, dirpath): self.fileListWidget.clear() self.mImgList = self.scanAllImages(dirpath) # self.openNextImg() for imgPath in self.mImgList: item = QListWidgetItem(imgPath) self.fileListWidget.addItem(item) # 扫描路径下的所有文件,返回图片列表 def scanAllImages(self, folderPath): extensions = ['.%s' % fmt.data().decode("ascii").lower() for fmt in QImageReader.supportedImageFormats()] imageList = [] for root, dirs, files in os.walk(folderPath): for file in files: if file.lower().endswith(tuple(extensions)): relativePath = os.path.join(root, file) path = os.path.abspath(relativePath) imageList.append(path) imageList.sort(key=lambda x: x.lower()) return imageList def fileItemDoubleClicked(self, item=None): currIndex = self.mImgList.index(item.text()) # 获取图片列表的index if currIndex < len(self.mImgList): filename = self.mImgList[currIndex] if filename: self.loadFile(filename) # 载入图片列表 # 读取图片到canvas def loadFile(self, filePath=None): self.resetState() # 清理canvas self.canvas.setEnabled(False) # 高亮选中项 if filePath and self.fileListWidget.count() > 0: index = self.mImgList.index(filePath) fileWidgetItem = self.fileListWidget.item(index) fileWidgetItem.setSelected(True) if filePath and os.path.exists(filePath): # load image self.ImageData = read(filePath, None) else: return image = QImage.fromData(self.ImageData) # 内存中没有图片 if image.isNull(): self.errorMessage(u'Error opening file', u'<p>Make sure <i>%s</i> is a valid image file.' % filePath) self.status('Error reading %s' % filePath) return False self.status('Loaded %s' % os.path.basename(filePath)) self.image = image # Qimage格式 self.filePath = filePath # 当前载入的文件路径 self.canvas.loadPixmap(QPixmap.fromImage(image)) # canvas中放置图片 self.canvas.setEnabled(True) self.adjustScale(initial=True) self.paintCanvas() # 显示当前状态 def status(self, message, delay=5000): self.statusBar().showMessage(message, delay) def adjustScale(self, initial=False): value = self.scalers[self.FIT_WINDOW if initial else self.zoomMode]() self.zoomWidget.setValue(int(100 * value)) def scaleFitWindow(self): """Figure out the size of the pixmap in order to fit the main widget.""" e = 2.0 # So that no scrollbars are generated. w1 = self.centralWidget().width() - e h1 = self.centralWidget().height() - e a1 = w1 / h1 # Calculate a new scale value based on the pixmap's aspect ratio. w2 = self.canvas.pixmap.width() - 0.0 h2 = self.canvas.pixmap.height() - 0.0 a2 = w2 / h2 return w1 / w2 if a2 >= a1 else h1 / h2 def scaleFitWidth(self): # The epsilon does not seem to work too well here. w = self.centralWidget().width() - 2.0 return w / self.canvas.pixmap.width() def paintCanvas(self): assert not self.image.isNull(), "cannot paint null image" self.canvas.scale = 0.01 * self.zoomWidget.value() self.canvas.adjustSize() self.canvas.update() def createShape(self): assert self.beginner() self.canvas.setEditing(False) self.actions.create.setEnabled(False) # 开始标记,mod换成editting def markDown(self): self.canvas.setEditing(True) def toggleDrawMode(self, edit=True): self.canvas.setEditing(edit) self.actions.createMode.setEnabled(edit) self.actions.editMode.setEnabled(not edit) # 生成图片 def generate(self): # 种类选择对话框 choiceDia = ChoiceDiaGen() choiceDia.show() choiceDia.hide() # 由Generator类控制生成对话框 # 传入类型和属性列表 gen = Generator(choiceDia.type,choiceDia.attrList) gen.generate() # 将生成的图片取出来显示在主页 self.loadFile("StackGAN/resultImg/latest.png") def styleChange(self): # 风格选择对话框 choiceDia = ChoiceDiaStyle() choiceDia.show() choiceDia.hide() print(choiceDia.type) changer = StyleChanger(choiceDia.type, self.filePath) changer.changeStyle() # self.loadFile("CycleGAN/targetImg/latest.png") result = cv2.imread("CycleGAN/targetImg/latest.png") # 转换为四通道 result = self.addAchannel(result) self.showResultImg(result) self.image_out_np = result # 接收opencv读入的格式 def addAchannel(self, x): b_channel, g_channel, r_channel = cv2.split(x) alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255 result_BGAR = cv2.merge((b_channel, g_channel, r_channel, alpha_channel)) # result[np.all(result==[0,0,0,255],axis=2)]=[0,0,0,0] result_BGAR[np.all(result_BGAR == [0, 0, 0, 255], axis=2)] = [0, 0, 0, 0] return result_BGAR # 提取前景操作 def grabcutMatting(self): if self.mattingFile is None: self.mattingFile = Grab_cut() def format_shape(s): return dict(line_color=s.line_color.getRgb(), fill_color=s.fill_color.getRgb(), points=[(p.x(), p.y()) for p in s.points], backMark=self.canvas.getBackMark(), whiteMark=self.canvas.getForMark()) # 有四个点(矩形的话)+填充线颜色和边缘线颜色 shape = format_shape(self.canvas.shapes[-1]) self.image_out_np = self.mattingFile.image_matting(self.filePath, shape, iteration=10) self.showResultImg(self.image_out_np) self.actions.save.setEnabled(True) # 接收opencv矩阵格式 def showResultImg(self, image_np): # resize to pic # factor = min(self.pic.width() / # image_np.shape[1], self.pic.height() / image_np.shape[0]) # image_np = cv2.resize(image_np, None, fx=factor, # fy=factor, interpolation=cv2.INTER_AREA) # image_np = cv2.resize((self.pic.height(), self.pic.width())) image = QImage(image_np, image_np.shape[1], image_np.shape[0], QImage.Format_ARGB32) matImg = QPixmap(image) self.pic.setFixedSize(matImg.size()) self.pic.setPixmap(matImg) def saveFile(self): self._saveFile(self.saveFileDialog()) def _saveFile(self, saved_path): print(saved_path) if saved_path: Grab_cut.resultSave(saved_path, self.image_out_np) self.setClean() self.statusBar().showMessage('Saved to %s' % saved_path) self.statusBar().show() def saveFileDialog(self): caption = '%s - Choose File' % __appname__ filters = 'File (*%s)' % 'png' if self.default_save_dir is not None and len(self.default_save_dir): openDialogPath = self.default_save_dir else: openDialogPath = self.currentPath() print(openDialogPath) dlg = QFileDialog(self, caption, openDialogPath, filters) dlg.setDefaultSuffix('png') dlg.setAcceptMode(QFileDialog.AcceptSave) filenameWithoutExtension = os.path.splitext(self.filePath)[0] dlg.selectFile(filenameWithoutExtension) dlg.setOption(QFileDialog.DontUseNativeDialog, False) if dlg.exec_(): return dlg.selectedFiles()[0] return '' def currentPath(self): return os.path.dirname(self.filePath) if self.filePath else '.' def changeSavedirDialog(self, _value=False): if self.default_save_dir is not None: path = self.default_save_dir else: path = '.' dirpath = QFileDialog.getExistingDirectory(self, '%s - Save annotations to the directory' % __appname__, path, QFileDialog.ShowDirsOnly | QFileDialog.DontResolveSymlinks) if dirpath is not None and len(dirpath) > 1: self.default_save_dir = dirpath self.statusBar().showMessage('%s . Annotation will be saved to %s' % ('Change saved folder', self.default_save_dir)) self.statusBar().show() def setClean(self): self.dirty = False self.actions.save.setEnabled(False) self.actions.create.setEnabled(True) def openNextImg(self): pass def openPreImg(self): pass def scrollRequest(self, delta, orientation): units = - delta / (8 * 15) bar = self.scrollBars[orientation] bar.setValue(bar.value() + bar.singleStep() * units) # 读取二进制图片 返回 def read(filename, default=None): try: with open(filename, 'rb') as f: return f.read() except Exception: return default def resetState(self): self.canvas.resetState() if __name__ == "__main__": app = QApplication(sys.argv) ex = MainWindow() ex.show() sys.exit(app.exec_())
kisstherain8677/Image_generate
app.py
app.py
py
19,181
python
en
code
3
github-code
6
20463208050
from collections import defaultdict d = defaultdict(int) n = int(input()) for _ in range(n): d[input()] += 1 allwords = list(d) allwords_str = d.values() listofx = [] for x in allwords_str: listofx.append(str(x)) print(len(allwords)) print(" ".join(listofx)) # This line is the same as the above block > print(*d.values()) except print(len(allwords))
Ronen-EDH/Code-exercises
Python/Hackerrank/Hackrank_wordorder.py
Hackrank_wordorder.py
py
361
python
en
code
0
github-code
6
16098965612
from django.urls import path from card import views urlpatterns = [ path('create/', views.CreateFlashCardView.as_view(), name="create-flash-card"), path('update/<id>/', views.UpdateFlashCardView.as_view(), name="update-flash-card"), path('dalete/<id>/', views.DeleteFlashCardView.as_view(), name="delete-flash-card"), path('list/<user_id>/', views.ListFlashCardView.as_view(), name="list-user-flash-card"), ]
leonardo0231/flash-card
card/urls.py
urls.py
py
428
python
en
code
0
github-code
6
70398650747
"""utilities for generation of CTRMs Author: Keisuke Okumura Affiliation: TokyoTech & OSX """ from __future__ import annotations import numpy as np from numba import f8, jit from ..environment import Instance from ..roadmap import TimedNode, TimedRoadmap from ..roadmap.utils import valid_move @jit(f8[:](f8[:, :], f8[:]), nopython=True) def get_dist_arr(cands_pos: np.ndarray, loc: np.ndarray) -> np.ndarray: return np.sum((cands_pos - loc) ** 2, axis=1) def merge_samples( loc: np.ndarray, t: int, agent: int, trm: TimedRoadmap, ins: Instance, merge_distance: float = 0.01, ) -> np.ndarray: """find compatible sample, otherwise return loc Args: loc (np.ndarray): location t (int): timestep agent (int): target agent trm (TimedRoadmap): target timed roadmap ins (Instance): instance merge_distance (:obj:`float`, optional): distance regarding as spatially close enough Returns: np.ndarray: location of compatible sample if found, otherwise loc Todo: use efficient set operation """ rad = ins.rads[agent] max_speed = ins.max_speeds[agent] goal = ins.goals[agent] # get necessary distance cands_pos_arr = [u.pos for u in trm.V[t - 1]] # parents if t + 1 <= len(trm.V) - 1: cands_pos_arr += [u.pos for u in trm.V[t + 1]] # children if len(trm.V) > t: cands_pos_arr += [u.pos for u in trm.V[t]] # merge dist_arr = get_dist_arr(np.array(cands_pos_arr), loc) # compute parents offset = len(trm.V[t - 1]) parents_cands_index = np.where(dist_arr[:offset] <= max_speed ** 2)[0] parents = [ i for i in parents_cands_index if not ins.objs.collide_continuous_sphere( trm.V[t - 1][i].pos, loc, rad ) ] set_loc_parents = set(parents) # compute children if t + 1 <= len(trm.V) - 1: children_cands_index = np.where( dist_arr[offset : offset + len(trm.V[t + 1])] <= max_speed ** 2 )[0] children = [ i for i in children_cands_index if not ins.objs.collide_continuous_sphere( trm.V[t + 1][i].pos, loc, rad ) ] else: children = [] set_loc_children = set(children) if len(trm.V) > t: merge_cands_idx = np.where( dist_arr[-len(trm.V[t]) :] <= merge_distance ** 2 )[0] # get heuristics h_loc = sum((loc - goal) ** 2) for u_ind in merge_cands_idx: u = trm.V[t][u_ind] u_parents = trm.get_parents(u) u_children = trm.E[t][u.index] set_u_parents = set(u_parents) set_u_children = set(u_children) if ( set_u_parents == set_loc_parents and set_u_children == set_loc_children ): # merge to better one h_u = sum((u.pos - goal) ** 2) if h_loc < h_u: # replace u by loc trm.V[t][u.index] = TimedNode(t, u.index, loc) return loc else: # abandon loc return u.pos if ( set_u_parents >= set_loc_parents and set_u_children >= set_loc_children ): # abandon loc return u.pos if ( set_u_parents <= set_loc_parents and set_u_children <= set_loc_children ): # replace u by loc trm.V[t][u.index] = TimedNode(t, u.index, loc) # append additional edge, children trm.E[t][u.index] += list(set_loc_children - set_u_children) # append parents for p in set_loc_parents - set_u_parents: trm.E[t - 1][p].append(u.index) return loc # append new sample trm.append_sample(loc=loc, t=t, parents=parents, children=children) return loc def format_trms(ins: Instance, trms: list[TimedRoadmap]) -> None: """align length of timed roadmaps Args: ins (Instance): instance trms (list[TimedRoadmap]): timed roadmaps """ T = max([len(trm.V) for trm in trms]) - 1 for i, trm in enumerate(trms): def valid_edge(pos1: np.ndarray, pos2: np.ndarray) -> bool: return valid_move( pos1, pos2, ins.max_speeds[i], ins.rads[i], ins.objs ) # technical point, add one additional layer trm.extend_until(T + 1, valid_edge) def append_goals(ins: Instance, trms: list[TimedRoadmap]) -> None: """append goals to timed roadmaps Args: ins (Instance): instance trms (list[TimedRoadmap]): timed roadmaps """ for i, (trm, goal) in enumerate(zip(trms, ins.goals)): def valid_edge(pos1: np.ndarray, pos2: np.ndarray) -> bool: return valid_move( pos1, pos2, ins.max_speeds[i], ins.rads[i], ins.objs ) for t in range(1, len(trm.V)): trm.append_sample(goal, t, valid_edge)
omron-sinicx/ctrm
src/ctrm/roadmap_learned/utils.py
utils.py
py
5,210
python
en
code
21
github-code
6
29821357591
import docker class MicroDockerClient: def __init__(self, micro_configuration): self.client = docker.from_env() self.config = micro_configuration def pull(self): self.client.images.pull(self.config.image_name) def run(self): self.client.containers.run( self.config.image_name, ports={F'{self.config.container_port}/tcp':str(self.config.exposed_port)}, name=self.config.name, detach=True) def delete(self): try: ctr = self.client.containers.list(filters={'name':self.config.name})[0] ctr.kill() ctr.remove() except Exception : print("No ctr to delete")
alichamouda/micro-cd
micro_docker_client.py
micro_docker_client.py
py
713
python
en
code
0
github-code
6
72474543549
import Accelerometer import ButtonControl import RollPitch import ParserSettings # a parser for just one wii data class oneWii : def __init__(self): self.accelerometer = Accelerometer.Accelerometer() self.buttons = ButtonControl.ButtonControl() self.rollPitch = RollPitch.RollPitch() def __call__(self,ts,wid,xyz=None,buttons=None): if xyz is not None : self.accelerometer.testEvent( ts, wid, *xyz ) self.rollPitch.testEvent( ts, wid, *xyz ) if buttons is not None : self.buttons.testEvent( ts, wid, buttons )
cloew/WiiCanDoIt-Framework
src/ProtocolGame/wiis/onewii.py
onewii.py
py
535
python
en
code
2
github-code
6
28663549378
# Please develop your ingestion service in Python. You may select the delivery format (e.g., Jupyter # Notebook, containerized microservice). For this exercise, you may assume that a scheduling service # to regularly invoke your ingestion is provided. # Where and how you process the data is at your discretion. import os import requests # import psycopg2 import pandas as pd import geopandas as gpd from zipfile import ZipFile from shapely.geometry import Point from urllib.request import urlretrieve from requests.exceptions import RequestException from zipfile import BadZipFile from psycopg2 import OperationalError from mappings import event_root_codes, event_base_codes, event_codes, map_fips_to_iso2 def main(): """ Main controller function """ try: # add folders because git won't push empty folders try: os.mkdir('files') os.mkdir('extracted') except Exception: print('Folders already exist, no problem! Continuing...') extracted_file_path, zip_file_path = retrieve_event_data() geo_data = retrieve_geo_data() cleaned_data = clean_data(extracted_file_path) filtered_event_data = filter_data(cleaned_data, geo_data) load_db(filtered_event_data, event_root_codes, event_base_codes, event_codes, map_fips_to_iso2) cleanup(extracted_file_path, zip_file_path) except RequestException as e: print(f"Error while retrieving data: {e}") except BadZipFile as e: print(f"Error while extracting the zip file: {e}") except OperationalError as e: print(f"Database connection error: {e}") except Exception as e: print(f"An unexpected error occurred: {e}") def retrieve_event_data() -> str: """ Gets event data from external source. I would improve this by looking into the GDELT API. """ # Retrieve data from the source site data_files = requests.get('http://data.gdeltproject.org/gdeltv2/lastupdate.txt').content.decode() # Selecting the first entry with “export” in it will # give you the latest 15 min worth of data file_download_location = data_files.replace("\n", " ").split(" ")[2] # get just the file name out of the url file_name = file_download_location.split("/")[-1] file_path = 'files/' + file_name # downloading the file to files/ urlretrieve(file_download_location, file_path) # unzip and extract file to extracted/ with ZipFile(file_path, 'r') as zip: zip.extractall('extracted/') # remove .zip suffix extracted_file_path = 'extracted/' + file_name[0:-4] print('File downloaded') return extracted_file_path, file_path def clean_data(extracted_file_path): """ Perform some foundational data prep and quality assurance """ try: # load event data into pandas df event_df = pd.read_csv(extracted_file_path, sep='\t') # name cols so df is easier to use event_df.columns = ['col_' + str(i) for i in range(61)] # there are many things I could do here if I had more time # for now I will drop duplicates and remove columns that aren't needed # To make this more robust, I would clean and standardize the text # and convert dates and floats to the appropriate formats/types # I would also do ifnull checks and add in logic to fill in null values as needed # Select cols needed in final output defined in assignment event_df = event_df[['col_0', 'col_1', 'col_26', 'col_27', 'col_28', 'col_52', 'col_53', 'col_56', 'col_57', 'col_59', 'col_60']] # name the columns according to doc event_df.columns = ['GLOBALEVENTID', 'SQLDATE', 'EventCode', 'EventBaseCode', 'EventRootCode', 'ActionGeo_FullName', 'ActionGeo_CountryCode', 'ActionGeo_Lat', 'ActionGeo_Long', 'DATEADDED', 'SOURCEURL'] # Drop duplicates event_df = event_df.drop_duplicates() return event_df except pd.errors.EmptyDataError as e: raise pd.errors.EmptyDataError(f"Empty data error: {e}") except pd.errors.ParserError as e: raise pd.errors.ParserError(f"Parser error: {e}") except Exception as e: raise Exception(f"An unexpected error occurred during data cleaning: {e}") def retrieve_geo_data(): """ In addition to the above source data, geometric location data for US counties may be located at: https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json """ print('Retrieving geo data') return requests.get('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json').content.decode() def filter_data(event_df, geo_data): """ Please filter the event data to those events located within the US based on their lat/lon coordinates (lat: ActionGeo_Long, long:ActionGeo_Lat) """ # Load choropleth data using geopandas choropleth_df = gpd.read_file(geo_data) # Convert the event dataframe to a GeoDataFrame using "ActionGeo_Lat" and "ActionGeo_Long" columns event_df['geometry'] = event_df.apply(lambda row: Point(row['ActionGeo_Long'], row['ActionGeo_Lat']), axis=1) # Specify the CRS for the event data event_gdf = gpd.GeoDataFrame(event_df, geometry='geometry', crs="EPSG:4326") # Ensure that both datasets have the same CRS event_gdf = event_gdf.to_crs(choropleth_df.crs) # Perform the spatial join to filter events in the U.S. us_events = gpd.sjoin(event_gdf, choropleth_df, how='inner', predicate='intersects') print('Data filtered - might add in specifics using variables here') return us_events def load_db(filtered_event_data, event_root_codes, event_base_codes, event_codes, map_fips_to_iso2): """ Please use Postgres/GIS as your target database. You should demonstrate how you might make and manage the database connection, as well as the execution of needed transactions. You do not need to configure and run the actual database except as it is helpful to you to do so. """ # This is just example code # # Define the database connection parameters # database_uri = "<insert your uri connection string here>" # # Establish a connection to the database # connection = psycopg2.connect(database_uri) # # Create a cursor for executing SQL commands # cursor = connection.cursor() # create_table_sql = """ # CREATE TABLE events ( # GLOBALEVENTID SERIAL PRIMARY KEY, # SQLDATE DATE, # EventCode VARCHAR, # EventBaseCode VARCHAR, # EventRootCode VARCHAR, # ActionGeo_FullName VARCHAR, # ActionGeo_CountryCode VARCHAR, # ActionGeo_Lat FLOAT, # ActionGeo_Long FLOAT, # DATEADDED DATE, # SOURCEURL TEXT # ) # """ # I would also add the JSON mappings into the database as dimension tables # By creating the tables and inserting the given values into them # # Execute the SQL command to create the table # cursor.execute(create_table_sql) # connection.commit() # us_events.to_sql("events", connection, if_exists="replace", index=False) # connection.commit() # cursor.close() # connection.close() print('DB fictionally loaded: fictionally variable number of rows inserted') def cleanup(extracted_file_path, zip_file_path): """ Removes downloaded and extracted files at end """ print('Removing files') os.remove(extracted_file_path) os.remove(zip_file_path) if __name__ == "__main__": main()
madelinepet/take_home_assignment
assignment.py
assignment.py
py
7,586
python
en
code
0
github-code
6
2988023971
import spoonacular as sp api = sp.API("eaf1205e8c26404a8cda30c46c86f1cd") def find_from_ingredients(ingredient_list): #ranking = 2 means minimizing missing ingredients recipe_list = api.search_recipes_by_ingredients(ingredients=ingredient_list, number=1, ranking=2) return recipe_list def get_recipe_nutrition(ingredient_list, serving_num): recipe_list = api.visualize_recipe_nutrition(ingredientList=ingredient_list, servings=serving_num) return recipe_list ingredients = input("Enter ingredients you would like to cook with: ") nutrition = get_recipe_nutrition(ingredients, 1) for recipe in nutrition: print(recipe)
emilyhua/hintofyum
nutrition.py
nutrition.py
py
626
python
en
code
0
github-code
6
41798087631
# Task 1 For a given integer n calculate the value which is equal to a: # squared number, if its value is strictly positive; # modulus of a number, if its value is strictly negative; # zero, if the integer n is zero. # Example: n=4 result= 16; n=-5 result= 5; n=0 result=0 n = float(input("Please, enter n for calculation:")) if n > 0: print((n**2)) elif n < 0: print(abs(n)) else: print('0') print('------------ TASK2') # Task 2. # Find the maximum integer, that can be obtained by permutation of numbers of an arbitrary three-digit # positive integer n (100<=n<=999). Example: n =165 result = 651 n = input("Please, enter n for finding the maximum:") n = (sorted(n, reverse=True)) print([int(x) for x in n]) print('------------ TASK3') # Task 3. # For a positive integer n calculate the result value, which is equal to the sum of the odd numbers of n. # Example: n = 1234 result = 4, n = 246 result = 0 n = input("Please, enter n for calculation the sum of odd numbers:") count_odd = 0 for i in n: if int(i) % 2 != 0: count_odd+=1 print('The sum of odd numbers:', count_odd) print('------------ TASK4') # Task 4. For a positive integer n calculate the result value, which is equal to the sum of the “1” in the # binary representation of n. Example: n = 1410 = 11102 result = 3, n = 12810 = 1000 00002 result = 1 n = input("Please, enter n for calculation of '1s': ") n = int(n) n = (bin(n) [2:]) print(n) count_1_in_bin_format = 0 for i in n: if int(i) == 1: count_1_in_bin_format+=1 print('The count of "1" on binary format is:', count_1_in_bin_format) print('------------ TASK5') # Task 5. Create function Fibonacci for a positive integer n, calculate the result value, which is equal to the sum # of the first n Fibonacci numbers. Note. Fibonacci numbers are a series of numbers in which each next number is equal # to the sum of the two preceding ones: 0, 1, 1, 2, 3, 5, 8, 13... (F0=0, F1=F2=1, then F(n)=F(n-1)+F(n-2) for n>2) # Example: n=8 result=33, n = 11 result = 143 def fibinocci(n): if n == 1 or n == 2: return 1 return fibinocci(n - 1) + fibinocci(n - 2) x = fibinocci(8) print('sum_of_n_Fibonacci', x) print('------------ TASK6')
natshabat/Nataliya_Shabat
epam_hw2_ShabatN.py
epam_hw2_ShabatN.py
py
2,221
python
en
code
0
github-code
6
12483812629
import numpy as np import matplotlib.pyplot as plt from scipy.constants import degree from FallingCat import FallingCat JI = 0.25 alpha = 30*degree plt.figure(figsize=(5,7)) c = FallingCat(JI, alpha) t = c.theta/degree psi = c.lean()/degree gamma = c.bend()/degree phi = c.twist()/degree print(phi[-1]) print((c.alpha + c.beta)/degree) print((c.beta - c.alpha)/degree) plt.subplot(3,1,1) plt.plot(t, psi) plt.ylabel(r'$\psi$ / deg') plt.subplot(3,1,2) plt.plot(t, gamma) plt.ylabel(r'$\gamma$ / deg') plt.subplot(3,1,3) plt.plot(t, phi) plt.ylabel(r'$\phi$ / deg') plt.xlabel(r'$\theta$ / deg') plt.tight_layout() plt.savefig('fig2.eps') plt.show()
tt-nakamura/cat
fig2.py
fig2.py
py
660
python
en
code
0
github-code
6
73652393469
# 给你一个字符串 s ,仅反转字符串中的所有元音字母,并返回结果字符串。 # 元音字母包括 'a'、'e'、'i'、'o'、'u',且可能以大小写两种形式出现。 class Solution(object): def reverseVowels(self, s): """ :type s: str :rtype: str """ Vowels = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'] s = list(s) i = 0 j = len(s) - 1 while(i < j): while(i < len(s) and s[i] not in Vowels): i += 1 while(j >= 0 and s[j] not in Vowels): j -= 1 if i >= j: break s[i], s[j] = s[j], s[i] i += 1 j -= 1 return ''.join(s) s = ",." a = Solution() print(a.reverseVowels(s))
xxxxlc/leetcode
array/reverseVowels.py
reverseVowels.py
py
834
python
zh
code
0
github-code
6
26664284885
import json import logging import os from http.client import HTTPConnection from pathlib import Path from typing import Dict, Any from mmcc_framework import DictCallback, Framework from mmcc_framework.nlu_adapters import NluAdapter from tuning.mmcc_config.callbacks import my_callbacks from tuning.types import Pipeline, PipelineCallback # Load the process description and kb from file. with open(Path(__file__).parent / 'mmcc_config' / 'process_desc.json', "r") as process_file: proc = json.loads(process_file.read()) logging.getLogger(__name__).info('Reading process_desc file') with open(Path(__file__).parent / 'mmcc_config' / 'process_kb.json', "r") as process_file: kb = json.loads(process_file.read()) logging.getLogger(__name__).info('Reading process_kb file') def get_framework(pipeline: Pipeline, result: str, start_work: PipelineCallback) -> Framework: """Creates a new framework object, remember to call `handle_data_input({})` to get the first sentence. The framework will have no NLU and the kb will not be saved at the end of execution. The context will contain the dataset and the pipeline. :param pipeline: the pipeline used in the last analysis :param result: base64 string representation of the previous analysis result :param start_work: callback that takes the pipeline and starts the execution in another thread """ return Framework(process=proc, kb=kb, initial_context={'pipeline': pipeline, 'result': result, 'start_work': start_work}, callback_getter=DictCallback(callbacks=my_callbacks), nlu=MyRasaNlu(), on_save=lambda *args: None) class MyRasaNlu(NluAdapter): """ This adapter uses Rasa, to use this adapter it is necessary to first setup and train the interpreter. The instructions on how to use Rasa are available on Rasa's website, and consist basically in the following steps: - Install Rasa and its dependencies; - Run `rasa init` in your folder of choice; - Edit the `data/nlu` file with the utterances used for training; - Run `rasa train nlu` to produce a model; - Start rasa on port 5005 and pass the location of the model: for example `rasa run --enable-api -m models/nlu-20201228-183937.tar.gz` Example: Suppose that the nlu is trained with, among the others, the intent "insert_name" with a entity "name". Initialize the adapter: `my_adapter = RasaNlu()` Suppose that it is time to insert the name. If it is necessary to insert it as text use: `my_framework.handle_text_input("Mark")`. The callback corresponding to the current activity will receive (if the intent is recognized): `{"intent": "insert_name", "name": "Mark"}`. If it is necessary to insert the name as data use: `my_framework.handle_data_input(RasaNlu.dict("insert_name", {"name": "Mark"}))`, which will pass to the callback the same structure as above. :ivar interpreter: the instance of the rasa interpreter used by this adapter """ def __init__(self): self.host = os.getenv("RASA_IP", "localhost") # TODO(giubots): fix here (host.docker.internal) self.port = int(os.getenv("RASA_PORT", "5005")) def parse(self, utterance: str) -> Dict[str, Any]: """ Runs the interpreter to parse the given utterance and returns a dictionary containing the parsed data. If no intent can be extracted from the provided utterance, this returns an empty dictionary. :param utterance: the text input from the user :return: a dictionary containing the detected intent and corresponding entities if any exists. """ connection = HTTPConnection(host=self.host, port=self.port) connection.request("POST", "/model/parse", json.dumps({"text": utterance})) response = json.loads(connection.getresponse().read()) if response["intent"]["name"] is None: return {"intent": ""} res = self.dict(response["intent"]["name"], {item['entity']: item["value"] for item in response["entities"]}) logging.getLogger(__name__).info('Detected intent: %s', res) return res @staticmethod def dict(intent: str, values: Dict[str, Any] = None) -> Dict[str, Any]: """ Helper method that can be used to produce a dictionary equivalent to the one of the parse method. Use this method with framework.handle_data_input. :param intent: the intent corresponding to this input :param values: an optional dictionary containing pairs of entity-value :return: a dictionary equivalent to the one produced by the parse method """ if values is None: values = {} return {"intent": intent, **values}
DEIB-GECO/DSBot
DSBot/tuning/mmcc_integration.py
mmcc_integration.py
py
4,842
python
en
code
0
github-code
6
8918699138
import sys if __name__ == '__main__': if len(sys.argv) == 1: print("Usage: python {} [rom.ch8] >> [output.csv]".format(sys.argv[0])) exit() rom = sys.argv[-1] bytes = bytearray() with open(rom, 'rb') as r: byte = r.read(1) while byte != "": bytes.append(byte) byte = r.read(1) disassemble = [] byteindex = 0 while byteindex < len(bytes): disassemble.append(bytes[byteindex] << 8 | bytes[byteindex + 1]) byteindex += 2 pc = 0x200 print("address,instruction,opcode,x,y,n,kk,nnn,description") for ip in range(0x00, len(disassemble)): mem_addr = '0x{0:0{1}X}'.format(pc, 4) instr = '0x{0:0{1}X}'.format(disassemble[ip], 4) opcode = '0x{0:0{1}X}'.format(disassemble[ip] & 0xF000, 4) x = '0x{0:0{1}X}'.format((disassemble[ip] >> 8) & 0x000F, 4) y = '0x{0:0{1}X}'.format((disassemble[ip] >> 4) & 0x000F, 4) n = '0x{0:0{1}X}'.format(disassemble[ip] & 0x000F, 4) kk = '0x{0:0{1}X}'.format(disassemble[ip] & 0x0FF, 4) nnn = '0x{0:0{1}X}'.format(disassemble[ip] & 0x0FFF, 4) desc = "" kk if int(opcode, 16) == 0x0000: if int(kk, 16) == 0x00E0: desc = "CLEAR_SCREEN" elif int(kk, 16) == 0x00EE: desc = "SUBROUTINE_RETURN" else: desc = "UNKNOWN_0x00_INSTRUCTION" elif int(opcode, 16) == 0x1000: desc = "JUMP_{}".format(nnn) elif int(opcode, 16) == 0x2000: desc = "SUBROUTINE_CALL_{}".format(nnn) elif int(opcode, 16) == 0x3000: desc = "SKIP_NEXT_INSTRUCTION_IF_V[{}]_EQUALS_{}".format(x, kk) elif int(opcode, 16) == 0x4000: desc = "SKIP_NEXT_INSTRUCTION_IF_V[{}]_NOT_EQUALS_{}".format(x, kk) elif int(opcode, 16) == 0x5000: desc = "SKIP_NEXT_INSTRUCTION_IF_V[{}]_EQUALS_V[{}]".format(x, y) elif int(opcode, 16) == 0x6000: desc = "SET_V[{}]_EQUALSTO_{}".format(x, kk) elif int(opcode, 16) == 0x7000: desc = "SET_V[{}]_EQUALSTO_V[{}]+{}".format(x, x, kk) elif int(opcode, 16) == 0x8000: if int(n, 16) == 0x0000: desc = "SET_V[{}]_EQUALSTO_V[{}]".format(x, y) elif int(n, 16) == 0x0001: desc = "SET_V[{}]_EQUALSTO_V[{}]_OR_V[{}]".format(x, x, y) elif int(n, 16) == 0x0002: desc = "SET_V[{}]_EQUALSTO_V[{}]_AND_V[{}]".format(x, x, y) elif int(n, 16) == 0x0003: desc = "SET_V[{}]_EQUALSTO_V[{}]_XOR_V[{}]".format(x, x, y) elif int(n, 16) == 0x0004: desc = "SET_V[{}]_EQUALSTO_V[{}]_PLUS_V[{}]".format(x, x, y) elif int(n, 16) == 0x0005: desc = "SET_V[{}]_EQUALSTO_V[{}]_MINUS_V[{}]".format(x, x, y) elif int(n, 16) == 0x0006: desc = "SET_V[{}]_EQUALSTO_V[{}] >> 1".format(x, x) elif int(n, 16) == 0x0007: desc = "SET_V[{}]_EQUALSTO_V[{}]_MINUS_V[{}]".format(x, y, x) elif int(n, 16) == 0x000E: desc = "SET_V[{}]_EQUALSTO_V[{}] << 1".format(x, x) else: desc = "UNKNOWN_0x8000_INSTRUCTION" elif int(opcode, 16) == 0x9000: desc = "SKIP_NEXT_INSTRUCTION_IF_V[{}]_NOT_EQUALS_V[{}]".format(x, y) elif int(opcode, 16) == 0xA000: desc = "SET_I_EQUALSTO_{}".format(nnn) elif int(opcode, 16) == 0xB000: desc = "JUMP_V0_PLUS_{}".format(nnn) elif int(opcode, 16) == 0xC000: desc = "SET_V[{}]_EQUALSTO_RANDOM".format(x) elif int(opcode, 16) == 0xD000: desc = "DRAW_SPRITE_AT_COORDINATES_V[{}]V[{}]_WIDTH_8_HEIGHT_{}".format(x, y, n) elif int(opcode, 16) == 0xE000: if int(kk, 16) == 0x009E: desc = "SKIP_NEXT_INSTRUCTION_IF_V[{}]_PRESSED".format(x) elif int(kk, 16) == 0x00A1: desc = "SKIP_NEXT_INSTRUTION_IF_V[{}]_NOTPRESSED".format(x) else: desc = "UNKNOWN_0xE000_INSTRUCTION" elif int(opcode, 16) == 0xF000: if int(kk, 16) == 0x0007: desc = "SET_V[{}]_EQUALSTO_DELAYTIMER".format(x) elif int(kk, 16) == 0x00A: desc = "KEYPRESS_WAIT_AND_STOREKEY_IN_V[{}]".format(x) elif int(kk, 16) == 0x0015: desc = "SET_DELAYTIMER_EQUALSTO_V[{}]".format(x) elif int(kk, 16) == 0x0018: desc = "SET_SOUNDTIMER_EQUALSTO_V[{}]".format(x) elif int(kk, 16) == 0x001E: desc = "SET_I_EQUALSTO_I_PLUS_V[{}]".format(x) elif int(kk, 16) == 0x0029: desc = "SET_I_EQUALSTO_SPRITE_ADDRESS_OF_CHAR_IN_V[{}]".format(x) elif int(kk, 16) == 0x0033: desc = "SET_BCD_V[{}]".format(x) elif int(kk, 16) == 0x0055: desc = "STORE_V[0-{}]_STARTINGAT_MEM[I]".format(x) elif int(kk, 16) == 0x0065: desc = "LOAD_MEM[I - I+{}]_IN_V[0-{}]".format(x, x) else: desc = "UNKNOWN_0xF000_INSTRUCTION" else: desc = "UNKNOWN_{}_OPCODE".format(opcode) pc += 2 print("{},{},{},{},{},{},{},{},{}".format(mem_addr, instr, opcode, x, y, n, kk, nnn, desc))
FrancescoTerrosi/chip8emu
CHIP8/disassembler/disassemble.py
disassemble.py
py
5,468
python
en
code
0
github-code
6
41675665840
# 영역 구하기 import sys sys.setrecursionlimit(100000000) input = sys.stdin.readline m, n, k = map(int, input().split()) # 종이 paper = [[0 for _ in range(n)] for _ in range(m)] # 방문 처리 visited = [[False for _ in range(n)] for _ in range(m)] res = [] # 종이에 색칠하기 for _ in range(k): x1, y1, x2, y2 = map(int, input().split()) for y in range(y1, y2): for x in range(x1, x2): paper[y][x] = 1 def dfs(y, x): res = 0 def _dfs(y, x): nonlocal res res += 1 visited[y][x] = True direction = [(1, 0), (0, -1), (-1, 0), (0, 1)] for d in direction: next_step = (y + d[0], x + d[1]) if ( 0 <= next_step[0] < m and 0 <= next_step[1] < n and paper[next_step[0]][next_step[1]] == 0 and not visited[next_step[0]][next_step[1]] ): _dfs(next_step[0], next_step[1]) _dfs(y, x) return res # 모든 종이를 숞회하면서 방문처리 되어있지 않은 곳이면 dfs 호출 for y in range(m): for x in range(n): if paper[y][x] == 0 and not visited[y][x]: cnt = dfs(y, x) res.append(cnt) print(len(res)) for num in sorted(res): print(num, end=" ")
jisupark123/Python-Coding-Test
알쓰/week1/2583.py
2583.py
py
1,313
python
en
code
1
github-code
6
34248836732
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker plt.style.use("bmh") def exact(r1, r2, w): return 2 * np.sqrt(w/np.pi) * np.exp(- w * (r1 * r1 + r2 * r2)) def fmt(x, pos): a, b = '{:.1e}'.format(x).split('e') b = int(b) return r'${} \times 10^{{{}}}$'.format(a, b) if __name__ == "__main__": N = 1000 radius = 3 r = np.linspace(-radius, radius, N) data = np.zeros((N, N)) for i in range(N): for j in range(N): data[i, j] = exact(r[i], r[j], 1) #data /= np.sum(data) size = 28 size_ticks = 20 label_size = {"size":str(size)} plt.rcParams["font.family"] = "Serif" plt.rcParams.update({'figure.autolayout': True}) fig, ax = plt.subplots(figsize=(8,6)) img = ax.imshow(data, cmap=plt.cm.jet, extent=[-radius,radius,-radius,radius]) cbar = fig.colorbar(img, fraction=0.046, pad=0.04) #, format=ticker.FuncFormatter(fmt)) cbar.set_label(r'$\rho(r_i,r_j)$', rotation=90, labelpad=10, y=0.5, **label_size) cbar.ax.tick_params(labelsize=size_ticks) plt.tight_layout() ax.set_xlabel("$r_j$", **label_size) ax.set_ylabel("$r_i$", **label_size) ax.tick_params(labelsize=size_ticks) tick = [-3, -2, -1, 0, 1, 2, 3] ax.set_xticks(tick) ax.set_yticks(tick) plt.grid() plt.show()
evenmn/Master-thesis
scripts/plot_exact_tb.py
plot_exact_tb.py
py
1,391
python
en
code
4
github-code
6
1904177195
from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware import json, os app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get('/contents/{page_id}/{content_id}') async def content( page_id: str, content_id: str): json_path = f"./data/json/{page_id}/{content_id}.json" if not os.path.exists(json_path): raise HTTPException(status_code=404, detail="Page not found") with open(json_path, 'r', encoding='utf-8') as j: json_load = json.load(j) return json_load @app.get('/contents/{page_id}') async def contentslist( page_id: str,): json_path = f"./data/pagelist/{page_id}.json" if not os.path.exists(json_path): raise HTTPException(status_code=404, detail="Page not found") with open(json_path, 'r', encoding='utf-8') as j: json_load = json.load(j) return json_load @app.get('/pagelist') async def pagelist(): json_path = "./data/pagelist/all.json" with open(json_path, 'r', encoding='utf-8') as j: json_load = json.load(j) return json_load
tetla/knowledge-reader
backend/offdemy-api.py
offdemy-api.py
py
1,203
python
en
code
0
github-code
6
33381013184
from django.contrib import admin from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.urls import path, include from django.contrib.auth import views as auth_views from polls.views import ( RegistrationView, CreateBoardView, BoardDetailView, BoardDeleteView, CreateListView, # ListDetailView, ListEditView, ListDeleteView, CreateCardView, CardEditView, CardDeleteView, CardMoveView, ) urlpatterns = [ path('admin/', admin.site.urls), path("accounts/", include("django.contrib.auth.urls")), path("accounts/register/", RegistrationView.as_view()), path("", CreateBoardView.as_view(), name="board"), path("board/detail/<id>/", BoardDetailView.as_view(), name="board_detail"), path("board/delete<id>/", BoardDeleteView.as_view(), name="board_delete"), path("list/<id>", CreateListView.as_view(), name="list_create"), # path("list/detail/<id>/", ListDetailView.as_view(), name="list_detail"), path("list/edit/<id>/", ListEditView.as_view(), name="list_edit"), path("list/delete/<id>/", ListDeleteView.as_view(), name="list_delete"), path("card/<id>/", CreateCardView.as_view(), name="card_create"), path("card/edit/<id>/", CardEditView.as_view(), name="card_edit"), path("card/delete/<id>/", CardDeleteView.as_view(), name="card_delete"), path("card/<id>/move/", CardMoveView.as_view(), name="card_move"), ] urlpatterns += staticfiles_urlpatterns()
destinymalone/projectmanagement-capstone
mysite/urls.py
urls.py
py
1,486
python
en
code
0
github-code
6
2665829226
from heatSink import HeatSink from waterPipes import WaterPipes from solarPanel import SolarPanel from system import System import matplotlib.pyplot as plt flow_rates = [0.00025, 0.0005, 0.001, 0.002, 0.003, 0.005] panel_temp = [] no_pipes = [] inlet_temp = 30 for f in flow_rates: temps = [] pipes = [] for p in [1, 2, 3, 4, 5]: heat_sink = HeatSink() solar_panel = SolarPanel() water_pipes = WaterPipes(no_pipes=p) final_temp = 0 for i in range(0, 40): system = System(heat_sink=heat_sink, solar_panel=solar_panel, water_pipes=water_pipes, ambient_temp=30, flow_rate=f, flow_temp=inlet_temp) system.update() inlet_temp = system.outletTemp final_temp = system.T_2 temps.append(final_temp) pipes.append(p) panel_temp.append(temps) no_pipes.append(pipes) for i in range(0, len(flow_rates)): plt.plot(no_pipes[i], panel_temp[i], 'o-', label='Flow rate: ' + str(flow_rates[i]) + ' m3/s') plt.legend() plt.xlabel('Number of Pipes') plt.ylabel('Panel Surface Temperature (°C)') plt.show()
southwelljake/HeatSinkModelling
src/comparePipes.py
comparePipes.py
py
1,260
python
en
code
0
github-code
6
73400221629
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = "Polaris' NoteBook" copyright = '2023, PolarisXQ' author = 'PolarisXQ' release = '0.0' # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = [ 'sphinx_markdown_tables', # 'sphinxemoji.sphinxemoji', 'sphinx.ext.githubpages', 'sphinx_copybutton', 'sphinx.ext.mathjax', # 'pallets_sphinx_themes' 'myst_parser' ] myst_enable_extensions = [ "amsmath", "attrs_inline", "colon_fence", "deflist", "dollarmath", "fieldlist", "html_admonition", "html_image", "linkify", "replacements", "smartquotes", "strikethrough", "substitution", "tasklist", ] templates_path = ['_templates'] exclude_patterns = [] language = 'zh_CN' # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_theme = 'press' html_static_path = ['_static'] html_sidebars = { '***': ['util/searchbox.html', 'util/sidetoc.html'], } from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } source_suffix = ['.rst', '.md'] html_logo = '_static/madcat_mini.png' html_favicon='_static/madcat_mini.png' html_theme_options = { "external_links": [ ("Github", "https://github.com/PolarisXQ"), # ("Other", "https://bla.com") ] }
PolarisXQ/Polaris-NoteBook
source/conf.py
conf.py
py
1,924
python
en
code
0
github-code
6
40070373372
import boto3 import json from tqdm import tqdm dynamodb = boto3.resource('dynamodb',region_name='us-east-2') table = dynamodb.Table('FSBP_tree') print(table.creation_date_time) ''' with open('/hdd/c3s/data/aws_data/breach_compilation-pw_tree_1000000.json') as f: data = json.load(f) with table.batch_writer() as batch: for item in data: batch.put_item( Item={ 'NodeId': item, 'Info': data[item] } ) ''' f = open('/hdd/c3s/data/aws_data/splits/intr_tree_lucy_0.txt','r') t = 0 bar= tqdm(f) with table.batch_writer() as batch: for line in bar: item = line.split('\t') batch.put_item( Item={ 'NodeId': item[0], 'Info': item[1] } )
lucy7li/compromised-credential-checking
perfomance_simulations/fsbp/save_amazon.py
save_amazon.py
py
793
python
en
code
6
github-code
6
25814131906
import errno from flask import current_app, request, render_template from flask.views import MethodView from werkzeug.exceptions import Forbidden, NotFound from ..constants import COMPLETE, FILENAME, LOCKED, TYPE from ..utils.date_funcs import delete_if_lifetime_over from ..utils.http import redirect_next_referrer from ..utils.permissions import ADMIN, CREATE, may from ..utils.upload import Upload class ModifyView(MethodView): def error(self, item, error): return render_template('error.html', heading=item.meta[FILENAME], body=error), 409 def response(self, name): return redirect_next_referrer('bepasty.display', name=name) def get_params(self): return { FILENAME: request.form.get('filename'), TYPE: request.form.get('contenttype'), } def post(self, name): if not may(CREATE): raise Forbidden() try: with current_app.storage.openwrite(name) as item: if not item.meta[COMPLETE] and not may(ADMIN): error = 'Upload incomplete. Try again later.' return self.error(item, error) if item.meta[LOCKED] and not may(ADMIN): raise Forbidden() if delete_if_lifetime_over(item, name): raise NotFound() params = self.get_params() if params[FILENAME]: item.meta[FILENAME] = Upload.filter_filename( params[FILENAME], name, params[TYPE], item.meta[TYPE] ) if params[TYPE]: item.meta[TYPE], _ = Upload.filter_type( params[TYPE], item.meta[TYPE] ) return self.response(name) except OSError as e: if e.errno == errno.ENOENT: raise NotFound() raise
bepasty/bepasty-server
src/bepasty/views/modify.py
modify.py
py
1,929
python
en
code
162
github-code
6
8778305417
from flask_restful import Resource, reqparse from flask_jwt import jwt_required, current_identity from models.player import PlayerModel from models.team import TeamModel class Player(Resource): parser = reqparse.RequestParser() parser.add_argument( 'back_number', type=int, required=True, help="This field must be integer" ) parser.add_argument( 'team_name', type=str, required=True, help="This field must be integer" ) parser.add_argument( 'new_back_number', type=str, required=False, help="This field must be integer" ) def get(self, name, division=None, team_name=None): if team_name is None and division is None: players = PlayerModel.find_by_name(name) if players.count() > 0: return {"players": [player.json() for player in players]} elif team_name is None: print (division) else: team = TeamModel.find_by_name_division(team_name, division) if team: players = PlayerModel.find_by_team_id(team.id) if players.count() > 0: return {"players": [player.json() for player in players]} return {"message": "Player does not exists"} def post(self, name): data = Player.parser.parse_args() team = TeamModel.find_by_name(data['team_name']) if team is None: return {"message" : "Team does not exist"} if PlayerModel.find_by_back_number_in_team(data['back_number'], team.id): return {"message" : "Back number is already taken."} player = PlayerModel(name, data['back_number'], team.id) player.save_to_db() return player.json() @jwt_required() def delete(self, name): data = Player.parser.parse_args() team = TeamModel.find_by_name(data['team_name']) if team is None: return {"message" : "Team does not exist"} player = PlayerModel.find_player_in_team(name, team.id, data['back_number']) if player: player.delete_from_db() return {"message":"Player deleted"} def put(self, name): data = Player.parser.parse_args() team = TeamModel.find_by_name(data['team_name']) if team is None: return {"message" : "Team does not exist"} if PlayerModel.find_by_back_number_in_team(data['new_back_number'], team.id): return {"message" : "Back number is already taken."} player = PlayerModel.find_player_in_team(name, team.id, data['back_number']) if player is None: return {"message" : "Player doesn not exist"} else: if data['new_back_number'] is None: return {"message" : "New Back Number is missing"} player.back_number = data['new_back_number'] player.save_to_db() return player.json() class PlayerList(Resource): def get(self, team_name=None, division=None): if team_name is None and division is None: players = PlayerModel.query.all() else: team = TeamModel.find_by_name(team_name) if team: players = PlayerModel.find_by_team_id(team.id) else: players = PlayerModel.find_by_division(division) return {"players" : [player.json() for player in players]}
baehs1989/flask-RESTful-project
resources/player.py
player.py
py
3,467
python
en
code
0
github-code
6
29186498876
import numpy import multiprocessing as mp import scipy.fftpack as fft import scipy.signal as signal import h5py from .utilities import working_dir from .stationbandpass import lofar_station_subband_bandpass def fir_filter_coefficients(num_chan, num_taps, cal_factor=1./50.0): ''' Compute FIR filter coefficients for channel separation. **Parameters** num_chan : int Required number of channels in PPF output. num_taps : int Number of PPF taps. **Returns** A num_taps x num_chan numpy.array of float32. **Example** >>> fir_filter_coefficients(num_chan=4, num_taps=8) array([[-0.00337621, 0.01111862, -0.01466139, 0.00781696], [ 0.00988741, -0.02981976, 0.03694931, -0.01888615], [-0.0233096 , 0.06982564, -0.08770566, 0.0466728 ], [ 0.06241577, -0.21720791, 0.36907339, -0.46305624], [ 0.46305624, -0.36907339, 0.21720791, -0.06241577], [-0.0466728 , 0.08770566, -0.06982564, 0.0233096 ], [ 0.01888615, -0.03694931, 0.02981976, -0.00988741], [-0.00781696, 0.01466139, -0.01111862, 0.00337621]], dtype=float32) ''' raw_coefficients = signal.firwin((num_taps)*num_chan, 1/(num_chan), width=0.5/(num_chan)) auto_fftshift = raw_coefficients*(-1)**numpy.arange(num_taps*num_chan) coefficients = numpy.array(auto_fftshift*(num_chan**0.5), dtype=numpy.float32) coefficients *= cal_factor return coefficients.reshape((num_taps, num_chan)) def channelize_ppf(timeseries_taps, fir_coefficients): ''' Make a polyphase-filtered spectrum of a timeseries. **Parameters** timeseries_taps : 2D numpy.array of complex64 A `num_taps x num_chan` array containing the timeseries data, where `timeseries_taps.ravel()` should yield the input (single channel) timeseries data. fir_coefficients : 2D numpy.array of float32 A `num_taps x num_chan` array containing the FIR coefficients, where `fir_coefficients.ravel()` should yield the FIR filter to multiply with the original (single channel) timeseries data. **Returns** A 1D numpy.array of complex64 with length num_chan containing the PPF output. **Example** >>> fir = fir_filter_coefficients(num_chan=4, num_taps=2, cal_factor=1) >>> fir.dtype dtype('float32') >>> timeseries = numpy.array(numpy.exp(2j*numpy.pi*2.8*numpy.arange(8)), ... dtype=numpy.complex64) >>> timeseries array([ 1.000000 +0.00000000e+00j, 0.309017 -9.51056540e-01j, -0.809017 -5.87785244e-01j, -0.809017 +5.87785244e-01j, 0.309017 +9.51056540e-01j, 1.000000 -3.42901108e-15j, 0.309017 -9.51056540e-01j, -0.809017 -5.87785244e-01j], dtype=complex64) >>> spectrum = channelize_ppf(timeseries.reshape(fir.shape), fir) >>> spectrum array([-0.03263591-0.01060404j, -0.00383157+0.00195229j, -0.00848089+0.02610143j, 0.78864020+1.54779351j], dtype=complex64) ''' return (fft.fft((timeseries_taps*fir_coefficients).sum(axis=0))) def channelize_ppf_multi_ts(timeseries_taps, fir_coefficients): '''FIR coefficients are num_taps x num_chan, blocks are num_timeslots x num_taps x num_chan arrays''' return (fft.fft((timeseries_taps*fir_coefficients[numpy.newaxis,:,:]).sum(axis=1), axis=1)) def channelize_ppf_contiguous_block(timeseries_taps, fir_coefficients): num_taps, num_chan = fir_coefficients.shape num_ts_blocks = timeseries_taps.shape[0] num_spectra = num_ts_blocks -(num_taps-1) output_spectra = numpy.zeros((num_spectra, num_chan), dtype=numpy.complex64) for sp in range(num_spectra): output_spectra[sp,:] += channelize_ppf(timeseries_taps[sp:sp+num_taps,:], fir_coefficients) return output_spectra def samples_per_block(block_length_s, sample_duration_s, num_chan, num_taps): r''' Calculate the number of samples per correlator intergration time, as well as the number of samples that must be read. The latter is larger because a certain number of samples before and after the actual interval must be read to properly fill the PPF. **Parameters** block_length_s : float Number of seconds per correlator interval. sample_duration_s : float Number of seconds per sample in the time series data. num_chan : int Number of channels for the PPF. num_taps : int Number of taps in the PPF **Returns** Tuple (block_length samples, samples_to_read_per_block). Both integers. **Examples** >>> block_length_samples, samples_to_read = samples_per_block(0.1, 1024/200e6, num_chan=256, num_taps=16) >>> block_length_samples, block_length_samples/256, samples_to_read/256 (19456, 76.0, 91.0) >>> print(block_length_samples*1024/200e6, ' seconds') 0.09961472 seconds ''' num_spectra = int(round(block_length_s/sample_duration_s/num_chan)) block_length_samples = num_spectra*num_chan samples_to_read_per_block = (num_spectra+(num_taps-1))*num_chan return block_length_samples, samples_to_read_per_block def read_and_process_antenna_worker(h5_names, sap_id, num_sb, fir_coefficients, connection): r''' Read a complex time series from a sequence of four HDF5 groups containing, X_re, X_im , Y_re, Y_im, respectively. Read num_timeslots starting at first_timeslot. If apply_fn is not None, apply it to the resulting time series per sub band and return its result. **Parameters** h5_names : sequence strings The HDF5 file names of X_re, X_im, Y_re, and Y_im. first_timeslot : int The first timeslot to read. num_timeslots : int The number of timeslots to read. num_sb : int The number of sub bands expected in the data. fir_coefficients : 2D numpy.array of float32 A `num_taps x num_chan` array containing the FIR coefficients, where `fir_coefficients.ravel()` should yield the FIR filter to multiply with the original (single channel) timeseries data. **Returns** Tuple of x and y numpy arrays(time, sb, channel). **Example** >>> None None ''' sap_fmt = 'SUB_ARRAY_POINTING_%03d/BEAM_000/STOKES_%d' num_pol = len(h5_names) num_taps, num_chan = fir_coefficients.shape bandpass = lofar_station_subband_bandpass(num_chan) # with working_dir(dir_name): h5_files = [h5py.File(file_name, mode='r') for file_name in h5_names] h5_groups = [h5_file[sap_fmt % (sap_id, pol)] for pol, h5_file in enumerate(h5_files)] while True: message = connection.recv() if message == 'done': connection.close() [h5_file.close() for h5_file in h5_files] break first_timeslot, num_timeslots = message time_series_real = numpy.zeros((4, num_timeslots, num_sb), dtype=numpy.float32) [h5_groups[pol].read_direct(time_series_real, numpy.s_[first_timeslot:first_timeslot+num_timeslots,:], numpy.s_[pol, :, :]) for pol in range(num_pol)] time_series_complex_x = time_series_real[0,:,:] + 1j*time_series_real[1,:,:] time_series_complex_y = time_series_real[2,:,:] + 1j*time_series_real[3,:,:] result_x = numpy.array([channelize_ppf_contiguous_block( time_series_complex_x[:, sb].reshape((-1, num_chan)), fir_coefficients)/bandpass[numpy.newaxis,:] for sb in range(num_sb)], dtype=numpy.complex64) result_y = numpy.array([channelize_ppf_contiguous_block( time_series_complex_y[:, sb].reshape((-1, num_chan)), fir_coefficients)/bandpass[numpy.newaxis,:] for sb in range(num_sb)], dtype=numpy.complex64) connection.send(['x', result_x.shape, result_x.dtype]) connection.send_bytes(result_x.tobytes()) connection.send(['y', result_y.shape, result_y.dtype]) connection.send_bytes(result_y.tobytes()) def time_and_freq_axes(h5_filename, sap_id=0): r''' ''' coordinate_fmt = 'SUB_ARRAY_POINTING_%03d/BEAM_000/COORDINATES/COORDINATE_%d' h5_file = h5py.File(h5_filename, mode='r') time_axis, freq_axis = [ dict([item for item in h5_file[coordinate_fmt % (sap_id, axis_id)].attrs.items()]) for axis_id in [0, 1]] h5_file.close() return time_axis, freq_axis def read_and_process_antenna_block_mp(dir_name, sas_id_string, sap_ids, fir_coefficients, interval_s=None, interval_samples=None, num_samples=256*16, max_duration_s=None): sap_fmt = 'SUB_ARRAY_POINTING_%03d/BEAM_000/STOKES_%d' with working_dir(dir_name): sap_names = [[('%s_SAP%03d_B000_S%d_P000_bf.h5' % (sas_id_string, sap_id, pol)) for pol in [0, 1, 2, 3]] for sap_id in sap_ids] first_file = h5py.File(sap_names[0][0], mode='r') timeslots_per_file = first_file[sap_fmt % (0, 0)].shape[0] first_file.close() time_axis, freq_axis = time_and_freq_axes(sap_names[0][0], sap_id=0) num_sb = len(freq_axis['AXIS_VALUES_WORLD']) sample_duration_s = time_axis['INCREMENT'] if interval_samples is None: samples_per_interval = int(numpy.floor(interval_s/sample_duration_s)) else: samples_per_interval = interval_samples first_timeslot = 0 pipes = [mp.Pipe() for sap_id in sap_ids] manager_ends = [pipe[0] for pipe in pipes] worker_ends = [pipe[1] for pipe in pipes] processes = [mp.Process(target=read_and_process_antenna_worker, args=(h5_names, sap_id, num_sb, fir_coefficients, connection)) for h5_names, sap_id, connection in zip(sap_names, sap_ids, worker_ends)] [process.start() for process in processes] while first_timeslot < timeslots_per_file - samples_per_interval - num_samples: time_axis['REFERENCE_VALUE'] = (first_timeslot + num_samples/2)*sample_duration_s if max_duration_s is not None and (first_timeslot +num_samples)*sample_duration_s > max_duration_s: break [pipe.send([first_timeslot, num_samples]) for pipe in manager_ends] x_metadata = [pipe.recv() for pipe in manager_ends] x_data = [numpy.frombuffer(pipe.recv_bytes(), dtype=x_meta[2]).reshape(x_meta[1]) for x_meta, pipe in zip(x_metadata, manager_ends)] y_metadata = [pipe.recv() for pipe in manager_ends] y_data = [numpy.frombuffer(pipe.recv_bytes(), dtype=y_meta[2]).reshape(y_meta[1]) for y_meta, pipe in zip(y_metadata, manager_ends)] first_timeslot += samples_per_interval # Return X[sap, sb, time, chan], Y[sap, sb, time, chan], time, freq yield (numpy.array(x_data, dtype=numpy.complex64), numpy.array(y_data, dtype=numpy.complex64), time_axis, freq_axis) [pipe.send('done') for pipe in manager_ends] [pipe.close() for pipe in manager_ends] [process.join() for process in processes] return None
brentjens/software-correlator
softwarecorrelator/stationprocessing.py
stationprocessing.py
py
11,844
python
en
code
4
github-code
6
25816673887
# Write a program to convert decimal number to equivalent binary, octal, and hexadecimal numbers. def binary(num): b='' while num: r=num%2 b+=str(r) num=num// 2 return b[::-1] def octal(num): x='' while num: r=num%8 x=x+str(r) num=num//8 return x[::-1] def hexdec(num): x='' while num: r=num%16 if r>10: x+=chr(r+55) else: x=x+str(r) num=num//16 return x[::-1] num=int(input("Enter any decimal number : ")) print("The binary of the ",num," are : ",binary(num)) print("The octal of the ",num," are : ",octal(num)) print("The hexadecimal of the ",num," are : ",hexdec(num))
asteekgoswami/5th-sem-python
assignment-4/Q4.py
Q4.py
py
723
python
en
code
0
github-code
6
24168209609
#!/usr/bin/env python ''' summarise slurm job details Usage: summarise.py --files slurm-*.log > summary.tsv Time is in hours. Memory is in GB. ''' #(venv_somatic_2) spartan-login1 18:48:20 msi-evaluation$ sacct -j 18860471 --format="JobName,CPUTime,MaxRSS,Elapsed,MaxVMSize,Timelimit" # JobName CPUTime MaxRSS Elapsed MaxVMSize Timelimit #---------- ---------- ---------- ---------- ---------- ---------- # mantis 17:37:48 02:56:18 08:00:00 # batch 17:37:48 733264K 02:56:18 47907692K # extern 17:37:48 1212K 02:56:18 144788K import argparse import logging import subprocess import sys def to_hours(v): # d-hh:mm:ss or hh:mm:ss if '-' in v: d = float(v.split('-')[0]) return 24 * d + to_hours(v.split('-')[1]) else: h, m, s = [int(x) for x in v.split(':')] return h + m / 60 + s / 3600 def to_g(v): if v.endswith('K'): return float(v[:-1]) / 1024 / 1024 elif v.endswith('M'): return float(v[:-1]) / 1024 elif v.endswith('Mn'): return float(v[:-2]) / 1024 elif v.endswith('Gn'): return float(v[:-2]) else: logging.warn('tricky memory value: %s', v) return float(v) def main(files, filter_name): logging.info('starting...') sys.stdout.write('ID,Name,TimeRequested,TimeUsed,MemoryRequested,MemoryUsed,TimeDiff,MemoryDiff\n') for f in files: logging.info('%s...', f) i = f.split('/')[-1].split('.')[0].split('-')[-1] output = subprocess.check_output("sacct -j {} -p --format JobName,Elapsed,MaxRSS,ReqMem,TimeLimit".format(i), shell=True).decode() lines = output.split('\n') jobname = lines[1].split('|')[0] time_requested = to_hours(lines[1].split('|')[4]) time_used = to_hours(lines[2].split('|')[1]) memory_used = to_g(lines[2].split('|')[2]) memory_requested = to_g(lines[2].split('|')[3]) if filter_name == 'snakemake': jobname = '-'.join(jobname.split('-')[-2:-1]) logging.debug('new jobname is %s', jobname) sys.stdout.write('{},{},{:.1f},{:.1f},{:.1f},{:.1f},{:.1f},{:.1f}\n'.format(i, jobname, time_requested, time_used, memory_requested, memory_used, time_requested - time_used, memory_requested - memory_used)) logging.info('done') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Slurm summariser') parser.add_argument('--files', required=True, nargs='+', help='files containing slurm ids') parser.add_argument('--filter_name', required=False, help='filter names in snakemake format *-name-*') parser.add_argument('--verbose', action='store_true', help='more logging') args = parser.parse_args() if args.verbose: logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG) else: logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) main(args.files, args.filter_name)
supernifty/slurm_util
summarise.py
summarise.py
py
2,901
python
en
code
0
github-code
6
22682272557
# -*- coding: utf-8 -*- """ Created on Wed May 12 04:34:12 2021 @author: Zakaria """ import pandas as pd data = pd.read_csv('prediction_de_fraud_2.csv') caracteristiques = data.drop('isFraud', axis=1).values cible = data['isFraud'].values from sklearn.preprocessing import LabelEncoder LabEncdr_X = LabelEncoder() caracteristiques[:, 1] = LabEncdr_X.fit_transform(caracteristiques[:, 1]) caracteristiques[:, 3] = LabEncdr_X.fit_transform(caracteristiques[:, 3]) caracteristiques[:, 6] = LabEncdr_X.fit_transform(caracteristiques[:, 6]) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(caracteristiques, cible, test_size=.3, random_state=50) from sklearn.ensemble import RandomForestClassifier Random_frst_cls = RandomForestClassifier(random_state=50) Random_frst_cls.fit(x_train, y_train) Random_frst_cls.score(x_test, y_test) ## ==> 0.9550561797752809
Baxx95/6-10-Programmes-Data-Science-SL-Random_Forest_Classifier
Random_Forest_Classifier.py
Random_Forest_Classifier.py
py
961
python
en
code
0
github-code
6
42549531170
### This file has been adopted from ### https://github.com/openlawlibrary/pygls/blob/master/examples/json-extension/server/server.py import asyncio from bisect import bisect from cromwell_tools import api as cromwell_api from cromwell_tools.cromwell_auth import CromwellAuth from cromwell_tools.utilities import download from functools import wraps from pygls.features import ( CODE_ACTION, DEFINITION, REFERENCES, TEXT_DOCUMENT_DID_OPEN, TEXT_DOCUMENT_DID_CHANGE, TEXT_DOCUMENT_DID_SAVE, TEXT_DOCUMENT_WILL_SAVE, WORKSPACE_DID_CHANGE_CONFIGURATION, WORKSPACE_DID_CHANGE_WATCHED_FILES, ) from pygls.server import LanguageServer from pygls.types import ( CodeActionParams, ConfigurationItem, ConfigurationParams, Diagnostic, DiagnosticSeverity, DidChangeConfigurationParams, DidOpenTextDocumentParams, DidChangeTextDocumentParams, DidSaveTextDocumentParams, WillSaveTextDocumentParams, TextDocumentPositionParams, DidChangeWatchedFiles, FileChangeType, MessageType, Location, Position, Range, ) from os import environ, name as platform, pathsep from pathlib import Path import re, sys from requests import HTTPError from threading import Timer from time import sleep from typing import Callable, Dict, Iterable, List, Set, Tuple, Union from urllib.parse import urlparse import WDL from WDL import SourceNode, SourcePosition, Lint PARSE_DELAY_SEC = 0.5 # delay parsing of WDL until no more keystrokes are sent class Server(LanguageServer): SERVER_NAME = 'wdl' CONFIG_SECTION = SERVER_NAME CMD_RUN_WDL = SERVER_NAME + '.run' def __init__(self): super().__init__() self.wdl_paths: Dict[str, Set[str]] = dict() self.wdl_types: Dict[str, Dict[str, SourcePosition]] = dict() self.wdl_defs: Dict[str, Dict[SourcePosition, SourcePosition]] = dict() self.wdl_refs: Dict[str, Dict[SourcePosition, List[SourcePosition]]] = dict() self.wdl_symbols: Dict[str, List[SourcePosition]] = dict() self.aborting_workflows: Set[str] = set() def catch_error(self, log = False): def decorator(func: Callable): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: if log: self.show_message_log(str(e), MessageType.Error) else: self.show_message(str(e), MessageType.Error) return wrapper return decorator server = Server() def _get_client_config(ls: Server): config = ls.get_configuration(ConfigurationParams([ ConfigurationItem(section=Server.CONFIG_SECTION) ])).result() return config[0] # https://gist.github.com/walkermatt/2871026 def debounce(delay_sec: float, id_arg: Union[int, str]): """ Decorator that will postpone a functions execution until after wait seconds have elapsed since the last time it was invoked. """ def decorator(func: Callable): @wraps(func) def debounced(*args, **kwargs): if not hasattr(debounced, 'timers'): debounced.timers: Dict[str, Timer] = dict() id = args[id_arg] if isinstance(id_arg, int) else kwargs[id_arg] if id in debounced.timers: debounced.timers[id].cancel() timer = Timer(delay_sec, lambda: func(*args, **kwargs)) debounced.timers[id] = timer timer.start() return debounced return decorator @debounce(PARSE_DELAY_SEC, 1) def parse_wdl(ls: Server, uri: str): ls.show_message_log('Validating ' + uri, MessageType.Info) diagnostics, wdl = _parse_wdl(ls, uri) ls.publish_diagnostics(uri, diagnostics) ls.show_message_log( '{} {}'.format('Valid' if wdl else 'Invalid', uri), MessageType.Info if wdl else MessageType.Warning ) def _parse_wdl(ls: Server, uri: str): try: paths = _get_wdl_paths(ls, uri) doc = asyncio.run( WDL.load_async(uri, path=paths, read_source=_read_source(ls)) ) types = _get_types(doc.children, dict()) ls.wdl_types[uri] = types ls.wdl_defs[uri], ls.wdl_refs[uri] = _get_links(doc.children, types, dict(), dict()) ls.wdl_symbols[uri] = sorted(_get_symbols(doc.children, [])) return list(_lint_wdl(ls, doc)), doc except WDL.Error.MultipleValidationErrors as errs: return [_diagnostic_err(e) for e in errs.exceptions], None except WDLError as e: return [_diagnostic_err(e)], None except Exception as e: ls.show_message_log(str(e), MessageType.Error) return [], None def _read_source(ls: Server): async def read_source(uri: str, path, importer): uri = await WDL.resolve_file_import(uri, path, importer) if uri.startswith('/'): uri = 'file://' + uri source = ls.workspace.get_document(uri).source return WDL.ReadSourceResult(source_text=source, abspath=uri) return read_source def _get_symbols(nodes: Iterable[SourceNode], symbols: List[SourcePosition]): for node in nodes: symbols.append(node.pos) _get_symbols(node.children, symbols) return symbols # find SourcePosition as the minimum bounding box for cursor Position def _find_symbol(ls: Server, uri: str, p: Position): if uri not in ls.wdl_symbols: return symbols = ls.wdl_symbols[uri] best_score = (sys.maxsize, sys.maxsize) best_sym: SourcePosition = None line = p.line + 1 col = p.character + 1 min_pos = SourcePosition(uri, uri, line, 0, line, 0) i = bisect(symbols, min_pos) while i < len(symbols): sym = symbols[i] if sym.line > line or (sym.line == line and sym.column > col): break elif sym.end_line > line or (sym.end_line == line and sym.end_column >= col): score = (sym.end_line - sym.line, sym.end_column - sym.column) if score <= best_score: best_score = score best_sym = sym i += 1 return best_sym def _get_types(nodes: Iterable[SourceNode], types: Dict[str, SourcePosition]): for node in nodes: if isinstance(node, WDL.StructTypeDef): types[node.type_id] = node.pos _get_types(node.children, types) return types def _get_links( nodes: Iterable[SourceNode], types: Dict[str, SourcePosition], defs: Dict[SourcePosition, SourcePosition], refs: Dict[SourcePosition, List[SourcePosition]], ): for node in nodes: source: SourcePosition = None if isinstance(node, WDL.Call): source = node.callee.pos elif isinstance(node, WDL.Decl) and isinstance(node.type, WDL.Type.StructInstance): source = types[node.type.type_id] elif isinstance(node, WDL.Expr.Ident): ref = node.referee if isinstance(ref, WDL.Tree.Gather): source = ref.final_referee.pos else: source = ref.pos if source is not None: defs[node.pos] = source refs.setdefault(source, []).append(node.pos) _get_links(node.children, types, defs, refs) return defs, refs SourceLinks = Union[SourcePosition, List[SourcePosition]] def _find_links(ls: Server, uri: str, pos: Position, links: Dict[str, Dict[SourcePosition, SourceLinks]]): symbol = _find_symbol(ls, uri, pos) if (symbol is None) or (uri not in links): return symbols = links[uri] if symbol in symbols: return symbols[symbol] def _find_def(ls: Server, uri: str, pos: Position): link = _find_links(ls, uri, pos, ls.wdl_defs) if link is not None: return Location(link.abspath, _get_range(link)) def _find_refs(ls: Server, uri: str, pos: Position): links = _find_links(ls, uri, pos, ls.wdl_refs) if links is not None: return [Location(link.abspath, _get_range(link)) for link in links] def _lint_wdl(ls: Server, doc: WDL.Document): _check_linter_path() warnings = Lint.collect(Lint.lint(doc, descend_imports=False)) _check_linter_available(ls) for pos, _, msg, _ in warnings: yield _diagnostic(msg, pos, DiagnosticSeverity.Warning) def _check_linter_path(): if getattr(_check_linter_path, 'skip', False): return LOCAL_BIN = '/usr/local/bin' PATH = environ['PATH'].split(pathsep) if platform == 'posix' and LOCAL_BIN not in PATH: environ['PATH'] = pathsep.join([LOCAL_BIN] + PATH) _check_linter_path.skip = True def _check_linter_available(ls: Server): if getattr(_check_linter_available, 'skip', False): return if not Lint._shellcheck_available: ls.show_message(''' WDL task command linter is not available on the system PATH. Please install ShellCheck and/or add it to the PATH: https://github.com/koalaman/shellcheck#installing ''', MessageType.Warning) _check_linter_available.skip = True def _get_wdl_paths(ls: Server, wdl_uri: str, reuse_paths = True) -> List[str]: ws = ls.workspace if ws.folders: ws_uris = [f for f in ws.folders if wdl_uri.startswith(f)] elif ws.root_uri: ws_uris = [ws.root_uri] else: ws_uris = [] wdl_paths: Set[str] = set() for ws_uri in ws_uris: if reuse_paths and (ws_uri in ls.wdl_paths): ws_paths = ls.wdl_paths[ws_uri] else: ws_paths: Set[str] = set() ws_root = Path(urlparse(ws_uri).path) for p in ws_root.rglob('*.wdl'): ws_paths.add(str(p.parent)) ls.wdl_paths[ws_uri] = ws_paths wdl_paths.update(ws_paths) return list(wdl_paths) WDLError = (WDL.Error.ImportError, WDL.Error.SyntaxError, WDL.Error.ValidationError) def _diagnostic(msg: str, pos: SourcePosition = None, severity = DiagnosticSeverity.Error): return Diagnostic(_get_range(pos), msg, severity=severity) def _get_range(p: SourcePosition = None): if p is None: return Range( Position(), Position(0, sys.maxsize), ) else: return Range( Position(p.line - 1, p.column - 1), Position(p.end_line - 1, p.end_column - 1), ) def _diagnostic_err(e: WDLError): cause = ': {}'.format(e.__cause__) if e.__cause__ else '' msg = str(e) + cause return _diagnostic(msg, e.pos) @server.thread() @server.feature(TEXT_DOCUMENT_DID_OPEN) @server.catch_error() def did_open(ls: Server, params: DidOpenTextDocumentParams): parse_wdl(ls, params.textDocument.uri) @server.thread() @server.feature(TEXT_DOCUMENT_DID_CHANGE) @server.catch_error() def did_change(ls: Server, params: DidChangeTextDocumentParams): parse_wdl(ls, params.textDocument.uri) @server.thread() @server.feature(TEXT_DOCUMENT_DID_SAVE) @server.catch_error() def did_save(ls: Server, params: DidSaveTextDocumentParams): pass @server.thread() @server.feature(TEXT_DOCUMENT_WILL_SAVE) @server.catch_error() def will_save(ls: Server, params: WillSaveTextDocumentParams): pass @server.feature(WORKSPACE_DID_CHANGE_CONFIGURATION) def did_change_configuration(ls: Server, params: DidChangeConfigurationParams): pass @server.thread() @server.feature(WORKSPACE_DID_CHANGE_WATCHED_FILES) @server.catch_error() def did_change_watched_files(ls: Server, params: DidChangeWatchedFiles): for change in params.changes: if change.type in [FileChangeType.Created, FileChangeType.Deleted] and \ change.uri.endswith('.wdl'): _get_wdl_paths(ls, change.uri, reuse_paths=False) @server.thread() @server.feature(DEFINITION) @server.catch_error() def goto_definition(ls: Server, params: TextDocumentPositionParams): return _find_def(ls, params.textDocument.uri, params.position) @server.thread() @server.feature(REFERENCES) @server.catch_error() def find_references(ls: Server, params: TextDocumentPositionParams): return _find_refs(ls, params.textDocument.uri, params.position) class RunWDLParams: def __init__(self, wdl_uri: str): self.wdl_uri = wdl_uri @server.feature(CODE_ACTION) @server.catch_error() def code_action(ls: Server, params: CodeActionParams): return [{ 'title': 'Run WDL', 'kind': Server.CMD_RUN_WDL, 'command': { 'command': Server.CMD_RUN_WDL, 'arguments': [RunWDLParams(params.textDocument.uri)], }, }] @server.thread() @server.command(Server.CMD_RUN_WDL) @server.catch_error() def run_wdl(ls: Server, params: Tuple[RunWDLParams]): wdl_uri = params[0].wdl_uri wdl_path = urlparse(wdl_uri).path _, wdl = _parse_wdl(ls, wdl_uri) if not wdl: return ls.show_message('Unable to submit: WDL contains error(s)', MessageType.Error) config = _get_client_config(ls) auth = CromwellAuth.from_no_authentication(config.cromwell.url) workflow = cromwell_api.submit( auth, wdl_path, raise_for_status=True, ).json() id = workflow['id'] title = 'Workflow {} for {}'.format(id, wdl_path) _progress(ls, 'start', { 'id': id, 'title': title, 'cancellable': True, 'message': workflow['status'], }) status: str = '' while True: if status != workflow['status']: status = workflow['status'] if status == 'Succeeded': message_type = MessageType.Info elif status in ('Aborting', 'Aborted'): message_type = MessageType.Warning elif status == 'Failed': message_type = MessageType.Error else: _progress(ls, 'report', { 'id': id, 'message': status, }) continue _progress(ls, 'done', { 'id': id, }) message = '{}: {}'.format(title, status) ls.show_message(message, message_type) diagnostics = _parse_failures(wdl, id, auth) return ls.publish_diagnostics(wdl_uri, diagnostics) sleep(config.cromwell.pollSec) if id in ls.aborting_workflows: workflow = cromwell_api.abort( id, auth, raise_for_status=True, ).json() ls.aborting_workflows.remove(id) continue try: workflow = cromwell_api.status( id, auth, raise_for_status=True, ).json() except HTTPError as e: ls.show_message_log(str(e), MessageType.Error) def _progress(ls: Server, action: str, params): ls.send_notification('window/progress/' + action, params) @server.feature('window/progress/cancel') def abort_workflow(ls: Server, params): ls.aborting_workflows.add(params.id) def _parse_failures(wdl: WDL.Document, id: str, auth: CromwellAuth): workflow = cromwell_api.metadata( id, auth, includeKey=['status', 'executionStatus', 'failures', 'stderr'], expandSubWorkflows=True, raise_for_status=True, ).json() if workflow['status'] != 'Failed': return calls = workflow['calls'] if calls: diagnostics: List[Diagnostic] = [] elements = wdl.workflow.elements for call, attempts in calls.items(): for attempt in attempts: if attempt['executionStatus'] == 'Failed': pos = _find_call(wdl.workflow.elements, wdl.workflow.name, call) failures = _collect_failures(attempt['failures'], []) stderr = _download(attempt['stderr']) if stderr is not None: failures.append(stderr) msg = '\n\n'.join(failures) diagnostics.append(_diagnostic(msg, pos)) return diagnostics else: failures = _collect_failures(workflow['failures'], []) msg = '\n\n'.join(failures) return [_diagnostic(msg)] class CausedBy: def __init__(self, causedBy: List['CausedBy'], message: str): self.causedBy = causedBy self.message = message def _collect_failures(causedBy: List[CausedBy], failures: List[str]): for failure in causedBy: if failure['causedBy']: _collect_failures(failure['causedBy'], failures) failures.append(failure['message']) return failures WorkflowElements = List[Union[WDL.Decl, WDL.Call, WDL.Scatter, WDL.Conditional]] def _find_call(elements: WorkflowElements, wf_name: str, call_name: str): found: SourcePosition = None for el in elements: if found: break elif isinstance(el, WDL.Call) and '{}.{}'.format(wf_name, el.name) == call_name: found = el.pos elif isinstance(el, WDL.Conditional) or isinstance(el, WDL.Scatter): found = _find_call(el.elements, wf_name, call_name) return found @server.catch_error(log=True) def _download(url: str): return str(download(url), 'utf-8')
broadinstitute/wdl-ide
server/wdl_lsp/server.py
server.py
py
17,170
python
en
code
38
github-code
6
7796988085
import xml.dom.minidom import string; import logging; def LoadSession(system, FileName): Logger = logging.getLogger("PPLT"); Logger.debug("Try to load Session from %s"%FileName); doc = xml.dom.minidom.parse(FileName); dev_tag = doc.getElementsByTagName("Devices")[0]; sym_tag = doc.getElementsByTagName("SymbolTree")[0]; srv_tag = doc.getElementsByTagName("Servers")[0]; LoadDevices(system, dev_tag); LoadSymTree(system, sym_tag.firstChild); LoadServers(system, srv_tag); def LoadDevices(system, Tag): devlst = Tag.getElementsByTagName("Device"); for dev in devlst: Para = xmlFetchParameters(dev); Alias = dev.getAttribute("alias"); FQDN = dev.getAttribute("fqdn"); system.LoadDevice(FQDN, Alias, Para); def LoadServers(system, Tag): srvlst = Tag.getElementsByTagName("Server"); for srv in srvlst: Para = xmlFetchParameters(srv); Alias = srv.getAttribute("alias"); FQSN = srv.getAttribute("fqsn"); DefUser = srv.getAttribute("user"); Root = srv.getAttribute("root"); if not Root: Root = "/"; system.LoadServer(FQSN, Alias, DefUser, Para,Root); def LoadSymTree(system, Tag, PathList=[]): if not Tag: return(None); if Tag.nodeType != Tag.ELEMENT_NODE: return(LoadSymTree(system, Tag.nextSibling, PathList)); if Tag.localName == "Symbol": Name = Tag.getAttribute("name"); Slot = Tag.getAttribute("slot"); Refresh = Tag.getAttribute("refresh"); Group = Tag.getAttribute("group"); Owner = Tag.getAttribute("owner"); Modus = str(Tag.getAttribute("modus")); Path = PathList2Str(PathList+[Name]); system.CreateSymbol(Path, Slot, Refresh, Modus, Owner, Group); if Tag.localName == "Folder": Name = Tag.getAttribute("name"); Group = Tag.getAttribute("group"); Owner = Tag.getAttribute("owner"); Modus = Tag.getAttribute("modus"); Path = PathList2Str(PathList+[Name]); system.CreateFolder(Path, Modus, Owner, Group); if Tag.hasChildNodes(): LoadSymTree(system,Tag.firstChild,PathList+[Name]); return(LoadSymTree(system,Tag.nextSibling,PathList)); def xmlFetchParameters(Node): parameter = {}; parlst = Node.getElementsByTagName("Parameter"); for par in parlst: name = par.getAttribute("name"); value = xmlFetchText(par.firstChild); parameter.update( {name:value} ); return(parameter); def xmlFetchText(Node,txt=""): if not Node: return(txt); if Node.nodeType == Node.TEXT_NODE: txt += string.strip(Node.data); return(xmlFetchText(Node.nextSibling,txt)); def PathList2Str(PathLst): p = ""; if len(PathLst) == 0: return("/"); for item in PathLst: p += "/"+item; return(p);
BackupTheBerlios/pplt-svn
PPLT/PPLT/LoadSession.py
LoadSession.py
py
2,939
python
en
code
0
github-code
6
34038204278
from aio_proxy.response.formatters.elus import format_elus from aio_proxy.response.unite_legale_model import CollectiviteTerritoriale def format_collectivite_territoriale( colter_code=None, colter_code_insee=None, colter_elus=None, colter_niveau=None, ): if colter_code is None: return None else: return CollectiviteTerritoriale( code=colter_code, code_insee=colter_code_insee, elus=format_elus(colter_elus), # Format elus if provided niveau=colter_niveau, ).dict()
etalab/annuaire-entreprises-search-api
aio/aio-proxy/aio_proxy/response/formatters/collectivite_territoriale.py
collectivite_territoriale.py
py
565
python
it
code
13
github-code
6
20927340765
import tensorflow as tf from architecture import eda_net MOVING_AVERAGE_DECAY = 0.995 IGNORE_LABEL = 255 def model_fn(features, labels, mode, params): """ This is a function for creating a computational tensorflow graph. The function is in format required by tf.estimator. """ is_training = mode == tf.estimator.ModeKeys.TRAIN images = features logits = eda_net( images, is_training, k=params['k'], num_classes=params['num_labels'] ) predictions = { 'probabilities': tf.nn.softmax(logits, axis=3), 'labels': tf.argmax(logits, axis=3, output_type=tf.int32) } if mode == tf.estimator.ModeKeys.PREDICT: export_outputs = tf.estimator.export.PredictOutput({ name: tf.identity(tensor, name) for name, tensor in predictions.items() }) return tf.estimator.EstimatorSpec( mode, predictions=predictions, export_outputs={'outputs': export_outputs} ) # add l2 regularization with tf.name_scope('weight_decay'): add_weight_decay(params['weight_decay']) regularization_loss = tf.losses.get_regularization_loss() tf.summary.scalar('regularization_loss', regularization_loss) with tf.name_scope('losses'): class_weights = tf.constant(params['class_weights'], tf.float32) # it has shape [num_labels] shape = tf.shape(logits) batch_size, height, width, num_labels = tf.unstack(shape, axis=0) labels_flat = tf.reshape(labels, [-1]) logits = tf.reshape(logits, [batch_size * height * width, num_labels]) not_ignore = tf.not_equal(labels_flatten, IGNORE_LABEL) labels_flat = tf.boolean_mask(labels_flat, not_ignore) logits = tf.boolean_mask(logits, not_ignore) weights = tf.gather(class_weights, labels_flat) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels_flat, logits=logits) cross_entropy = tf.reduce_mean(losses * weights, axis=0) tf.losses.add_loss(cross_entropy) tf.summary.scalar('cross_entropy', cross_entropy) total_loss = tf.losses.get_total_loss(add_regularization_losses=True) with tf.name_scope('eval_metrics'): # this is a stupid metric actually accuracy = tf.reduce_mean(tf.to_float(tf.equal(predictions['labels'], labels)), axis=[0, 1, 2]) # this is better mean_iou = compute_iou(predictions['labels'], labels, params['num_labels']) if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'eval_accuracy': tf.metrics.mean(accuracy), 'eval_mean_iou': tf.metrics.mean(mean_iou) } return tf.estimator.EstimatorSpec( mode, loss=total_loss, eval_metric_ops=eval_metric_ops ) assert mode == tf.estimator.ModeKeys.TRAIN with tf.variable_scope('learning_rate'): global_step = tf.train.get_global_step() learning_rate = tf.train.polynomial_decay( params['initial_learning_rate'], global_step, params['decay_steps'], params['end_learning_rate'], power=1.0 # linear decay ) tf.summary.scalar('learning_rate', learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(total_loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step) for g, v in grads_and_vars: tf.summary.histogram(v.name[:-2] + '_hist', v) tf.summary.histogram(v.name[:-2] + '_grad_hist', g) with tf.control_dependencies([train_op]), tf.name_scope('ema'): ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step) train_op = ema.apply(tf.trainable_variables()) tf.summary.scalar('train_accuracy', accuracy) tf.summary.scalar('train_mean_iou', mean_iou) return tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op) def add_weight_decay(weight_decay): """Add L2 regularization to all (or some) trainable kernel weights.""" kernels = [v for v in tf.trainable_variables() if 'weights' in v.name] for K in kernels: x = tf.multiply(weight_decay, tf.nn.l2_loss(K)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, x) class RestoreMovingAverageHook(tf.train.SessionRunHook): def __init__(self, model_dir): super(RestoreMovingAverageHook, self).__init__() self.model_dir = model_dir def begin(self): ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY) variables_to_restore = ema.variables_to_restore() self.load_ema = tf.contrib.framework.assign_from_checkpoint_fn( tf.train.latest_checkpoint(self.model_dir), variables_to_restore ) def after_create_session(self, sess, coord): tf.logging.info('Loading EMA weights...') self.load_ema(sess) def compute_iou(x, y, num_labels): """ Arguments: x, y: int tensors with shape [b, h, w], possible values that they can contain are {0, 1, ..., num_labels - 1, IGNORE_LABEL}. Note that ignore label is ignored here. num_labels: an integer. Returns: a float tensor with shape []. """ unique_labels = tf.range(num_labels, dtype=tf.int32) x = tf.equal(tf.expand_dims(x, 3), unique_labels) y = tf.equal(tf.expand_dims(y, 3), unique_labels) intersection = tf.to_float(tf.logical_and(x, y)) union = tf.to_float(tf.logical_or(x, y)) # they all have shape [b, h, w, num_labels] intersection = tf.reduce_sum(intersection, axis=[1, 2]) union = tf.reduce_sum(union, axis=[1, 2]) union = tf.maximum(union, 1.0) # they have shape [b, num_labels] return tf.reduce_mean(intersection/union, axis=[0, 1])
TropComplique/EDANet
model.py
model.py
py
6,023
python
en
code
2
github-code
6
3019297917
def getBestCand(candidates,visited): bestIndex = -1 cost = 0x3f3f3f for i in range(len(visited)): if not visited[i] and candidates[i] < cost: cost = candidates[i] bestIndex = i return bestIndex,cost def bfs(g): n = len(g) visited = [False] * n candidates = [float('inf')] * n sol = 0 roads = [] init = 0 ant = 0 visited[init] = True for st,end,w in g[init]: candidates[end] = w for i in range(n-1): bestCand, cost = getBestCand(candidates,visited) if cost < float('inf'): sol += cost visited[bestCand] = True roads.append(cost) for st,end,w in g[bestCand]: if w < candidates[end]: candidates[end] = w return sol,roads if __name__ == '__main__': N,M = map(int,input().strip().split()) g = [[] for _ in range(N)] solRoads = [[] for i in range(N)] for _ in range(M): a,b,w = map(int,input().strip().split()) g[a].append((a,b,w)) g[b].append((b,a,w)) sol,costs = bfs(g) print(sol) print(costs) C = int(input().strip()) for _ in range(C): N = int(input().strip()) print(N)
medranoGG/AlgorithmsPython
test01/bisbal.py
bisbal.py
py
1,252
python
en
code
0
github-code
6
19511071794
import random def magic_ball() -> str: """ Ask this crabby Magic 8 Ball a question out loud and run to see the answer. :return: `str`, a random answer. """ # Possible responses that the Magic 8 Ball can give responses = ["Don't ask me!", "Next question, loser.", "Go away.", "I've had enough of your questions.", "Maybe you should ask your Mom that question.", "Does that topic really concern me?", "You talk a lot, so no.", "What? Sorry, I wasn't listening.", "The answer is: You should see a therapist.", "Wow, you've got more problems than a math book!", "Hmmn...bring me cookies and I might answer.", "Yes! I mean no! I can't decide...", "Nope.", "Sure, I guess.", "You woke me up to ask that?!", "I should ask you the same question.", "I don't think so.", "How should I know?", "Maybe yes, maybe no.", "Look inside yourself.", "That is a definite yes...I think.", "I'm tired, ask again when I care.", "Ugh...this question again?", "My sixth sense says....no.", "Magically yes!", "I'm in a good mood so I'll say yes.", "What is this, twenty questions?"] answer = random.choice(responses) return answer print(magic_ball())
CrochetGamer/small-projects
magic_8_ball.py
magic_8_ball.py
py
1,440
python
en
code
0
github-code
6
40310342893
import time import random import pandas as pd import multiprocessing as mp import numpy as np import os import torch import torch.nn.functional as F import copy from .utils import strToListF from .models import makeDataSet_Vec from .utils import strToListF, colorizar, getSTime # models from .drlearning import Agent_DQL, ExperienceReplay, ICM as ICM_DQL class VecDataEnvironment: ''' If this environment return done=True, reset it or some errors may apears''' VERY_BAD_REWARD = -1. def __init__(self, data_path, eval_path=None, max_backpack_size=200, vname='vecs', lname='is_humor', frmethod='acc', rdata_weval=False): self.data = pd.read_csv(data_path) self.data_eval = None self.max_backpack_size = max_backpack_size self.vec_size = len(self.data.loc[0,vname].split()) self.vname = vname self.lname = lname self.done = False self.backpack = [] self.backpack_l = [] self.pos_gone = None self.iterator = [i for i in range(len(self.data))] self.iter_modulo = len(self.data) self.iter_pos = None self.current_vector = None self.final_reward = None self.frmethod = frmethod if eval_path is not None: self.data_eval = pd.read_csv(eval_path) if rdata_weval: self.resetIterator(True) def mulIterModulo(self, mul=1.0): tmp = int(self.iter_modulo * mul) self.iter_modulo = min(len(self.data), tmp) self.iter_pos = None def resetIterator(self, use_reduced=False, porsion=1.): if not use_reduced: self.iterator = [i for i in range(len(self.data))] self.iter_modulo = int(len(self.data) * porsion) self.iter_pos = 0 else: print ('# Reducing Data trick') file_path = os.path.join('data', 'itEnvRed.npy') if os.path.isfile(file_path): rel = np.load(file_path) self.iterator = rel.tolist() self.iter_modulo = len(self.iterator) del rel ides = dict([(i,1) for i in self.iterator]) for i in range(len(self.data)): if i not in ides: self.iterator.append(i) del ides print (' Taken from', colorizar(file_path)) else: cnt = mp.cpu_count() pool = mp.Pool(cnt) dx = int(len(self.data_eval) / cnt ) dx = [(i*dx, i*dx + dx + (0 if i != cnt-1 else len(self.data_eval) % cnt)) for i in range(cnt)] label_list = pool.map(self.reduceData, dx) del pool del cnt del dx ides = {} for li in label_list: for v in li: ides.update({v:1}) del label_list self.iterator = [ v for v in ides ] self.iter_modulo = len(self.iterator) save = np.array(self.iterator, dtype=np.int64) np.save(file_path, save) del save for i in range(len(self.data)): if i not in ides: self.iterator.append(i) del ides def reduceData(self, ini_fin): sol = [] for k in range(ini_fin[0],ini_fin[1]): vec = np.array(strToListF(self.data_eval.loc[k, self.vname]), dtype=np.float32) lab = int(self.data_eval.loc[k, self.lname]) ide, dist = None, None for i in range(len(self.data)): curr_vec = np.array(strToListF(self.data.loc[i, self.vname]), dtype=np.float32) curr_lab = int(self.data.loc[i, self.lname]) if lab != curr_lab: continue distance = np.sqrt(((curr_vec - vec) ** 2).sum()).item() if dist is None or dist > distance: dist = distance ide = i sol.append(ide) del self.data_eval del self.data return sol def __next(self): if self.iter_pos is None: self.iter_pos = 0 selection_part = self.iterator[:self.iter_modulo] other_part = self.iterator[self.iter_modulo:] random.shuffle(selection_part) # RANDOMIZE random.shuffle(other_part) self.iterator = selection_part + other_part self.iter_pos += 1 if (self.iter_pos >= len(self.iterator)) or ((self.iter_pos % self.iter_modulo == 0) and self.iter_pos > 0): self.done = True self.__calculate_final_R() return None, None i = self.iterator[self.iter_pos] cad = strToListF(self.data.loc[i, self.vname]) lab = int(self.data.loc[i, self.lname]) return cad, lab def export_prototypes(self, file_list, label_list, silense=False): ''' export to a .npy the vectors in the backpak\n filelist: [f1:Str, f2:str, ... , fn:str] \n label_list: [l1:int, l2:int, ..., ln:int] \n the vectors with li label will be placed in fi file for all i''' for file_, label_ in zip(file_list, label_list): if not silense: print ('# Exporting prototypes to', colorizar(os.path.basename(file_))) expo = [] for v,l in zip(self.backpack, self.backpack_l): if l != label_: continue expo.append(v.reshape(1,-1)) expo = np.concatenate(expo, axis=0) np.save(file_+'.npy', expo) def proto_cmp_data_csv(self, ini_fin): ''' function used with paralellism to calculate the labels of the data with the prototypes.\n ini_fin:pair (ini:int, fin:int) the initial and final position of data, accesed by data.loc[i, vname] for i in [ini,fin) ''' sol = [] for i in range(ini_fin[0], ini_fin[1]): # lab = int(data.loc[i, lname]) vec = None if self.data_eval is not None: vec = np.array(strToListF(self.data_eval.loc[i, self.vname]), dtype=np.float32) else: vec = np.array(strToListF(self.data.loc[i, self.vname]), dtype=np.float32) min_val, l_min = None, None for v, l in zip(self.backpack, self.backpack_l): if l is None : continue # euclidiean distance current_value = np.sqrt(((v - vec) ** 2).sum()) if min_val is None or min_val > current_value: min_val = current_value l_min = l if l_min is None: break sol.append(l_min) del self.data if self.data_eval is not None: del self.data_eval return np.array(sol, np.int32) # check this later, the int32 ------------------------------------------ OJO ----------------- def __calculate_final_R(self): ''' Inside this, self.iterator is seted to None, be aware of future errors ''' cnt = mp.cpu_count() pool = mp.Pool(cnt) if self.data_eval is not None: dx = int(len(self.data_eval) / cnt ) dx = [(i*dx, i*dx + dx + (0 if i != cnt-1 else len(self.data_eval) % cnt)) for i in range(cnt)] else: dx = int(len(self.data) / cnt ) dx = [(i*dx, i*dx + dx + (0 if i != cnt-1 else len(self.data) % cnt)) for i in range(cnt)] label_list = pool.map(self.proto_cmp_data_csv, dx) del pool label_list = np.concatenate(label_list, axis=0) if label_list.shape[0] <= 0: # The backpack is empty ! self.final_reward = self.VERY_BAD_REWARD return if self.data_eval is not None: original_label = np.array(self.data_eval[self.lname].tolist(), dtype=np.int32) else: original_label = np.array(self.data[self.lname].tolist(), dtype=np.int32) if self.frmethod == 'acc': self.final_reward = ((label_list == original_label).sum() / original_label.shape[0]).item() del label_list del original_label def __reset_backpack(self): if len(self.backpack) <= 0: for _ in range(self.max_backpack_size): self.backpack.append(np.array([0 for _ in range(self.vec_size)], dtype=np.float32)) self.backpack_l.append(None) else: for k in range(self.max_backpack_size): self.backpack[k] = np.array([0 for _ in range(self.vec_size)], dtype=np.float32) self.backpack_l[k] = None def __makeState(self): self.current_vector = self.__next() backP = np.stack(self.backpack, axis=0) if self.done: vecI = np.zeros(self.vec_size, dtype=np.float32) else: vecI = np.array(self.current_vector[0], dtype=np.float32) return (backP, vecI) def reset(self): ''' Return the pair: a np.array of shape (max_backpack_size, vec_size) and a np.array of shape (vec_size). They are: (backpack state, incoming vector from data). ''' self.done = False self.final_reward = None if (self.iter_pos is not None) and (self.iter_pos >= len(self.iterator)): self.iter_pos = None self.__reset_backpack() s,v = self.__makeState() return s,v def step(self, action:int): ''' Return four objects: \n \t BackPack State, Incoming Vector from data, reward, done \n \t types: np.array(max_backpack_size, vec_size) , np.array (vec_size), float, bool ''' if action < 0 or action > self.max_backpack_size: raise ValueError('ERROR in action input variable, action: {} not in [0,{}]'.format(action,self.max_backpack_size)) self.pos_gone = action if action < self.max_backpack_size else None reward = 0. if action < self.max_backpack_size: self.backpack[action] = np.array(self.current_vector[0], dtype=np.float32) self.backpack_l[action] = int(self.current_vector[1]) s,v = self.__makeState() if self.final_reward is not None: reward += self.final_reward return s, v, reward, self.done def prepareBackpackState(blist, vec): state = np.concatenate([blist,vec.reshape(1,-1)], axis=0) state = torch.from_numpy(state) return state def __policy_dql(qvalues, nactions=12,eps=None): with torch.no_grad(): if eps is not None: if torch.rand(1) < eps: return torch.randint(low=0,high=nactions, size=(1,)) else: return torch.argmax(qvalues) else: return torch.multinomial(F.softmax(F.normalize(qvalues), dim=0), num_samples=1) def __minibatch_train_dql(Qmodel, Qtarget, qloss, replay, params, DEVICE, icm=None): state1_batch, action_batch, reward_batch, state2_batch = replay.get_batch() action_batch = action_batch.view(action_batch.shape[0],1).to(device=DEVICE) reward_batch = reward_batch.view(reward_batch.shape[0],1).to(device=DEVICE) state1_batch = state1_batch.to(device=DEVICE) state2_batch = state2_batch.to(device=DEVICE) forward_pred_err , inverse_pred_err = 0., 0. reward = reward_batch if icm is not None: forward_pred_err , inverse_pred_err = icm(state1_batch, action_batch, state2_batch) i_reward = (1. / float(params['eta'])) * forward_pred_err reward += i_reward.detach() # qvals = Qmodel(state2_batch) # recordar usar target net later qvals = Qtarget(state2_batch) reward += float(params['gamma']) * torch.max(qvals) reward_pred = Qmodel(state1_batch) reward_target = reward_pred.clone() indices = torch.stack((torch.arange(action_batch.shape[0]).to(device=DEVICE),action_batch.squeeze().to(device=DEVICE)), dim=0) indices = indices.tolist() reward_target[indices] = reward.squeeze() q_loss = 1e5 * qloss(F.normalize(reward_pred), F.normalize(reward_target.detach())) return forward_pred_err, inverse_pred_err, q_loss def __loss_fn(q_loss, inverse_loss, forward_loss, params): loss_ = (1 - float(params['beta'])) * inverse_loss loss_ += float(params['beta']) * forward_loss loss_ = loss_.mean() # loss_.sum() / loss.flatten().shape[0] loss = loss_ + float(params['lambda']) * q_loss return loss # params (data_path, lcolumn, vcolumn, param) def __prototypes_with_dql(params): print ('# Start:','Deep Q Learning algorithm. Relax, this will take a wille.') BACKPACK_SIZE, EPS = int(params['max_prototypes']), float(params['eps']) EPOCHS, LR, BSIZE = int(params['epochs']), float(params['lr']), int(params['batch_size']) DMODEL = int(params['d_model']) target_refill, i_targetFill = int(params['target_refill']), 0 use_icm = params['ICM'] losses = [] switch_to_eps_greedy = int(EPOCHS * (2/5)) env = VecDataEnvironment(params['data_path'], eval_path=params['eval_data_path'], max_backpack_size=BACKPACK_SIZE, vname=params['vcolumn'], lname=params['lcolumn'], rdata_weval=bool(params['reduced_data_prototypes'])) DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") # max_len : 5000, antes BACKPACK_SIZE+11, de esta forma quisas se adapte a ir cresiendo poco a poco max_len = min(5000, BACKPACK_SIZE+100) Qmodel = Agent_DQL(BACKPACK_SIZE+1, nhead=int(params['nhead']),nhid=int(params['nhid']),d_model=DMODEL,nlayers=int(params['n_layers']), max_len=max_len,dropout=float(params['dropout'])) qloss = torch.nn.MSELoss().to(device=DEVICE) # seting up the taget net, and memory replay stuff Qtarget = copy.deepcopy(Qmodel).to(device=DEVICE) Qtarget.load_state_dict(Qmodel.state_dict()) replay = ExperienceReplay(N=int(params['memory_size']), batch_size=BSIZE) all_model_params = list(Qmodel.parameters()) icm = None if use_icm: icm = ICM_DQL(BACKPACK_SIZE+1, DMODEL*(BACKPACK_SIZE+1), DMODEL, max_len=max_len, forward_scale=1., inverse_scale=1e4, nhead=int(params['nhead']),hiden_size=int(params['nhid']),nlayers=int(params['n_layers']), dropout=float(params['dropout'])) all_model_params += list(icm.parameters()) icm.train() opt = torch.optim.Adam(lr=LR, params=all_model_params) Qmodel.train() greater_reward = -(2**30) greater_reward_c = greater_reward triple_sch = [float(i) / 100. for i in params['distribution_train'].split('-')] for i in range(1,len(triple_sch)): triple_sch[i] += triple_sch[i-1] # triple_sch = [ triple_sch[i] + (triple_sch[i-1] if i > 0 else 0) for i in range(len(triple_sch))] if abs(triple_sch[-1] - 1.) > 1e-9: raise ValueError("Parameter 'distribution_train' most add 100, but has {}.".format(triple_sch[-1]*100.)) pos_tr = 0 for i in range(EPOCHS): print('# Epoch {}/{} {}'.format(i+1, EPOCHS, 'with eps' if i >= switch_to_eps_greedy else 'with softmax policy')) while pos_tr < len(triple_sch) and int(EPOCHS * triple_sch[pos_tr]) <= i+1: env.mulIterModulo(2.0) pos_tr += 1 all_obj_seeit = False state1 = prepareBackpackState(*env.reset()).unsqueeze(0).to(device=DEVICE) acc_reward = 0. it_episode = 0 init_time = time.time() while not all_obj_seeit: # parafernalia ---------------------------- it_episode += 1 print ('\r It {} with reward {:.4f} | {}'.format(it_episode, acc_reward, getSTime(time.time()-init_time)), end=' ') # ----------------------------------------- opt.zero_grad() q_val_pred = Qmodel(state1) # Use softmax policy only at the begining if i >= switch_to_eps_greedy: action = int(__policy_dql(q_val_pred, nactions=BACKPACK_SIZE+1,eps=EPS)) else: action = int(__policy_dql(q_val_pred, nactions=BACKPACK_SIZE+1)) back_state, vec_state , e_reward, done = env.step(action) state2 = prepareBackpackState(back_state, vec_state).unsqueeze(0).to(device=DEVICE) replay.add_memory(state1, action, e_reward, state2) acc_reward += e_reward all_obj_seeit = done if not done: state1 = state2 if len(replay.memory) < BSIZE: continue forward_pred_err, inverse_pred_err, q_loss = __minibatch_train_dql(Qmodel, Qtarget, qloss, replay, params, DEVICE, icm=icm) loss = __loss_fn(q_loss, forward_pred_err, inverse_pred_err, params) loss_list = (q_loss.mean().item(), forward_pred_err.flatten().mean().item(), inverse_pred_err.flatten().mean().item()) losses.append(loss_list) loss.backward() opt.step() i_targetFill += 1 if i_targetFill % target_refill == 0: i_targetFill = 0 Qtarget.load_state_dict(Qmodel.state_dict()) if greater_reward_c < acc_reward: greater_reward_c = acc_reward env.export_prototypes(file_list = [os.path.join('data','pos_center'), os.path.join('data','neg_center')], label_list = [1, 0]) if greater_reward <= acc_reward and (pos_tr >= len(triple_sch)): greater_reward = acc_reward Qmodel.save(os.path.join('pts', 'dql_model.pt')) if icm is not None: icm.save(os.path.join('pts', 'icm_model.pt')) print ('\r It {} with reward:{:.4f} | {}'.format(it_episode, acc_reward, getSTime(time.time()-init_time)), end='\n') losses_ = np.array(losses) np.save(os.path.join('out', 'dql_losses.npy'), losses_) del icm del opt del replay # best model # Qmodel.load(os.path.join('pts', 'dql_model.pt')) # Qmodel.eval() # it_episode, acc_reward = 0, 0. # init_time = time.time() # env.resetIterator() print ('# Ending:','Deep Q Learning algorithm') # state1 = prepareBackpackState(*env.reset()).unsqueeze(0) # with torch.no_grad(): # while True: # # parafernalia ---------------------------- # it_episode += 1 # # ----------------------------------------- # q_val_pred = Qmodel(state1) # action = int(__policy_dql(q_val_pred, nactions=BACKPACK_SIZE+1, eps=0.01)) # back_state, vec_state , e_reward, done = env.step(action) # state1 = prepareBackpackState(back_state, vec_state).unsqueeze(0) # acc_reward += e_reward # all_obj_seeit = done # if done: # print ('\r It {} with reward {:.4f} | {}'.format(it_episode, acc_reward, getSTime(time.time()-init_time))) # break # print ('\r It {} with reward {:.4f} | {}'.format(it_episode, acc_reward, getSTime(time.time()-init_time)), end=' ') # esporting final state of the backpack # env.export_prototypes(file_list = [os.path.join('data','pos_center'), os.path.join('data','neg_center')], # label_list = [1 , 0]) del env def extractPrototypes(method, params): """ Apply a method to extract prototypes from data. \n method: the method used to select prototypes, most be in [\'dql\', \'dql-intrinsic\']\n data_path:str a path to a \'.csv\' file with at most the columns [vcolumn, lcolumn]. \n eval_data_path: same as data_path, but treated as evaluation data \n The column vcolumn most be a list a floating points, a vector.\n The column lcolumn is the label of the vectors, [0,1]. """ __paramu = {'intrinsic':True, 'lambda':0.1, 'eta':1.0, 'gamma':0.2, 'eps':0.15, 'beta':0.2, 'lcolumn':'is_humor', 'vcolumn':'vecs', 'max_prototypes':20, # 200 'batch_size':10, 'lr':0.001, 'epochs':20, 'memory_size':50} __paramu.update(params) methods_ = [('dql', __prototypes_with_dql), ('dql-intrinsic', __prototypes_with_dql)] for mname, fun in methods_: if method == mname: fun(__paramu) return print ('ERROR::extractPrototypes Method parameter', '\''+method+'\'', 'is not in [', ' , '.join(['\''+s+'\'' for s,_,_ in methods_]), '] !!!!')
mjason98/haha21
code/protos.py
protos.py
py
20,732
python
en
code
0
github-code
6
13610828545
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import taggit.managers class Migration(migrations.Migration): dependencies = [ ('taggit', '0001_initial'), ('learn', '0003_project_photo'), ] operations = [ migrations.CreateModel( name='Area', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, verbose_name='ID', primary_key=True)), ('created', models.DateTimeField(auto_now_add=True, verbose_name='Criado em')), ('modified', models.DateTimeField(auto_now=True, verbose_name='Modificado em')), ('name', models.CharField(max_length=100, verbose_name='Nome')), ('slug', models.SlugField(max_length=100, verbose_name='Identificador')), ('tags', taggit.managers.TaggableManager(help_text='A comma-separated list of tags.', verbose_name='Tags', through='taggit.TaggedItem', to='taggit.Tag')), ], options={ 'ordering': ['name'], 'verbose_name': 'Área de Estudo', 'verbose_name_plural': 'Áreas de Estudo', }, bases=(models.Model,), ), migrations.AddField( model_name='project', name='area', field=models.ForeignKey(verbose_name='Área', blank=True, related_name='projects', null=True, to='learn.Area'), preserve_default=True, ), migrations.AddField( model_name='project', name='open_enrollment', field=models.BooleanField(default=False, verbose_name='Inscrições Abertas'), preserve_default=True, ), ]
klebercode/sofia
sofia/apps/learn/migrations/0004_auto_20141215_1723.py
0004_auto_20141215_1723.py
py
1,769
python
en
code
0
github-code
6
1922022592
from sklearn import preprocessing import pandas as pd import numpy as np import pickle data_path = './data/STT.csv' window = 15 def normalize(df): min_max_scaler = preprocessing.MinMaxScaler() df['open'] = min_max_scaler.fit_transform(df.open.values.reshape(-1, 1)) df['close'] = min_max_scaler.fit_transform(df.close.values.reshape(-1, 1)) df['high'] = min_max_scaler.fit_transform(df.high.values.reshape(-1, 1)) df['low'] = min_max_scaler.fit_transform(df.low.values.reshape(-1, 1)) df['volume'] = min_max_scaler.fit_transform( df.volume.values.reshape(-1, 1)) return df def split_data(stock, window, percent=0.85): amount_of_features = len(stock.columns) # 5 data = stock.values sequence_length = window + 1 # index starting from 0 result = [] for index in range(len(data) - sequence_length): result.append(data[index: index + sequence_length]) row = round(percent * data.shape[0]) result = np.array(result) train = result[:int(row), :] x_train = train[:, :-1] y_train = np.array(train[:, -1][:, -1]) x_test = result[int(row):, :-1] y_test = np.array(result[int(row):, -1][:, -1]) x_train = np.reshape( x_train, (x_train.shape[0], x_train.shape[1], amount_of_features)) x_test = np.reshape( x_test, (x_test.shape[0], x_test.shape[1], amount_of_features)) return [x_train, y_train, x_test, y_test] if __name__ == "__main__": df = pd.read_csv(data_path, index_col=0) target_df = df[df.symbol == 'STT'].copy() target_df.drop(['symbol'], 1, inplace=True) target_df_normalized = normalize(target_df) x_train, y_train, x_test, y_test = split_data( target_df_normalized, window) with open('./data/train.pickle', 'wb') as f: pickle.dump((x_train, y_train), f) with open('./data/test.pickle', 'wb') as f: pickle.dump((x_test, y_test), f)
sinlin0908/ML_course
hw4/prepro.py
prepro.py
py
1,925
python
en
code
0
github-code
6
8677677831
import xarray as xr import xesmf as xe import pandas as pd import datetime import os first_date = '2021-01-01' last_date = '2022-12-31' lonmin,lonmax = 360-90,360-69 latmin,latmax = -40,-15 variables = [ 'surf_el', 'water_temp', 'salinity', 'water_u', 'water_v'] renamedict = {'surf_el':'zos', 'water_temp':'thetao', 'salinity':'so', 'water_u':'uo', 'water_v':'vo'} def get_hycom_filename(ftype): if ftype=='hindcast': url = 'https://<Lucas.Glasner:y4vkrp7lqcv>@tds.hycom.org/thredds/dodsC/GLBy0.08/expt_93.0' return url def get_hycom_hindcast(first_date, last_date, lonmin, lonmax, latmin, latmax, variables): url = get_hycom_filename('hindcast') data = xr.open_dataset(url, decode_times=False) data = data[variables] data = data.sel(lat=slice(latmin,latmax), lon=slice(lonmin, lonmax)) attrs = data.time.attrs units,reference_date = data.time.attrs['units'].split('since') time = [pd.Timedelta(hours=t)+pd.to_datetime(reference_date) for t in data.time.values] data.coords['time'] = ('time',time, {'long_name':attrs['long_name'], 'axis':attrs['axis'], 'NAVO_code':attrs['NAVO_code']}) data = data.sel(time=slice(first_date, last_date)) return data if __name__=='__main__': data = get_hycom_hindcast(first_date=first_date, last_date=last_date, lonmin=lonmin, lonmax=lonmax, latmin=latmin, latmax=latmax, variables=variables) data = data.rename(renamedict) daterange = pd.date_range(first_date, last_date, freq='d') for date in daterange: datestr = date.strftime('%Y-%m-%d') try: print('Downloading data for ',datestr,'please wait...') x = data.sel(time=datestr).resample({'time':'d'}).mean() x.coords['time'] = x.time+pd.Timedelta(hours=12) x.to_netcdf( 'HINDCAST/hycom_hindcast_0p08_{}.nc'.format(date.strftime('%Y%m%d')), encoding={ 'time':{'units':'hours since 2000-01-01', 'dtype':float}, 'zos':{'zlib':True, 'complevel':3}, 'so':{'zlib':True, 'complevel':3}, 'uo':{'zlib':True, 'complevel':3}, 'vo':{'zlib':True, 'complevel':3}, 'thetao':{'zlib':True, 'complevel':3} } ) except Exception as e: print('Download for ',datestr,' failed:',e)
lucasglasner/DOWNLOADSCRIPTS
HYCOM/download_hycom_hindcast.py
download_hycom_hindcast.py
py
2,754
python
en
code
0
github-code
6
29099471877
from openpyxl import load_workbook, Workbook from openpyxl.formatting.rule import ColorScaleRule from openpyxl.styles import PatternFill, Font def _cal_writer_final_report(barcode, ws_report, all_data, init_row, init_col, report_output): row_counter = init_row ws_report.cell(column=-1 + init_col, row=row_counter, value=barcode).font = Font(b=True, underline="single") row_counter += 1 for plate_analysed in all_data["calculations"]: # Removing other calculations than avg and stdev if plate_analysed != "other_data": # Checks to see if the overview of avg and stv should be included if report_output[plate_analysed]["overview"]: # Writes the analysed method in, if the overview is set to true ws_report.cell(column=-1 + init_col, row=row_counter, value=plate_analysed).font = Font(b=True) # row_counter += 1 for state in all_data["calculations"][plate_analysed]: if report_output[plate_analysed][state]: ws_report.cell(column=init_col, row=row_counter, value=state).font = Font(b=True) for calc in all_data["calculations"][plate_analysed][state]: # Writes avg and stdev including values ws_report.cell(column=init_col + 1, row=row_counter, value=calc) ws_report.cell(column=init_col + 2, row=row_counter, value=all_data["calculations"][plate_analysed][state][calc]) row_counter += 1 else: if report_output["z_prime"]: ws_report.cell(column=init_col, row=row_counter, value="z-Prime").font = Font(b=True) try: ws_report.cell(column=init_col + 2, row=row_counter, value=all_data["calculations"][plate_analysed]["z_prime"]) except KeyError: ws_report.cell(column=init_col + 2, row=row_counter, value="Z-Prime is not calculated for the plates") row_counter += 1 row_counter += 1 return ws_report, row_counter def _well_writer_final_report(ws, hits, final_report_setup, init_row): indent_col = 1 row_counter = init_row for barcode in hits: # Writes headline for data inserts to see where the data is coming from ws.cell(column=indent_col, row=row_counter, value=barcode).font = Font(b=True, underline="single") row_counter += 1 for method in hits[barcode]: if final_report_setup["methods"][method]: # writes method ws.cell(column=indent_col, row=row_counter, value=method).font = Font(b=True) row_counter += 1 for split in hits[barcode][method]: ws.cell(column=indent_col, row=row_counter, value=split).font = Font(b=True) ws.cell(column=indent_col+1, row=row_counter, value=final_report_setup["pora_threshold"][split]["min"]).font = \ Font(underline="single") ws.cell(column=indent_col+2, row=row_counter, value=final_report_setup["pora_threshold"][split]["max"]).font = \ Font(underline="single") row_counter += 1 for well in hits[barcode][method][split]: ws.cell(column=indent_col + 1, row=row_counter, value=well) ws.cell(column=indent_col + 2, row=row_counter, value=hits[barcode][method][split][well]) row_counter += 1 indent_col += 4 row_counter = init_row def _get_data(all_plate_data, final_report_setup): data_calc_dict = {} temp_hits = {} plate_counter = 0 all_states = [] all_methods = [] for barcode in all_plate_data: plate_counter += 1 temp_hits[barcode] = {} data_calc_dict[barcode] = {} for method in all_plate_data[barcode]["plates"]: if method != "other_data": if method not in all_methods: all_methods.append(method) if final_report_setup["methods"][method]: temp_hits[barcode][method] = {"low": {}, "mid": {}, "high": {}} for well in all_plate_data[barcode]["plates"][method]["wells"]: if well in all_plate_data[barcode]["plates"][method]["sample"]: for split in final_report_setup["pora_threshold"]: temp_well_value = all_plate_data[barcode]["plates"][method]["wells"][well] if float(final_report_setup["pora_threshold"][split]["min"]) < float(temp_well_value) < \ float(final_report_setup["pora_threshold"][split]["max"]): temp_hits[barcode][method][split][well] = temp_well_value for method in all_plate_data[barcode]["calculations"]: data_calc_dict[barcode][method] = {} if method != "other_data": for state in all_plate_data[barcode]["calculations"][method]: if state not in all_states: all_states.append(state) data_calc_dict[barcode][method][state] = {} for calc in all_plate_data[barcode]["calculations"][method][state]: data_calc_dict[barcode][method][state][calc] = \ all_plate_data[barcode]["calculations"][method][state][calc] else: for other_calc in all_plate_data[barcode]["calculations"][method]: data_calc_dict[barcode][method][other_calc] = \ all_plate_data[barcode]["calculations"][method][other_calc] return temp_hits, data_calc_dict, plate_counter, all_states, all_methods def _ws_creator(wb, name): return wb.create_sheet(f"{name}_Matrix") def _matrix_writer(ws, data_calc_dict, state, plate_counter, all_methods): init_row = 2 init_col = 2 spacer = 4 col_stdev = init_col + plate_counter + spacer col_counter = init_col + 1 row_counter = init_row + 1 col_stdev_counter = col_stdev + 1 row_offset = init_row for method in all_methods: temp_avg_list = [] temp_stdev_list = [] mw_col = col_counter mw_row = row_counter mw_col_stdev = col_stdev_counter for barcodes in data_calc_dict: # Writes Plate names in row and clm for avg ws.cell(column=init_col - 1, row=row_counter, value=barcodes).font = Font(b=True) ws.cell(column=col_counter, row=row_offset - 1, value=barcodes).font = Font(b=True) # Writes Plate names in row and clm for stdev ws.cell(column=col_stdev - 1, row=row_counter, value=barcodes).font = Font(b=True) ws.cell(column=col_stdev_counter, row=row_offset - 1, value=barcodes).font = Font(b=True) for index_method, _ in enumerate(data_calc_dict[barcodes]): if index_method == 0: # Writes method for avg ws.cell(column=init_col, row=row_offset - 1, value=method).font = Font(b=True) # Writes method for stdev ws.cell(column=col_stdev, row=row_offset - 1, value=method).font = Font(b=True) if method != "other_data": for calc in data_calc_dict[barcodes][method][state]: temp_value = data_calc_dict[barcodes][method][state][calc] # gets avg values if calc == "avg": ws.cell(column=init_col, row=row_offset, value=calc).font = Font(b=True) ws.cell(column=init_col, row=row_counter, value=temp_value) ws.cell(column=col_counter, row=row_offset, value=temp_value) temp_avg_list.append(temp_value) elif calc == "stdev": ws.cell(column=col_stdev, row=row_offset, value=calc).font = Font(b=True) ws.cell(column=col_stdev, row=row_counter, value=temp_value) ws.cell(column=col_stdev_counter, row=row_offset, value=temp_value) temp_stdev_list.append(temp_value) # Sets offset for next loop, for writing headlines the right place col_counter += 1 row_counter += 1 col_stdev_counter += 1 # calculate the % difference between avg for each plate _matrix_calculator(ws, mw_row, mw_col, temp_avg_list) # calculate the % difference between stdev for each plate _matrix_calculator(ws, mw_row, mw_col_stdev, temp_stdev_list) # makes sure that next loop is writen below the first method. One method per row, with avg and stdev for each. col_stdev = init_col + plate_counter + spacer col_counter = init_col + 1 row_counter += spacer col_stdev_counter = col_stdev + 1 row_offset += (plate_counter + spacer) def _matrix_calculator(ws, row, col, temp_data_list): start_row = row start_col = col for index_x, _ in enumerate(temp_data_list): for index_y, _ in enumerate(temp_data_list): try: temp_value = (float(temp_data_list[index_x]) / float(temp_data_list[index_y])) * 100 except ZeroDivisionError: temp_value = "Na" ws.cell(column=start_col + index_x, row=start_row + index_y, value=temp_value) def _z_prime(ws, data_calc_dict): init_row = 2 init_col = 2 col_counter = init_col + 1 row_counter = init_row + 1 z_prime_list = [] for barcodes in data_calc_dict: # Writes Plate names ws.cell(column=init_col-1, row=row_counter, value=barcodes).font = Font(b=True) ws.cell(column=col_counter, row=init_row-1, value=barcodes).font = Font(b=True) # Writes values for Z-Prime z_prime = data_calc_dict[barcodes]["other_data"]["z_prime"] ws.cell(column=init_col, row=row_counter, value=z_prime) ws.cell(column=col_counter, row=init_row, value=z_prime) col_counter += 1 row_counter += 1 z_prime_list.append(z_prime) col_counter = init_col + 1 row_counter = init_row + 1 for index_x, _ in enumerate(z_prime_list): for index_y, _ in enumerate(z_prime_list): temp_value = (z_prime_list[index_x] / z_prime_list[index_y]) * 100 ws.cell(column=col_counter + index_x, row=row_counter + index_y, value=temp_value) def bio_final_report_controller(analyse_method, all_plate_data, output_file, final_report_setup): wb = Workbook() ws_report = wb.active ws_report.title = "Full report" ws_well_info = wb.create_sheet("Well Info") ws_z_prime = wb.create_sheet("Z-Prime") # ws_minimum = wb.create_sheet("Minimum") # ws_maximum = wb.create_sheet("Maximum") init_row = 2 init_col = 2 row = init_row col = init_col # calc overview: for index, barcode in enumerate(all_plate_data): ws, row_counter = _cal_writer_final_report(barcode, ws_report, all_plate_data[barcode], row, col, final_report_setup["calc"]) # Writes 5 plates horizontal, before changing rows. col += 5 if index % 5 == 0 and index > 0: row += row_counter col = init_col # gets data: temp_hits, data_calc_dict, plate_counter, all_states, all_methods = _get_data(all_plate_data, final_report_setup) # write well data _well_writer_final_report(ws_well_info, temp_hits, final_report_setup, init_row) # writes Matrix of data: # inside guard ! ! ! ! print(all_states) for states in all_states: if final_report_setup["full_report_matrix"][states]: _matrix_writer(_ws_creator(wb, states), data_calc_dict, states, plate_counter, all_methods) # writes Z-prime if final_report_setup["full_report_matrix"]["z_prime"]: _z_prime(ws_z_prime, data_calc_dict) wb.save(output_file)
ZexiDilling/structure_search
report_setup.py
report_setup.py
py
12,580
python
en
code
0
github-code
6
1526323654
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 3 11:13:08 2020 @author: jiaxinli """ import re def readlines(filepath): fd = open(filepath, 'r') lines = [] for line in fd: ### Uncomment if needed to fileter things other that alphanum and $% # line = re.sub(r"[^a-zA-Z0-9\%\$]+", ' ', line) line = line.lower().strip() lines.append(line) fd.close() return lines # Description: # This function is used to find any dates within list of line # # Input: # A list (array) of lines (text) # Output: # A list of dates found from list of lines def find_time(lines): potential_data_list = [] for line in lines: potential_data_list += re.findall(r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}',line) #for format 23-10-2002 23/10/2002 23/10/02 10/23/2002 potential_data_list += re.findall(r'(?:\d{1,2} )?(?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[a-z]* (?:\d{1,2},)?\d{2,4}',line) #for format 23 Oct 2002\n23 October 2002\nOct 23,2002\nOctober 23,2002\n return potential_data_list lines = readlines('sample_cv.txt') result = find_time(lines)
jiaxinli980115/getting-job-description
find_time.py
find_time.py
py
1,179
python
en
code
0
github-code
6
21645750883
#Tutorial de Umbral OpenCV import cv2 import numpy as np img = cv2.imread('Pagina.jpg') #Imagen a escala de grises grayscaled = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #Umbral de 10 retval, threshold = cv2.threshold(img, 12, 255, cv2.THRESH_BINARY) #Umbral en escala de grises retval, threshold2 = cv2.threshold(grayscaled, 10, 255, cv2.THRESH_BINARY) #Umbral Adaptativo th = cv2.adaptiveThreshold(grayscaled, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1) cv2.imshow('Original',img) cv2.imshow('Umbral',threshold) cv2.imshow('Umbral en Escala de grises',threshold2) cv2.imshow('Umbral Adaptativo',threshold2) cv2.waitKey(0) cv2.destroyAllWindows()
Deniry/Practicas_OpenCV
Practica5.py
Practica5.py
py
666
python
en
code
0
github-code
6
38785952057
import cv2 as cv import sys img = cv.imread("Photos/cat_large.jpg") print(img.shape) cv.imshow("Cat", img) def rescale(frame, scale=0.75): width = frame.shape[1] * scale height = frame.shape[0] * scale dimensions = (int(width), int(height)) new_frame = cv.resize(frame, dimensions, interpolation=cv.INTER_AREA) return new_frame new_img = rescale(img, 0.2) print(new_img.shape) cv.imshow("Catnew", new_img) cv.waitKey(0)
adamferencz/opencv-course-ghb
rescale.py
rescale.py
py
446
python
en
code
0
github-code
6
41584679238
# 윈도우에서는 한글 인코딩 오류가 발생할 수 있습니다. # 한글 인코딩 오류가 발생한다면 # Message.log(message_type="info", msg="데이터를 저장했습니다.") # 위의 코드 부분의 msg를 영어로 수정해서 사용해주세요. import json import sys from eliot import Message, start_action, to_file, write_traceback import requests # 로그 출력을 표준 출력으로 설정(터미널에 출력하기) to_file(sys.stdout) # 크롤링 대상 URL 리스트 PAGE_URL_LIST = [ 'https://eliot.readthedocs.io/en/1.0.0/', 'https://eliot.readthedocs.io/en/1.0.0/generating/index.html', 'https://example.com/notfound.html', ] def fetch_pages(): """페이지의 내용을 추출합니다.""" # 어떤 처리의 로그인지는 action_type으로 지정 with start_action(action_type="fetch_pages"): page_contents = {} for page_url in PAGE_URL_LIST: # 어떤 처리의 로그인지 action_type으로 출력 with start_action(action_type="download", url=page_url): try: r = requests.get(page_url, timeout=30) r.raise_for_status() except requests.exceptions.RequestException as e: write_traceback() # 예외가 발생하면 트레이스백 출력 continue page_contents[page_url] = r.text return page_contents if __name__ == '__main__': page_contents = fetch_pages() with open('page_contents.json', 'w') as f_page_contents: json.dump(page_contents, f_page_contents, ensure_ascii=False) # 단순하게 로그 메시지만 출력할 수도 있음 Message.log(message_type="info", msg="데이터를 저장했습니다.")
JSJeong-me/2021-K-Digital-Training
Web_Crawling/python-crawler/chapter_5/sample_eliot.py
sample_eliot.py
py
1,833
python
ko
code
7
github-code
6
24916898593
import time from datetime import datetime from bluepy.btle import BTLEDisconnectError from miband import miband from ibmcloudant.cloudant_v1 import CloudantV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator from ibmcloudant.cloudant_v1 import CloudantV1, Document import os from dotenv import load_dotenv # All necessary imports load_dotenv() SERVICE_URL = os.getenv("SERVICE_URL") API_KEY = os.getenv("API_KEY") AUTH_KEY = os.getenv("AUTH_KEY") MAC_ADDR = os.getenv("MAC_ADDR") AUTH_KEY = bytes.fromhex(AUTH_KEY) alternate = True authenticator = IAMAuthenticator(API_KEY) client = CloudantV1(authenticator=authenticator) client.set_service_url(SERVICE_URL) # All private keys loaded from .env file def general_info(): # Prints general info about the band global band print("MiBand-4") print("Soft revision:", band.get_revision()) print("Hardware revision:", band.get_hrdw_revision()) print("Serial:", band.get_serial()) print("Battery:", band.get_battery_info()["level"]) print("Time:", band.get_current_time()["date"].isoformat()) # function to create connection and band object ;-; def create_connection(): success = False while not success: try: band = miband(MAC_ADDR, AUTH_KEY, debug=True) success = band.initialize() return band except BTLEDisconnectError: print("Connection to the MIBand failed. Trying out again in 3 seconds") time.sleep(3) continue except KeyboardInterrupt: print("\nExit.") exit() band = create_connection() general_info() hr_list = {} count = 0 def get_realtime(): try: band.start_heart_rate_realtime(heart_measure_callback=heart_logger) except KeyboardInterrupt: print("\nExit.") def heart_logger(data): # data is the heart rate value data = abs(data) global count # global variable to count the number of heart rate values print("Realtime heart BPM:", data) # print the heart rate value hr_list[ datetime.now().strftime("%d/%m/%y %H:%M:%S") ] = data # add the heart rate value to the dictionary print(len(hr_list) // 2) if count % 3 == 0: # Using every 10th heart rate value to create a new document time_ = str(datetime.now().strftime("%d/%m/%y %H:%M:%S")) data_entry: Document = Document(id=time_) # Add "add heart rate reading as value" field to the document data_entry.value = data # Save the document in the database create_document_response = client.post_document( db="jxtin", document=data_entry ).get_result() print( f"You have created the document:\n{data_entry}" ) # print the document that was created print("Logged the data") else: print("Didnt log the data") count += 1 get_realtime()
Rushour0/MSIT-The-New-Normal-Submission
WebVersions/web_v1/cloudant-module.py
cloudant-module.py
py
2,911
python
en
code
1
github-code
6
6905801846
""" Write a function count_letters(word_list) that takes as input a list of words that are composed entirely of lower case letters . This function should return the lower case letter that appears most frequently (total number of occurrences) in the words in word_list. (In the case of ties, return the earliest letter in alphabetical order.) The Python code snippet below represents a start at implementing count_letters using a dictionary letter_count whose keys are the lower case letters and whose values are the corresponding number of occurrences of each letter in the strings in word_list.. """ def find_most_occurences(word_list): chars = {} word_list = word_list.replace(" ", "") for char in word_list: chars[char] = chars.get(char, 0) + 1 reversed_chars = {} for k, v in chars.items(): reversed_chars[v] = reversed_chars.get(v, k) for item in sorted(reversed_chars, reverse=True): print(reversed_chars[item] + ": #" + str(item)) break my_string = "isten strange women lying in ponds distributing swords is no basis for a system of government supreme executive power derives from a mandate from the masses not from some farcical aquatic ceremony" find_most_occurences(my_string)
hqpiotr/learning-python
2. Python - Rice/c3-dataAnalysis/week1/c3_w1_ex.py
c3_w1_ex.py
py
1,251
python
en
code
0
github-code
6
74543338748
'''Q5. Write a Python program to sort (ascending and descending) a dictionary by value. Original dictionary : {1: 2, 3: 4, 4: 3, 2: 1, 0: 0} Dictionary in ascending order by value : [(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)] Dictionary in descending order by value : {3: 4, 4: 3, 1: 2, 2: 1, 0: 0}''' d = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0} n = {} temp = 0 for i in d : for j in d: if d[i] > d[j]: temp = d[i] d[i] = d[j] d[j] = temp print(d)
Jija-sarak/python_dictionary
q5.py
q5.py
py
493
python
en
code
0
github-code
6
71082529787
from classes.rayon import * from classes.point import * from classes.mur import * from classes.base import * from resources.const import * from processing.diffraction import get_direction from processing.transmission import get_theta_i, get_theta_t, get_s, get_reflexion_perpendiculaire from math import pi as PI from math import atan, atan2, sin, sqrt, pow, asin,cos from cmath import exp as cexp from cmath import polar from processing.analysis import intersect #renvoie la list des rayons reflechis def image_points(start_point, origin_point, murs): #renvoie une liste de liste avec les points images et les murs correspodant a chacun de ces points (point image, mur pour la reflexion) ls=[] for mur in murs: if(mur.is_horizontal()): image_point = Point(start_point.x, 2*mur.coin1.y-start_point.y) sub_ls = [image_point, mur] if((origin_point.x !=image_point.x) or(origin_point.y !=image_point.y)): ls.append(sub_ls) else: image_point = Point(2*mur.coin1.x-start_point.x, start_point.y) sub_ls = [image_point, mur] if((origin_point.x !=image_point.x) or(origin_point.y !=image_point.y)): ls.append(sub_ls) return ls def rayons_reflexion(start_point,end_point, murs): #Renvoie la liste des rayons ayant effectue 1 ou 2 reflexions entre start_point et end_point list_rayons = [] image_elems = image_points(start_point, start_point, murs) z = 0 #UNE SEULE REFLEXION for elem in image_elems: mur_intersec = [elem[1]] #Mur a tester avec la fonction intersect intersect_point =intersect(elem[0],end_point,mur_intersec) #intersect_point est une liste de 1 element if(len(intersect_point)): new_ray = Rayon(start_point) intersect_point[0].set_interaction_type("r") intersect_point[0].set_direction(get_direction(intersect_point[0],start_point)) #donne la direction incidente new_ray.add_point_reflexion(intersect_point[0]) new_ray.add_point_principal(end_point) new_ray.find_all_intersections(murs) #Intersection du rayon avec les murs pour la transmission list_rayons.append(new_ray) #DEUX REFLEXIONS for elem in image_elems: #creation d'une liste de murs ne contenant par le mur du point image elem mur_intermediaire_ls = [] for wall in murs: if (Mur.is_different(wall,elem[1])): mur_intermediaire_ls.append(wall) #on cherche les points images des points images par les AUTRES murs image_elems2 = image_points(elem[0],start_point, mur_intermediaire_ls) if(z==0): save = elem[1] im = image_elems2 z+=1 for elem2 in image_elems2: mur_intersec2 = [elem2[1]] #une list de 1 elem avec le mur pour la deuxieme reflexion intersect_point2_2 = intersect(elem2[0],end_point,mur_intersec2) #comme avant. ici point de deuxieme point de reflexion if(len(intersect_point2_2)): new_ray = Rayon(start_point) intersect_point2_1 = intersect(elem[0],intersect_point2_2[0],[elem[1]]) #premier point de reflexion if(len(intersect_point2_1)): intersect_point2_1[0].set_interaction_type("r") intersect_point2_1[0].set_direction(get_direction( intersect_point2_1[0],start_point)) intersect_point2_2[0].set_interaction_type("r") intersect_point2_2[0].set_direction(get_direction( intersect_point2_1[0],intersect_point2_2[0])) new_ray.add_point_reflexion(intersect_point2_1[0]) #1 ere reflexion new_ray.add_point_reflexion(intersect_point2_2[0]) #2 eme reflexion new_ray.add_point_principal(end_point) new_ray.find_all_intersections(murs) #Points de transmission list_rayons.append(new_ray) return list_rayons def set_reflexion_coefficient(rayon): #effectue le calcul des coefficients de reflexion points_reflexion = rayon.get_points_reflexions() for pt_reflexion in points_reflexion: mur = pt_reflexion.mur alpha = mur.alpha beta = mur.beta gamma = complex(alpha,beta) if(pt_reflexion.direction != None): direction = abs(pt_reflexion.direction) else: direction = None theta_i = get_theta_i(direction,pt_reflexion) theta_t = get_theta_t(theta_i,mur.epsilon) s = get_s(theta_t,mur.epaisseur) Z1 = sqrt(UO/EPS_0) Z2 = sqrt(UO/mur.epsilon) r = get_reflexion_perpendiculaire(Z1,Z2,theta_i,theta_t) num = (1-pow(r,2))* r *cexp(-2*gamma*s)*cexp(2*gamma*s*sin(theta_t)*sin(theta_i)) den = 1-(pow(r,2)*cexp((-2*gamma*s)+(gamma*2*s*sin(theta_t)*sin(theta_i)))) coeff_abs = polar(r + num/den)[0] #module pt_reflexion.set_coefficient_value(coeff_abs)
bjoukovs/PHYSRayTracing2017
processing/reflexion.py
reflexion.py
py
5,192
python
en
code
0
github-code
6
19218028573
from rest_framework import serializers from api.v1.auth.schemas import LanguageChoiceField, TimeZoneNameChoiceField from users.models import User class CurrentUserOutputSchema(serializers.ModelSerializer): language_code = LanguageChoiceField() time_zone = TimeZoneNameChoiceField() class Meta: model = User fields = ( "id", "email", "full_name", "notification_token", "language_code", "time_zone", "date_joined", "is_staff", "is_superuser", )
plathanus-tech/django_boilerplate
src/api/v1/users/schemas.py
schemas.py
py
591
python
en
code
2
github-code
6
40309032747
from initdata import db ''' Simple way to persist record. KEY==>VALUE in each line. EndRec. on a line for end of Record and EndDb. for end of database. ''' ENDREC='EndRec.' ENDDB='EndDb.' RECSEP='==>' #file_name='people-file.txt' file_name='people-file.txt' print('2'+ __name__) def writeDb(db, dbfname=file_name): dbf = open(dbfname,'w') print('Opened file') for keyx in db: print(keyx, file=dbf) for (name, value) in db[keyx].items(): print(name + RECSEP + repr(value), file=dbf) print(ENDREC, file=dbf) print(ENDDB, file=dbf) dbf.close() print('wrote to file') if __name__ == '__main__': writeDb(db)
mathewjoy/testpython
programmingpython/make_db_file.py
make_db_file.py
py
678
python
en
code
0
github-code
6
14321604555
#calculate n^2 jaccard values and create companion of every file import sys import glob import os import shutil if os.path.exists("modified_files"): shutil.rmtree("modified_files") os.mkdir("modified_files") def extract(directory): #looks at the sync folder , creates our own folder of exercises files = glob.glob(directory + '/**/*.ml',recursive=True) for fname in files: fname_str = str(fname) print(fname_str+"\n") if(fname_str[0] == 'X' and fname_str[1] == '/'): continue stud_id = fname_str.split('/') outfilename = "" exercise_name = '' ''' #creating a directory for each exercise exercise_name = (stud_id[len(stud_id)-1]).split('.',1)[0] if not os.path.exists("modified_files/"+exercise_name): os.mkdir("modified_files/"+exercise_name) del stud_id[-1] ''' ''' #creating a copy flip = False for wrd in stud_id: if(flip): outfilename = outfilename+wrd if(wrd=="sync"): flip=True ''' outfilename = stud_id[len(stud_id)-1] #copy_file_name = "modified_files/"+exercise_name+"/"+outfilename+".ml" copy_file_name = "modified_files/"+outfilename copy_file = open(copy_file_name,'w') with open(fname, 'r') as readfile: contents = readfile.read() copy_file.write(contents) #creating a companion companion_file_name = copy_file_name.split('.')[0] +"_companion.ml" companion_file = open(companion_file_name,'a') ''' for comp in files : other_stud_id = str(comp).split('/') other_exercise_name = (other_stud_id[len(other_stud_id)-1]).split('.',1)[0] if(other_exercise_name != exercise_name): continue if comp == fname: continue with open(comp, 'r') as readfile: contents = readfile.read() companion_file.write(contents) ''' for comp in files : if comp == fname: continue with open(comp, 'r') as readfile: contents = readfile.read() companion_file.write(contents) directory="" if(len(sys.argv)>1): directory=sys.argv[1] else: directory="/home/abhinav/Desktop/mitacs/code/mini/nate/data" extract(directory)
AbhinavDutta/mini-moss
extract.py
extract.py
py
2,490
python
en
code
0
github-code
6
26023690910
import matplotlib.pyplot as plt import numpy as np x=np.arange(-10,10,0.01) y=1/(np.sin(x)+2) z=1/(np.cos(x)+2) plt.plot(x,y,x,z) #生成在一张图像上 fig2,(axs1,axs2)=plt.subplots(2,1) #分配两个坐标轴并且按照(2,1)的形状 axs1.plot(x,y) axs2.plot(x,z) #在两个轴上单独生成一次 plt.show()
suanhaitech/pythonstudy2023
Wangwenbin/Matplotlib1.py
Matplotlib1.py
py
388
python
en
code
2
github-code
6
45017345126
#!/usr/bin/env python3 #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ # DESCRIPTION: # # CALL SAMPLE: # ~/data/solarity/sit-raspi/modbus/direct_marketing_interface.py --host_ip '192.168.0.34' --host_mac '00:90:E8:7B:76:9C' -v -t # # REQUIRE # # CALL PARAMETERS: # 1) # # @author: Philippe Gachoud # @creation: 20200408 # @last modification: # @version: 1.0 # @URL: $URL #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ # INCLUDES try: import sys import os, errno sys.path.append(os.path.join(os.path.dirname(__file__), '../lib')) #the way to import directories from sit_logger import SitLogger from pymodbus.constants import Endian from sit_modbus_device import SitModbusDevice #from file_name import ClassName from sit_modbus_register import SitModbusRegister from inverter_manager import InverterManager #import sitmodbus#, SitModbusRegister import logging # http://www.onlamp.com/pub/a/python/2005/06/02/logging.html from logging import handlers import argparse #sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'pysunspec')) from datetime import datetime, date, time, timedelta except ImportError as l_err: print("ImportError: {0}".format(l_err)) raise l_err class DirectMarketerInterface(InverterManager): # CONSTANTS DEFAULT_SLAVE_ADDRESS = 200 # CLASS ATTRIBUTES # FUNCTIONS DEFINITION """ Initialize """ def __init__(self, a_slave_address=DEFAULT_SLAVE_ADDRESS): try: self.init_arg_parse() l_slave_address = self.DEFAULT_SLAVE_ADDRESS if self._args.slave_address: if self.valid_slave_address(self._args.slave_address): self._slave_address = int(self._args.slave_address) #self, a_slave_address=DEFAULT_SLAVE_ADDRESS, a_port=DEFAULT_MODBUS_PORT, an_ip_address=None super().__init__(l_slave_address, a_port=self.DEFAULT_MODBUS_PORT, an_ip_address=self._args.host_ip) self._logger = SitLogger().new_logger(__name__, self._args.host_mac) self._init_sit_modbus_registers() #self._logger.debug('init->' + self.out()) except OSError as l_e: self._logger.warning("init-> OSError, probably rollingfileAppender" % (l_e)) if e.errno != errno.ENOENT: raise l_e except Exception as l_e: print('Error in init: %s' % (l_e)) raise l_e #exit(1) def _init_sit_modbus_registers(self): """ Initializes self._sit_modbus_registers """ # P.44 of doc self.add_modbus_register('OutLimitPerc', 'Specified output limitation through direct marketer n% (0-10000)', 1, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_RW, 'uint16') self.add_modbus_register('OutLimitPercMan', 'Manual output limitation that has been set via Sunspec Modbus', 2, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'uint16') self.add_modbus_register('OutLimitPercIoBox', 'Output limitation through the electric utility company that has been set via the IO box.', 3, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'uint16') self.add_modbus_register('OutLimitMin', 'Minimum of all output limitations. The nominal PV system power is derated to this value.', 4, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'uint16') # self.add_modbus_register('Md', 'Model (Md): SMA Inverter Manager', 40021, SitModbusRegister.REGISTER_TYPE_STRING_16, SitModbusRegister.ACCESS_MODE_R, 'String16') # self.add_modbus_register('Opt', 'Options (Opt): Inverter Manager name', 40037, SitModbusRegister.REGISTER_TYPE_STRING_8, SitModbusRegister.ACCESS_MODE_R, 'String8') # self.add_modbus_register('Vr', 'Version (Vr): Version number of the installed firmware', 40045, SitModbusRegister.REGISTER_TYPE_STRING_8, SitModbusRegister.ACCESS_MODE_R, 'String8') # self.add_modbus_register('SN', 'Serial number (SN) of the device that uses the Modbus unit ID', 40053, SitModbusRegister.REGISTER_TYPE_STRING_16, SitModbusRegister.ACCESS_MODE_R, 'String16') # self.add_modbus_register('PPVphA', 'Voltage, line conductor L1 to N (PPVphA), in V-V_SF (40199): average value of all inverters', 40196, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'V', 40199) # self.add_modbus_register('AC_A', 'AC Current sum of all inverters', 40188, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'A', 40192) # self.add_modbus_register('W', 'Active power (W), in W-W_SF (40201): sum of all inverters', 40200, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'W', 40192) # self.add_modbus_register('WH', 'Total yield (WH), in Wh WH_SF (40212): sum of all inverters', 40210, SitModbusRegister.REGISTER_TYPE_INT_32, SitModbusRegister.ACCESS_MODE_R, 'WH', 40212) # self.add_modbus_register('TmpCab', 'Internal temperature, in °C Tmp_SF (40223): average value of all inverters', 40219, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, '°C', 40223) # self.add_modbus_register('ID', 'Model ID (ID): 120 = Sunspec nameplate model', 40238, SitModbusRegister.REGISTER_TYPE_INT_16, SitModbusRegister.ACCESS_MODE_R, 'uint16') # self.add_modbus_register('VArPct_Mod', 'Mode of the percentile reactive power limitation: 1 = in % of WMax', 40365, SitModbusRegister.REGISTER_TYPE_ENUM_16, SitModbusRegister.ACCESS_MODE_R, 'enum16') # self.add_modbus_register('VArPct_Ena', 'Control of the percentile reactive power limitation,(SMA: Qext): 1 = activated', 40365, SitModbusRegister.REGISTER_TYPE_ENUM_16, SitModbusRegister.ACCESS_MODE_RW, 'enum16') def init_arg_parse(self): """ Parsing arguments """ self._parser = argparse.ArgumentParser(description='Actions with Inverter Manager through TCP') self._parser.add_argument('-v', '--verbose', help='increase output verbosity', action="store_true") self._parser.add_argument('-t', '--test', help='Runs test method', action="store_true") self._parser.add_argument('-u', '--slave_address', help='Slave address of modbus device', nargs='?') #self._parser.add_argument('-u', '--base_url', help='NOT_IMPLEMENTED:Gives the base URL for requests actions', nargs='?', default=self.DEFAULT_BASE_URL) l_required_named = self._parser.add_argument_group('required named arguments') l_required_named.add_argument('-i', '--host_ip', help='Host IP', nargs='?', required=True) l_required_named.add_argument('-m', '--host_mac', help='Host MAC', nargs='?', required=True) # l_required_named.add_argument('-l', '--longitude', help='Longitude coordinate (beware timezone is set to Chile)', nargs='?', required=True) # l_required_named.add_argument('-a', '--lattitude', help='Lattitude coordinate (beware timezone is set to Chile)', nargs='?', required=True) # l_required_named.add_argument('-d', '--device_type', help='Device Type:' + ('|'.join(str(l) for l in self.DEVICE_TYPES_ARRAY)), nargs='?', required=True) l_args = self._parser.parse_args() self._args = l_args # ACCESS # IMPLEMENTATION # EXECUTE ARGS """ Parsing arguments and calling corresponding functions """ def execute_corresponding_args(self): if self._args.verbose: self._logger.setLevel(logging.DEBUG) else: self._logger.setLevel(logging.DEBUG) if self._args.test: self.test() #if self._args.store_values: """ Test function """ def test(self): try: self.connect() self.read_all_sit_modbus_registers() print ("################# BEGIN #################") # self._logger.info("--> ************* device models *************: %s" % (l_d.models)) #Lists properties to be loaded with l_d.<property>.read() and then access them # self._logger.info("-->inverter ************* l_d.inverter.points *************: %s" % (l_d.inverter.points)) #Gives the inverter available properties # self._logger.info("-->inverter ************* common *************: %s" % (l_d.common)) # self._logger.info("-->inverter ************* common Serial Number *************: %s" % (l_d.common.SN)) print ("################# END #################") except Exception as l_e: self._logger.exception("Exception occured: %s" % (l_e)) print('Error: %s' % (l_e)) self._logger.error('Error: %s' % (l_e)) raise l_e finally: self.disconnect() """ Main method """ def main(): #logging.basicConfig(level=logging.DEBUG, stream=sys.stdout, filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") logger = logging.getLogger(__name__) try: l_obj = DirectMarketerInterface() l_obj.execute_corresponding_args() # l_id.test() pass except KeyboardInterrupt: logger.exception("Keyboard interruption") except Exception: logger.exception("Exception occured") finally: logger.info("Main method end -- end of script") if __name__ == '__main__': main()
phgachoud/sty-pub-raspi-modbus-drivers
sma/direct_marketing_interface.py
direct_marketing_interface.py
py
8,844
python
en
code
0
github-code
6
42597128032
import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn df=pd.read_csv("insurance.csv") tem=pd.get_dummies(df["region"]) df.drop("region",axis=1,inplace=True) df=pd.concat([df,tem],axis=1) print(df.head(10)) map={"yes":1,"no":0} df["smoker"]=df["smoker"].map(map) map1={"female":0,"male":1} df["sex"]=df["sex"].map(map1) print(df.head(10)) df.corr() plt.figure(figsize=(20,20)) sns.heatmap(df.corr(),annot=True,cmap="coolwarm",linewidths=2) plt.show() x=df["smoker"] y=df["expenses"] plt.figure(figsize=(12,9)) plt.scatter(x,y) plt.xlabel("Non Smoker Vs Smoker") plt.ylabel("Charges") Y=df["charges"] X=df.drop("charges",axis=1) from sklearn.model_selection import train_test_split #Splitting the data into 85% for training and 15% for testing x_train,x_test,y_train,y_test=train_test_split(X,Y,random_state=1,test_size=0.15) from sklearn.linear_model import LinearRegression #Training a multiple linear regression model reg=LinearRegression().fit(x_train,y_train) y_pred=reg.predict(x_test) from sklearn.metrics import r2_score #Checking the R squared error on test data r2_score(y_test,y_pred) # Storing independent features in a temporary variable P_X=X from sklearn.preprocessing import PolynomialFeatures #Changing the data to a 3rd degree polynomial pol=PolynomialFeatures(degree=3) P_X=pol.fit_transform(X) P_X #Training the model similarly but with 3rd degree polynomial of X this time x_train,x_test,y_train,y_test=train_test_split(P_X,Y,random_state=1,test_size=0.15) reg=LinearRegression().fit(x_train,y_train) y_pred=reg.predict(x_test) r2_score(y_test,y_pred) #Cross validating the score to check and avoid overfitting from sklearn.model_selection import cross_val_score c=cross_val_score(reg,P_X,Y,cv=4) c # Final Mean Accuracy print("Mean accuracy after cross validation is:",c.mean()*100,end="%")
manav88/Medical-cost-prediction
med_cost.py
med_cost.py
py
1,956
python
en
code
0
github-code
6
8670869554
import numpy as np from neuroglancer_interface.utils.rotation_utils import ( rotate_matrix) def test_rotate_matrix(): rng = np.random.default_rng(665234) base_arr = rng.random((5, 6, 7)) actual = rotate_matrix( data=base_arr, rotation_matrix = [[0, 0, 1], [0, 1, 0], [1, 0, 0]]) expected = base_arr.transpose(2, 1, 0) np.testing.assert_allclose( actual, expected, rtol=1.0e-6, atol=0.0) actual = rotate_matrix( data=base_arr, rotation_matrix = [[0, 1, 0], [0, 0, 1], [1, 0, 0]]) expected = base_arr.transpose(1, 2, 0) np.testing.assert_allclose( actual, expected, rtol=1.0e-6, atol=0.0) actual = rotate_matrix( data=base_arr, rotation_matrix = [[0, 1, 0], [0, 0, -1], [1, 0, 0]]) expected = np.zeros((6, 7, 5), dtype=float) for ix in range(6): for iy in range(7): for iz in range(5): expected[ix, iy, iz] = base_arr[iz, ix, base_arr.shape[2]-1-iy] np.testing.assert_allclose( actual, expected, rtol=1.0e-6, atol=0.0)
AllenInstitute/neuroglancer_formatting_scripts
tests/utils/test_rotation_utils.py
test_rotation_utils.py
py
1,318
python
en
code
2
github-code
6