seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
16995335370
# find GCD/HCF of two numbers def fun(a, b): res = min(a, b) ans = None for i in range(1, res + 1): if a % res == 0 and b % res == 0: ans = i return ans # using recursion def funrecursive(a, b): if b == 0: return a return fun(b, a % b) if __name__ == '__main__': print(fun(30, 60)) print(funrecursive(30, 60))
pvr30/DSA
Recursion/GCD_or_HCF.py
GCD_or_HCF.py
py
376
python
en
code
2
github-code
6
6713722350
from __future__ import print_function, division import time from floor_plans.visualize import View from floor_plans.floorplan import FloorPlan from floor_plans import polygon from floor_plans.math_util import dist from floor_plans import floorplan_statistics as fps names = [ 'SPEECH', 'ST', 'COMP LAB', 'PK', 'SUPER', 'FINANCE', 'ASST', 'SPED', 'BOILER', 'ART', 'PK', 'PRINCIPLE', 'AP ASSISTANT PRINCIPLE', 'CONFERENCE', 'G', 'G', 'WORK', 'DIS', 'VOL', 'STORAGE', 'TOILET', 'CONF', 'CURR', 'WORK', 'SEC', 'RECEPT', 'TOILET', 'hallway', 'STORAGE', 'STAGE', 'KITCHEN', 'AUTISM', 'STORAGE', 'LIFE SKILLS', 'TOILET', 'FACULTY', 'hallway', 'PROJ', 'CONF', 'LIT', 'MATH', 'K', 'K', 'hallway', '2', '2', '2', '2', '1', '2', '1', '1', '1', '1', 'hallway', 'hallway', 'TEAM', 'K', 'TITLE 1', 'TEST', 'hallway', 'K', 'K', 'hallway', 'JANITORIAL', 'TOILET', 'RR', 'hallway', 'STORAGE', 'NONE', 'hallway', 'hallway', 'hallway', 'RESOURCE', 'hallway', 'WORK', 'hallway', 'hallway', 'TOILET', 'NURSE', 'WAIT', 'hallway', 'PK', 'LIBRARY', 'EXAM', 'hallway', 'hallway', 'WORK', 'RECORDS', 'EVAL', 'EVAL', 'TOILET', 'hallway', 'LOUNGE', 'GYM STORAGE', 'hallway', 'hallway',# 'entrance', 'KILN', 'ART STORAGE', 'MUSIC STORAGE', 'OT/PT', 'NONE', 'ELECTRICAL', 'MUSIC', 'hallway', 'TOILET', 'GYM', 'hallway', 'CAFETERIA', 'hallway', 'TOILET', 'hallway', 'TOILET','CONFERENCE3', 'RECEPT2', 'CUSTODIAL', 'RECYCLE', 'hallway', 'hallway', 'hallway', 'hallway', 'BLDG/EQUIP STORAGE', 'hallway', 'hallway', 'hallway' ] names = [n.lower() for n in names] doors = [ (43, 44, .5), (44, 45, .5), (45, 46, .5), (46, 47, .5), (47, 48, .5), (48, 49, .1), (19, 20, .5), (20, 21, .5), (21, 22, .5), (22, 23, .5), (23, 24, .5), (29, 30, .5), (65, 78, .5), (66, 65, .5), (67, 66, .5), (51, 44, .1), (20, 13, .1), (33, 29, .5), (35, 33, .1), (60, 64, .5), (59, 60, .5), (57, 59, .5), (39, 57, .5), (24, 69, .5), (248, 250, .5), (250, 251, .5), (49, 251, .5), (68, 77, .5), (64, 63, .5), (246, 247, .5), (70, 65, .1), (71, 66, 1), (29, 31, .1), (63, 37, .5), (76, 245, .5), (76, 246, .5), (25, 235, .5), (27, 236, .5), (74, 2, .9), (2, 3, .5), (2, 0, .5), (26, 28, .5), (26, 18, .5), (8, 10, .5), (10, 1, .5), (4, 9, .5), (23, 16, .5), (4, 253, .5), (28, 142, .5), (238, 240, .5), (243, 242, .5), (242, 84, .5), (208, 148, .9), (155, 213, .9), (207, 155, .5), (138, 223, .5), (214, 216, .5), (201, 138, .5), (216, 218, .5), (220, 203, .5), (221, 203, .5), (221, 255, .5), (139, 137, .1), (139, 137, .9), (152, 93, .5), (89, 91, .1), (89, 87, .5), (234, 232, .1), (234, 232, .9), (142, 144, .5), (53, 46, .1), (54, 47, .5), (21, 14, .5), (154, 145, .5), (153, 149, .5), (146, 139, .5), (150, 98, .5), (161, 163, .5), (161, 162, .5), (136, 137, .5), (178, 182, .5), (107, 106, .5), (157, 133, .5), # Entrance. ] entrances = [352, 311, 299, 283, 376, 333, 365] obj_path = 'school/floor1.obj' bounds = (750, 750) view = View(*bounds, scale=2) source_upf = (39.645008 - 32.433640) / 24. # units per foot # source_ppm = ppf / 0.3048 # pixels per meter target_upf = 1. scale = target_upf / source_upf floor = FloorPlan.from_obj(obj_path, names, doors, scale, entrances) def merge_rooms(name, room_ids, verts): room_ids = set(room_ids) new_room_id = max(floor.rooms.keys())+1 # Delete interior room nodes. for rid in room_ids: if floor.room_centers[rid] in floor:\ # , floor.room_names[rid] floor.remove_node(floor.room_centers[rid]) for vid in floor.rooms[rid]: if vid not in verts and vid in floor: floor.remove_node(vid) for ID in room_ids: del floor.rooms[ID] del floor.room_names[ID] del floor.room_centers[ID] for vid, rooms in floor.vert_to_room.items(): if len(rooms.intersection(room_ids)): rooms -= room_ids rooms.add(new_room_id) poly = [floor.vertices[vi] for vi in verts] center = polygon.center(poly) center_i = len(floor.vertices) floor.vertices.append(center) floor.rooms[new_room_id] = verts floor.room_names[new_room_id] = name floor.room_centers[new_room_id] = center_i floor.room_sizes[new_room_id] = polygon.area(poly) return new_room_id """ Merge administration room clusters together. """ # admin1_id = len(floor.rooms) # create new room ID. # # IDs of rooms to merge admin1_rooms = [113, 87, 88, 89, 90, 93, 92, 117, 114, 112, 4, 5, 6, 7, 22, 21, 23] admin1_verts = [156, 170, 172, 174, 176, 178, 179, 183, 182, 180, 157, 168, 167, 187, 229, 159, 185, 200, 198, 196, 194, 192, 190, 158, 204, 254, 166, 169] admin2_rooms = [25, 16, 17, 18, 19, 20, 80, 79, 84, 15, 14, 13, 12, 11, 24, 86] admin2_verts = [133, 128, 129, 130, 165, 225, 131, 121, 107, 227, 226, 104, 108, 122, 114, 113, 112, 111, 110, 109, 134, 230, 135, 132] admin1_id = merge_rooms('administration', admin1_rooms, admin1_verts) admin2_id = merge_rooms('administration', admin2_rooms, admin2_verts) floor.add_edge(floor.room_centers[admin1_id], floor.room_centers[119], outside=False, inner=True, width=10) floor.add_edge(floor.room_centers[admin2_id], floor.room_centers[81], outside=False, inner=True, width=10) # try: # print(fps.calculate_all(floor)) for k, v in fps.calculate_all(floor).items(): print(k, v) # except Exception as e: # print(e) view.draw_floorplan(floor) view.hold()
joel-simon/evo_floorplans
test.py
test.py
py
5,851
python
en
code
84
github-code
6
41589623453
class MyError(Exception): def __init__(self, stri): self.stri = stri def process(self): if len(self.stri) < 5: print("字符串长度小于5") else: print("咕咕咕") try: MEr = MyError("waaaa") MEr.process() except MyError as error: print(error)
Wainemo/PythonPractice
定义类继承Exception,判断输入字符串的长度是否小于5.py
定义类继承Exception,判断输入字符串的长度是否小于5.py
py
317
python
en
code
0
github-code
6
5387953203
from telegram.ext import Updater, MessageHandler,Filters from Adafruit_IO import Client import os aio = Client('adeebsheriff', os.getenv('adeebsheriff')) def demo1(bot,update): chat_id = bot.message.chat_id path = 'https://cdn3.vectorstock.com/i/1000x1000/87/22/i-am-fine-lettering-typography-calligraphy-overlay-vector-15208722.jpg' bot.message.reply_text('I am fine') update.bot.sendPhoto(chat_id=chat_id,photo=path) def demo2(bot,update): chat_id = bot.message.chat_id path = 'https://static.scientificamerican.com/sciam/cache/file/2B38DE31-C1D3-4339-8808D61972976EE4.jpg' bot.message.reply_text('Light is turned ON') aio.send('bedroom-light', 1) data1 = aio.receive('bedroom-light') print(f'Received value: {data1.value}') update.bot.sendPhoto(chat_id=chat_id,photo=path) def demo3(bot,update): chat_id = bot.message.chat_id path = 'https://image.shutterstock.com/image-photo/light-bulb-turned-off-over-260nw-320485652.jpg' bot.message.reply_text('Light is turned OFF') aio.send('bedroom-light', 0) data1 = aio.receive('bedroom-light') print(f'Received value: {data1.value}') update.bot.sendPhoto(chat_id=chat_id,photo=path) def demo4(bot,update): chat_id = bot.message.chat_id path = 'https://cdn.frontdoorhome.com/ahs/blog/prod/static/cs/ahs/image/running-fan.jpg' bot.message.reply_text('Fan is turned ON') aio.send('bedroom-fan', 1) data2 = aio.receive('bedroom-fan') print(f'Received value: {data2.value}') update.bot.sendPhoto(chat_id=chat_id,photo=path) def demo5(bot,update): chat_id = bot.message.chat_id path = 'https://www.destinationlighting.com/fliptheswitch/wp-content/uploads/sites/2/2018/05/zudio-casablanca.jpg' bot.message.reply_text('Fan is turned OFF') aio.send('bedroom-fan', 0) data2 = aio.receive('bedroom-fan') print(f'Received value: {data2.value}') update.bot.sendPhoto(chat_id=chat_id,photo=path) def main(bot,update): a = bot.message.text.lower() print(a) if a == "how are you?": demo1(bot,update) elif a =="light on" or a=="turn on light": demo2(bot,update) elif a =="light off" or a=="turn off light": demo3(bot,update) elif a =="switch on fan" or a=="turn on fan": demo4(bot,update) elif a =="switch off fan" or a=="turn off fan": demo5(bot,update) else: bot.message.reply_text('Invalid Text') BOT_TOKEN = os.getenv('BOT_TOKEN') u = Updater(BOT_TOKEN,use_context=True) dp = u.dispatcher dp.add_handler(MessageHandler(Filters.text,main)) u.start_polling() u.idle()
adeebsheriff/telegramiotchatbot
app.py
app.py
py
2,506
python
en
code
0
github-code
6
9020012724
from multiprocessing import Pool import math from functools import partial import numpy as np from pyfaidx import Fasta, Faidx import subprocess import pysam from liftoff import aligned_seg, liftoff_utils from os import path def align_features_to_target(ref_chroms, target_chroms, args, feature_hierarchy, liftover_type, unmapped_features): if args.subcommand == "polish": sam_files = [args.dir + "/polish.sam"] else: target_fasta_dict = split_target_sequence(target_chroms, args.target, args.dir) genome_size = get_genome_size(target_fasta_dict) threads_per_alignment = max(1, math.floor(int(args.p) / len(ref_chroms))) sam_files = [] pool = Pool(int(args.p)) print("aligning features") func = partial(align_single_chroms, ref_chroms, target_chroms, threads_per_alignment, args, genome_size, liftover_type) for result in pool.imap_unordered(func, np.arange(0, len(target_chroms))): sam_files.append(result) pool.close() pool.join() return parse_all_sam_files(feature_hierarchy, unmapped_features, liftover_type, sam_files) def split_target_sequence(target_chroms, target_fasta_name, inter_files): Faidx(target_fasta_name) target_fasta_dict = Fasta(target_fasta_name, key_function=lambda x: x.split()[0]) for chrm in target_chroms: if chrm != target_fasta_name: out = open(inter_files + "/" + chrm + ".fa", 'w') out.write(">" + chrm + "\n" + str(target_fasta_dict[chrm])) return target_fasta_dict def get_genome_size(target_fasta_dict): genome_size = 0 for value in target_fasta_dict.values(): genome_size += len(value) return genome_size def align_single_chroms(ref_chroms, target_chroms, threads, args, genome_size, liftover_type, index): max_single_index_size = 4000000000 features_file, features_name = get_features_file(ref_chroms, args, liftover_type, index) target_file, output_file = get_target_file_and_output_file(liftover_type, target_chroms, index, features_name, args) threads_arg = str(threads) minimap2_path = get_minimap_path(args) target_prefix = get_target_prefix_name(target_chroms, index, args, liftover_type) if genome_size > max_single_index_size: split_prefix = args.dir + "/" + features_name + "_to_" + target_prefix + "_split" command = [minimap2_path, '-o', output_file, target_file, features_file] + args.mm2_options.split(" ") + [ "--split-prefix", split_prefix, '-t', threads_arg] subprocess.run(command) else: minimap2_index = build_minimap2_index(target_file, args, threads_arg, minimap2_path) command = [minimap2_path, '-o', output_file, minimap2_index, features_file] + args.mm2_options.split(" ") + [ '-t', threads_arg] subprocess.run(command) return output_file def get_features_file(ref_chroms, args, liftover_type, index): if ref_chroms[index] == args.reference and (liftover_type == "chrm_by_chrm" or liftover_type == "copies"): features_name = 'reference_all' elif liftover_type == "unmapped": features_name = "unmapped_to_expected_chrom" elif liftover_type == "unplaced": features_name = "unplaced" else: features_name = ref_chroms[index] return args.dir + "/" + features_name + "_genes.fa", features_name def get_target_file_and_output_file(liftover_type, target_chroms, index, features_name, args): if liftover_type != "chrm_by_chrm" or target_chroms[0] == args.target: target_file = args.target out_file_target = "target_all" else: target_file = args.dir + "/" + target_chroms[index] + ".fa" out_file_target = target_chroms[index] output_file = args.dir + "/" + features_name + "_to_" + out_file_target + ".sam" return target_file, output_file def get_minimap_path(args): if args.m is None: minimap2 = "minimap2" else: minimap2 = args.m return minimap2 def get_target_prefix_name(target_chroms, index, args, liftover_type): if liftover_type != "chrm_by_chrm" or target_chroms[0] == args.target: prefix = "target_all" else: prefix = target_chroms[index] return prefix def build_minimap2_index(target_file, args, threads, minimap2_path): if path.exists(target_file + ".mmi") is False: subprocess.run( [minimap2_path, '-d', target_file + ".mmi", target_file] + args.mm2_options.split(" ") + ['-t', threads ]) return target_file + ".mmi" def parse_all_sam_files(feature_hierarchy, unmapped_features, liftover_type, sam_files): aligned_segments_dict = {} for file in sam_files: aligned_segments = parse_alignment(file, feature_hierarchy, unmapped_features, liftover_type) aligned_segments_dict.update(aligned_segments) return aligned_segments_dict def parse_alignment(file, feature_hierarchy, unmapped_features, search_type): all_aligned_blocks = {} sam_file = pysam.AlignmentFile(file, 'r', check_sq=False, check_header=False) sam_file_iter = sam_file.fetch() aln_id = 0 name_dict = {} align_count_dict = {} for ref_seq in sam_file_iter: if ref_seq.is_unmapped is False: aln_id = add_alignment(ref_seq, align_count_dict, search_type, name_dict,aln_id, feature_hierarchy, all_aligned_blocks) else: unmapped_features.append(feature_hierarchy.parents[ref_seq.query_name]) remove_alignments_without_children(all_aligned_blocks, unmapped_features, feature_hierarchy) return all_aligned_blocks def add_alignment(ref_seq, align_count_dict, search_type, name_dict, aln_id, feature_hierarchy, all_aligned_blocks): ref_seq.query_name = edit_name(search_type, ref_seq, name_dict) aln_id += 1 if ref_seq.query_name in align_count_dict: align_count = align_count_dict[ref_seq.query_name] + 1 else: align_count = 0 align_count_dict[ref_seq.query_name] = align_count aligned_blocks = get_aligned_blocks(ref_seq, aln_id, feature_hierarchy, search_type) if ref_seq.query_name in all_aligned_blocks: all_aligned_blocks[ref_seq.query_name].extend(aligned_blocks) else: all_aligned_blocks[ref_seq.query_name] = aligned_blocks return aln_id def edit_name(search_type, ref_seq, name_dict): if search_type != "copies": return ref_seq.query_name + "_0" else: if ref_seq.query_name not in name_dict: name_dict[ref_seq.query_name] = 0 name_dict[ref_seq.query_name] += 1 return ref_seq.query_name + "_" + str(name_dict[ref_seq.query_name]) def get_aligned_blocks(alignment, aln_id, feature_hierarchy, search_type): cigar_operations = get_cigar_operations() cigar = alignment.cigar parent = feature_hierarchy.parents[liftoff_utils.convert_id_to_original(alignment.query_name)] query_start, query_end = get_query_start_and_end(alignment, cigar, cigar_operations) children = feature_hierarchy.children[liftoff_utils.convert_id_to_original(alignment.query_name)] end_to_end = is_end_to_end_alignment(parent, query_start, query_end) if search_type == "copies" and end_to_end is False: return [] reference_block_start, reference_block_pos = alignment.reference_start, alignment.reference_start query_block_start, query_block_pos = query_start, query_start new_blocks, mismatches = [], [] merged_children_coords = liftoff_utils.merge_children_intervals(children) for operation, length in cigar: if base_is_aligned(operation, cigar_operations): query_block_pos, reference_block_pos = add_aligned_base(operation, query_block_pos, reference_block_pos, length, cigar_operations, mismatches) if query_block_pos == query_end: add_block(query_block_pos, reference_block_pos, aln_id, alignment, query_block_start, reference_block_start, mismatches, new_blocks, merged_children_coords, parent) break elif is_alignment_gap(operation, cigar_operations): add_block(query_block_pos, reference_block_pos, aln_id, alignment, query_block_start, reference_block_start, mismatches, new_blocks, merged_children_coords, parent) mismatches, query_block_start, reference_block_start, query_block_pos, reference_block_pos = \ end_block_at_gap( operation, query_block_pos, reference_block_pos, length, cigar_operations) return new_blocks def get_cigar_operations(): return {"insertion": 1, "deletion": 2, "hard_clip": 5, "match": 7, "mismatch": 8} def get_query_start_and_end(alignment, cigar, cigar_operations): query_start = alignment.query_alignment_start query_end = alignment.query_alignment_end if cigar[0][0] == cigar_operations["hard_clip"]: query_start += cigar[0][1] query_end += cigar[0][1] return query_start, query_end def is_end_to_end_alignment(parent, query_start, query_end): return parent.end - parent.start + 1 == query_end - query_start def base_is_aligned(operation, cigar_operations): return operation == cigar_operations["match"] or operation == cigar_operations["mismatch"] def add_aligned_base(operation, query_block_pos, reference_block_pos, length, cigar_operations, mismatches): if operation == cigar_operations["mismatch"]: for i in range(query_block_pos, query_block_pos + length): mismatches.append(i) query_block_pos, reference_block_pos = adjust_position(operation, query_block_pos, reference_block_pos, length, cigar_operations) return query_block_pos, reference_block_pos def adjust_position(operation, query_block_pos, reference_block_pos, length, cigar_operations): if operation == cigar_operations["match"] or operation == cigar_operations["mismatch"] or operation == \ cigar_operations["insertion"]: query_block_pos += length if operation == cigar_operations["match"] or operation == cigar_operations["mismatch"] or operation == \ cigar_operations["deletion"]: reference_block_pos += length return query_block_pos, reference_block_pos def add_block(query_block_pos, reference_block_pos, aln_id, alignment, query_block_start, reference_block_start, mismatches, new_blocks, merged_children_coords, parent): query_block_end = query_block_pos - 1 reference_block_end = reference_block_pos - 1 new_block = aligned_seg.aligned_seg(aln_id, alignment.query_name, alignment.reference_name, query_block_start, query_block_end, reference_block_start, reference_block_end, alignment.is_reverse, np.array(mismatches).astype(int)) overlapping_children = find_overlapping_children(new_block, merged_children_coords, parent) if overlapping_children != []: new_blocks.append(new_block) def find_overlapping_children(aln, children_coords, parent): overlapping_children = [] for child_interval in children_coords: relative_start = liftoff_utils.get_relative_child_coord(parent, child_interval[0], aln.is_reverse) relative_end = liftoff_utils.get_relative_child_coord(parent, child_interval[1], aln.is_reverse) child_start, child_end = min(relative_start, relative_end), max(relative_start, relative_end) overlap = liftoff_utils.count_overlap(child_start, child_end, aln.query_block_start, aln.query_block_end) if overlap > 0: overlapping_children.append(child_start) overlapping_children.append(child_end) return overlapping_children def is_alignment_gap(operation, cigar_operations): return operation == cigar_operations["insertion"] or operation == cigar_operations["deletion"] def end_block_at_gap(operation, query_block_pos, reference_block_pos, length, cigar_operations): mismatches = [] query_block_pos, reference_block_pos = adjust_position(operation, query_block_pos, reference_block_pos, length, cigar_operations) query_block_start = query_block_pos reference_block_start = reference_block_pos return mismatches, query_block_start, reference_block_start, query_block_pos, reference_block_pos def remove_alignments_without_children(all_aligned_blocks, unmapped_features, feature_hierarchy): features_to_remove = [] for seq in all_aligned_blocks: if all_aligned_blocks[seq] == []: features_to_remove.append(seq) unmapped_features.append(feature_hierarchy.parents[liftoff_utils.convert_id_to_original(seq)]) for feature in features_to_remove: del all_aligned_blocks[feature] return all_aligned_blocks
agshumate/Liftoff
liftoff/align_features.py
align_features.py
py
13,119
python
en
code
360
github-code
6
39830016444
#정렬 : 데이터를 특정한 기준에 따라 순서대로 나열하는것 #1.선택정렬 : 처리되지 않은 데이터 중에서 가장 작은 데이터를 선택해 맨 앞에 있는 데이터와 바꾸는 것을 반복 - O(N^2) array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8] print(array) for i in range(len(array)): min_idx = i for j in range(i + 1, len(array)): if array[min_idx] > array[j]: min_idx = j array[i], array[min_idx] = array[min_idx], array[i] print(array) print() #2.삽입정렬 : 처리되지 않은 데이터를 하나씩 골라 적절한 위치에 삽입 - O(N^2) 이지만 정렬정도에 따라 O(N) 까지 달라짐 array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8] print(array) for i in range(1, len(array)): for j in range(i, 0, -1): if array[j] < array[j - 1]: array[j], array[j - 1] = array[j - 1], array[j] else: break print(array) print() #3.퀵정렬 : 기준 데이터를 설정하고 그 기준보다 큰 데이터와 작은 데이터의 위치를 바꾸는 방법 array = [5, 7, 9, 0, 3, 1, 6, 2, 4, 8] print(array) def quick_sort(array): if len(array) <= 1: return array pivot = array[0] tail = array[1:] left_side = [x for x in tail if x <= pivot] right_side = [x for x in tail if x > pivot] return quick_sort(left_side) + [pivot] + quick_sort(right_side) print(quick_sort(array)) #4.계수정렬 : 특정한 조건이 부합할 때만 사용할 수 있지만 매우 빠르게 동작하는 정렬 알고리즘 O(N + K) # 데이터의 크기 범위가 제한되어 정수 형태로 표현할 수 있을 때 사용 가능 # 동일한 값을 가지는 데이터가 여러개 등장할 때 효과적 array = [7, 5, 9, 0, 3, 1, 6, 2, 9, 1, 4, 8, 0, 5, 2] count = [0] * (max(array) + 1) for i in range(len(array)): count[array[i]] += 1 for i in range(len(count)): for j in range(count[i]): print(i, end=' ')
omg7152/CodingTestPractice
Algorithm/Sort.py
Sort.py
py
1,977
python
ko
code
0
github-code
6
7722787082
from spynnaker.pyNN import exceptions from spynnaker.pyNN.models.neural_projections.connectors.abstract_connector \ import AbstractConnector from spynnaker.pyNN.models.neural_properties.synaptic_list import SynapticList from spynnaker.pyNN.models.neural_properties.synapse_row_info \ import SynapseRowInfo import logging import numpy logger = logging.getLogger(__name__) class FromListConnector(AbstractConnector): """ Make connections according to a list. :param `list` conn_list: a list of tuples, one tuple for each connection. Each tuple should contain:: (pre_idx, post_idx, weight, delay) where pre_idx is the index (i.e. order in the Population, not the ID) of the presynaptic neuron, and post_idx is the index of the postsynaptic neuron. """ def __init__(self, conn_list=None, safe=True, verbose=False): """ Creates a new FromListConnector. """ if not safe: logger.warn("the modification of the safe parameter will be " "ignored") if verbose: logger.warn("the modification of the verbose parameter will be " "ignored") if conn_list is None: conn_list = [] self._conn_list = conn_list def generate_synapse_list( self, presynaptic_population, postsynaptic_population, delay_scale, weight_scale, synapse_type): prevertex = presynaptic_population._get_vertex postvertex = postsynaptic_population._get_vertex # Convert connection list into numpy record array conn_list_numpy = numpy.array( self._conn_list, dtype=[("source", "uint32"), ("target", "uint32"), ("weight", "float"), ("delay", "float")]) if (conn_list_numpy["target"] >= postvertex.n_atoms).any(): raise exceptions.ConfigurationException("Target atom out of range") # Sort by pre-synaptic neuron conn_list_numpy = numpy.sort(conn_list_numpy, order="source") # Apply weight and delay scaling conn_list_numpy["weight"] *= weight_scale conn_list_numpy["delay"] *= delay_scale # Count number of connections per pre-synaptic neuron pre_counts = numpy.histogram( conn_list_numpy["source"], numpy.arange(prevertex.n_atoms + 1))[0] # Take cumulative sum of these counts to get start and end indices of # the blocks of connections coming from each pre-synaptic neuron pre_end_idxs = numpy.cumsum(pre_counts) pre_start_idxs = numpy.append(0, pre_end_idxs[:-1]) # Loop through slices of connections synaptic_rows = [] for _, (start, end) in enumerate(zip(pre_start_idxs, pre_end_idxs)): # Get slice pre_conns = conn_list_numpy[start:end] # Repeat synapse type correct number of times synapse_type_row = numpy.empty(len(pre_conns), dtype="uint32") synapse_type_row.fill(synapse_type) # Combine post-synaptic neuron ids, weights, delays # and synapse types together into synaptic row synaptic_rows.append( SynapseRowInfo(pre_conns["target"], pre_conns["weight"], pre_conns["delay"], synapse_type_row)) # Return full synaptic list return SynapticList(synaptic_rows)
ominux/sPyNNaker
spynnaker/pyNN/models/neural_projections/connectors/from_list_connector.py
from_list_connector.py
py
3,525
python
en
code
null
github-code
6
12791911896
from django.contrib.auth.models import User from django.http import JsonResponse, Http404 from django.shortcuts import redirect, get_object_or_404 from django.urls import reverse from django.utils.decorators import method_decorator from django.views.generic import DetailView, CreateView, View, TemplateView, DeleteView from blog.decorators import authorized_only from blog.forms import PostForm from blog.models import Post, Subscription, PostRead @method_decorator(authorized_only, name='dispatch') class SubscribeView(View): def post(self, request): try: user_id = request.POST.get('pk') user = User.objects.get(pk=user_id) except User.DoesNotExist: return JsonResponse({'status': 'error', 'error': 'Пользователя не существует'}) sub, created = Subscription.objects.get_or_create(user=user) # если пользователь уже в подписках, то удаляем его оттуда, иначе добавляем if request.user in sub.subscribers.all(): sub.subscribers.remove(request.user.id) subscribed = False PostRead.objects.filter(user_id=request.user.id, post__user_id=user_id).delete() else: sub.subscribers.add(request.user.id) subscribed = True sub.save() return JsonResponse({'status': 'ok', 'subscribed': subscribed}) class BlogView(DetailView): model = User template_name = 'blog/user.html' def get_context_data(self, **kwargs): context = super(BlogView, self).get_context_data(**kwargs) context['posts'] = Post.objects.filter(user_id=self.object.id).prefetch_related('user') return context class PostCreateView(CreateView): model = Post form_class = PostForm template_name = 'blog/create.html' def form_valid(self, form): post = form.save(commit=False) post.user = self.request.user post.save() return redirect(reverse('blog:detail', args=(post.user_id, post.id))) class PostDetailView(DetailView): model = Post template_name = 'blog/detail.html' class HomeView(TemplateView): template_name = 'home.html' def get_context_data(self, **kwargs): context = super(HomeView, self).get_context_data(**kwargs) # 2 запроса для получения всех постов # Получение списка id пользователей на которых подписан # Получение всех постов с этими id subscription = list(self.request.user.subscription.values_list('user_id', flat=True)) subscription.append(self.request.user.id) context['posts'] = Post.objects.filter(user_id__in=subscription).prefetch_related('user').distinct() return context class PostReadView(View): def post(self, request): try: post = Post.objects.exclude(user_id=request.user.id).get(pk=request.POST.get('post_id')) except Post.DoesNotExist: return JsonResponse({'status': 'error', 'error': 'Пост не найден'}) PostRead.objects.get_or_create(user=request.user, post=post) return JsonResponse({'status': 'ok'}) class PostDeleteView(DeleteView): model = Post def get_object(self, queryset=None): return get_object_or_404(Post, user_id=self.request.user.id, pk=self.kwargs.get('pk')) def get_success_url(self): return reverse('blog:home')
skazancev/NeKidaem
project/blog/views.py
views.py
py
3,548
python
en
code
0
github-code
6
75241434428
__all__ = ["save", "load", "load_state_dict", "arange", "cat", "cos", "clamp", "Device", "from_numpy", "flatten", "LongTensor", "matmul", "mm", "normal", "ones", "x2ms_pow", "sin", "tanh", "x2ms_tensor", "Tensor", "split", 'as_tensor', 'argmax', 'Generator', 'sigmoid', 'rand', 'floor', 'bernoulli', 'equal', 'var_mean', 'randperm', 'sqrt', 'stack', 'log', 'exp', 'typename', 'is_tensor', 'randn', 'FloatTensor', 'x2ms_max', 'x2ms_min', 'bmm', 'x2ms_abs', 'square', 'squeeze', 'unsqueeze', 'transpose', 'repeat_interleave', 'div', 'ones_like', 'where', 'tensordot', 'meshgrid', 'roll', 'linspace', 'full', 'empty', 'x2ms_sum', 'multinomial', 'gather', 'sort', 'topk', 'x2ms_all', 'cumsum', 'einsum', 'full_like', 'masked_select', 'x2ms_mean', 'mul', 'isfinite', 'diag', 'acos', 'add', 'argsort', 'asin', 'atan2', 'bincount', 'broadcast_tensors', 'chunk', 'conj', 'cosh', 'cross', 'cumprod', 'diagflat', 'x2ms_diagonal', 'eq', 'zeros_like', 'atan', 'unique', 'triu', 'nonzero', 'log2', 'cdist', 'erf', 'softmax', 'eye', 'prod', 'norm', 'zeros', 'lt', 'ge', 'ne', 'le', 'reshape', 'reminder', 'result_type', 'real', 'reciprocal', 'neg', 'isinf', 'isnan', 'argmin', 'floor_divide', 'fmod', 'empty_like', 'erfc', 'erfinv', 'expm1', 'flip', 'gt', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bartlett_window', 'blackman_window', 'hamming_window', 'histc', 'imag', 'ceil', 'lerp', 'log1p', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'var', 'unbind', 'trunc', 'true_divide', 'triu_indices', 'triu', 'tril', 'trapz', 'trapezoid', 'trace', 'tan', 'take', 'lt', 'ge', 'ne', 'le', 'reshape', 'reminder', 'result_type', 'real', 'reciprocal', 'neg', 'minimum', 'hann_window', 'dot', 'scatter', 'ger', 'addmm', 'BoolTensor', 'finfo', 'IntTensor', 'get_rng_state', 'set_rng_state', 'randint', 'randn_like', 'ByteTensor', 'index_select', 'allclose', 't', 'vstack', 'rsqrt', 'x2ms_round', 'acosh', 'addcmul', 'addcdiv', 'asinh', 'atanh', 'amax', 'amin', 'cummax', 'cummin', 'logsumexp', 'renorm', 'xlogy', 'sign', 'sinh', 'less', 'narrow', 'tensor_zeros_like', 'Size', 'DoubleTensor', 'cosine_similarity', 'block_diag', 'cholesky_solve', 'lu_solve', 'x2ms_any', 'greater', 'greater_equal', 'less_equal', 'not_equal', 'multiply', 'logspace', 'tril_indices', 'vander', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'column_stack', 'rad2deg', 'outer', 'negative', 'log10', 'count_nonzero', 'signbit', 'isposinf', 'isin', 'isneginf', 'copysign', 'deg2rad', 'diff', 'gcd', 'heaviside'] import numbers import numpy as np import mindspore import mindspore.default_config import mindspore.nn import mindspore.numpy import mindspore.dataset.transforms import mindspore.ops.functional as F from mindspore.nn import DistributedGradReducer from mindspore.ops import composite from mindspore.parallel._utils import (_get_device_num, _get_gradients_mean, _get_parallel_mode) from mindspore.common.parameter import ParameterTuple from mindspore.context import ParallelMode from .core.decorator import x2ms_func_decorator from .torch_api.save_load import save, load, load_state_dict from .torch_api import tensor_api from .torch_api import autograd from .third_party_adapter import math_api from .torch_api.nn_api import nn_cell from .torch_api.nn_api import nn_init from .torch_api.nn_api import nn_functional from .core.context import x2ms_context from .utils.util_api import logger from .torch_api.torch_base_api import arange, cat, cos, clamp, Device, from_numpy, flatten, \ LongTensor, matmul, mm, normal, ones, x2ms_pow, sin, tanh, x2ms_tensor, Tensor, zeros, split, as_tensor, dot, \ x2ms_sum, argmax, Generator, sigmoid, rand, floor, bernoulli, equal, randperm, var_mean, sqrt, stack, log, exp, \ typename, is_tensor, randn, FloatTensor, x2ms_max, x2ms_min, bmm, x2ms_abs, square, squeeze, unsqueeze, \ transpose, repeat_interleave, div, ones_like, where, tensordot, meshgrid, roll, linspace, full, empty, \ multinomial, gather, sort, topk, x2ms_all, cumsum, einsum, full_like, masked_select, x2ms_mean, mul, isfinite, \ diag, acos, add, argsort, asin, atan2, bincount, broadcast_tensors, chunk, conj, cosh, cross, cumprod, \ diagflat, x2ms_diagonal, zeros_like, atan, unique, nonzero, log2, cdist, erf, softmax, eye, prod, norm, \ lt, ge, eq, ne, le, reshape, reminder, result_type, real, reciprocal, neg, isinf, isnan, argmin, floor_divide, \ fmod, empty_like, erfc, erfinv, expm1, flip, gt, bitwise_and, bitwise_or, bitwise_xor, bartlett_window, \ blackman_window, hamming_window, histc, imag, ceil, lerp, log1p, logical_and, logical_not, logical_or, \ logical_xor, var, unbind, trunc, true_divide, triu_indices, triu, tril, trapz, trapezoid, trace, tan, take, \ minimum, hann_window, scatter, ger, addmm, BoolTensor, finfo, IntTensor, get_rng_state, set_rng_state, randint, \ randn_like, ByteTensor, index_select, allclose, t, vstack, rsqrt, x2ms_round, acosh, addcmul, addcdiv, asinh, \ atanh, amax, amin, cummax, cummin, logsumexp, renorm, xlogy, sign, sinh, less, narrow, tensor_zeros_like, Size, \ DoubleTensor, cosine_similarity, block_diag, cholesky_solve, lu_solve, x2ms_any, greater, greater_equal, \ less_equal, not_equal, multiply, logspace, tril_indices, vander, atleast_1d, atleast_2d, atleast_3d, \ column_stack, rad2deg, outer, negative, log10, count_nonzero, signbit, isposinf, isin, isneginf, copysign, \ deg2rad, diff, gcd, heaviside # overwrite Magic methods mindspore.Tensor.__and__ = tensor_api.tensor_and mindspore.Tensor.__or__ = tensor_api.tensor_or mindspore.Tensor.__format__ = tensor_api.tensor_format mindspore.Tensor.__getitem__ = tensor_api.tensor_getitem mindspore.Tensor.__matmul__ = tensor_api.matmul mindspore.Tensor.__setitem__ = tensor_api.tensor_setitem mindspore.Tensor.T = tensor_api.transpose_ mindspore.Tensor.__float__ = lambda t: float(t.asnumpy()) mindspore.Tensor.__int__ = lambda t: int(t.asnumpy()) mindspore.Parameter.__iadd__ = tensor_api.parameter_iadd mindspore.Parameter.__isub__ = tensor_api.parameter_isub mindspore.Parameter.__imul__ = tensor_api.parameter_imul mindspore.Parameter.__idiv__ = tensor_api.parameter_idiv # overwrite properties mindspore.Tensor.is_cuda = tensor_api.is_cuda mindspore.Tensor.data = tensor_api.property_data mindspore.Tensor.device = tensor_api.property_device mindspore.Parameter.grad = tensor_api.grad mindspore.Parameter.grad = tensor_api.set_grad @property def parameter_data(self): return self @parameter_data.setter def set_data(self, new_data): self.set_data(new_data) mindspore.Parameter.data = parameter_data mindspore.Parameter.data = set_data def _get_calculate_shape(obj, other): if not isinstance(other, mindspore.Tensor): return obj.shape return np.broadcast_shapes(obj.shape, other.shape) def _replace_tensor_calculate_func(origin_func_name, output_type=None): origin_func = getattr(mindspore.Tensor, origin_func_name) def new_func(obj, other): if obj.dtype == mindspore.float64: obj = obj.astype(mindspore.float32) if isinstance(other, np.ndarray): other = mindspore.Tensor(other, obj.dtype) if obj.size == 0 or (isinstance(other, mindspore.Tensor) and other.size == 0): if output_type is None: return mindspore.ops.Zeros()(_get_calculate_shape(obj, other), obj.dtype) else: return mindspore.ops.Zeros()(_get_calculate_shape(obj, other), output_type) return origin_func(obj, other) setattr(mindspore.Tensor, origin_func_name, new_func) for func_name in ("__add__", "__sub__", "__mul__", "__truediv__", "__mod__", "__pow__"): _replace_tensor_calculate_func(func_name) for func_name in ("__lt__", "__gt__", "__le__", "__ge__", "__eq__", "__ne__"): _replace_tensor_calculate_func(func_name, mindspore.bool_) class GraphTrainStep(mindspore.nn.TrainOneStepCell): def __init__(self, network, optimizer): super(GraphTrainStep, self).__init__(network, optimizer) def call_construct(self, *inputs): new_input = list(mindspore.Tensor(value, dtype=mindspore.float32) if not isinstance(value, mindspore.Tensor) else value for value in inputs) return self.__call__(*new_input) def construct(self, *inputs): output = self.network(*inputs) loss = output[0] model_output = output[1:] sens = (F.fill(loss.dtype, loss.shape, self.sens),) for output_value in model_output: sens += self._get_sens(output_value) grads = self.grad(self.network, self.weights)(*inputs, sens) grads = self.grad_reducer(grads) F.depend(loss, self.optimizer(grads)) return output @staticmethod def _get_sens(value): if isinstance(value, mindspore.Tensor): return (F.fill(value.dtype, value.shape, 0),) if isinstance(value, list): sens = [] for tensor in value: sens.append(F.fill(tensor.dtype, tensor.shape, 0)) return (sens,) if isinstance(value, tuple): sens = () for tensor in value: sens += (F.fill(tensor.dtype, tensor.shape, 0),) return (sens,) return (0,) def add_module(obj, name, module): setattr(obj, name, module) classic_cell_init = mindspore.nn.Cell.__init__ def new_cell_init(self, auto_prefix=True, flags=None): classic_cell_init(self, auto_prefix, flags) self.training = True # same name and inherit subclass api mindspore.nn.Cell.add_module = add_module mindspore.nn.Cell.__init__ = new_cell_init mindspore.nn.Cell._modules = nn_cell._modules @property def is_floating_point(self): return self in (mindspore.float16, mindspore.float32, mindspore.float64) mindspore.dtype.typing.Number.is_floating_point = is_floating_point def cuda_set_device(device): pass def is_cuda_available(): """ Stub function for torch.cuda.is_available. get the info from default_config. """ return True def memory_cached(): return 0.0 def memory_reserved(): return 0.0 def max_memory_reserved(device=None): return 0.0 def max_memory_allocated(device=None): return 0.0 def memory_allocated(device=None): return 0.0 def get_device(): return mindspore.context.get_context('device_target') @x2ms_func_decorator(mindspore.nn.Cell) def parameters(obj, *args, **kwargs): return get_cell_params(obj, *args, **kwargs) def get_cell_params(cell, recurse=True): return iter(cell.trainable_params(recurse) + cell.untrainable_params(recurse)) @x2ms_func_decorator(mindspore.nn.Cell) def named_parameters(model, prefix='', recurse=True): return list(param for param in model.parameters_and_names(prefix, recurse)) @x2ms_func_decorator(mindspore.nn.Cell) def named_modules(model, prefix=''): return model.cells_and_names(prefix) @x2ms_func_decorator(mindspore.nn.Cell) def graph_forward(obj, *args, **kwargs): return obj(*args, **kwargs) @x2ms_func_decorator(mindspore.nn.Cell) def forward(obj, *args, **kwargs): return obj.construct(*args, **kwargs) @x2ms_func_decorator(mindspore.nn.Cell) def x2ms_train(obj, *args, **kwargs): if len(obj.trainable_params()) > 0: if obj not in x2ms_context.amp_model: x2ms_context.amp_model.append(obj) return obj.set_train(*args, **kwargs) @x2ms_func_decorator(mindspore.nn.Cell) def x2ms_eval(obj, *args, **kwargs): return obj.set_train(False) class TrainCellWithoutOptimizer(mindspore.nn.Cell): def __init__(self, network, sens=1.0): super(TrainCellWithoutOptimizer, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.model_weights = ParameterTuple(parameters(network)) self.grad = composite.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.parallel_flag = False self.grad_reducer = F.identity self.parallel_mode = _get_parallel_mode() self.parallel_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) if self.parallel_flag: self.grads_mean = _get_gradients_mean() self.device_num = _get_device_num() self.grad_reducer = DistributedGradReducer(self.model_weights, self.grads_mean, self.device_num) def construct(self, *inputs): train_loss = self.network(*inputs) train_sens = F.fill(train_loss.dtype, train_loss.shape, self.sens) grads = self.grad(self.network, self.model_weights)(*inputs, train_sens) grads = self.grad_reducer(grads) for i, parameter in enumerate(self.model_weights): parameter.grad = grads[i] return train_loss _wrapped_model_dict = {} def train_one_step_cell(model, optimizer=None): key = id(model) if key in _wrapped_model_dict.keys(): return _wrapped_model_dict.get(key) if x2ms_context.amp_opt_level is None or x2ms_context.amp_model is None: if optimizer is None: wrapped_model = TrainCellWithoutOptimizer(model) else: wrapped_model = mindspore.nn.TrainOneStepCell(model, optimizer) else: if isinstance(x2ms_context.loss_scale, numbers.Number) and x2ms_context.amp_opt_level != "O2": wrapped_model = mindspore.amp.build_train_network(model, optimizer, level=x2ms_context.amp_opt_level, loss_scale_manager=mindspore.FixedLossScaleManager( x2ms_context.loss_scale)) else: wrapped_model = mindspore.amp.build_train_network(model, optimizer, level=x2ms_context.amp_opt_level) _wrapped_model_dict[key] = wrapped_model return wrapped_model def graph_train_one_step_cell(model, optimizer): key = id(model) if key in _wrapped_model_dict.keys(): return _wrapped_model_dict.get(key) if x2ms_context.amp_opt_level is None or x2ms_context.amp_model is None: wrapped_model = GraphTrainStep(model, optimizer) else: raise NotImplementedError("Graph mode does not currently support Mixed precision") _wrapped_model_dict[key] = wrapped_model return wrapped_model def load_state_dict_from_url(url, model_dir=None, map_location=None, progress=True, check_hash=False): """ Current not support 'model_dir', 'map_location', 'progress', 'check_hash' parameter. """ logger.warning("Not support load_state_dict_from_url now") return {} def to(obj, *args, **kwargs): if isinstance(obj, mindspore.nn.Cell): return _cell_to(obj, *args, **kwargs) elif isinstance(obj, mindspore.Tensor): return _tensor_to(obj, *args, **kwargs) else: return obj.to(*args, **kwargs) def _cell_to(obj, *args, **kwargs): if args: param = args[0] if isinstance(param, mindspore.Type) and param in (mindspore.float16, mindspore.float32): return obj.to_float(dst_type=param) if isinstance(param, mindspore.Tensor) and param.dtype in (mindspore.float16, mindspore.float32): return obj.to_float(dst_type=param.dtype) if len(args) > 1: param = args[1] if param in (mindspore.float16, mindspore.float32): return obj.to_float(dst_type=param) if 'dtype' in kwargs.keys() and kwargs['dtype'] in (mindspore.float16, mindspore.float32): return obj.to_float(dst_type=kwargs['dtype']) if 'other' in kwargs.keys() and kwargs['other'].dtype in (mindspore.float16, mindspore.float32): return obj.to_float(dst_type=kwargs['other']) return obj def _tensor_to(obj, *args, **kwargs): if args: param = args[0] if isinstance(param, mindspore.common.Type): return obj.astype(dtype=param) if isinstance(param, mindspore.Tensor): return obj.astype(dtype=param.dtype) if len(args) > 1: return obj.astype(dtype=args[1]) if 'dtype' in kwargs.keys(): return obj.astype(dtype=kwargs['dtype']) if 'other' in kwargs.keys(): return obj.astype(dtype=kwargs['other'].dtype) return obj def get_device_properties(device): return CUDADeviceProperty() def convert_sync_batchnorm(module, process_group=None): return module class CUDADeviceProperty: def __init__(self): device_target = mindspore.context.get_context('device_target') device_id = mindspore.context.get_context('device_id') self.name = f'{device_target}:{device_id}' self.total_memory = 0
Gufrannn/W-MAE
MindSpore/x2ms_adapter/__init__.py
__init__.py
py
16,986
python
en
code
12
github-code
6
17908940134
# Chapter 1 spam_amount = 0 print(spam_amount) spam_amount += 4 if spam_amount > 0 : print("But I don't want Any spam!") viking_song = "spam " * spam_amount # spam spam spam spam #viking_song = "spam " + spam_amount print(viking_song) print(spam_amount*4) # 16 print(float(str(spam_amount)*4)*4) #17776.0 print(type(spam_amount)) print(5/2) # 2.5 print(5//2) # 2 print(5%2) # 1 print(5**2) # 25 print(min(1,2,3,4,5)) #1 print(max(1,2,3,4,5)) #5 print(abs(-32)) #32 a = [1,2,3] b = [3,2,1] temp=a; a=b; b=temp print(a) a,b = b,a #미쳤다 print(a) #Chapter 2 : help & function help(round) help(round(-2.01)) #help(int) help(print) def least_difference(a, b, c) : """ Return the smallest diferrence between any two numbers among a, b, and c. >>> least_difference(1,5,-5) 4 """ diff1 = abs(a-b); diff2 = abs(b-c); diff3 = abs(a-c); return min(diff1, diff2, diff3) print( least_difference(1,10,100), least_difference(1,10,10), least_difference(5,6,7), ) help(least_difference) print(1,2,3, sep=' < ') # default sep = ' ' def greet(who="Colin") : print("Hello, ", who) greet() #default who="Colin" greet(who="Kaggle") greet("world") def multy_by_five(x) : return 5 * x def call(fn, arg) : """Call fn on arg""" return fn(arg) def squared_call(fn,arg) : return fn(fn(arg)) print ( call(multy_by_five, 1), squared_call(multy_by_five, 1), sep='\n', ) def mod_5(x) : """Return the remainder of x after dividing by 5""" return x % 5 print ( max(100,51,14), # 100 max(100,51,14, key=mod_5), # 각 val의 mod_5한 값 중 max인 val 14 sep='\n', ) print(round(511123,-2)) # 100미만 절사 from time import time t=time() print(t,"seconds since the Epoch") from time import sleep duration =5 print("Getting sleepy. See you in",duration, "seconds") sleep(duration) print("I'm back")
data-droid/study
kaggleLearn/python.py
python.py
py
1,826
python
en
code
6
github-code
6
35413864969
import multiprocessing from multiprocessing import Process from cleanup import TwitterCleanuper from preprocessing import TwitterData from word2vec import Word2VecProvider import pandas as pd def preprocess(results, data_path, is_testing, data_name, min_occurrences=5, cache_output=None): twitter_data = TwitterData() twitter_data.initialize(data_path, is_testing) twitter_data.build_features() twitter_data.cleanup(TwitterCleanuper()) twitter_data.tokenize() twitter_data.build_wordlist(min_occurrences=min_occurrences) twitter_data.build_data_model() # twitter_data.build_ngrams() # twitter_data.build_ngram_model() # twitter_data.build_data_model(with_ngram=2) word2vec = Word2VecProvider() word2vec.load("/home/mike/Desktop/glove.twitter.27B.200d.txt") twitter_data.build_word2vec_model(word2vec) if cache_output is not None: twitter_data.data_model.to_csv(cache_output, index_label="idx", float_format="%.6f") results[data_name] = twitter_data.data_model def preprare_data(min_occurrences): import os training_data = None testing_data = None print("Loading data...") test_data_file_name = "data/processed_test_word2vec_bow_" + str(min_occurrences) + ".csv" train_data_file_name = "data/processed_train_word2vec_bow_" + str(min_occurrences) + ".csv" use_cache = os.path.isfile(train_data_file_name) and os.path.isfile( test_data_file_name) if use_cache: training_data = TwitterData() training_data.initialize(None, from_cached=train_data_file_name) training_data = training_data.data_model testing_data = TwitterData() testing_data.initialize(None, from_cached=test_data_file_name) testing_data = testing_data.data_model print("Loaded from cached files...") else: print("Preprocessing data...") with multiprocessing.Manager() as manager: results = manager.dict() preprocess_training = Process(target=preprocess, args=( results, "data/train.csv", False, "train", min_occurrences, train_data_file_name,)) preprocess_testing = Process(target=preprocess, args=( results, "data/train.csv", True, "test", min_occurrences, test_data_file_name,)) preprocess_training.start() preprocess_testing.start() print("Multiple processes started...") preprocess_testing.join() print("Preprocessed testing data...") preprocess_training.join() print("Preprocessed training data...") training_data = results["train"] testing_data = results["test"] print("Data preprocessed & cached...") return training_data, testing_data class TwitterData( TwitterData_ExtraFeatures ): def build_final_model (self, word2vec_provider, stopwords=nltk.corpus.stopwords.words( "english" )): whitelist = self.whitelist stopwords = list( filter( lambda sw: sw not in whitelist, stopwords ) ) extra_columns = [col for col in self.processed_data.columns if col.startswith( "number_of" )] similarity_columns = ["bad_similarity", "good_similarity", "information_similarity"] label_column = [] if not self.is_testing: label_column = ["label"] columns = label_column + ["original_id"] + extra_columns + similarity_columns + list( map( lambda i: "word2vec_{0}".format( i ), range( 0, word2vec_provider.dimensions ) ) ) + list( map( lambda w: w + "_bow", self.wordlist ) ) labels = [] rows = [] for idx in self.processed_data.index: current_row = [] if not self.is_testing: # add label current_label = self.processed_data.loc[idx, "emotion"] labels.append( current_label ) current_row.append( current_label ) current_row.append( self.processed_data.loc[idx, "id"] ) for _, col in enumerate( extra_columns ): current_row.append( self.processed_data.loc[idx, col] ) # average similarities with words tokens = self.processed_data.loc[idx, "tokenized_text"] for main_word in map( lambda w: w.split( "_" )[0], similarity_columns ): current_similarities = [abs( sim ) for sim in map( lambda word: word2vec_provider.get_similarity( main_word, word.lower() ), tokens ) if sim is not None] if len( current_similarities ) <= 1: current_row.append( 0 if len( current_similarities ) == 0 else current_similarities[0] ) continue max_sim = max( current_similarities ) min_sim = min( current_similarities ) current_similarities = [((sim - min_sim)/(max_sim - min_sim)) for sim in current_similarities] # normalize to <0;1> current_row.append( np.array( current_similarities ).mean() ) # add word2vec vector tokens = self.processed_data.loc[idx, "tokenized_text"] current_word2vec = [] for _, word in enumerate( tokens ): vec = word2vec_provider.get_vector( word.lower() ) if vec is not None: current_word2vec.append( vec ) averaged_word2vec = list( np.array( current_word2vec ).mean( axis=0 ) ) current_row += averaged_word2vec # add bag-of-words tokens = set( self.processed_data.loc[idx, "text"] ) for _, word in enumerate( self.wordlist ): current_row.append( 1 if word in tokens else 0 ) rows.append( current_row ) self.data_model = pd.DataFrame( rows, columns=columns ) self.data_labels = pd.Series( labels ) return self.data_model, self.data_labels def log(text): print(text) with open("log.txt", "a") as log_file: log_file.write(str(text) + "\n") if __name__ == "__main__": def main(): for m in range( 3, 4 ): print("Preparing data with min_occurrences=" + str( m )) training_data, testing_data = preprare_data( m ) log( "********************************************************" ) log( "Validating for {0} min_occurrences:".format( m ) ) # drop idx & id columns # if training_data.columns[0] == "idx": # training_data = training_data.iloc[:, 1:] # # if testing_data.columns[0] == "idx": # testing_data = testing_data.iloc[:, 1:] # # if "original_id" in training_data.columns: # training_data.drop( "original_id", axis=1, inplace=True ) # # if "original_id" in testing_data.columns: # testing_data.drop( "original_id", axis=1, inplace=True ) td = TwitterData() td.initialize( "data\\train.csv" ) td.build_features() td.cleanup( TwitterCleanuper() ) td.tokenize() td.stem() td.build_wordlist() td.build_final_model( word2vec ) td.data_model.head( 5 ) print("Done!") main()
michal0janczyk/information_diffusion
fuzzy_logic/word_2_vectors/main.py
main.py
py
7,484
python
en
code
1
github-code
6
9373814970
''' 다음은 ISLR패키지의 Carseats 데이터 세트이다. 매출(Sales)의 이상값을 제외한 데이를 훈련 데이터로 선정할 때 Age의 표준편차를 구하시오. (이상 값은 평균보다 1.5표준편차이하이거나 이상인 값으로 선정한다. ''' import pandas as pd data = 'Carseats.csv' df = pd.read_csv(data) #print(df) #print(df.info()) #print(df.describe()) chk = df.Sales.std() #print(chk) train = df[(df.Sales < (df.Sales.mean() + chk*1.5)) & (df.Sales > (df.Sales.mean() - chk*1.5))] ans = train.Age.std() print(ans) ''' 다음은 MASS 패키지의 Cars93 데이터 세트이다. Luggage.room의 결측값을 중앙값으로 변환한 후 변환 전, 후 평균의 차이를 구하시오. ''' import pandas as pd data = 'Cars93.csv' df = pd.read_csv(data) #print(df) #print(df.info()) #print(df.describe()) before = df['Luggage.room'].mean() df.loc[df['Luggage.room'].isnull(), 'Luggage.room'] = df['Luggage.room'].fillna(df['Luggage.room'].median()) after = df['Luggage.room'].mean() ans = abs(before - after) print(ans) ''' 다음은 Covid19의 TimeAge데이터 세트이다. 연령(age)이 20대(20s)인 확진자(confirmed)의 평균과 50대(50s)인 확진자(confirmed) 평균의 차이를 구하시오. ''' import pandas as pd data = 'TimeAge.csv' df = pd.read_csv(data) #print(df) #print(df.info()) #print(df.describe()) chk = df.groupby('age').mean().reset_index() #print(chk) ans = chk[chk.age == '20s'].confirmed.values[0] - chk[chk.age == '50s'].confirmed.values[0] print(ans)
JoinNova/PracticeBigdata_Python
0143.py
0143.py
py
1,594
python
ko
code
0
github-code
6
71844650429
from django.conf import settings from django.urls import NoReverseMatch, reverse def get_slug_or_pk(object, slug_field=None): res = dict() field = slug_field if hasattr(object, slug_field) else "pk" if object: param = "slug" if hasattr(object, slug_field) else "pk" res.update({param: getattr(object, field)}) return res def get_urls_of_site(site, object=None, user=None): urls = {} app = site.model._meta.app_label model = site.model._meta.model_name kwargs = get_slug_or_pk(object, slug_field=site.slug_field) for action, perm in (("list", "view"), ("create", "add")): try: url_name = site.get_url_name(action) if not user: urls.update({action: reverse(url_name)}) elif user.has_perm(f"{app}.{perm}_{model}"): urls.update({action: reverse(url_name)}) except NoReverseMatch: if settings.DEBUG: print("DEBUG: Url not found: %s" % url_name) if not kwargs: return urls for action, perm in ( ("update", "change"), ("detail", "view"), ("delete", "delete"), ): try: url_name = site.get_url_name(action) if not user: urls.update({action: reverse(url_name, kwargs=kwargs)}) elif user.has_perm(f"{app}.{perm}_{model}"): urls.update({action: reverse(url_name, kwargs=kwargs)}) except NoReverseMatch: if settings.DEBUG: print("DEBUG: Url not found: %s" % url_name) return urls
dbsiavichay/faclab
viewpack/shortcuts.py
shortcuts.py
py
1,595
python
en
code
0
github-code
6
3539820868
""" Name : portfolio_optimizer.py Author : Yinsen Miao Contact : [email protected] Time : 7/21/2021 Desc: Solve mean-variance optimization """ import numpy as np import pandas as pd from scipy.optimize import minimize from gerber import gerber_cov_stat1, gerber_cov_stat2 from ledoit import ledoit def set_eps_wgt_to_zeros(in_array, eps=1e-4): # set small weights to 0 and return a list out_array = np.array(in_array) out_array[np.abs(in_array) < eps] = 0 out_array = np.array(out_array) / np.sum(out_array) return out_array class portfolio_optimizer: def __init__(self, min_weight: float = 0., max_weight: float = 1.0, cov_function: str = "HC", freq: str = "monthly", gs_threshold: float = 0.5): """ :param min_weight: :param max_weight: :param cov_function: can be one of the HC (historical covariance matrix), GS1 (Gerber Stat1), GS2 (Gerber Stat2) :param freq: frequency of the returns series either daily or monthly :param gs_threshold: threshold of Gerber statistics between 0 and 1 """ # check arguments assert cov_function in ['HC', 'GS1', 'GS2', 'SM'], "The covariance function must be one from HC, SM, GS1, and GS2" assert freq in ['daily', 'monthly'], "The return series can only be either daily or monthly" assert 1 > min_weight >= 0, "The minimal weight shall be in [0, 1)" assert 1 >= max_weight > 0, "The maximum weight shall be in (0, 1]" assert 1 >= gs_threshold > 0, "The Gerber shrinkage threshold shall be in (0, 1]" self.min_weight = min_weight self.max_weight = max_weight self.factor = 252 if freq == "daily" else 12 # annual converter self.cov_function = cov_function # covariance function can be one of HC, GS1, GS2 self.freq = freq # freq of return series can be either daily or monthly self.init_weights = None # initial portfolio weights self.covariance = None self.returns_df = None self.negative_returns_df = None self.covariance_neg = None # covariance matrix of only negative returns for sortino ratio self.obj_function = None self.by_risk = None self.gs_threshold = gs_threshold def set_returns(self, returns_df: pd.DataFrame): """ pass the return series to the class :param returns_df: pd.DataFrame of historical daily or monthly returns """ self.returns_df = returns_df.copy(deep=True) self.negative_returns_df = returns_df[returns_df < 0].fillna(0) # keep only the negative returns def optimize(self, obj_function: str, target_std: float = None, target_return: float = None, prev_weights: np.array = None, init_weights: np.array = None, cost: float = None) -> np.array: """ Perform portfolio optimization given a series of returns :param obj_function: :param target_std: targeted annaulized portfolio standard deviation (std) :param target_return: targeted annaulized portfolio return deviation :param prev_weights: previous weights :param prices: current price level when we rebalance our portfolio :param cost: cost of transaction fee and slippage in bps or 0.01% :return: an array of portfolio weights p x 1 """ n, p = self.returns_df.shape # n is number of observations, p is number of assets if init_weights is None: self.init_weights = np.array(p * [1. / p]) # initialize weights: equal weighting else: self.init_weights = init_weights # otherwise use the nearby weights as hot start for MVO self.obj_function = obj_function # get covariance matrix if self.cov_function == "HC": self.covariance = self.returns_df.cov().to_numpy() # convert to numpy self.covariance_neg = self.negative_returns_df.cov().to_numpy() # convert to numpy elif self.cov_function == "SM": self.covariance, _ = ledoit(self.returns_df.values) self.covariance_neg, _ = ledoit(self.negative_returns_df.values) elif self.cov_function == "GS1": self.covariance, _ = gerber_cov_stat1(self.returns_df.values, threshold=self.gs_threshold) self.covariance_neg, _ = gerber_cov_stat1(self.negative_returns_df.values, threshold=self.gs_threshold) elif self.cov_function == "GS2": self.covariance, _ = gerber_cov_stat2(self.returns_df.values, threshold=self.gs_threshold) self.covariance_neg, _ = gerber_cov_stat2(self.negative_returns_df.values, threshold=self.gs_threshold) # set objective function if obj_function == "equalWeighting": self.init_weights = np.array(p * [1. / p]) # initialize weights: equal weighting return self.init_weights # set the bounds of each asset holding from 0 to 1 bounds = tuple((self.min_weight, self.max_weight) for k in range(p)) constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}] # fully invest if obj_function == 'meanVariance': if target_std is not None: self.by_risk = True # optimize under risk constraint constraints.append({'type': 'eq', 'fun': lambda weights: \ self.calc_annualized_portfolio_std(weights) - target_std}) else: # optimize under return constraint self.by_risk = False constraints.append({'type': 'eq', 'fun': lambda weights: \ self.calc_annualized_portfolio_return(weights) - target_return}) if prev_weights is not None and cost is not None: # cost function with transaction fee cost_fun = lambda weights: self.object_function(weights) +\ np.abs(weights - prev_weights).sum() * cost / 10000. else: # cost function without any transaction fee cost_fun = lambda weights: self.object_function(weights) # trust-constr, SLSQP, L-BFGS-B try: opt = minimize(cost_fun, x0=self.init_weights, bounds=bounds, constraints=constraints, method="SLSQP") except: # if SLSQP fails then switch to trust-constr opt = minimize(cost_fun, x0=self.init_weights, bounds=bounds, constraints=constraints, method="trust-constr") return set_eps_wgt_to_zeros(opt['x']) # pull small values to zeros def object_function(self, weights: np.array) -> float: """ :param weights: current weights to be optimized """ if self.obj_function == "maxReturn": f = self.calc_annualized_portfolio_return(weights) return -f elif self.obj_function == "minVariance": f = self.calc_annualized_portfolio_std(weights) return f elif self.obj_function == "meanVariance" and self.by_risk: f = self.calc_annualized_portfolio_return(weights) # maximize target return level return -f elif self.obj_function == "meanVariance" and not self.by_risk: f = self.calc_annualized_portfolio_std(weights) # minimize target risk or std level return f elif self.obj_function == "maxSharpe": f = self.calc_annualized_portfolio_sharpe_ratio(weights) return -f elif self.obj_function == "maxSortino": f = self.calc_annualized_sortino_ratio(weights) return -f elif self.obj_function == 'riskParity': f = self.calc_risk_parity_func(weights) return f else: raise ValueError("Object function shall be one of the equalWeighting, maxReturn, minVariance, " + "meanVariance, maxSharpe, maxSortino or riskParity") def calc_annualized_portfolio_return(self, weights: np.array) -> float: # calculate the annualized standard returns annualized_portfolio_return = float(np.sum(self.returns_df.mean() * self.factor * weights)) #float(np.sum(((1 + self.returns_df.mean()) ** self.factor - 1) * weights)) return annualized_portfolio_return def calc_annualized_portfolio_std(self, weights: np.array) -> float: if self.obj_function == "equalWeighting": # if equal weight then set the off diagonal of covariance matrix to zero annualized_portfolio_std = np.sqrt(np.dot(weights.T, np.dot(np.diag(self.covariance.diagonal()) * self.factor, weights))) else: temp = np.dot(weights.T, np.dot(self.covariance * self.factor, weights)) if temp <= 0: temp = 1e-20 # set std to a tiny number annualized_portfolio_std = np.sqrt(temp) if annualized_portfolio_std <= 0: raise ValueError('annualized_portfolio_std cannot be zero. Weights: {weights}') return annualized_portfolio_std def calc_annualized_portfolio_neg_std(self, weights: np.array) -> float: if self.obj_function == "equalWeighting": # if equal weight then set the off diagonal of covariance matrix to zero annualized_portfolio_neg_std = np.sqrt(np.dot(weights.T, np.dot(np.diag(self.covariance_neg.diagonal()) * self.factor, weights))) else: annualized_portfolio_neg_std = np.sqrt(np.dot(weights.T, np.dot(self.covariance_neg * self.factor, weights))) if annualized_portfolio_neg_std == 0: raise ValueError('annualized_portfolio_std cannot be zero. Weights: {weights}') return annualized_portfolio_neg_std def calc_annualized_portfolio_moments(self, weights: np.array) -> tuple: # calculate the annualized portfolio returns as well as its standard deviation return self.calc_annualized_portfolio_return(weights), self.calc_annualized_portfolio_std(weights) def calc_annualized_portfolio_sharpe_ratio(self, weights: np.array) -> float: # calculate the annualized Sharpe Ratio return self.calc_annualized_portfolio_return(weights) / self.calc_annualized_portfolio_std(weights) def calc_annualized_sortino_ratio(self, weights: np.array) -> float: # calculate the annualized Sortino Ratio return self.calc_annualized_portfolio_return(weights) / self.calc_annualized_portfolio_neg_std(weights) def calc_risk_parity_func(self, weights): # Spinu formulation of risk parity portfolio assets_risk_budget = self.init_weights portfolio_volatility = self.calc_annualized_portfolio_std(weights) x = weights / portfolio_volatility risk_parity = (np.dot(x.T, np.dot(self.covariance * self.factor, x)) / 2.) - np.dot(assets_risk_budget.T, np.log(x + 1e-10)) return risk_parity def calc_relative_risk_contributions(self, weights): # calculate the relative risk contributions for each asset given returns and weights rrc = weights * np.dot(weights.T, self.covariance) / np.dot(weights.T, np.dot(self.covariance, weights)) return rrc # unitest the code if __name__ == "__main__": bgn_date = "2016-01-01" end_date = "2020-01-01" file_path = "../data/prcs.csv" rets_df = pd.read_csv(file_path, parse_dates=['Date'], index_col=["Date"]).pct_change()[bgn_date: end_date] rets = rets_df.values # test objective function list obj_function_list = ['equalWeighting', 'minVariance', 'maxReturn', 'maxSharpe', 'maxSortino', 'riskParity'] cov_function_list = ["HC", "SM", "GS1", "GS2"] for cov_fun in cov_function_list: print("MVO based on %s covariance function ..." % cov_fun) port_opt = portfolio_optimizer(min_weight=0, max_weight=1, cov_function=cov_fun, freq="monthly") port_opt.set_returns(returns_df=rets_df) # run MVO under various optimization goals for obj_fun_str in obj_function_list: weights = port_opt.optimize(obj_fun_str) ret, std = port_opt.calc_annualized_portfolio_moments(weights=weights) sharpe = port_opt.calc_annualized_portfolio_sharpe_ratio(weights=weights) sortino = port_opt.calc_annualized_sortino_ratio(weights=weights) print("%20s: ret %.3f, std %.3f, Sharpe %.3f, Sortino %.3f" % (obj_fun_str, ret, std, sharpe, sortino)) obj_fun_str = "meanVariance" # optimize for target std levels target_stds = [3, 6, 9, 12, 15] for target_std in target_stds: weights = port_opt.optimize(obj_fun_str, target_std / 100.) # print(weights) ret, std = port_opt.calc_annualized_portfolio_moments(weights=weights) sharpe = port_opt.calc_annualized_portfolio_sharpe_ratio(weights=weights) sortino = port_opt.calc_annualized_sortino_ratio(weights=weights) print("%20s (%02d%%): ret %.3f, std %.3f, Sharpe %.3f, Sortino %.3f" % ( obj_fun_str, target_std, ret, std, sharpe, sortino))
yinsenm/gerber
src/portfolio_optimizer.py
portfolio_optimizer.py
py
13,193
python
en
code
49
github-code
6
37283667870
# Importing modules import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import joblib import findspark findspark.init() from pyspark.sql import SparkSession from pyspark.ml import PipelineModel from pyspark.sql.functions import * # Configure spark session spark = SparkSession\ .builder\ .master('local[2]')\ .appName('quake_etl')\ .config('spark.jars.package', 'org.mongodb.spark:mongo-spark-connector 2.12:2.4.1')\ .getOrCreate() from bokeh.io import output_notebook, output_file from bokeh.plotting import figure, show, ColumnDataSource from bokeh.models.tools import HoverTool import math from math import pi from bokeh.palettes import Category20c from bokeh.transform import cumsum from bokeh.tile_providers import CARTODBPOSITRON, get_provider, Vendors from bokeh.themes import built_in_themes from bokeh.io import curdoc import warnings warnings.filterwarnings('ignore') from pyspark.sql.functions import desc df=joblib.load('./joblibs/df.joblib') data=spark.createDataFrame(df) df_quake_freq=joblib.load('./visualization_files/df_quake_freq.joblib') df_pred=joblib.load('./visualization_files/rffpred.joblib') def svm(a): clf=joblib.load('./joblibs/svmModel.joblib') a=np.array([a]) y_pred_svm=clf.predict(a) return y_pred_svm[0]/10 def dt(a): a=np.array([a]) dc=joblib.load('./joblibs/dtModel.joblib') y_pred_dc=dc.predict(a) return y_pred_dc[0] def rf(a): pipe=PipelineModel.load("./joblibs/rfmodel.model_v0") ip = pd.DataFrame(np.array([a])) ip.columns=['Latitude','Longitude','Depth'] dip=spark.createDataFrame(ip) pred_results_RF = pipe.transform(dip) return pred_results_RF.collect()[0][4] def knn(a): from sklearn.neighbors import KNeighborsRegressor #Seperating X and y X=df[['Year','Latitude','Longitude','Depth']] y=df[['Magnitude']] kneigh=KNeighborsRegressor(n_neighbors = 5) kneigh.fit(X, y.values.ravel()) a=np.array([a]) y_pred_knn=kneigh.predict(a) return y_pred_knn[0] def style(p): p.title.align='center' p.title.text_font_size = '20pt' p.title.text_font = 'serif' p.xaxis.axis_label_text_font_size = '14pt' p.xaxis.axis_label_text_font_style= 'bold' p.yaxis.axis_label_text_font_size = '14pt' p.yaxis.axis_label_text_font_style= 'bold' p.xaxis.major_label_text_font_size = '12pt' p.yaxis.major_label_text_font_size = '12pt' p.legend.location = 'top_left' return p def showmap(): # Earthquakein Map Representation df_quakes_2016 = data[data['Year']==2016] df_quakes_2016=df_quakes_2016.toPandas() def plotMap(): lat = df_quakes_2016['Latitude'].values.tolist() lon = df_quakes_2016['Longitude'].values.tolist() pred_lat = df_pred['Latitude'].values.tolist() pred_lon = df_pred['Longitude'].values.tolist() lst_lat = [] lst_lon = [] lst_pred_lat = [] lst_pred_lon = [] i=0 j=0 for i in range (len(lon)): r_major = 6378137.000 x = r_major * math.radians(lon[i]) scale = x/lon[i] y = 180.0/math.pi * math.log(math.tan(math.pi/4.0 + lat[i] * (math.pi/180.0)/2.0)) * scale lst_lon.append(x) lst_lat.append(y) i += 1 for j in range (len(pred_lon)): r_major = 6378137.000 x = r_major * math.radians(pred_lon[j]) scale = x/pred_lon[j] y = 180.0/math.pi * math.log(math.tan(math.pi/4.0 + pred_lat[j] * (math.pi/180.0)/2.0)) * scale lst_pred_lon.append(x) lst_pred_lat.append(y) j += 1 df_quakes_2016['coords_x'] = lst_lat df_quakes_2016['coords_y'] = lst_lon df_pred['coords_x'] = lst_pred_lat df_pred['coords_y'] = lst_pred_lon df_quakes_2016['Mag_Size'] = df_quakes_2016['Magnitude'] * 4 df_pred['Mag_Size'] = df_pred['Pred_Magnitude'] * 4 lats = df_quakes_2016['coords_x'].tolist() longs = df_quakes_2016['coords_y'].tolist() mags = df_quakes_2016['Magnitude'].tolist() years = df_quakes_2016['Year'].tolist() mag_size = df_quakes_2016['Mag_Size'].tolist() pred_lats = df_pred['coords_x'].tolist() pred_longs = df_pred['coords_y'].tolist() pred_mags = df_pred['Pred_Magnitude'].tolist() pred_year = df_pred['Year'].tolist() pred_mag_size = df_pred['Mag_Size'].tolist() cds = ColumnDataSource( data=dict( lat=lats, lon=longs, mag=mags, year=years, mag_s=mag_size ) ) pred_cds = ColumnDataSource( data=dict( pred_lat=pred_lats, pred_long=pred_longs, pred_mag=pred_mags, year=pred_year, pred_mag_s=pred_mag_size ) ) TOOLTIPS = [( "Year", "@year"), ("Magnitude", "@mag"),("Predicted Magnitude", "@pred_mag") ] p = figure(title = 'Earthquake Map', plot_width=2300, plot_height=450, x_range=(-2000000, 6000000), y_range=(-1000000, 7000000), tooltips=TOOLTIPS) p.circle(x='lon', y='lat', size='mag_s', fill_color='#cc0000', fill_alpha=0.7, source=cds, legend='Quakes 2016') p.circle(x='pred_long', y='pred_lat', size='pred_mag_s', fill_color='#ccff33', fill_alpha=7.0, source=pred_cds, legend='Predicted Quakes 2017') tile_provider = get_provider(Vendors.CARTODBPOSITRON) p.add_tile(tile_provider) p.title.align='center' p.title.text_font_size='20pt' p.title.text_font='serif' p.legend.location='bottom_right' p.legend.background_fill_color='black' p.legend.background_fill_alpha=0.8 p.legend.click_policy='hide' p.legend.label_text_color='white' p.xaxis.visible=False p.yaxis.visible=False p.axis.axis_label=None p.axis.visible=False p.grid.grid_line_color=None show(p) df_quakes_2016['Magnitude'] plotMap() def freqgraph(): #Frequency of Earthquake By Year def plotBar(): cds = ColumnDataSource(data=dict( yrs= df_quake_freq[ 'Year'].values.tolist(), numQuakes = df_quake_freq['Counts'].values.tolist())) TOOLTIPS =[ ('Number of earthquakes','@numQuakes'),('Year','@yrs')] barChart = figure(title='Frequency of Earthquakes by Year', plot_height=400, plot_width=1150, x_axis_label='Years', y_axis_label='Number of Occurances', x_minor_ticks=2, y_range=(0, df_quake_freq['Counts'].max() +100), toolbar_location=None, tooltips=TOOLTIPS) print(cds) barChart.vbar (x='yrs', bottom=0, top='numQuakes', color='#cc0000', width=0.75, legend='Year', source=cds) barChart = style(barChart) show(barChart) return barChart plotBar() def maggraph(): def plotMagnitude(): cds= ColumnDataSource(data=dict( yrs = df_quake_freq[ 'Year'].sort_values().values.tolist(), avg_mag = df_quake_freq['avg(Magnitude)'].round(1).values.tolist(), max_mag= df_quake_freq [ 'max(Magnitude)'].values.tolist())) TOOLTIPS = [('Year', '@yrs'),('avg(Magnitude)', '@avg_mag'),('max(Magnitude)','@max_mag')] mp = figure(title='Maximum and Average Magnitude by Year', plot_width=1150, plot_height=400, x_axis_label='Years', y_axis_label='Magnitude', y_range=(5, df_quake_freq[ 'max(Magnitude)'].max() + 1), x_minor_ticks=2, toolbar_location=None, tooltips= TOOLTIPS) mp.line(x='yrs', y='max_mag', color='#cc0000', line_width=2, legend= 'Max Magnitude', source=cds) mp.circle(x='yrs', y='max_mag', color='#cc0000', size=8, fill_color='#cc0000', source=cds) mp.line(x='yrs', y='avg_mag', color='yellow', line_width=2, legend = 'Avg Magnitude', source=cds) mp.circle(x='yrs', y='avg_mag', color='yellow', size=8, fill_color='yellow', source=cds) mp =style(mp) show(mp) return mp plotMagnitude()
ramsundar07/Earthquake-Detetection-Analysis-using-Machine-Learning-Algorithms
GUI/gui_algorithm.py
gui_algorithm.py
py
8,670
python
en
code
0
github-code
6
28969789667
import machine import picoweb import ujson import ulogging as logging import ure as re import utime from common import config app = picoweb.WebApp(__name__) hooks = {} CONFIGURE_DEVICE_HOOK = 'CONFIGURE_WIFI' CONFIGURE_AWS_HOOK = 'CONFIGURE_AWS' CONFIGURE_SENSOR_HOOK = "CONFIGURE_SENSOR" GET_STATUS_HOOK = 'GET_STATUS' # API helpers def create_success_response(data: dict): return _create_common_response(data=data, status=0, status_text='ok') def _create_common_response(data, status: int, status_text: str): response_dict = { 'data': data, 'status': status, 'status_text': status_text, } encoded = ujson.dumps(response_dict) return encoded def create_failed_response(resp, status_text: str, status: int = 500): return _create_common_response(data=None, status=status, status_text=status_text) # modified picoweb's req.read_form_data: def parse_post_body(req): size = int(req.headers[b"Content-Length"]) data = yield from req.reader.readexactly(size) data_txt = data.decode('utf-8') return ujson.loads(data_txt) # Requests handling @app.route("/status") def get_status(req, resp): data = {"timestamp": utime.time()} status = hooks[GET_STATUS_HOOK]() for key in status.keys(): data[key] = status[key] encoded = create_success_response(data=data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) @app.route("/measurement") def get_last_measurement(req, resp): value = hooks['get_measurement_hook']() data = {"value": value} encoded = create_success_response(data=data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) @app.route("/battery") def get_last_measurement(req, resp): assert req.method == 'GET' try: battery_v = machine.ADC(machine.Pin(config.cfg.battery_voltage_pin)) battery_v.atten(machine.ADC.ATTN_11DB) ADC_11DB_TO_VOLT = 0.000805664 voltage = battery_v.read() * ADC_11DB_TO_VOLT voltage_divider_ratio = config.cfg.voltage_divider_r2_k / \ (config.cfg.voltage_divider_r1_k + config.cfg.voltage_divider_r2_k) voltage = voltage / voltage_divider_ratio except: logging.info("Error reading battery voltage!") voltage = 'ERROR' data = {"voltage": voltage} encoded = create_success_response(data=data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) @app.route("/") def index(req, resp): print("route /") headers = {"Location": "/web_pages/index.html"} yield from picoweb.start_response(resp, status="303", headers=headers) @app.route("/config") def set_config(req, resp): assert req.method == 'POST' data = yield from parse_post_body(req) print(data) if 'wifi' in data.keys(): print(data['wifi']) hooks[CONFIGURE_DEVICE_HOOK](data['wifi']) if 'aws' in data.keys(): hooks[CONFIGURE_AWS_HOOK](data['aws']) if 'sensor' in data.keys(): hooks[CONFIGURE_SENSOR_HOOK](data['sensor']) config.cfg.save() response_data = {'result': 'ok'} encoded = create_success_response(data=response_data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) @app.route(re.compile("/web_pages/(.+)")) def get_static_file(req, resp): print("Get static call") file_path = '/web_server/web_pages/' + req.url_match.group(1) logging.info('About to send file: ' + file_path) yield from app.sendfile(resp, file_path) @app.route(re.compile("/start_test_data_acquisition")) def start_test_data_acquisition(req, resp): hooks['start_test_data_acquisition']() response_data = {'result': 'ok'} encoded = create_success_response(data=response_data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) @app.route(re.compile("/start_data_acquisition")) def start_data_acquisition(req, resp): hooks['start_data_acquisition']() response_data = {'result': 'ok'} encoded = create_success_response(data=response_data) yield from picoweb.start_response(resp, content_type="application/json") yield from resp.awrite(encoded) # setup and run def setup(get_measurement_hook=None, configure_device_hook=None, configure_aws_hook=None, configure_sensor_hook=None, get_status_hook=None, start_test_data_acquisition=None, start_data_acquisition=None): global hooks hooks['get_measurement_hook'] = get_measurement_hook hooks[CONFIGURE_DEVICE_HOOK] = configure_device_hook hooks[CONFIGURE_AWS_HOOK] = configure_aws_hook hooks[CONFIGURE_SENSOR_HOOK] = configure_sensor_hook hooks[GET_STATUS_HOOK] = get_status_hook hooks['start_test_data_acquisition'] = start_test_data_acquisition hooks['start_data_acquisition'] = start_data_acquisition def run(): global app global hooks if not hooks: raise Exception('Please setup server with hooks first!') logging.info('About to start server...') app.run(debug=1, port=80, host='0.0.0.0') def stop_server(): app.stop_server()
wizzdev-pl/iot-starter
MicroPython/src/web_server/web_app.py
web_app.py
py
5,324
python
en
code
7
github-code
6
43224823277
from javax import swing from java.awt import BorderLayout, Dimension from java.awt.event import KeyEvent from javax.swing import JFrame, JScrollPane, JPanel, JTable, JList, ListSelectionModel from javax.swing.event import ListSelectionListener from javax.swing.table import DefaultTableModel class TableApp: def make_ui(self): frame = JFrame("Table demo") frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE) frame.setLayout(BorderLayout()) panel = JPanel() scrollPane = JScrollPane() self.table = self.createTable() jlist = JList(range(1, 4)) panel.add(jlist) panel.add(self.table) scrollPane.setColumnHeaderView(self.table.getTableHeader()) scrollPane.getViewport().setView(panel) class MyListSelectionListener(ListSelectionListener): def valueChanged(listenerSelf, event): if event.getValueIsAdjusting(): return self.table.addRowSelectionInterval(event.getFirstIndex(), event.getFirstIndex()) for column in range(self.table.getColumnCount()): self.table.changeSelection(event.getFirstIndex(), column, False, True) jlist.addListSelectionListener(MyListSelectionListener()) scrollPane.setRowHeaderView(jlist) panel.setOpaque(True) frame.getContentPane().add(scrollPane, BorderLayout.CENTER) frame.setPreferredSize(Dimension(300,100)) frame.pack() frame.setVisible(True) def createTable(self): data = [ ['Tom'] * 20, ['Dick'] * 20, ['Harry'] * 20 ] columns = tuple([ "Name" + str(i) for i in range(1, 21) ]) model = DefaultTableModel(data, columns) table = JTable(model) table.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION) table.setCellSelectionEnabled(True) return table def createList(self): return JList(range(1, 4)) @staticmethod def main(): app = TableApp() app.make_ui() TableApp.main()
texttest/storytext-selftest
swing/tables/row_header_list_select_all_cells/target_ui.py
target_ui.py
py
2,132
python
en
code
0
github-code
6
7268607481
def serialize_categories(categories) -> list: output = [] for category in categories: categories_data = { "id": category.id, "name": category.name, "description": category.description, "tasks": [] } for task in category.tasks: task_data = { "id": task.id, "name": task.name, "description": task.description, "duration": task.duration, "classification": task.type } categories_data["tasks"].append(task_data) output.append(categories_data) return output
Kenzie-Academy-Brasil-Developers/q3-sprint5-matriz-eisenhower-RobsonMT
app/services/serialize_categories_service.py
serialize_categories_service.py
py
691
python
en
code
0
github-code
6
11702399982
import md5 import random #from settings import SOLRSOLR_HOST, SOLR_PORT # Make this unique, and don't share it with anybody. SECRET_KEY = 'j*zdirg7yy9@q1k=c*q!*kovfsd#$FDFfsdfkae#id04pyta=yz@w34m6rvwfe' def generate_hash(): hash = md5.new() hash.update("".join(map(lambda i: chr(random.randint(0, 255)), range(16)))) hash.update(SECRET_KEY) key = hash.hexdigest() return key import urllib import urllib2 url = 'http://127.0.0.1:8000/api/insert' institutionnames = ["Hospital", "Medical Department", "Research Center", "Pharmacy", "Hopital", "Ziekenhuis" ] databasenames =["heartattack", "cardiomyopathy", "Coronary heart disease", "Valvular heart disease", "Peripheral arterial disease"] location = ["Paris", "Roterdao", "Porto", "Aveiro", "Lisboa", "Faro", "Portimao", "Brussels", "London", "Barcelona", "Heildeberg", "Stuttgard", "Lens"] data = { 'contact_technical_t':'IEETA', 'created_t':'2013-04-17 12:09:32.334053', 'location_t':'Aveiro', 'institution_name_t':'IEETA', 'contact_scientific_t':'[email protected]', 'contact_administrative_t':'[email protected]', 'type_t':'researchcohorts', 'id':'a10815736f733d04d8e0aa65fe37', 'user_t' :'bastiao', 'text_t': 'ieeta ieeta bastiao emif cardiomyopathy Coronary heart attack', 'total_number_subjects_t': '20000', 'ethical_committee_t': '[No]', 'publically_doc_procedure_t': '[No]', 'ethical_committee_t': '[No]', 'number_active_patients_jan2012_t': '200', 'average_time_follow_up_t': '130', 'assess_prevalence_prevalence_t': 'Brufen Beneron', 'literature_papers_t': "Luis A. Bastiao Silva, Carlos Costa, Jose Luis Olveira. A Secure PACS Cloud Archive in CARS 2011, Berlin, Germany ", 'population_description_t':'Fat, Headcache'} import requests requests.post("http://127.0.0.1:8000/api/insert", data) #import pysolr #import random #solr = pysolr.Solr('http://' + SOLRSOLR_HOST + ':' + SOLR_PORT+ '/solr', timeout=10) #for i in range(10): # index_db = random.randint(1, len(databasenames)) # index_institutionnames = random.randint(1, len(institutionnames)) # index_locations = random.randint(1, len(location)) # data['database_name_t'] = institutionnames[index_institutionnames-1] + " " + location[index_locations-1] + " " +databasenames[index_db-1] # data['location_t'] = location[index_locations] # data['id'] = generate_hash() # solr.add([data]) # solr.optimize() #curl -v -H "Accept: application/json" -H "Content-type: application/json" -X POST -d ' {"user":{"first_name":"firstname","last_name":"lastname","email":"[email protected]","password":"app123","password_confirmation":"app123"}}' http://127.0.0.1:8000/api/insert
bioinformatics-ua/montra
emif/insert_script.py
insert_script.py
py
2,771
python
en
code
7
github-code
6
21981363351
# -*- coding: utf-8 -*- import unittest import os import time os.environ["TESTING_LDT"] = "TRUE" import ldt from ldt.helpers.ignore import ignore_warnings class Tests(unittest.TestCase): ''' The tests in this block inspect the MetaDictionary functionality: combining WordNet and Wiktionary data. ''' @classmethod @ignore_warnings def setUpClass(cls): """Setting up the test variables.""" cls.test_dict_fr = ldt.dicts.morphology.meta.MorphMetaDict( language="French", cache=False) cls.test_dict_en = ldt.dicts.morphology.meta.MorphMetaDict( language="English", cache=False, custom_base="wiktionary") @classmethod def tearDownClass(cls): """Clearning up the test variables.""" cls.test_dict_fr = None cls.test_base_en = None @ignore_warnings def test_metadictionary_initialization(self): self.assertEqual(self.test_dict_fr.wiktionary.language, "fr") @ignore_warnings def test_metadictionary_initialization_wn(self): with self.assertRaises(AttributeError): self.test_dict_fr.wn.language @ignore_warnings def test_metadictionary_wn(self): self.assertEqual(self.test_dict_en.wordnet._language, "en") @ignore_warnings def test_metadictionary_order(self): self.assertEqual(self.test_dict_en._order[0], "wordnet") @ignore_warnings def test_metadictionary_minimal(self): self.assertEqual(self.test_dict_en.is_a_word("cat", minimal=True), ["wordnet"]) @ignore_warnings def test_metadictionary_minimal(self): self.assertEqual(self.test_dict_en.is_a_word("cat", minimal=True), ["wordnet"]) @ignore_warnings def test_metadictionary_get_pos(self): test_dict = ldt.dicts.morphology.meta.MorphMetaDict(order=[ "wordnet"], custom_base="wordnet") res = test_dict.get_pos("nouned") self.assertEqual(res, ["verb"]) @ignore_warnings def test_metadictionary_lemmatize(self): test_dict = ldt.dicts.morphology.meta.MorphMetaDict(order=[ "wordnet"], custom_base="wordnet") res = test_dict.lemmatize("nouned") self.assertEqual(res, ["noun"]) @ignore_warnings def test_metadictionary_lemmatize(self): test_dict = ldt.dicts.morphology.meta.MorphMetaDict(order=["wordnet", "wiktionary"], custom_base="wiktionary") res = test_dict.lemmatize("GPUs") self.assertEqual(res, ["GPU"]) # # @ignore_warnings # def test_metadictionary_lemmatize(self): # self.assertEqual(test_dict_en.is_a_word("cat", minimal=True), ["wordnet"]) # @ignore_warnings # def test_metadictionary_max(self): # res = test_dict_en.is_a_word("cat", minimal=False) # self.assertTrue(len(res) > 1) # # @ignore_warnings # def test_metadictionary_is_a_word(self): # time.sleep(0.5) # self.assertTrue(test_dict_fr.is_a_word("chatte")) # # @ignore_warnings # def test_metadictionary_relations(self): # time.sleep(0.5) # res = test_dict_en.get_relations("white", relations="main") # worked = "unclean" in res["antonyms"] and "nonwhite" in res["antonyms"] # self.assertTrue(worked) # # @ignore_warnings # def test_metadictionary_relation(self): # time.sleep(0.5) # res = test_dict_en.get_relation("white", relation="antonyms") # worked = "unclean" in res and "nonwhite" in res # self.assertTrue(worked) if __name__ == '__main__': unittest.main()
annargrs/ldt
ldt/tests/dicts/morphology/test_meta.py
test_meta.py
py
3,709
python
en
code
16
github-code
6
72568366267
#!/usr/bin/env python import seaborn import numpy as np import os from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import sys from termcolor import cprint # Load data # Global vars for tracking and labeling data at load time. exp_idx = 0 label_parser_dict = None smooth_factor = 10 leg_size = 30 subsample_step = 1 load_subsample_step = 50 default_colors = ["blue","orange","green","magenta", "brown", "red",'black',"grey",u'#ff7f0e', "cyan", "pink",'purple', u'#1f77b4', "darkorchid","sienna","lightpink", "indigo","mediumseagreen",'aqua', 'deeppink','silver','khaki','goldenrod','y','y','y','y','y','y','y','y','y','y','y','y' ] + ['y']*50 def get_all_runs(logdir, load_subsample_step=1): """ Recursively look through logdir for output files produced by Assumes that any file "progress.txt" is a valid hit. """ global exp_idx global units datasets = [] for root, _, files in os.walk(logdir): if 'log.csv' in files: run_name = root[8:] exp_name = None # try to load a config file containing hyperparameters config = None try: config_path = open(os.path.join(root,'config.json')) config = json.load(config_path) if 'exp_name' in config: exp_name = config['exp_name'] except: print('No file named config.json') exp_idx += 1 # load progress data try: print(os.path.join(root,'log.csv')) exp_data = pd.read_csv(os.path.join(root,'log.csv')) except: raise ValueError("CSV {} faulty".format(os.path.join(root, 'log.csv'))) exp_data = exp_data[::load_subsample_step] data_dict = exp_data.to_dict("list") data_dict['config'] = config nb_epochs = len(data_dict['frames']) print('{} -> {}'.format(run_name, nb_epochs)) datasets.append(data_dict) return datasets def get_datasets(rootdir, load_only="", load_subsample_step=1, ignore_pattern="ignore"): _, models_list, _ = next(os.walk(rootdir)) print(models_list) for dir_name in models_list.copy(): # add "ignore" in a directory name to avoid loading its content if ignore_pattern in dir_name or load_only not in dir_name: models_list.remove(dir_name) for expe_name in list(labels.keys()): if expe_name not in models_list: del labels[expe_name] # setting per-model type colors for i,m_name in enumerate(models_list): for m_type, m_color in per_model_colors.items(): if m_type in m_name: colors[m_name] = m_color print("extracting data for {}...".format(m_name)) m_id = m_name models_saves[m_id] = OrderedDict() models_saves[m_id]['data'] = get_all_runs(rootdir+m_name, load_subsample_step=load_subsample_step) print("done") if m_name not in labels: labels[m_name] = m_name """ retrieve all experiences located in "data to vizu" folder """ labels = OrderedDict() per_model_colors = OrderedDict() # per_model_colors = OrderedDict([('ALP-GMM',u'#1f77b4'), # ('hmn','pink'), # ('ADR','black')]) # LOAD DATA models_saves = OrderedDict() colors = OrderedDict() static_lines = {} # get_datasets("storage/",load_only="RERUN_WizardGuide") # get_datasets("storage/",load_only="RERUN_WizardTwoGuides") try: figure_id = eval(sys.argv[1]) except: figure_id = sys.argv[1] print("fig:", figure_id) if figure_id == 0: # train change env_type = "No_NPC_environment" fig_type = "train" get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_deaf_no_explo", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_no_explo", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_curr_dial", load_subsample_step=load_subsample_step) top_n = 16 elif figure_id == 1: # arch change env_type = "No_NPC_environment" fig_type = "arch" get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_bow", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_no_mem", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_bigru", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardGuide_lang64_attgru", load_subsample_step=load_subsample_step) top_n = 16 elif figure_id == 2: # train change FULL env_type = "FULL_environment" fig_type = "train" get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_deaf_no_explo", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_explo", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_curr_dial", load_subsample_step=load_subsample_step) top_n = 16 elif figure_id == 3: # arch change FULL env_type = "FULL_environment" fig_type = "arch" get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bow", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_mem", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bigru", load_subsample_step=load_subsample_step) get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_attgru", load_subsample_step=load_subsample_step) top_n = 16 elif str(figure_id) == "ShowMe": get_datasets("storage/", "20-05_NeurIPS_ShowMe_ABL_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3") get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_ABL", load_subsample_step=load_subsample_step) get_datasets("storage/", "20-05_NeurIPS_ShowMe_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3") get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_env", load_subsample_step=load_subsample_step) label_parser_dict = { "20-05_NeurIPS_ShowMe_ABL_CEB" : "ShowMe_exp_bonus_no_social_skills_required", "20-05_NeurIPS_ShowMe_NO_BONUS_ABL" : "ShowMe_no_bonus_no_social_skills_required", "20-05_NeurIPS_ShowMe_CEB" : "ShowMe_exp_bonus", "20-05_NeurIPS_ShowMe_NO_BONUS_env" : "ShowMe_no_bonus", } env_type = str(figure_id) fig_type = "test" top_n = 16 elif str(figure_id) == "Help": # env_type = "Bobo" # get_datasets("storage/", "Bobo") get_datasets("storage/", "24-05_NeurIPS_Help", load_subsample_step=load_subsample_step, ignore_pattern="ABL") # get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL", load_subsample_step=load_subsample_step) get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step) label_parser_dict = { "Help_NO_BONUS_env": "PPO", "Help_BONUS_env": "PPO+Explo", # "Help_NO_BONUS_ABL_env": "ExiterRole_no_bonus_no_NPC", # "Help_BONUS_ABL_env": "ExiterRole_bonus_no_NPC", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env": "Unsocial PPO", # "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL": "ExiterRole_Insocial_ABL" } static_lines = { "PPO (helper)": (0.12, 0.05, "#1f77b4"), "PPO+Explo (helper)": (0.11, 0.04, "indianred"), # "Help_exp_bonus": (0.11525, 0.04916 , default_colors[2]), # "HelperRole_ABL_no_exp_bonus": (0.022375, 0.01848, default_colors[3]), "Unsocial PPO (helper)": (0.15, 0.06, "grey"), # "HelperRole_ABL_Insocial": (0.01775, 0.010544, default_colors[4]), } env_type = str(figure_id) fig_type = "test" top_n = 16 elif str(figure_id) == "TalkItOut": print("You mean Polite") exit() elif str(figure_id) == "TalkItOutPolite": # env_type = "TalkItOut" # get_datasets("storage/", "ORIENT_env_MiniGrid-TalkItOut") # env_type = "GuideThief" # get_datasets("storage/", "GuideThief") # env_type = "Bobo" # get_datasets("storage/", "Bobo") get_datasets("storage/", "20-05_NeurIPS_TalkItOutPolite", load_subsample_step=load_subsample_step) # get_datasets("storage/", "21-05_NeurIPS_small_bonus_TalkItOutPolite") get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step) get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar", load_subsample_step=load_subsample_step) label_parser_dict = { "TalkItOutPolite_NO_BONUS_env": "PPO", "TalkItOutPolite_e": "PPO+Explo", "TalkItOutPolite_NO_BONUS_NoLiar": "PPO (no liar)", "TalkItOutPolite_NoLiar_e": "PPO+Explo (no liar)", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env": "Unsocial PPO", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar": "Unsocial PPO (no liar)", } env_type = str(figure_id) fig_type = "test" top_n = 16 elif str(figure_id) == "DiverseExit": get_datasets("storage/", "24-05_NeurIPS_DiverseExit", load_subsample_step=load_subsample_step) get_datasets("storage/", "26-05_NeurIPS_gpu_DiverseExit", load_subsample_step=load_subsample_step) label_parser_dict = { "DiverseExit_NO_BONUS": "No_bonus", "DiverseExit_BONUS": "BOnus", "gpu_DiverseExit_NoSocial": "No_social", } env_type = str(figure_id) fig_type = "test" top_n = 16 else: get_datasets("storage/", str(figure_id), load_subsample_step=load_subsample_step) env_type = str(figure_id) fig_type = "test" top_n = 8 #### get_datasets("storage/", "RERUN_WizardGuide_lang64_nameless") #### get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_nameless") if per_model_colors: # order runs for legend order as in per_models_colors, with corresponding colors ordered_labels = OrderedDict() for teacher_type in per_model_colors.keys(): for k,v in labels.items(): if teacher_type in k: ordered_labels[k] = v labels = ordered_labels else: print('not using per_model_color') for k in models_saves.keys(): labels[k] = k def plot_with_shade(subplot_nb, ax,x,y,err,color,shade_color,label, y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None, ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20, zorder=None, xlabel='perf',ylabel='env steps'): #plt.rcParams.update({'font.size': 15}) ax.locator_params(axis='x', nbins=4) ax.locator_params(axis='y', nbins=3) ax.tick_params(axis='both', which='major', labelsize=ticksize) ax.plot(x,y, color=color, label=label,linewidth=linewidth,zorder=zorder) ax.fill_between(x,y-err,y+err,color=shade_color,alpha=0.2) if legend: leg = ax.legend(loc=leg_loc, **leg_args) #34 for legobj in leg.legendHandles: legobj.set_linewidth(leg_linewidth) ax.set_xlabel(xlabel, fontsize=30) if subplot_nb == 0: ax.set_ylabel(ylabel, fontsize=30,labelpad=-4) ax.set_xlim(xmin=xlim[0],xmax=xlim[1]) ax.set_ylim(bottom=ylim[0],top=ylim[1]) if title: ax.set_title(title, fontsize=22) # Plot utils def plot_with_shade_grg(subplot_nb, ax,x,y,err,color,shade_color,label, y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None, ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20, zorder=None, xlabel='perf',ylabel='env steps', linestyle="-"): #plt.rcParams.update({'font.size': 15}) ax.locator_params(axis='x', nbins=4) ax.locator_params(axis='y', nbins=3) ax.tick_params(axis='both', which='major', labelsize=ticksize) ax.plot(x, y, color=color, label=label,linewidth=linewidth,zorder=zorder, linestyle=linestyle) ax.fill_between(x, y-err, y+err,color=shade_color,alpha=0.2) if legend: leg = ax.legend(loc=leg_loc, **leg_args) #34 for legobj in leg.legendHandles: legobj.set_linewidth(leg_linewidth) ax.set_xlabel(xlabel, fontsize=30) if subplot_nb == 0: ax.set_ylabel(ylabel, fontsize=30, labelpad=-4) ax.set_xlim(xmin=xlim[0],xmax=xlim[1]) ax.set_ylim(bottom=ylim[0],top=ylim[1]) if title: ax.set_title(title, fontsize=22) # Metric plot metric = 'bin_extrinsic_return_mean' # metric = 'mission_string_observed_mean' # metric = 'extrinsic_return_mean' # metric = 'extrinsic_return_max' # metric = "rreturn_mean" # metric = 'rreturn_max' # metric = 'FPS' f, ax = plt.subplots(1, 1, figsize=(10.0, 6.0)) ax = [ax] max_y = -np.inf min_y = np.inf # hardcoded min_y, max_y = 0.0, 1.0 max_steps = 0 exclude_patterns = [] include_patterns = [] def label_parser(label, figure_id, label_parser_dict=None): if label_parser_dict: if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1: if label in label_parser_dict: # see if there is an exact match return label_parser_dict[label] else: print("ERROR multiple curves match a lable and there is no exact match") print(label) exit() for k, v in label_parser_dict.items(): if k in label: return v else: # return label.split("_env_")[1] if figure_id not in [1,2,3,4]: return label else: label_parser_dict = { "RERUN_WizardGuide_lang64_no_explo": "MH-BabyAI", "RERUN_WizardTwoGuides_lang64_no_explo": "MH-BabyAI", "RERUN_WizardGuide_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus", "RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus", "RERUN_WizardGuide_lang64_deaf_no_explo": "Deaf-MH-BabyAI", "RERUN_WizardTwoGuides_lang64_deaf_no_explo": "Deaf-MH-BabyAI", "RERUN_WizardGuide_lang64_bow": "MH-BabyAI-ExpBonus-BOW", "RERUN_WizardTwoGuides_lang64_bow": "MH-BabyAI-ExpBonus-BOW", "RERUN_WizardGuide_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem", "RERUN_WizardTwoGuides_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem", "RERUN_WizardGuide_lang64_bigru": "MH-BabyAI-ExpBonus-bigru", "RERUN_WizardTwoGuides_lang64_bigru": "MH-BabyAI-ExpBonus-bigru", "RERUN_WizardGuide_lang64_attgru": "MH-BabyAI-ExpBonus-attgru", "RERUN_WizardTwoGuides_lang64_attgru": "MH-BabyAI-ExpBonus-attgru", "RERUN_WizardGuide_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue", "RERUN_WizardTwoGuides_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue", "RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_100M": "MH-BabyAI-ExpBonus-100M" } if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1: print("ERROR multiple curves match a lable") print(label) exit() for k, v in label_parser_dict.items(): if k in label: return v return label per_seed=False for i, m_id in enumerate(models_saves.keys()): #excluding some experiments if any([ex_pat in m_id for ex_pat in exclude_patterns]): continue if len(include_patterns) > 0: if not any([in_pat in m_id for in_pat in include_patterns]): continue runs_data = models_saves[m_id]['data'] ys = [] # DIRTY FIX FOR FAULTY LOGGING print("m_id:", m_id) if runs_data[0]['frames'][1] == 'frames': runs_data[0]['frames'] = list(filter(('frames').__ne__, runs_data[0]['frames'])) ########################################### # determine minimal run length across seeds minimum = sorted([len(run['frames']) for run in runs_data if len(run['frames'])])[-top_n] min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) >= minimum]) # min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) > 10]) print("min_len:", min_len) #compute env steps (x axis) longest_id = np.argmax([len(rd['frames']) for rd in runs_data]) steps = np.array(runs_data[longest_id]['frames'], dtype=np.int) / 1000000 steps = steps[:min_len] for run in runs_data: data = run[metric] # DIRTY FIX FOR FAULTY LOGGING (headers in data) if data[1] == metric: data = np.array(list(filter((metric).__ne__, data)), dtype=np.float16) ########################################### if len(data) >= min_len: if len(data) > min_len: print("run has too many {} datapoints ({}). Discarding {}".format(m_id, len(data), len(data)-min_len)) data = data[0:min_len] ys.append(data) ys_same_len = ys # RUNS MUST HAVE SAME LEN # computes stats n_seeds = len(ys_same_len) sems = np.std(ys_same_len,axis=0)/np.sqrt(len(ys_same_len)) # sem stds = np.std(ys_same_len,axis=0) # std means = np.mean(ys_same_len,axis=0) color = default_colors[i] # per-metric adjusments ylabel=metric if metric == 'bin_extrinsic_return_mean': ylabel = "success rate" if metric == 'duration': ylabel = "time (hours)" means = means / 3600 sems = sems / 3600 stds = stds / 3600 #plot x y bounds curr_max_y = np.max(means) curr_min_y = np.min(means) curr_max_steps = np.max(steps) if curr_max_y > max_y: max_y = curr_max_y if curr_min_y < min_y: min_y = curr_min_y if curr_max_steps > max_steps: max_steps = curr_max_steps if subsample_step: steps = steps[0::subsample_step] means = means[0::subsample_step] stds = stds[0::subsample_step] sems = sems[0::subsample_step] ys_same_len = [y[0::subsample_step] for y in ys_same_len] # display seeds separtely if per_seed: for s_i, seed_ys in enumerate(ys_same_len): seed_c = default_colors[i+s_i] label = m_id#+"(s:{})".format(s_i) plot_with_shade(0, ax[0], steps, seed_ys, stds*0, seed_c, seed_c, label, legend=False, xlim=[0, max_steps], ylim=[min_y, max_y], leg_size=leg_size, xlabel="env steps (millions)", ylabel=ylabel, smooth_factor=smooth_factor, ) else: label = label_parser(m_id, figure_id, label_parser_dict=label_parser_dict) label = label #+"({})".format(n_seeds) def smooth(x_, n=50): if type(x_) == list: x_ = np.array(x_) return np.array([x_[max(i - n, 0):i + 1].mean() for i in range(len(x_))]) if smooth_factor: means = smooth(means,smooth_factor) stds = smooth(stds,smooth_factor) x_lim = 30 if figure_id == "TalkItOutPolite": leg_args = { 'ncol': 1, 'columnspacing': 1.0, 'handlelength': 1.0, 'frameon': False, # 'bbox_to_anchor': (0.00, 0.23, 0.10, .102), 'bbox_to_anchor': (0.55, 0.35, 0.10, .102), 'labelspacing': 0.2, 'fontsize': 27 } elif figure_id == "Help": leg_args = { 'ncol': 1, 'columnspacing': 1.0, 'handlelength': 1.0, 'frameon': False, # 'bbox_to_anchor': (0.00, 0.23, 0.10, .102), 'bbox_to_anchor': (0.39, 0.20, 0.10, .102), 'labelspacing': 0.2, 'fontsize': 27 } else: leg_args = {} color_code = dict([ ('PPO+Explo', 'indianred'), ('PPO', "#1f77b4"), ('Unsocial PPO', "grey"), ('PPO (no liar)', "#043252"), ('PPO+Explo (no liar)', "darkred"), ('Unsocial PPO (no liar)', "black"), ('PPO+Explo (helper)', 'indianred'), ('PPO (helper)', "#1f77b4"), ('Unsocial PPO (helper)', "grey")] ) color = color_code.get(label, np.random.choice(default_colors)) print("C:",color) plot_with_shade_grg( 0, ax[0], steps, means, stds, color, color, label, legend=True, xlim=[0, steps[-1] if not x_lim else x_lim], ylim=[0, 1.0], xlabel="env steps (millions)", ylabel=ylabel, title=None, leg_args =leg_args) # # plot_with_shade(0, ax[0], steps, means, stds, color, color,label, # legend=True, xlim=[0, max_steps], ylim=[min_y, max_y], # leg_size=leg_size, xlabel="Env steps (millions)", ylabel=ylabel, linewidth=5.0, smooth_factor=smooth_factor) for label, (mean, std, color) in static_lines.items(): plot_with_shade_grg( 0, ax[0], steps, np.array([mean]*len(steps)), np.array([std]*len(steps)), color, color, label, legend=True, xlim=[0, max_steps], ylim=[0, 1.0], xlabel="env steps (millions)", ylabel=ylabel, linestyle=":", leg_args=leg_args) plt.tight_layout() f.savefig('graphics/{}_results.svg'.format(str(figure_id))) f.savefig('graphics/{}_results.png'.format(str(figure_id))) plt.show()
flowersteam/social-ai
data_analysis_neurips.py
data_analysis_neurips.py
py
22,418
python
en
code
5
github-code
6
33038113455
"""Config flow for Withings.""" import logging import voluptuous as vol from withings_api.common import AuthScope from homeassistant import config_entries from homeassistant.components.withings import const from homeassistant.helpers import config_entry_oauth2_flow _LOGGER = logging.getLogger(__name__) @config_entries.HANDLERS.register(const.DOMAIN) class WithingsFlowHandler(config_entry_oauth2_flow.AbstractOAuth2FlowHandler): """Handle a config flow.""" DOMAIN = const.DOMAIN CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL _current_data = None @property def logger(self) -> logging.Logger: """Return logger.""" return logging.getLogger(__name__) @property def extra_authorize_data(self) -> dict: """Extra data that needs to be appended to the authorize url.""" return { "scope": ",".join( [ AuthScope.USER_INFO.value, AuthScope.USER_METRICS.value, AuthScope.USER_ACTIVITY.value, ] ) } async def async_oauth_create_entry(self, data: dict) -> dict: """Override the create entry so user can select a profile.""" self._current_data = data return await self.async_step_profile(data) async def async_step_profile(self, data: dict) -> dict: """Prompt the user to select a user profile.""" profile = data.get(const.PROFILE) if profile: new_data = {**self._current_data, **{const.PROFILE: profile}} self._current_data = None return await self.async_step_finish(new_data) profiles = self.hass.data[const.DOMAIN][const.CONFIG][const.PROFILES] return self.async_show_form( step_id="profile", data_schema=vol.Schema({vol.Required(const.PROFILE): vol.In(profiles)}), ) async def async_step_finish(self, data: dict) -> dict: """Finish the flow.""" self._current_data = None return self.async_create_entry(title=data[const.PROFILE], data=data)
84KaliPleXon3/home-assistant-core
homeassistant/components/withings/config_flow.py
config_flow.py
py
2,112
python
en
code
1
github-code
6
16106094065
from .color import cm_benj def setup_args_scanpy(ap): ap.add_argument("-f", "--figdir", default="figures") ap.add_argument("--dpi", type=int, default=600) ap.add_argument("--frameon", dest="frameon", action="store_true") ap.add_argument("--no-frameon", dest="frameon", action="store_false") ap.add_argument("--verbosity", type=int, default=2) ap.set_defaults(frameon=True) return ap def setup_scanpy(**args): import scanpy as sc if args.get("figdir"): sc.settings.figdir = args["figdir"] cm = cm_benj() if args.get("dpi"): dpi = args["dpi"] else: dpi = 600 frameon = True if args.get("frameon") and isinstance(args["frameon"], bool): frameon = args["frameon"] if args.get("verbosity") and isinstance(args["verbosity"], int): sc.settings.verbosity = args["verbosity"] else: sc.settings.verbosity = 2 sc.set_figure_params(dpi_save=dpi, frameon=frameon) return args
KellisLab/benj
benj/setup_scanpy.py
setup_scanpy.py
py
986
python
en
code
2
github-code
6
4330376900
def solution(arr1, arr2): answer = [] for i in range(len(arr1)): a1 = arr1.pop(0) a2 = arr2.pop(0) num = [x + y for x, y in zip(a1, a2)] answer.append(num) return answer arr1 = [[1, 2], [2, 3]] arr2 = [[3, 4], [5, 6]] arr3 = [[1], [2]] arr4 = [[3], [4]] print(solution(arr1, arr2)) print(solution(arr3, arr4))
wold21/python_algorithm
프로그래머스/코딩테스트/Level1/행렬의 덧셈.py
행렬의 덧셈.py
py
359
python
en
code
0
github-code
6
40139751051
from PIL import Image img = Image.open("UnoDeck2.png") i = 0 for y in range(6): j = 2 k = 3 for x in range(12): if i == 64: break left = 0 top = 0 height = 256 width = 166 box = (width+j)*x, (height+k)*y, width*(x+1)+(j*x), height*(y+1)+(k*y) area = img.crop(box) cardName = "Card" + str(i)+ ".png" area.save((cardName),"PNG") i += 1
CrazyScorcer/ImageCutter
imageCut.py
imageCut.py
py
472
python
en
code
0
github-code
6
26485545082
######## Tensorflow Imaage Classifier ######### # # Author: Erik Handeland Date: 12/12/2021 # Description: This program uses a TensorFlow Lite object detection model-metadata to # perform object detection on an image. It creates a dict containing a # list of detected objects and the count for each object. It also save a copy # of the image with draws boxes and scores around the objects of interest for each image. # # This code is based off the TensorFlow Lite image classification example at: # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py # Add the following github repo by Evan Juras: # https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi # # Import packages import os from os.path import exists import cv2 import numpy as np import importlib.util from tflite_support import metadata from from_root import from_root # Import TensorFlow libraries # If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow # If using Coral Edge TPU, import the load_delegate library pkg = importlib.util.find_spec('tflite_runtime') if pkg: from tflite_runtime.interpreter import Interpreter else: from tensorflow.lite.python.interpreter import Interpreter # Extract metadata from the .tflite file def load_metadata_labels(PATH_TO_MODEL): label_list = [] try: displayer = metadata.MetadataDisplayer.with_model_file(PATH_TO_MODEL) file_name = displayer.get_packed_associated_file_list()[0] except ValueError: # The model-metadata does not have metadata. return label_list if file_name: label_map_file = displayer.get_associated_file_buffer(file_name).decode() label_list = list(filter(len, label_map_file.splitlines())) return label_list def load_labels(PATH_TO_GRAPH, PATH_TO_LABELS): # Load label list from metadata or from labelmap file label_list = load_metadata_labels(PATH_TO_GRAPH) if not label_list: # DEPRECATED this is the old way of loading labels, new ML models should have it as metadata if not exists(PATH_TO_LABELS): print("No labelmap in metadata and no labelmap.txt found! at path: " + PATH_TO_LABELS) return { "error": "No labelmap found", "vehicles": -1, "pedestrians": -1, "confidence-threshold": 0.50, "objects": [], } # Load the label map with open(PATH_TO_LABELS, 'r') as f: label_list = [line.strip() for line in f.readlines()] return label_list # MODEL_NAME: should be the name of a directory in the models directory # IMG_PATH: should be the path full path to your target image # COORDS: Whether to return coordinates of detected objects # MIN_CONF_LEVEL: is the minimum confidence level to be considered a detection 0-1 # PATH_TO_GRAPH & LABELMAP_NAME: Name of the .tflite file and the labelmap file. Defaults should work for most cases # SAVED_IMG_PATH: Directory to save the image with boxes and scores. If not specified, no image will be saved def objDetection(MODEL_NAME: str, IMG_PATH: str, MIN_CONF_LEVEL=0.50, GRAPH_NAME="detect.tflite", LABELMAP_NAME="labelmap.txt", SAVED_IMG_PATH="", COORDS=False): objects = [] # Get path to project root CWD_PATH = str(from_root()) # Path to .tflite file, which contains the model-metadata that is used for object detection try: # running from pip install - pip install has different path structure that source PATH_TO_MODEL = os.path.join(CWD_PATH, "models", MODEL_NAME) PATH_TO_GRAPH = os.path.join(PATH_TO_MODEL, GRAPH_NAME) PATH_TO_LABELS = os.path.join(PATH_TO_MODEL, LABELMAP_NAME) if not exists(PATH_TO_GRAPH): raise FileNotFoundError except FileNotFoundError: # running from source PATH_TO_MODEL = os.path.join(CWD_PATH, "obj_detection", "models", MODEL_NAME) PATH_TO_GRAPH = os.path.join(PATH_TO_MODEL, GRAPH_NAME) PATH_TO_LABELS = os.path.join(PATH_TO_MODEL, LABELMAP_NAME) if not exists(PATH_TO_GRAPH): print("detect.tflite not found! at path: " + PATH_TO_GRAPH) return { "error": "Invalid model-metadata path", "vehicles": -1, "pedestrians": -1, "confidence-threshold": MIN_CONF_LEVEL, "objects": objects, } # Load label list from metadata or from labelmap file labels = load_labels(PATH_TO_GRAPH, PATH_TO_LABELS) # Load the Tensorflow Lite model-metadata. interpreter = Interpreter(model_path=PATH_TO_GRAPH) interpreter.allocate_tensors() # Get model-metadata details input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] floating_model = (input_details[0]['dtype'] == np.float32) input_mean = 127.5 input_std = 127.5 # Load image and resize to expected shape [1xHxWx3] image = cv2.imread(IMG_PATH) if image is None: print("Image not found, check path ", IMG_PATH) return { "error": "Image not found, check path", "vehicles": -1, "pedestrians": -1, "confidence-threshold": MIN_CONF_LEVEL, "objects": objects, } image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) imH, imW, _ = image.shape image_resized = cv2.resize(image_rgb, (width, height)) input_data = np.expand_dims(image_resized, axis=0) # Normalize pixel values if using a floating model-metadata (i.e. if model-metadata is non-quantized) if floating_model: input_data = (np.float32(input_data) - input_mean) / input_std # Perform the actual detection by running the model-metadata with the image as input interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() # Retrieve detection results try: boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects except: return { "error": "Invalid model-metadata output details, probably using model-metadata for JS or Dart", "vehicles": -1, "pedestrians": -1, "confidence-threshold": MIN_CONF_LEVEL, "objects": objects, } # Loop over all detections and draw detection box if confidence is above minimum threshold for i in range(len(scores)): if ((scores[i] > MIN_CONF_LEVEL) and (scores[i] <= 1.0)): # Get bounding box coordinates and draw box Interpreter can # return coordinates that are outside of image dimensions, # need to force them to be within image using max() and min() ymin = int(max(1, (boxes[i][0] * imH))) xmin = int(max(1, (boxes[i][1] * imW))) ymax = int(min(imH, (boxes[i][2] * imH))) xmax = int(min(imW, (boxes[i][3] * imW))) # Corners of the bounding box tr = (xmax, ymax) # Top right bl = (xmin, ymin) # Bottom left br = (xmax, ymin) tl = (xmin, ymax) # Draw detection box on image cv2.rectangle(image, bl, tr, (10, 255, 0), 2) # Draw label object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index object_score = int(scores[i] * 100) label = '%s: %d%%' % (object_name, object_score) # Example: 'person: 72%' labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window cv2.rectangle(image, (xmin, label_ymin - labelSize[1] - 10), (xmin + labelSize[0], label_ymin + baseLine - 10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in cv2.putText(image, label, (xmin, label_ymin - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text # Add object to objects list obj = { "name": object_name, "confidence": scores[i], "coord": {"top-left": tl, "top-right": tr, "bottom-right": br, "bottom-left": bl} if COORDS else {}, } objects.append(obj) # count vehicles and pedestrians cars = 0 people = 0 for obj in objects: if obj["name"] == "car" or obj["name"] == "truck": cars += 1 elif obj["name"] == "person": people += 1 if SAVED_IMG_PATH: _, tail = os.path.split(IMG_PATH) SAVED_IMG_PATH = os.path.join(SAVED_IMG_PATH, tail[:-4] + "_box.jpg") cv2.imwrite(SAVED_IMG_PATH, image) return { "error": "", "vehicles": cars, "pedestrians": people, "confidence-threshold": MIN_CONF_LEVEL, "objects": objects, } # Sample function for detecting if object is in a certain area, useful if some parking lots have handicapped or # oversize parking spaces # if inArea([tr, tl, br, bl], (100, 400), (800, 600)): # print("Object detected in area") def inArea(points, box_start, box_end): for point in points: if (box_start[0] < point[0] < box_end[0] and box_start[1] < point[1] < box_end[1]): return True return False
KB4YG/ml
obj_detection/obj_detection.py
obj_detection.py
py
9,890
python
en
code
1
github-code
6
32639606030
import unittest from selenium import webdriver from selenium.webdriver.common.by import By class AddRemoveElements(unittest.TestCase): def setUp(self) -> None: self.driver = webdriver.Chrome(executable_path="chromedriver") self.driver.get('https://the-internet.herokuapp.com/') self.driver.find_element(By.LINK_TEXT, 'Add/Remove Elements').click() def tearDown(self) -> None: self.driver.quit() def test_add_remove(self): elements_added = int(input('How many elements will you add?: ')) elements_removed = int(input('How many elements will you remove?: ')) total_elements = elements_added + elements_removed add_button = self.driver.find_element(By.XPATH, '//*[@id="content"]/div/button') for i in range(elements_added): add_button.click() for i in range(elements_removed): try: delete_button = self.driver.find_element(By.XPATH, '//*[@id="elements"]/button[3]') delete_button.click() except: print("You're trying to delete more elements the existing") break if total_elements > 0: print(f'There are {total_elements} elements on screen') else: print("There 0 are elements on screen") if __name__ == '__main__': unittest.main(verbosity=2)
yorlysoro/intro_selenium_course
test_add_remove.py
test_add_remove.py
py
1,436
python
en
code
0
github-code
6
30478333670
class Node: def __init__(self, data): self.data = data self.next = None class MyQueue: def __init__(self): self.head = None self.tail = None def push(self, item): item_node = Node(item) if self.head is None or self.tail is None: self.head = item_node self.tail = item_node else: self.tail.next = item_node self.tail = self.tail.next # self.tail = item_node def pop(self): if self.head is None: return -1 item = self.head.data self.head = self.head.next return item
prabhat-gp/GFG
Stacks and Queues/Queues/2_implement_queue_ll.py
2_implement_queue_ll.py
py
679
python
en
code
0
github-code
6
15624457572
import numpy as np from keras.utils import to_categorical from sklearn.model_selection import train_test_split test_size = 0.2 seed = 42 x_data = np.load('./data/soja_images_150_new.npy', allow_pickle=True) y_data = np.load('./data/soja_labels_150_new.npy', allow_pickle=True) x_data = x_data.astype(np.float32) y_data_cat = to_categorical(y_data) x_train, x_test, y_train, y_test = train_test_split( x_data, y_data_cat, test_size=test_size, random_state=seed) with open('./data/x_train.npy', 'wb') as f: np.save(f, x_train) with open('./data/x_test.npy', 'wb') as f: np.save(f, x_test) with open('./data/y_train.npy', 'wb') as f: np.save(f, y_train) with open('./data/y_test.npy', 'wb') as f: np.save(f, y_test)
nagahamaVH/soybean-image-classif
app/src/prepare_data.py
prepare_data.py
py
741
python
en
code
1
github-code
6
14894176437
import asyncio import os import os.path from flask import Flask, request, send_from_directory, flash, request from werkzeug.utils import secure_filename import getpass import platform from flask_cors import CORS from scripts.datascript import Datascript from scripts.CalcoloScostamentiSenzaIntermedi import ScostamentiSenzaIntermedi # This file contains all the apis required to upload the # This file contains all the apis required to upload the datasets and to get the graph images that will be displayed in the flutter frontend app = Flask(__name__) # CORS is required to allow other domains to access files and images on the webpage CORS(app) # Allowed dataset file extensions ALLOWED_EXTENSIONS = {'csv', 'xlsx'} # PATHS # Raw uploaded datasets folder # Output Graphs folder username = getpass.getuser() if platform.system() == "Windows": UPLOAD_FOLDER = r"C:\SCGProject\Datasets\RawDatasets" DATASET_FOLDER = r"C:\SCGProject\Datasets\CsvForGraphing" if platform.system() == "Darwin" : if(username == "marcovinciguerra"): UPLOAD_FOLDER = "/Users/marcovinciguerra/Github/SCGProject/Datasets/RawDatasets" DATASET_FOLDER = "/Users/marcovinciguerra/Github/SCGProject/Datasets/CsvForGraphing" elif(username == "davidguzman"): UPLOAD_FOLDER = "/Users/davidguzman/documents/Github/SCGProject/Datasets/RawDatasets" DATASET_FOLDER = "/Users/davidguzman/documents/Github/SCGProject/Datasets/CsvForGraphing" #Controllo che il file caricato abbia il formato corretto def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS # Api per caricare il raw dataset @app.route('/uploadDataset', methods = ['GET', 'POST']) def uploadDataset(): if request.method == 'POST': # Controllo se e presente un file nella POST request if 'file' not in request.files: print("no file selezionato") flash('No file part') return "KO" # Predo i file selezionati dall'utente files = request.files.getlist('file') print(files) # Itero i file selezionati e li carico nel filesystem uno ad uno for file in files: # Controllo che l'utente abbia selezionato almeno un file da caricare if file.filename == '': print('no file selezionato') return "KO" # Controllo che il formato del file sia valido if file and allowed_file(file.filename): # Salvo il file nel file system file.save(os.path.join(UPLOAD_FOLDER, file.filename)) return "OK" # Get csv graphs from folder @app.route('/get-csvgraph/<filename>') def get_csv_graph(filename): return send_from_directory(DATASET_FOLDER, filename) # Get test data from python scripts. It awaits data from the script @app.route('/get-scriptdata') async def get_script_data(): return await ScostamentiSenzaIntermedi.getData() # Format Datasets Script @app.route('/format-datasets') async def fix_dataset(): return await FixDatas.runFixDatas() if __name__ == "__main__": app.run()
VinciGit00/SCGProject
Frontend/flask_code/app.py
app.py
py
3,160
python
en
code
2
github-code
6
887825257
from django.shortcuts import render, redirect from django.http import Http404, JsonResponse from django.views import View from django.contrib.auth import authenticate, login, logout from django.contrib import messages # Decorators from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_exempt from .decorators import allowerd_users from .decorators import unauthenticated_user from datetime import date import pandas as pd # Models and Forms from backend.models import Info, Book, Student, Issue, Reservation, Class from backend.fields import book_fields, class_fields, student_fields, reservation_fields, issue_fields from .forms import BookForm, ClassForm, StudentForm, IssueForm, ReservationForm, LoginForm from .custom import get_fields # Excel to JSON parser def parser_view(request): info = Info.objects.all().first() data = None if request.method == "POST": if 'file' in request.FILES: dataFrame = pd.read_excel(request.FILES['file'], engine = "openpyxl") data = dataFrame.to_json(indent = 4, orient = "records", force_ascii = False) else: return redirect("parser-view") context = { "json": data, "school_name": info.school_name } return render(request, "apis/index.html", context) @unauthenticated_user @csrf_exempt def login_view(request): form = LoginForm() info = Info.objects.all().first() if request.method == 'POST': form = LoginForm(request, data = request.POST) if form.is_valid(): username = form.cleaned_data.get('username') password = form.cleaned_data.get('password') user = authenticate(request, username = username, password = password) if user is not None: login(request, user) return redirect('home-view') context = { "form": form, "messages": messages, "school_name": info.school_name } return render(request, 'registration/login.html', context) def logout_view(request): logout(request) return redirect('login-view') def home_view(request): info = Info.objects.all().first() books = Book.objects.all() tableFields = book_fields() fields = [] # Model field list for field in Book._meta.get_fields(): if field.name != "reservation": fields.append(field.name) context = { "querySet": books, "fields": fields, "tfields": tableFields[0], "tlength": len(fields), "school_name": info.school_name, } return render(request, "home.html", context) def error_view(request): return render(request, "components/error.html") def tutorial_view(request): info = Info.objects.all().first() context = { "school_name": info.school_name, } return render(request, "tutorial/index.html", context) class BookGPView(View): @method_decorator(allowerd_users(["book-editing"])) def get(self, request): info = Info.objects.all().first() books = Book.objects.all() tableFields = book_fields() form = BookForm() fields = [] # Model field list for field in Book._meta.get_fields(): if field.name != "reservation": fields.append(field.name) context = { "fields": fields, "querySet": books, "form": form, "tfields": tableFields[0], "tlength": len(fields) + 1, "school_name": info.school_name, } return render(request, "book/index.html", context) @method_decorator(allowerd_users(["book-editing"])) def post(self, request): form = BookForm() if request.method == "POST": form = BookForm(request.POST) if form.is_valid(): form.save() return redirect("book-view") else: return form.errors class BookPDView(View): def get_object(self, pk): try: return Book.objects.get(id = pk) except Book.DoesNotExist: raise Http404 @method_decorator(allowerd_users(["book-editing"])) def get(self, request, pk): return self.get_object(pk) @method_decorator(allowerd_users(["book-editing"])) def delete(self, request, pk): book = self.get_object(pk) error = JsonResponse({"error": "Sve knjige nisu vraćene!"}) if len(Reservation.objects.all()) == 0: # If there is no book's at all book.delete() return JsonResponse(dict(code = 204, content = "Knjiga je izbrisana")) elif not Reservation.objects.get(book = book): # If the selected book is not reservated book.delete() return JsonResponse(dict(code = 204, content = "Knjiga je izbrisana")) else: # If the all books of this type are returned reservation = Reservation.objects.get(book = book) if reservation.issued == reservation.returned: book.delete() return JsonResponse(dict(code = 204, content = "Knjiga je izbrisana")) error.status_code = 403 return error class ClassGPView(View): @method_decorator(allowerd_users(["class-editing"])) def get(self, request): info = Info.objects.all().first() classes = Class.objects.all() tableFields = class_fields() form = ClassForm() fields = [] # Model field list for field in Class._meta.get_fields(): if field.name != "student": fields.append(field.name) context = { "fields": fields, "querySet": classes, "form": form, "tfields": tableFields[0], "tlength": len(fields) + 1, "school_name": info.school_name, } return render(request, "class/index.html", context) @method_decorator(allowerd_users(["class-editing"])) def post(self, request): form = ClassForm() if request.method == "POST": form = ClassForm(request.POST) if form.is_valid(): form.save() return redirect("class-view") else: return form.errors class ClassPDView(View): def get_object(self, pk): try: return Class.objects.get(id = pk) except Class.DoesNotExist: raise Http404 @method_decorator(allowerd_users(["class-editing"])) def get(self, request, pk): return self.get_object(pk) @method_decorator(allowerd_users(["class-editing"])) def delete(self, request, pk): classes = self.get_object(pk) classes.delete() return JsonResponse(dict(code = 204, content = "Odjeljenje je izbrisano!")) class StudentGPView(View): @method_decorator(allowerd_users(["student-editing"])) def get(self, request): info = Info.objects.all().first() students = Student.objects.all() tableFields = student_fields() form = StudentForm() fields = [] # Model fields for field in Student._meta.get_fields(): if field.name != "issue": fields.append(field.name) context = { "fields": fields, "querySet": students, "form": form, "tfields": tableFields[0], "tlength": len(fields) + 1, "school_name": info.school_name, } return render(request, "student/index.html", context) @method_decorator(allowerd_users(["student-editing"])) def post(self, request): form = StudentForm() if request.method == "POST": form = StudentForm(request.POST) if form.is_valid(): form.save() return redirect("student-view") else: return form.errors class StudentPDView(View): def get_object(self, pk): try: return Student.objects.get(id = pk) except Student.DoesNotExist: raise Http404 @method_decorator(allowerd_users(["student-editing"])) def get(self, request, pk): return self.get_object(pk) @method_decorator(allowerd_users(["student-editing"])) def delete(self, request, pk): student = self.get_object(pk) student.delete() return JsonResponse(dict(code = 204, content = "Učenik je izbrisan!")) class ReservationGPView(View): @method_decorator(allowerd_users(["reservation-editing"])) def get(self, request): info = Info.objects.all().first() reservation = Reservation.objects.filter(professor = request.user.get_full_name()) tableFields = reservation_fields() form = ReservationForm() fields = get_fields(Reservation, "issue") context = { "fields": fields, "querySet": reservation, "form": form, "tfields": tableFields[0], "tlength": len(fields) + 1, "school_name": info.school_name, } return render(request, "reservation/index.html", context) @method_decorator(allowerd_users(["reservation-editing"])) def post(self, request): info = Info.objects.all().first() reservation = Reservation.objects.all() form = ReservationForm() fields = get_fields(Reservation, "issue") if request.method == "POST": form = ReservationForm(request.POST) if form.is_valid(): # Updating the book DB book = Book.objects.get(id = form.cleaned_data["book"].id) book.quantity -= form.cleaned_data["quantity"] book.save() # Saving the user data = form.save(commit = False) data.professor = request.user.get_full_name() data.save() return redirect("reservation-view") context = { "fields": fields, "querySet": reservation, "form": form, "school_name": info.school_name, } return render(request, "reservation/index.html", context) class ReservationPDView(View): def get_object(self, pk): try: return Reservation.objects.get(id = pk) except Reservation.DoesNotExist: raise Http404 @method_decorator(allowerd_users(["reservation-editing"])) def get(self, request, pk): return self.get_object(pk) @method_decorator(allowerd_users(["reservation-editing"])) def delete(self, request, pk): reservation = self.get_object(pk) error = JsonResponse({"error": "Sve knjige nisu vraćene!"}) if request.is_ajax(): if reservation.issued == reservation.returned: book = Book.objects.get(id = reservation.book.id) book.quantity += reservation.quantity book.save() reservation.delete() return JsonResponse(dict(code = 204, content = "Rezervacija je izbrisana!")) error.status_code = 403 return error class IssueGPView(View): @method_decorator(allowerd_users(["issue-editing"])) def get(self, request): info = Info.objects.all().first() issues = Issue.objects.all() tableFields = issue_fields() form = IssueForm() fields = [field.name for field in Issue._meta.get_fields()] context = { "fields": fields, "querySet": issues, "form": form, "tfields": tableFields[0], "tlength": len(fields) + 1, "school_name": info.school_name, } return render(request, "issue/index.html", context) @method_decorator(allowerd_users(["issue-editing"])) def post(self, request): info = Info.objects.all().first() issues = Issue.objects.all() form = IssueForm() fields = [field.name for field in Issue._meta.get_fields()] if request.method == "POST": form = IssueForm(request.POST) if form.is_valid(): issue = Reservation.objects.get(id = form.cleaned_data["reservation"].id) issue.issued += 1 issue.save() form.save() return redirect("issue-view") context = { "fields": fields, "querySet": issues, "form": form, "school_name": info.school_name, } return render(request, "issue/index.html", context) class IssuePDView(View): # Getting the Issue object def get_object(self, pk): try: return Issue.objects.get(id = pk) except Issue.DoesNotExist: raise Http404 @method_decorator(allowerd_users(["issue-editing"])) def get(self, request, pk): return self.get_object(pk) @method_decorator(allowerd_users(["issue-editing"])) def put(self, request, pk): issue = self.get_object(pk) data = {} if request.is_ajax(): reservation = issue.reservation if issue.returnStatus: # Updating the issues DB to the latest info issue.returnStatus = False issue.returnDate = None issue.debt = 0 reservation.returned -= 1 else: issue.returnStatus = True issue.returnDate = date.today() if date.today() > reservation.endDate: delta = date.today() - reservation.endDate issue.debt = delta.days * .5 reservation.returned += 1 # Saving the changes issue.save() reservation.save() # Preparing the data for returning into template data['id'] = issue.id data['returnStatus'] = issue.returnStatus data['returnDate'] = issue.returnDate data['debt'] = issue.debt data['content'] = "Uspješno ste izmjenili podatke o knjizi!" return JsonResponse(data) @method_decorator(allowerd_users(["issue-editing"])) def delete(self, request, pk): issue = self.get_object(pk) reservation = issue.reservation reservation.issued -= 1 reservation.returned -=1 reservation.save() issue.delete() return JsonResponse(dict(code = 204, content = "Učenik je izbrisan!"))
analitika-tech/library
system/frontend/views.py
views.py
py
14,674
python
en
code
1
github-code
6
16505295497
from typing import List, Dict, Tuple def create_chirp_dictionary(file_name: str) \ -> Dict[int, Tuple[int, str, List[str], List[int], List[int]]]: """ Opens the file "file_name" in working directory and reads the content into a chirp dictionary as defined on Page 2 Functions 2. Note, some spacing has been added for human readability. >>> create_chirp_dictionary("chirps.txt") {100000: ( 400, 'Does not want to build a %SnowMan %StopAsking', ['SnowMan', 'StopAsking'], [100, 200, 300], [400, 500]), 100001: ( 200, 'Make the ocean great again.', [''], [], [400]), 100002: ( 500, "Help I'm being held captive by a beast! %OhNoes", ['OhNoes'], [400], [100, 200, 300]), 100003: ( 500, "Actually nm. This isn't so bad lolz :P %StockholmeSyndrome", ['StockholmeSyndrome'], [400, 100], []), 100004: ( 300, 'If some random dude offers to %ShowYouTheWorld do yourself a favour and %JustSayNo.', ['ShowYouTheWorld', 'JustSayNo'], [500, 200], [400]), 100005: ( 400, 'LOLZ BELLE. %StockholmeSyndrome %SnowMan', ['StockholmeSyndrome', 'SnowMan'], [], [200, 300, 100, 500])} """ #Your code goes here f = open(file_name, "r") H = dict() #Helper for tag def tag_helper(x): y = [] if x == '\n': return [] else: x = x.split(', ') for i in x: y.append(str(i)) return y #Helper for liked and disliked def helper(a): b = [] if a == '\n': return [] else: a = a.strip('\n').split(',') for numbers in a: b.append(int(numbers)) return b line = f.readline() while line: chirpid = int(line) #10000 userid = int(f.readline()) #400 message = f.readline().strip('\n') #Does not want to build a %SnowMan %StopAsking tags = f.readline().strip('\n') #SnowMan, StopAsking likeds = f.readline() #100, 200, 300 dislikeds = f.readline() #400, 500 sperate = f.readline() #sperates to the next userid (\n) line = f.readline() tag = tag_helper(tags) liked = helper(likeds) disliked = helper(dislikeds) H[chirpid] = (userid, message, tag, liked, disliked) return H
kimber1y-tung/CSC108
assignment3/A3-2.py
A3-2.py
py
2,659
python
en
code
0
github-code
6
4242214840
from predict_utility import load_checkpoint,get_input_args,predict,process_image from utility_module import label_mapping import warnings warnings.filterwarnings("ignore") from prettytable import PrettyTable x = PrettyTable() args = get_input_args() model = load_checkpoint(args.checkpoint) top_ps,top_class = predict(image_path=args.path,model=model,topk=args.top_k) print("\nprediction to the given image of the flower\n") flower_to_name = label_mapping() prob = [round(p,5) for p in top_ps] top_class_name = [flower_to_name[c] for c in top_class] x.add_column("flower name",top_class_name) x.add_column("prediction probability", prob) print(x)
rkg-37/ImageClassifier
predict.py
predict.py
py
654
python
en
code
0
github-code
6
10887477924
def bubble_sortiranje(niz): privremeno = 0 duzina = len(niz) for i in range(0, duzina - 1): #ide do pretposlednjeg jer od poslednjeg nema nista desno for j in range(0, (duzina - 1) - i): if(niz[j] > niz[j + 1]): privremeno = niz[j] niz[j] = niz[j + 1] niz[j + 1] = privremeno def select_sortiranje(niz): for i in range(0, len(niz)): indeks = i for j in range(i + 1, len(niz)): if(niz[j] < niz[indeks]): indeks = j privremeno = niz[indeks] niz[indeks] = niz[i] niz[i] = privremeno def insert_sortiranje(niz): privremeno = 0 j = 0 for i in range(1, len(niz)): privremeno = niz[i] j = i - 1 while(j >= 0 and niz[j] > privremeno): niz[j + 1] = niz[j] j -= 1 niz[j + 1] = privremeno
marko-smiljanic/vezbanje-strukture-podataka
vezbanje-strukture-podataka/Domaci-PREDAVANJA/domaci3_sortiranje/test_sort.py
test_sort.py
py
909
python
bs
code
0
github-code
6
35083479163
dic = ["a", "b", "c", "d" , "e" , "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] chars = ['O','Q','R','S'] z, i, x = 0, 0, 0 if chars[0].istitle(): z = 1 dic = [element.upper() for element in dic] while chars[x] != dic[i]: i += 1 for item in chars: if chars[x] != dic[i]: if z == 1: print(dic[i]) else: print(dic[i].lower()) break i += 1 x += 1
diogodh/codewars_py
missing_letter.py
missing_letter.py
py
481
python
en
code
0
github-code
6
38978357115
import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('localhost', 9999)) s.listen(1) while True: cli, (remhost, remport) = s.accept() print("Nhan ket noi tu", remhost) msg = "Hello %s\n" %remhost cli.send(msg.encode('ascii')) cli.close()
DuongHongDoan/CT225_LTPython
Buoi3_LTMang/Bai46_HelloServer.py
Bai46_HelloServer.py
py
282
python
en
code
0
github-code
6
71484411388
import sys sys.setrecursionlimit(3000) def check(rs, cs): table[rs][cs] = 2 if (rs, cs) == (rg, cg): return True if rs > 0 and table[rs - 1][cs] == 1 and check(rs - 1, cs): return True if cs > 0 and table[rs][cs - 1] == 1 and check(rs, cs - 1): return True if rs < r - 1 and table[rs + 1][cs] == 1 and check(rs + 1, cs): return True if cs < c - 1 and table[rs][cs + 1] == 1 and check(rs, cs + 1): return True return False r, c = map(int, input().split()) table = [[0] * c for _ in range(r)] rs, cs = map(lambda x:int(x) - 1, input().split()) rg, cg = map(lambda x:int(x) - 1, input().split()) n = int(input()) draw = [list(map(int, input().split())) for _ in range(n)] for ri, ci, hi, wi in draw: ri -= 1 ci -= 1 for i in range(ri, ri+hi): for j in range(ci, ci+wi): table[i][j] = 1 if table[rs][cs] != 1 or table[rg][cg] != 1: print('NO') else: print('YES' if check(rs, cs) else 'NO')
knuu/competitive-programming
atcoder/corp/codethxfes2014b_e.py
codethxfes2014b_e.py
py
994
python
en
code
1
github-code
6
26039884706
from __future__ import annotations from dataclasses import dataclass from pants.backend.go.subsystems.golang import GolangSubsystem from pants.core.util_rules.system_binaries import ( BinaryPath, BinaryPathRequest, BinaryPaths, BinaryPathTest, ) from pants.engine.engine_aware import EngineAwareParameter from pants.engine.internals.selectors import Get from pants.engine.rules import collect_rules, rule @dataclass(frozen=True) class CGoBinaryPathRequest(EngineAwareParameter): binary_name: str binary_path_test: BinaryPathTest | None def debug_hint(self) -> str | None: return self.binary_name @rule async def find_cgo_binary_path( request: CGoBinaryPathRequest, golang_env_aware: GolangSubsystem.EnvironmentAware ) -> BinaryPath: path_request = BinaryPathRequest( binary_name=request.binary_name, search_path=golang_env_aware.cgo_tool_search_paths, test=request.binary_path_test, ) paths = await Get(BinaryPaths, BinaryPathRequest, path_request) first_path = paths.first_path_or_raise( path_request, rationale=f"find the `{request.binary_name}` tool required by CGo" ) return first_path def rules(): return collect_rules()
pantsbuild/pants
src/python/pants/backend/go/util_rules/cgo_binaries.py
cgo_binaries.py
py
1,235
python
en
code
2,896
github-code
6
71226682109
import os, glob from fpdf import FPDF class Pdf_Tool: def __init__(self, format): self.pdf = FPDF(format=format) def save(self, dir, pdf_name): if not os.path.exists(dir): os.makedirs(dir) self.pdf.output(os.path.join(dir, pdf_name), "F") def create(self, img_path_list, dimen): for img_path in img_path_list: self.pdf.add_page() self.pdf.image(img_path, dimen[0], dimen[1], dimen[2], dimen[3]) if __name__ == "__main__": root = os.path.join(os.getcwd(), "output") root = "F:/E-Book/Temp/JPG" for i in range(1, 4): no = str(i).zfill(1) filepath_list = sorted(glob.glob(os.path.join(root, no + "/*.jpg")), key=os.path.basename) pdf = Pdf_Tool((2040, 1512)) pdf.create(filepath_list, (0, 0, 2040, 1512)) pdf.save(os.path.join(root, no), no + ".pdf")
huangzf128/something
code/python/image/pdf_tool.py
pdf_tool.py
py
888
python
en
code
0
github-code
6
16439872003
from flask import Flask import dash from dash import dcc from dash import html from dash.dependencies import Input, Output import plotly.graph_objs as go import pandas as pd import os inbodyDf = pd.read_csv(os.path.join(os.path.dirname(__file__), os.pardir, 'data', 'inbody.csv')) courseDf = pd.read_csv(os.path.join(os.path.dirname(__file__), os.pardir, 'data', 'courses.csv')) external_stylesheets=['https://codepen.io/chriddyp/pen/bWLwgP.cs'] server = Flask(__name__) app = dash.Dash(__name__, server=server, external_stylesheets=external_stylesheets) app.title='[Youwon Shin]' app.layout = html.Div(className='body',children=[ html.Div(className='header',children=[ html.H1(className='h1',children='Welcome to YOUWON\'s WORLD!',style={'color':'white'}) ]), html.Div(className='firstDiv',children=[ html.Div(className='Intro',children=[ html.H1(className='h1',children='Youwon Shin',style={'color':'#8977ad'}),html.Br(), html.P(className='IntroArticle',children=['Hello, I\'m youwon shin.',html.Br(),'I am currently a M.S. student in ', html.B(children='Computer Science major'), ' at KAIST and supervised by Prof.Uchin Lee in ', html.A(className='a',children='ICLab@KAIST', href="http://ic.kaist.ac.kr/wiki/wiki.cgi?Main"), '.', html.Br(), 'I received my B.S. degree in ', html.A(className='a',children='Mechanical and Biomedical Engineering', href="http://mbe.ewha.ac.kr/"), ' from Ewha Womans University in 2021.', html.Br(),html.Br(),html.Br(), html.B(children='Contact: '), html.A(className='email',children='[email protected]',href="mailto:[email protected]")]) ]), html.Div(className='Img', children=[ html.Img(className='profimg',src= app.get_asset_url('profile.jpg'), style={'alt':'Profile image'}) ]) ]), html.Div(className='secondDiv',children=[ html.Div(className='leftDiv',children=[ html.H2(className='h2',children='My Personality Type'), html.Div(className='leftChild',children=[ html.Img(className='mbtiImg',src=app.get_asset_url('ENFJ.png'), style={'alt':'ENFJ'}), html.Span(className='MBTI',children=[ html.Br(), html.B('E'), 'xtroverted', html.Br(), 'I', html.B('N'), 'tution', html.Br(), html.B('F'), 'eelings', html.Br(), html.B('J'), 'udgment' ]) ]) ]), html.Div(className='rightDiv',children=[ html.H2(className='h2',children='Inbody Trend'), html.Div(className='chartbox',children=[ dcc.Dropdown( id="Value-selector", options=[{ 'label': i, 'value': i } for i in inbodyDf['Type'].unique()], value="All", placeholder="Select Type", ), dcc.Graph(id='inbody-graph') ]), ], style={ 'width' : '100%', 'min-width':'35rem' }) ]), html.Div(className='thirdDiv',children=[ html.Div(className='leftDiv',children=[ html.H2(className='h2',children='Course Schedule (Fall, 2021)'), html.Table(className='table1',children=[ html.Tbody([ html.Tr([ html.Th(style={'background-color':"#9283ad", 'width':'80px'}), html.Th('MON', style={'background-color':"#9283ad", 'width':'80px'}), html.Th('TUE', style={'background-color':"#9283ad", 'width':'80px'}), html.Th('WED', style={'background-color':"#9283ad", 'width':'80px'}), html.Th('THU', style={'background-color':"#9283ad", 'width':'80px'}), html.Th('FRI', style={'background-color':"#9283ad", 'width':'80px'}) ],style={'height':'35px'}), html.Tr([ html.Td('9:00-10:30'),html.Td(),html.Td(),html.Td(),html.Td(),html.Td() ]), html.Tr([ html.Td('10:30-12:00'),html.Td(),html.Td(['Data', html.Br(),'Visualization']),html.Td(),html.Td(['Data', html.Br(),'Visualization']),html.Td() ]), html.Tr([ html.Td('12:00-13:00'),html.Td('~LUNCH TIME~', colSpan=5,style={'background-color': '#d5c9dd','font-weight':'bold'}) ]), html.Tr([ html.Td('13:00-14:30'),html.Td(['Advanced', html.Br(), 'Data Mining']),html.Td(),html.Td(['Advanced', html.Br(), 'Data Mining']),html.Td(),html.Td() ]), html.Tr([ html.Td('14:30-16:00'),html.Td(),html.Td('HCI'),html.Td(),html.Td('HCI'),html.Td() ]) ]) ]) ]), html.Div(className='rightDiv',children=[ html.H2(className='h2',children='How many courses did I take?'), html.Div(className='chartbox',children=[ dcc.Dropdown( id="Year-selector", options=[{ 'label': i, 'value': i } for i in courseDf['Year'].unique()], value="Year", placeholder="Select Year" ), dcc.Graph(id='course-graph') ]) ], style={ 'width' : '100%', 'min-width':'35rem' }) ]), html.Div(className='fourthDiv',children=[ html.Div(className='DivChild',children=[ html.H2(className='h2',children=['Visitors for last 7 days']), html.Table(className='table2',children=[ html.Tbody([ html.Tr([ html.Th('MON', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('TUE', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('WED', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('THU', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('FRI', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('SAT', style={'background-color':"#dbd4e7", 'width':'90px'}), html.Th('SUN', style={'background-color':"#dbd4e7", 'width':'90px'}) ]), html.Tr([ html.Td('30', style={'width':"#dbd4e7"}),html.Td('12'),html.Td('23'),html.Td('43'), html.Td('21'),html.Td('11'),html.Td('34') ]) ]) ]) ]) ]), html.Div(className='footer',children=[ html.B('Interactive Computing Lab, School of Computing,KAIST'), html.Br(), html.I('291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea') ]) ]) @app.callback( Output(component_id='inbody-graph', component_property='figure'), [Input(component_id='Value-selector', component_property='value')] ) def update_inbody_graph(value): days = ['2021-07-27', '2021-08-03', '2021-08-12', '2021-09-07'] if value == "All": df = inbodyDf.copy() else: df = inbodyDf.loc[inbodyDf['Type']==value] line1 = go.Scatter(name='Fat', x=days, y=df.loc[df['Type']=='Fat']['Figure'], mode='lines+markers') line2 = go.Scatter(name='Skeletal muscles', x=days, y=df.loc[df['Type']=='Skeletal muscles']['Figure'],mode='lines+markers') line3 = go.Scatter(name='BMI', x=days, y=df.loc[df['Type']=='BMI']['Figure'],mode='lines+markers') line4 = go.Scatter(name='Fat Pect.', x=days, y=df.loc[df['Type']=='Fat Pect.']['Figure'],mode='lines+markers') return { 'data': [line1,line2,line3,line4], 'layout': go.Layout( barmode='stack' ) } @app.callback( Output(component_id='course-graph', component_property='figure'), [Input(component_id='Year-selector', component_property='value')] ) def update_course_graph(value): if value == "Year": df = courseDf[courseDf['Year']==2021] else: df = courseDf[courseDf['Year']==value] grouped_Df = df.groupby(['Semester','Department']).count() grouped_Df = grouped_Df.reset_index() semesters = ['Spring', 'Fall'] bar1 = go.Bar(name='School of Computing', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='School of Computing']['Course']) bar2 = go.Bar(name='General Required', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='General Required']['Course']) bar3 = go.Bar(name='Electrical Engineering', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='Electrical Engineering']['Course']) bar4 = go.Bar(name='Cyber Security', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='Cyber Security']['Course']) bar5 = go.Bar(name='Computer Engineering', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='Computer Engineering']['Course']) bar6 = go.Bar(name='Mech/BioMed Engineering', x=semesters, y=grouped_Df.loc[grouped_Df['Department']=='Mech/BioMed Engineering']['Course']) return { 'data': [bar1,bar2,bar3,bar4,bar5,bar6], 'layout': go.Layout( barmode='stack' ) } if __name__ == '__main__': app.run_server(debug=True)
yuwon-shin/Data_Visualization
PR/flask/useDash.py
useDash.py
py
9,696
python
en
code
0
github-code
6
28624119358
import cartopy import cartopy.crs as ccrs import matplotlib.pyplot as plt import numpy as np def plot_geodetic(location_to_geodetic, edxml_parser): # get names and geodetics for plotting locs = np.asarray(list(location_to_geodetic.keys())) geodetic_coords = np.asarray(list(location_to_geodetic.values())) geodetic_coords = geodetic_coords[:, [1, 0]] # remove any locations from geodetic that was not in parser loc_in_parser = np.isin(locs, edxml_parser.sorted_unique_locs) locs = locs[loc_in_parser] geodetic_coords = geodetic_coords[loc_in_parser] # count occurences of each location in parser loc_counts = np.asarray([edxml_parser.loc_to_count[loc] for loc in locs]) # set up figure and axes fig = plt.figure() ax = plt.axes(projection=ccrs.PlateCarree()) # zoom view around points min_coord = np.min(geodetic_coords, axis=0) - 5 max_coord = np.max(geodetic_coords, axis=0) + 5 ax.set_extent([min_coord[0], max_coord[0], min_coord[1], max_coord[1]], crs=ccrs.PlateCarree()) # add imagery ax.add_feature(cartopy.feature.LAND) ax.add_feature(cartopy.feature.OCEAN) # plot points sc = plt.scatter(geodetic_coords[:, 0], geodetic_coords[:, 1], color='#00000088', marker='o', s=2*loc_counts, transform=ccrs.PlateCarree()) # create annotation # code modified from: # https://stackoverflow.com/questions/7908636/possible-to-make-labels-appear-when-hovering-over-a-point-in-matplotlib annot = ax.annotate("", xy=(0, 0), xytext=(20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) # define func to update annotations def update_annot(ind): # get position from first point pos = sc.get_offsets()[ind["ind"][0]] annot.xy = pos # draw box with annotations from all points from event text = "\n".join([locs[n] for n in ind["ind"]]) annot.set_text(text) annot.get_bbox_patch().set_alpha(0.4) # define func to handle clicking def on_click(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = sc.contains(event) # update annotation if point with data clicked if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() # hide annotation if point without data clicked else: if vis: annot.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect("button_release_event", on_click) # display plot plt.show()
pnadelofficial/HistoricalLetters
plot.py
plot.py
py
2,774
python
en
code
null
github-code
6
17241327801
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import requests from bs4 import BeautifulSoup import time BASE_URL = 'https://www.nowcoder.com' driver = webdriver.Chrome(executable_path="P:/selenium/chromedriver.exe") driver.get('https://www.nowcoder.com/discuss/experience?tagId=2656') # 对应的页面 # 等待ajax内容加载 wait = WebDriverWait(driver, 10) wait.until( EC.presence_of_element_located((By.CLASS_NAME, "js-nc-wrap-link")) ) def scrollPage(timeout, times): for i in range(times): print('next') # 向下刷新一次内容 driver.execute_script("window.scrollTo(0,Math.max(document.documentElement.scrollHeight,document.body.scrollHeight,document.documentElement.clientHeight));") time.sleep(timeout) # 以3秒的间隔向下刷新5次内容 scrollPage(3, 5) # 带有 class='js-nc-wrap-link' 属性的标签都是面经的链接 items = driver.find_elements_by_class_name('js-nc-wrap-link') with open('content.txt', 'w', encoding='utf-8') as f: # 逐个读取每一个链接中的文本,并写到文件里面 for item in items: print(item.get_attribute('data-href')) response = requests.get(BASE_URL + item.get_attribute('data-href')) data = response.text soup = BeautifulSoup(data, 'html.parser') words = soup.find('div', {'class': 'post-topic-des nc-post-content'}) f.write(words.get_text())
Chunar5354/interview_note
experience/spider.py
spider.py
py
1,566
python
en
code
1
github-code
6
32693212351
''' Created on Mar 30, 2010 @author: kwadwo ''' from OutsideLibrary.table_parser import TableParser from OutsideLibrary import ClientForm from courseLib import * import urllib2 def getStuff(): mnemonic = raw_input("input course Mnemonic (ex:'math')") number = raw_input("input course number") response = urllib2.urlopen("http://rabi.phys.virginia.edu/mySIS/CS/CS_programs/Class_Search.php?Semester=1108") forms = ClientForm.ParseResponse (response, backwards_compat=False) response.close() form = forms[1] form["iCMnemonic"] = mnemonic form["iCNumber"] = number response1 = urllib2.urlopen(form.click()).read() p = TableParser() return [response1, p] def parseDays(unparsedDays): dict={"MoWeFr":["Monday","Wednesday","Friday"],"Tu":["Tuesday"],"Th":["Thursday"]} if(unparsedDays in dict): return dict[unparsedDays] return [] def main(): stuff = getStuff() p = stuff[1] p.feed(stuff[0]) sections = [] #populating sections list for i in p.doc[1][2:]: days,time = i[6].split(" ",1) days=parseDays(days.strip()) sectDays=[] for j in days: sectDays.append(SectionDay(j,time.strip())) location = i[7].replace("\n", "").replace("\r", "") instructor = i[5].replace("\n", "").replace("\r", "") status = i[3] #checking whether this day is part of a previous section if i[0] == "": sections[-1].classDays.append(sectDays) continue; sections.append(Section(i[0], sectDays, instructor, location, status)) # print p.doc[1][1][0] c=Course(p.doc[1][1][1], p.doc[1][1][0], sections) sched1=Schedule(1) #get a sample section and add it to the schedule # for i in c.sections[0].classDays: # sched1.putSchduledDay(i.name, c, c.sections[0].sectionNumber) # print secdays # sched1.putSchduledDay("Monday", c) # for i in sections: # print "Section #: ", i.sectionNumber # print "Days: ", i.classDays.name # print "instructor: ", i.instructor # print "status: ", i.status # print "location: ", i.location # print "\n" if __name__ == '__main__': main()
code4ghana/randomPrograms
PythonPrograms/SISScheduler/src/CourseLib/Runner.py
Runner.py
py
2,280
python
en
code
1
github-code
6
39019051320
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription, conditions from launch.actions import ExecuteProcess,RegisterEventHandler, IncludeLaunchDescription from launch_ros.actions import Node from launch.substitutions import LaunchConfiguration,Command from launch.event_handlers import OnProcessExit from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): use_rviz = LaunchConfiguration('use_rviz', default='false') use_sim_time = LaunchConfiguration('use_sim_time', default='false') pkg_r2d2_control = get_package_share_directory('r2d2_control') xacro_file = os.path.join(pkg_r2d2_control,'urdf','r2d2_gazebo_ros2_control.urdf.xacro') robot_description = {'robot_description' : Command(['xacro', ' ', xacro_file])} rviz_file = os.path.join(pkg_r2d2_control,'config','r2d2_ros2_control.rviz') gazebo = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( get_package_share_directory('gazebo_ros'), 'launch'), '/gazebo.launch.py']), ) node_robot_state_publisher = Node( package='robot_state_publisher', executable='robot_state_publisher', name='robot_state_publisher', output='screen', parameters=[{'use_sim_time': use_sim_time}, robot_description]) spawn_entity = Node( package='gazebo_ros', executable='spawn_entity.py', name='spawn_entity', output='screen', arguments=[ '-entity', 'r2d2', '-x', '0', '-y', '0', '-z', '1', '-topic', '/robot_description' ]) # load_joint_state_controller = ExecuteProcess( # cmd=['ros2', 'control', 'load_controller', '--set-state', 'start', # 'joint_state_broadcaster'], # output='screen' # ) load_joint_state_controller = ExecuteProcess( cmd=['ros2', 'control', 'load_start_controller', 'joint_state_broadcaster'], output='screen' ) # load_joint_diff_drive_controller = ExecuteProcess( # cmd=['ros2', 'control', 'load_controller', '--set-state', 'start', 'front_back_diff_drive_controller'], # output='screen' # ) load_joint_diff_drive_controller = ExecuteProcess( cmd=['ros2', 'control', 'load_start_controller', 'front_back_diff_drive_controller'], output='screen' ) rviz = Node( package='rviz2', executable='rviz2', name='rviz2', arguments=['-d', rviz_file], condition=conditions.IfCondition(use_rviz)) return LaunchDescription([ spawn_entity, RegisterEventHandler( event_handler=OnProcessExit( target_action=spawn_entity, on_exit=[load_joint_state_controller], ) ), RegisterEventHandler( event_handler=OnProcessExit( target_action=load_joint_state_controller, on_exit=[load_joint_diff_drive_controller], ) ), gazebo, node_robot_state_publisher, rviz ])
kei1107/r2d2_ros2
r2d2_control/launch/r2d2_control6.launch.py
r2d2_control6.launch.py
py
3,223
python
en
code
1
github-code
6
74050593789
from urllib.request import Request, urlopen from bs4 import BeautifulSoup import sqlite3 from time import sleep imgchrList = ['n','a','e','m','i','g','h','v'] DiffList = ['nov','adv','exh','mxm','inf','grv','hvn','vvd'] conn = sqlite3.connect("SDVXRanking.db") cur = conn.cursor() for tid in range(164,1412): print('Loading...' + str(tid)) sql = "insert into TrackList (TrackID) VALUES (?);" cur.execute(sql,(str(tid+1000),)) for i in range(0,8): req = Request('http://anzuinfo.me/trackData.html?trackID='+str(tid).zfill(4)+imgchrList[i]) res = urlopen(req) html = res.read().decode('utf8') bs = BeautifulSoup(html, 'html.parser') TrackData = bs.findAll('table', attrs={'class': 'trackData'}) for tracks in TrackData: findlv = 'lv '+DiffList[i] TrackLevel = tracks.find('div', attrs={'class': findlv}) if TrackLevel is None: continue TrackLevel = TrackLevel.text TrackDifficulty = DiffList[i].upper() TrackTitle = tracks.find('td', attrs={'class': 'title'}).text sql = "update TrackList SET TrackTitle = :Title, "+TrackDifficulty+" = :Lv where TrackID = :ID;" cur.execute(sql,{'Title': TrackTitle, 'Lv': TrackLevel, 'ID':str(tid+1000)}) conn.commit() sleep(0.02) conn.close()
limjungho/SDVXRanking
ParsingTrackList.py
ParsingTrackList.py
py
1,365
python
en
code
0
github-code
6
3999827011
import PySimpleGUI as sg # Simple GUI for Python import core import guiElements import constants as const # Setup the simple window sg.theme("Black") layout = [ [guiElements.frameSelectJobAndZone], [guiElements.frameSelectResource], [guiElements.frameAssignAKey], [guiElements.layoutStatusAndStartStopBtns], ] # Create the Window window = sg.Window( title="Wakfu FarmBot 0.1", layout=layout, size=(400, 350), element_justification="c", element_padding=10, ) # Event Loop to process "events" and get the "values" of the inputs while True: event, values = window.read() if event == sg.WIN_CLOSED: # if user closes windows break if event == "button_start": core.onClick_Start_Button(event, values, window) if event == "button_stop": core.onClick_Stop_Button(event, values, window) if event == "combo_key": core.onChange_Key_Combo(event, values, window) if event == "combo_zone": core.onChange_Zone_Combo(event, values, window) if event == "combo_resource": core.onChange_Resource_Combo(event, values, window) if event == "combo_job": core.onChange_Job_Combo(event, values, window) window.close()
jhriverasa/wakfu-farmscript
FarmScriptGUI.py
FarmScriptGUI.py
py
1,235
python
en
code
5
github-code
6
75316047546
import wx from ..form.general import GeneralDialog from ..textbox import LayoutDimensions from ..textbox.textbox import TextInputLayout, TextSmartBox from ..textbox.floatbox import FloatInputLayout, FloatSmartBox from ..controller import ChildController from ..model.bind import BindOjbect __author__ = 'Joeny' class FigureSetting(object): """ Figure Setting model. """ def __init__(self, *args, **kwargs): """ Figure Setting Constructor :param args: :param kwargs: :return: """ self.title = kwargs.get('title', 'Title') self.x_title = kwargs.get('x_title', 'X Title') self.x_subtitle = kwargs.get('x_subtitle', '') self.y_title = kwargs.get('y_title', 'Y Title') self.y_subtitle = kwargs.get('y_subtitle', '') self.x_min = kwargs.get('x_min', None) self.x_max = kwargs.get('x_max', None) self.y_min = kwargs.get('y_min', None) self.y_max = kwargs.get('y_max', None) self.linewidth = kwargs.get('linewidth', 2) self.legend = kwargs.get('legend', []) class FigureSettingPanel(wx.Panel): """ Particular Figure Setting """ def __init__(self, parent, setting, *args, **kwargs): """ :param setting: :param args: :param kwargs: :return: """ wx.Panel.__init__(self, parent, *args, **kwargs) self.layouts = {} self.bind_objects = {} self.setting = setting self.SetSizerAndFit(self.do_layout()) def do_layout(self): """ Layout form :return: """ vsizer = wx.BoxSizer(wx.VERTICAL) layout = LayoutDimensions(top=2, bottom=2, left=4, right=4, interior=2, widths=(100, 200), stretch_factor=(0, 1), height=24) layout.calculate() self.layouts['title'] = TextInputLayout(self, name='Title', layout=layout, textbox=TextSmartBox(self)) self.layouts['x_title'] = TextInputLayout(self, name='X Title', layout=layout, textbox=TextSmartBox(self)) self.layouts['y_title'] = TextInputLayout(self, name='Y Title', layout=layout, textbox=TextSmartBox(self)) self.layouts['x_min'] = FloatInputLayout(self, name='X Min', layout=layout, textbox=FloatSmartBox(self, signs=True)) self.layouts['x_max'] = FloatInputLayout(self, name='X Max', layout=layout, textbox=FloatSmartBox(self, signs=True)) self.layouts['y_min'] = FloatInputLayout(self, name='Y Min', layout=layout, textbox=FloatSmartBox(self, signs=True)) self.layouts['y_max'] = FloatInputLayout(self, name='Y Max', layout=layout, textbox=FloatSmartBox(self, signs=True)) vsizer.AddSpacer(5) vsizer.Add(self.layouts['title'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['x_title'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['y_title'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['x_min'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['x_max'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['y_min'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) vsizer.Add(self.layouts['y_max'], 1, wx.EXPAND | wx.ALL, 0) vsizer.AddSpacer(5) return vsizer def sync_data(self): """ Sync textbox data """ self.bind_objects['title'] = BindOjbect(self.setting.__dict__, self.layouts['title'].textbox, 'title') self.bind_objects['x_title'] = BindOjbect(self.setting.__dict__, self.layouts['x_title'].textbox, 'x_title') self.bind_objects['y_title'] = BindOjbect(self.setting.__dict__, self.layouts['y_title'].textbox, 'y_title') self.bind_objects['x_min'] = BindOjbect(self.setting.__dict__, self.layouts['x_min'].textbox, 'x_min') self.bind_objects['x_max'] = BindOjbect(self.setting.__dict__, self.layouts['x_max'].textbox, 'x_max') self.bind_objects['y_min'] = BindOjbect(self.setting.__dict__, self.layouts['y_min'].textbox, 'y_min') self.bind_objects['y_max'] = BindOjbect(self.setting.__dict__, self.layouts['y_max'].textbox, 'y_max') class FigureSettingDialog(GeneralDialog): """ Modify figure setting. """ def __init__(self, parent, controller=None, setting=None, local=None, btn_flags=wx.OK | wx.CANCEL, **kwargs): """ Figure setting dialog. :param parent: :param controller: :param setting: :param btn_flags: :param kwargs: :return: """ self.nb = None self.pages = {} if local: self.local = local self.local.view = self else: self.local = FigureSettingController(parent, self, setting) GeneralDialog.__init__(self, parent, title="Figure Setting", style=wx.DEFAULT_DIALOG_STYLE | wx.RESIZE_BORDER, controller=controller, local=self.local, btn_flags=btn_flags, **kwargs) self.btnsizer.AffirmativeButton.Bind(wx.EVT_BUTTON, self.local.button_ok_click) def do_layout(self): """ Draw layout :return: """ self.nb = wx.Notebook(self) for index, setting in enumerate(self.local.settings): # Create Panel. self.pages[index] = FigureSettingPanel(self.nb, setting) # Add to tab page. self.nb.AddPage(self.pages[index], "Plot %d" % (index + 1)) # Sync Data self.pages[index].sync_data() return self.nb class FigureSettingController(ChildController): """ Figure Setting Controller """ def __init__(self, parent, view, settings): """ :param parent: :param view: :return: """ ChildController.__init__(self, parent, view, settings) self.settings = settings def sync_data(self): """ Sync Data :return: """ pass def do_layout(self): pass def refresh(self): pass def update_layout(self, state): pass def button_ok_click(self, event): """ Button ok click :param event: :return: """ error = False #TODO: Need to bind the textbox with the data. if error is False: event.Skip() else: if not wx.Validator_IsSilent(): wx.Bell() def delete_control(self): pass
JoenyBui/boa-gui
boaui/chart/dlg.py
dlg.py
py
8,601
python
en
code
0
github-code
6
33648598241
from __future__ import annotations from dataclasses import dataclass from typing import Optional import re import string @dataclass class Equipment: title: str value: str unit: Optional[str] = None quantity: Optional[int] = None _equipment = [ ("Backpack", "2gp"), ("Candle", "1cp"), ("Chain, 10'", "30gp"), ("Chalk, 1 piece", "1cp"), ("Chest, empty", "2gp"), ("Crowbar", "2gp"), ("Flask, empty", "3cp"), ("Flint & steel", "15cp"), ("Grappling hook", "1gp"), ("Hammer, small", "5sp"), ("Holy symbol", "25gp"), ("Holy water, 1 vial**", "25gp"), ("Ironspikes, each", "1sp"), ("Lantern", "10gp"), ("Mirror, hand-sized", "10gp"), ("Oil, 1 flask***", "2sp"), ("Pole, 10-foot", "15cp"), ("Rations, per day", "5cp"), ("Rope, 50'", "25cp"), ("Sack, large", "12cp"), ("Sack, small", "8cp"), ("Thieves' tools", "25gp"), ("Torch, each", "1cp"), ("Waterskin", "5sp"), ] EQUIPMENT = {} #: Process the initial list of equipment tuples into a dict of Equipment classes for name, cost in _equipment: kwargs = {} title = name.split(", ")[0] kwargs["title"] = title kwargs["value"] = cost if len(name.split(", ")) > 1: quantity = name.split(", ")[1] try: digits = int("".join([c for c in quantity if c.isdigit()])) except IndexError: digits = None if digits: kwargs["quantity"] = digits kwargs["unit"] = re.sub(r"[\d+\s]", "", quantity) EQUIPMENT[title] = Equipment(**kwargs)
sethwoodworth/crawl-classic
crawl_classic/equipment.py
equipment.py
py
1,581
python
en
code
3
github-code
6
35754868132
# Задайте список из N элементов, заполненных числами из промежутка [-N, N]. # Найдите произведение элементов на указанных индексах. Индексы вводятся одной строкой, через пробел. # n = 3 [-3, -2, -1, 0, 1, 2, 3] --> 0 2 3 # -3 * -1 * 0 = 0 Вывод: 0 N = int(input('Введите значение N = ')) position_1 = int(input('Введите номер позиции элемента 1:')) position_2 = int(input('Введите номер позиции элемента 2:')) list = [] for i in range(2*N+1): if i < N: list.append(-N+i) elif i > N: list.append(i-N) else: list.append(0) print(list) if ((position_1 or position_2) > 2*N+1) or (position_1 or position_2) <=0: print('как минимум одно значение позиции элемента за пределами [-N, N]') else: print(f"Произведение элементов в указанных позициях = {list[position_1-1]*list[position_2-1]}" )
Natalie-4/task2
4.py
4.py
py
1,130
python
ru
code
0
github-code
6
17651848697
# coefficients in Zp def Z_p(n, co_eff_lst): co_eff_Zp = [] for lst in co_eff_lst: co_eff_Zp.append([i % n for i in lst]) return co_eff_Zp # generating polynomial # return Tn(x) mod m def Tn_Zm(n, m, x): co_eff = co_eff_lst[n-1] sum = 0 for i in co_eff: sum += i * x**n n = n-2 return sum % m # check whether or not Zm -> Zm def generating_function(n, m): lst = [] for x in range(m): # elements in Zm lst.append(Tn_Zm(n, m, x)) if sorted(lst) == [i for i in range(m)]: return "G" else: return "N"
6taco-cat9/chebyshev_polynomials
generating_function.py
generating_function.py
py
580
python
en
code
0
github-code
6
3883274800
class Solution: def maxSubArray(self, nums: List[int]) -> int: if not nums: return 0 curSum = nums[0] maxSum = curSum for num in nums[1:]: curSum = curSum + num if curSum > 0 else num maxSum = maxSum if maxSum > curSum else curSum return maxSum
fatzero/Leetcode-Problems
1-100/53.maximum-subarray.py
53.maximum-subarray.py
py
343
python
en
code
0
github-code
6
780574891
from nltk.tokenize import TweetTokenizer class LexiconFeatureExtractor: def __init__(self, afinn_lexicon_file_path="resources/lexicons/AFINN-en-165.txt", afinn_emoticon_lexicon_file_path="resources/lexicons/AFINN-emoticon-8.txt", bing_liu_lexicon_file_path="resources/lexicons/BingLiu.txt", mpqa_lexicon_file_path="resources/lexicons/mpqa.txt"): print("Loading AFINN lexicons...") self.afinn_lexicon = LexiconFeatureExtractor._read_standart_lexicon(afinn_lexicon_file_path) self.afinn_emoticon_lexicon = LexiconFeatureExtractor._read_standart_lexicon(afinn_emoticon_lexicon_file_path) print("Loading BingLiu lexicon...") self.bingliu_lexicon = LexiconFeatureExtractor._read_standart_lexicon(bing_liu_lexicon_file_path) print("Loading MPQA lexicon...") self.mpqa_lexicon = LexiconFeatureExtractor._read_standart_lexicon(mpqa_lexicon_file_path) print("Loading NRC - Hashtag - Emotion - Lexicon") self.nrc_hash_emo_lexicon = LexiconFeatureExtractor \ ._read_labeled_lexicon("resources/lexicons/NRC-Hashtag-Emotion-Lexicon-v0.2.txt") print("Loading NRC - AffectIntensity - Lexicon") self.nrc_affect_intensity_lexicon = LexiconFeatureExtractor \ ._read_labeled_lexicon("resources/lexicons/NRC-AffectIntensity-Lexicon.txt") print("Loading SentiStrength EmoticonLookupTable") self.emoticon_lookup_lexicon = LexiconFeatureExtractor \ ._read_standart_lexicon("resources/lexicons/EmoticonLookupTable.txt") print("Loading SentiStrength EmotionLookupTable") self.emotion_lookup_lexicon = LexiconFeatureExtractor \ ._read_standart_lexicon("resources/lexicons/EmotionLookupTable.txt") def extract_feature(self, input_txt): res = [LexiconFeatureExtractor.calculate_score_word_based(self.afinn_lexicon, input_txt), LexiconFeatureExtractor.calculate_score_word_based(self.afinn_emoticon_lexicon, input_txt), LexiconFeatureExtractor.calculate_score_word_based(self.bingliu_lexicon, input_txt), LexiconFeatureExtractor.calculate_score_word_based(self.mpqa_lexicon, input_txt)] # NRC - Hashtag - Emotion - Lexicon res += LexiconFeatureExtractor.calculate_score_labeled(self.nrc_hash_emo_lexicon, input_txt) # NRC - Affect intensity - Lexicon res += LexiconFeatureExtractor.calculate_multiscore(self.nrc_affect_intensity_lexicon, input_txt) # SentiStrength - Emoticon - Lexicon res.append(LexiconFeatureExtractor.calculate_score_word_based(self.emoticon_lookup_lexicon, input_txt)) # SentiStrength - Emotion - Lexicon res.append(LexiconFeatureExtractor.calculate_score_word_based(self.emotion_lookup_lexicon, input_txt)) return res @staticmethod def _read_standart_lexicon(file_path, delimeter="\t"): res = {} with(open(file_path, "r")) as f: for line in f: columns = line.strip().split(delimeter) if len(columns) > 1: res[" ".join(columns[:-1]).strip(" ")] = float(columns[-1]) return res @staticmethod def _read_multi_score_lexicon(file_path, delimeter="\t", ): res = {} with(open(file_path, "r")) as f: for line in f: scores = [] columns = line.strip().split(delimeter) for i in range(1, len(columns)): scores.append(float(columns[i])) res[columns[0]] = scores return res @staticmethod def _read_labeled_lexicon(file_path, delimeter="\t", label_index=0, feature_index=1, score_index=2): res = {} with(open(file_path, "r")) as f: for line in f: columns = line.strip().split(delimeter) if len(columns) > 2: if columns[label_index] not in res: res[columns[label_index]] = {} res[columns[label_index]][columns[feature_index]] = float(columns[score_index]) return res @staticmethod def calculate_score_word_based(lexicon, input_txt): score = 0.0 input_words = [t.encode("utf-8") for t in TweetTokenizer().tokenize(input_txt)] for k, v in lexicon.items(): if " " not in k and k in input_words: score += v elif " " in k and LexiconFeatureExtractor.contains_all(k, input_words): score += v return score @staticmethod def calculate_multiscore(lexicon, input_txt, score_count=4): res = [0.0 for _ in range(score_count)] input_words = [t.encode("utf-8") for t in TweetTokenizer().tokenize(input_txt)] for label, d in lexicon.items(): for k, v in d.items(): scores = [] if " " not in k and k in input_words: scores.append(v) elif " " in k and LexiconFeatureExtractor.contains_all(k, input_words): scores.append(v) for i in range(len(scores)): res[i] += scores[i] return res @staticmethod def calculate_score_labeled(lexicon, input_txt): res = [] score = 0.0 input_words = [t.encode("utf-8") for t in TweetTokenizer().tokenize(input_txt)] for label, d in lexicon.items(): for k, v in d.items(): score = 0.0 if " " not in k and k in input_words: score += v elif " " in k and LexiconFeatureExtractor.contains_all(k, input_words): score += v res.append(score) return res @staticmethod def contains_all(words1, words2): for w in words1.split(): if w not in words2: return False return True
erayyildiz/AffectInTweets
src/lexicon_features.py
lexicon_features.py
py
5,989
python
en
code
3
github-code
6
12830949060
# Definition for a Node. from collections import deque from typing import List class Node: def __init__(self, val=None, children=None): self.val = val self.children = children class Solution: def preorder(self, root: Node) -> List[int]: output = [] if root is None: return output def dps(node: Node): output.append(node.val) if node.children: for child in node.children: dps(child) dps(root) return output def preorder_iter(self, root: Node) -> List[int]: output = [] if root is None: return output stack = deque() stack.append(root) while stack: popped_node = stack.pop() output.append(popped_node.val) if popped_node.children: for child in reversed(popped_node.children): stack.append(child) return output
theRobertSan/LeetCode-Solutions-Python
589.py
589.py
py
996
python
en
code
1
github-code
6
9264213572
import mne import argparse import numpy as np from config import fname # Handle command line arguments parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('subject', metavar='sub###', type=int, help='The subject to process') args = parser.parse_args() subject = args.subject print('Processing subject:', subject) report = mne.open_report(fname.report(subject=subject)) # Fit ICA to the continuous data raw_detrended = mne.io.read_raw_fif(fname.raw_detrend(subject=subject)) ica = mne.preprocessing.ICA(n_components=100).fit(raw_detrended) # Get ICA components that capture eye blinks and heart beats eog_epochs = mne.preprocessing.create_eog_epochs(raw_detrended) _, eog_scores = ica.find_bads_eog(eog_epochs) eog_bads = list(np.flatnonzero(abs(eog_scores) > 0.2)) ecg_epochs = mne.preprocessing.create_ecg_epochs(raw_detrended) ecg_bads, ecg_scores = ica.find_bads_ecg(ecg_epochs) ica.exclude = eog_bads + ecg_bads print(eog_bads) print(ecg_bads) if len(eog_bads) > 0: report.add_figs_to_section(ica.plot_scores(eog_scores), 'Correlation between ICA components and EOG channel', 'ICA', replace=True) report.add_figs_to_section(ica.plot_properties(eog_epochs, picks=eog_bads), ['Properties of EOG component %02d' % e for e in eog_bads], 'ICA', replace=True) if len(ecg_bads) > 0: report.add_figs_to_section(ica.plot_scores(ecg_scores), 'Correlation between ICA components and ECG channel', 'ICA', replace=True) report.add_figs_to_section(ica.plot_properties(ecg_epochs, picks=ecg_bads), ['Properties of ECG component %02d' % e for e in ecg_bads], 'ICA', replace=True) report.add_figs_to_section(ica.plot_overlay(eog_epochs.average()), 'EOG signal removed by ICA', 'ICA', replace=True) report.add_figs_to_section(ica.plot_overlay(ecg_epochs.average()), 'ECG signal removed by ICA', 'ICA', replace=True) ica.save(fname.ica(subject=subject)) report.save(fname.report(subject=subject), overwrite=True, open_browser=False) report.save(fname.report_html(subject=subject), overwrite=True, open_browser=False)
wmvanvliet/beamformer_simulation
megset/03_ica.py
03_ica.py
py
2,047
python
en
code
4
github-code
6
7759954850
''' 사업자등록번호로 업종 확인 ''' import csv import json from urllib.request import urlopen from urllib import parse import datetime as dt import pandas as pd import numpy as np import re # 대신정보통신 4088118945 # 대보정보통신 1358119406 bizNo = '2118108009' # 조달청_사용자정보서비스 ''' > parameter(조회조건) - bizno : 사업자등록번호 > numOfRows 는 totalCount 보다 작아야 함 ''' url = 'http://apis.data.go.kr/1230000/UsrInfoService/getPrcrmntCorpIndstrytyInfo' queryParams = '?' + parse.urlencode({ parse.quote_plus('serviceKey') : 'B1CsUiO26Y56VDOKIParM6z394FXvTQC0rafsREBzSnOl8Cc1PUFY98LOcqKq5OahD5s2AhvszA2AIIYj0KXvg==', parse.quote_plus('pageNo') : '1', parse.quote_plus('numOfRows') : 100, parse.quote_plus('type') : 'json' , parse.quote_plus('bizno') : bizNo }) # set_API & get_data -> openAPI & parameters response = urlopen(url + queryParams) data = response.read() JSON_object = json.loads(data.decode('utf-8')) ''' "bizno": "1048118820", "indstrytyNm": "엔지니어링사업(프로젝트매니지먼트)", "indstrytyCd": "7309", "rgstDt": "2011-10-31 00:00:00", "vldPrdExprtDt": "", "systmRgstDt": "2014-06-30 16:12:45", "chgDt": "", "indstrytyStatsNm": "", "rprsntIndstrytyYn": "N", "systmChgDt": "2014-06-30 16:12:45" ''' result = pd.DataFrame(JSON_object["response"]["body"]["items"], columns = ["bizno", "indstrytyNm", "rgstDt", "vldPrdExprtDt"]) #result # init Series s = [] for index, item in result.iterrows(): if len(item['vldPrdExprtDt']) > 0: print(item['vldPrdExprtDt'] + ' -> ' + str(len(item['vldPrdExprtDt']))) print(item['indstrytyNm']) print(re.sub('\(.*?\)', '', item['indstrytyNm'])) print('\n') s.append(re.sub('\(.*?\)', '', item['indstrytyNm'])) #s # using naive method # to remove duplicated # from list res = [] for i in s: if i not in res: res.append(i) #res # print('-'.join(res))
starrything/openapi-g2b
04_g2b_user_service.py
04_g2b_user_service.py
py
2,354
python
en
code
0
github-code
6
32010864325
def deep_find(data, key): if key in data: return data[key] for k, v in data.items(): if isinstance(v, dict): item = deep_find(v, key) if item is not None: return item # elif isinstance(v, list): # for d in v: # for result in deep_find(d, key): # return result my_data = {"id": "abcde", "key1": "blah", "key2": "blah blah", "nestedlist": [ {"id": "qwerty", "nestednestedlist": [ {"id": "xyz", "keyA": "blah blah blah"}, {"id": "fghi", "keyZ": "blah blah blah"}], "anothernestednestedlist": [ {"id": "asdf", "keyQ": "blah blah"}, {"id": "yuiop", "keyW": "blah"}]}]} print(deep_find(my_data, 'id'))
1oss1ess/HackBulgaria-Programming101-Python-2018
week-8/Graphs/t1.py
t1.py
py
882
python
en
code
0
github-code
6
14434842726
import numpy as np m = [[0] * 4 for i in range(4)] dx, dy = [0, 1, 0, -1], [1, 0, -1, 0] x, y, c = 0, -1, 1 for i in range(4 + 4 - 2): for j in range((4 + 4 - i) // 2): x += dx[i % 4] y += dy[i % 4] m[x][y] = c c += 1 BOARD_LENGTH = 4 GOAL_STATE = np.array(m) def goal_on_row(num, i): for j in range(BOARD_LENGTH): if num == GOAL_STATE[i][j]: return j def goal_on_column(num, j): for i in range(BOARD_LENGTH): if num == GOAL_STATE[i][j]: return i def linear_conflict_heuristic(state): result = 0 for i in range(BOARD_LENGTH): for j in range(BOARD_LENGTH): num = state[i][j] if num != 0: position = goal_on_row(num, i) if position is not None: if position <= j: for k in reversed(range(j)): num2 = state[i][k] if num2 != 0: position2 = goal_on_row(num2, i) if position2 is not None: if position < position2: result += 1 else: for k in range(j + 1, BOARD_LENGTH): num2 = state[i][k] if num2 != 0: position2 = goal_on_row(num2, i) if position2 is not None: if position > position2: result += 1 position = goal_on_column(num, j) if position is not None: if position <= i: for k in reversed(range(i)): num2 = state[k][j] if num2 != 0: position2 = goal_on_column(num2, j) if position2 is not None: if position < position2: result += 1 else: for k in range(i + 1, BOARD_LENGTH): num2 = state[k][j] if num2 != 0: position2 = goal_on_column(num2, j) if position2 is not None: if position > position2: result += 1 return result def main(): state = np.array([[11, 3, 4, 2], [14, 8, 12, 9], [5, 0, 13, 6], [7, 15, 1, 10]]) result = linear_conflict_heuristic(state) print(f"RESULT = {result}") if __name__ == '__main__': main()
cuzureau/n_puzzle
stack.py
stack.py
py
1,922
python
en
code
1
github-code
6
41160046527
from django import forms from django.core.mail import EmailMessage from .models import Householdaccountbook # class HouseholdaccountbookForm(forms.ModelForm): # class Meta: # model = Householdaccountbook # fields = ["pref","choice",] class TableCreateForm(forms.ModelForm): class Meta: model = Householdaccountbook fields = ('title', 'choice', 'date', 'genre', 'quanity', 'money', 'content' ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for field in self.fields.values(): field.widget.attrs['class'] = 'form-control' # self.fields['date'].widget.attrs['class'] = 'form-control' # self.fields['date'].widget.attrs['id'] = "inputdate" self.fields['date'].widget.attrs['placeholder'] = "例 2000-12-05"
HaruShim/Sotuken
実装/新満/table一覧表示/table/forms.py
forms.py
py
777
python
en
code
0
github-code
6
30857567174
import pyautogui import webbrowser as web import time msg = input('enter message to send: ') times = int(input('enter the number of times to send the message: ')) # win_chrome_path = 'C:\Program Files\Google\Chrome\Application\chrome.exe %s' # web.get(win_chrome_path).open('web.whatsapp.com') web.open('web.whatsapp.com') time.sleep(30) for i in range(times): for char in msg: pyautogui.press('space' if char==' ' else char) pyautogui.press('enter')
Abdul-Hannan12/Whatsapp-Automation
spam_message.py
spam_message.py
py
471
python
en
code
0
github-code
6
5619572961
from decimal import Decimal class Account: """ Account class maintain information and balance about each account ******Arguments****** firstname:string lastname:string national id number:string with 10 numbers birthdate:string in the form of ##/##/#### balance:integer greater than or equal to zero """ accountNumber = 0 accountsList = [] def __init__(self, firstname, lastname, national_id_number, birthdate, balance): self.firstname = firstname self.lastname = lastname self.national_id_number = national_id_number self.birthdate = birthdate self.balance = balance Account.accountNumber += 1 self.account_number = Account.accountNumber self.stocks = {} # {stock symbol: [shares, value]} Account.accountsList.append(self) def __str__(self): return f"{self.account_number}) {self.firstname:<9} {self.lastname:<9} Id:[{self.national_id_number}] " \ f" Birthdate:[{self.birthdate}] Balance = {self.balance:,}" def buy_shares(self, stock, shares): """ function to buy some shares from specific stock :param stock: Stock object :param shares: positive integer (representing Number of shares purchased) :return: string (Notify transaction completed successfully) """ value = shares * stock.open_val if type(shares) != int: raise TypeError("Shares must be integer") elif shares > stock.shares_remain: raise ValueError(f"Shares value must be lower than remaining shares for stock ({stock.shares_remain})") elif shares < 1: raise ValueError("Shares must be positive integer") elif value > self.balance: raise ValueError("Not enough money for account to buy these shares") elif stock.symbol not in self.stocks: self.stocks[stock.symbol] = [shares, value] else: self.stocks[stock.symbol][0] += shares self.stocks[stock.symbol][1] += value self.balance = int(self.balance - value) stock.shares_remain -= shares return f"{self.firstname} {self.lastname} bought {shares} {stock.symbol} shares successfully" def sell_shares(self, stock, shares): """ function to sell some shares from specific stock :param stock: Stock object :param shares: positive integer (representing Number of shares sold) :return: string (Notify transaction completed successfully) """ sellValue = shares * stock.open_val cShares, cValue = self.stocks[stock.symbol] if stock.symbol not in self.stocks: raise ValueError("Account Doesn't have this stock") elif type(shares) != int: raise TypeError("Shares must be integer") elif shares < 1: raise ValueError("Shares must be positive integer") elif shares > cShares: raise ValueError(f"Not enough shares for account to sell ({cShares})") else: self.stocks[stock.symbol][0] -= shares self.stocks[stock.symbol][1] -= sellValue self.balance = int(self.balance + sellValue) stock.shares_remain += shares return f"{self.firstname} {self.lastname} sold {shares} {stock.symbol} shares successfully" def get_shares(self): """ function to print shares that belongs to account :return: string (Total shares and values) """ if not self.stocks: return f"{self.firstname} {self.lastname} doesn't have any share" counter = 0 total_shares = 0 total_value = 0 print(f"{self.firstname} {self.lastname} shares:") for k, v in self.stocks.items(): total_shares += v[0] total_value += v[1] counter += 1 print(f"[{counter}] {k:<6} Shares:{v[0]:<7,} Value = {v[1]:,.0f}") return f"Total shares:{total_shares:<7,} Total value = {total_value:,.0f}" @property def firstname(self): return self.__firstname @firstname.setter def firstname(self, value): if type(value) != str: raise TypeError("Firstname must be string") elif not value.replace(" ", "").isalpha(): raise ValueError("Firstname must be consists of only alphabetic characters") else: self.__firstname = value @property def lastname(self): return self.__lastname @lastname.setter def lastname(self, value): if type(value) != str: raise TypeError("Firstname must be string") elif not value.replace(" ", "").isalpha(): raise ValueError("Lastname must be consists of only alphabetic characters") else: self.__lastname = value @property def national_id_number(self): return self.__national_id_number @national_id_number.setter def national_id_number(self, value): if type(value) != str: # I choose string because it is not possible to place 0 left side of the id numbers if they were integer raise TypeError("National id number must be string") elif len(value) != 10 or not value.isdigit(): raise ValueError("National id number must be consists of 10 numbers") else: self.__national_id_number = value @property def birthdate(self): return self.__birthdate @birthdate.setter def birthdate(self, value): if type(value) != str: raise TypeError("Birthdate must be string") elif len(value) != 10 or not value.replace("/", "").isdigit() or not value[2] == value[5] == "/": raise ValueError("Birthdate must be in the form of ##/##/####, where each # is a digit") else: self.__birthdate = value @property def balance(self): return self.__balance @balance.setter def balance(self, value): if type(value) != int: raise TypeError("Balance must be integer") elif not value >= 0: raise ValueError("Balance must be greater than or equal to zero") else: self.__balance = Decimal(value) def print_account_list(): """ Function to print all existing accounts """ for account in Account.accountsList: print(account) class Stock: """ Stock class maintain current information such as open, volume and number of shares about each company ******Arguments****** symbol:string (abbreviation for company name) open val:float greater than zero (price for each stock that belongs to the company) volume:integer greater than zero (price for all of stocks that belongs to the company) date:string """ companyNumber = 0 stocksList = [] def __init__(self, symbol, open_val, volume, date): self.symbol = symbol self.open_val = open_val self.volume = volume self.date = date self.shares = self.volume // self.open_val self.shares_remain = self.shares Stock.companyNumber += 1 self.company_number = Stock.companyNumber Stock.stocksList.append(self) def __str__(self): return f"{self.company_number}) {self.symbol:<6} Open = {self.open_val:<11,.2f} Volume = {self.volume:<13,} " \ f"Total shares:{self.shares:<7,} Sold shares:{self.shares - self.shares_remain:<7,} date:{self.date}" @property def symbol(self): return self.__symbol @symbol.setter def symbol(self, value): if type(value) != str: raise TypeError("symbol must be string") self.__symbol = value @property def open_val(self): return self.__open_val @open_val.setter def open_val(self, value): if type(value) != float: raise TypeError("Open value must be float") elif not value > 0: raise ValueError("Open value must be greater than zero") else: self.__open_val = Decimal(value) @property def volume(self): return self.__volume @volume.setter def volume(self, value): if type(value) != int: raise TypeError("Volume must be integer") elif not value > 0: raise ValueError("Volume must be greater than zero") else: self.__volume = Decimal(value) @property def date(self): return self.__date @date.setter def date(self, value): if type(value) != str: raise TypeError("Date must be string") self.__date = value def print_stock_list(): """ Function to print all existing stocks """ for stock in Stock.stocksList: print(stock) account1 = Account("Ali", "Ronaldo", "0045375980", "01/10/2000", 15000) account2 = Account("majid", "messy", "0025328985", "10/16/2002", 10000) print_account_list() amazon = Stock("AMZN", 2181.3798828125, 4676700, "05/13/2022") facebook = Stock("FB", 192.580001831054, 24523500, "05/13/2022") tesla = Stock("TSLA", 773.47998046875, 30651800, "05/13/2022") google = Stock("GOOGLE", 2290.65991210937, 1747900, "05/13/2022") apple = Stock("AAPL", 144.58999633789, 113787000, "05/13/2022") print_stock_list() print(account1) account1.buy_shares(apple, 10) account1.buy_shares(apple, 5) account1.buy_shares(facebook, 11) account1.sell_shares(facebook, 2) account1.get_shares() print(account1) print(apple)
MortezaGhandchi/stock-oop-pandas
Stock_Project_AP.py
Stock_Project_AP.py
py
9,814
python
en
code
0
github-code
6
7921803967
year = 1799 birthday = '6 июня' year_people= int(input('А вы знаете год рождения А.С.Пушкина?: ')) while year_people != year: year_people = int(input('Еще раз попробуйте: ')) if year_people == year: birthday_people = input('А день рождения?: ') while birthday_people != birthday: birthday_people = input('Еще раз попробуй вспомнить день рождения: ') print('Верно')
Lyubov-Tuz/basic_python
borndayforewer.py
borndayforewer.py
py
503
python
ru
code
0
github-code
6
10584185740
import numpy as np def gaussseidel_1d(rho, hx, epsilon, maxiter, maxerr): if rho.ndim != 1: raise ValueError("rho must be of shape=(n,)") phi = np.zeros(shape=rho.shape, dtype=rho.dtype) nx = rho.shape[0] mr = hx * hx / epsilon for iteration in range(maxiter): error = 0.0 for x in range(nx): phi_x = ( phi[(x - 1) % nx] + \ phi[(x + 1) % nx] + \ rho[x] * mr) / 2.0 error += (phi[x] - phi_x)**2 phi[x] = phi_x if error < maxerr: break return phi def gaussseidel_2d(rho, hx, hy, epsilon, maxiter, maxerr): if rho.ndim != 2: raise ValueError("rho must be of shape=(nx, ny)") phi = np.zeros(shape=rho.shape, dtype=rho.dtype) nx, ny = rho.shape fx, fy = 1.0 / (hx * hx), 1.0 / (hy * hy) mx = 0.5 * fx / (fx + fy) my = 0.5 * fy / (fx + fy) mr = 0.5 / (epsilon * (fx + fy)) for iteration in range(maxiter): error = 0.0 for x in range(nx): for y in range(ny): phi_xy = ( phi[(x - 1) % nx, y] * mx + \ phi[(x + 1) % nx, y] * mx + \ phi[x, (y - 1) % ny] * my + \ phi[x, (y + 1) % ny] * my + \ rho[x, y] * mr) error += (phi[x, y] - phi_xy)**2 phi[x, y] = phi_xy if error < maxerr: break return phi def gaussseidel_3d(rho, hx, hy, hz, epsilon, maxiter, maxerr): if rho.ndim != 3: raise ValueError("rho must be of shape=(nx, ny, nz)") phi = np.zeros(shape=rho.shape, dtype=rho.dtype) nx, ny, nz = rho.shape fx, fy, fz = 1.0 / (hx * hx), 1.0 / (hy * hy), 1.0 / (hz * hz) mx = 0.5 * fx / (fx + fy + fz) my = 0.5 * fy / (fx + fy + fz) mz = 0.5 * fz / (fx + fy + fz) mr = 0.5 / (epsilon * (fx + fy + fz)) for iteration in range(maxiter): error = 0.0 for x in range(nx): for y in range(ny): for z in range(nz): phi_xyz = ( phi[(x - 1) % nx, y, z] * mx + \ phi[(x + 1) % nx, y, z] * mx + \ phi[x, (y - 1) % ny, z] * my + \ phi[x, (y + 1) % ny, z] * my + \ phi[x, y, (z - 1) % nz] * mz + \ phi[x, y, (z + 1) % nz] * mz + \ rho[x, y, z] * mr) error += (phi[x, y, z] - phi_xyz)**2 phi[x, y, z] = phi_xyz if error < maxerr: break return phi def gaussseidel(rho, h, epsilon=1.0, maxiter=10000, maxerr=1e-15): if rho.ndim == 1: return gaussseidel_1d(rho, *h, epsilon, maxiter, maxerr) elif rho.ndim == 2: return gaussseidel_2d(rho, *h, epsilon, maxiter, maxerr) elif rho.ndim == 3: return gaussseidel_3d(rho, *h, epsilon, maxiter, maxerr) else: raise ValueError( 'gaussseidel expects rho with 1, 2 or 3 dimensions.')
LeonKlein/urban-broccoli
urbanbroccoli/gaussseidel.py
gaussseidel.py
py
3,089
python
en
code
null
github-code
6
28412951714
#!/usr/bin/env python import sys, os, shlex import multiprocessing as mp import subprocess as sp from pli.lib.util import log def find_files(root): outdir = 'tmpout' for curdir, dirs, files in os.walk(root): protein_fname = None ligand_fname = None for f in files: if f.endswith('_protein.pdb'): sym = f[1:3] protein_fname = f'{curdir}/{f}' elif f.endswith('_ligand.mol2'): ligand_fname = f'{curdir}/{f}' if protein_fname and ligand_fname: bname = os.path.basename(protein_fname).split('_')[0] sym = bname[1:3] if not os.path.exists(f'{outdir}/{sym}/{bname}_ALP.pkl.gz'): yield protein_fname, ligand_fname, sym def worker(args): protein_iname, ligand_iname, sym = args cmd = f'python pli/bin/plifinder.py {protein_iname} {ligand_iname} -o tmpout/{sym}' log(cmd) proc = sp.Popen(shlex.split(cmd), universal_newlines=True, stdout=sp.PIPE, stderr=sp.STDOUT) ret = proc.wait() return ret, protein_iname, ligand_iname, sym def main(): root = 'v2015' pool = mp.Pool(mp.cpu_count()) count = 0 for ret, protein_iname, ligand_iname, sym in pool.imap(worker, find_files(root)): if ret != 0: log(f'!! Error {protein_iname} {ligand_iname}') continue count += 1 log(f'{count} {protein_iname} {ligand_iname} -> {sym}') if __name__ == '__main__': main()
rhara/plifinder
examples/plifinder_v2015.py
plifinder_v2015.py
py
1,504
python
en
code
0
github-code
6
25272817830
import sys from itertools import combinations from collections import deque def move(stage): for i in range(M): for j in range(N-1, 0, -1): enemy[j][i] = enemy[j-1][i] if stage == 0: for i in range(M): enemy[0][i] = 0 dr = [0, -1, 0] dc = [-1, 0, 1] N, M, D = map(int, sys.stdin.readline().split()) enemy = [list(map(int, sys.stdin.readline().split())) for _ in range(N)] comb = list(combinations(range(N), 3)) visited = [[0] * M for _ in ' '*N] shot = [[0] * M for _ in ' '*N] q = deque() shot_clear = deque() result = 0 for stage in range(N): max_kill = 0 for archers in comb: kill = 0 for archer in archers: q.append((N, archer)) dist = 0 len_q = len(q) cnt = 0 while q: if len_q == cnt: len_q = len(q) cnt = 0 dist += 1 if dist == D: q.clear() break cnt += 1 r, c = q.popleft() for d in range(3): nr = r + dr[d] nc = c + dc[d] if 0 <= nr < N and 0 <= nc < M: if enemy[nr][nc]: if not shot[nr][nc]: kill += 1 shot[nr][nc] = 1 shot_clear.append((nr, nc)) q.clear() break q.append((nr, nc)) while shot_clear: r, c = shot_clear.popleft() enemy[r][c] = 0 shot[r][c] = 0 if kill > max_kill: max_kill = kill result += max_kill move(stage) print(result)
powerticket/algorithm
Baekjoon/17135.py
17135.py
py
1,842
python
en
code
0
github-code
6
19386134805
import argparse import json import os import sys import numpy as np import torch from plyfile import PlyData, PlyElement from torch.utils.data import DataLoader from tqdm import tqdm sys.path.append(os.path.join(os.getcwd())) # HACK add the root folder from utils.pc_utils import write_ply_rgb from utils.box_util import get_3d_box from data.scannet.model_util_scannet import ScannetDatasetConfig from lib.config import CONF from lib.scan2cap_dataset import Scan2CapDataset from models.pointnet_extractor_module import PointNetExtractor # constants SCANNET_ROOT = "../data/scannet/scans/" # TODO point this to your scannet data SCANNET_MESH = os.path.join(SCANNET_ROOT, "{}/{}_vh_clean_2.ply") # scene_id, scene_id SCANNET_META = os.path.join(SCANNET_ROOT, "{}/{}.txt") # scene_id, scene_id MEAN_COLOR_RGB = np.array([109.8, 97.2, 83.8]) DC = ScannetDatasetConfig() SCANREFER_TRAIN = json.load(open(os.path.join(CONF.PATH.DATA, "ScanRefer_filtered_train.json"))) SCANREFER_VAL = json.load(open(os.path.join(CONF.PATH.DATA, "ScanRefer_filtered_val.json"))) VOCABULARY = json.load(open(os.path.join(CONF.PATH.DATA, "vocabulary.json"), "r")) global_correct = 0 global_total = 0 def get_dataloader(args, scanrefer, all_scene_list, split, config, augment): dataset = Scan2CapDataset( scanrefer=scanrefer, scanrefer_all_scene=all_scene_list, vocabulary=VOCABULARY, split=split, num_points=args.num_points, use_height=(not args.no_height), use_color=args.use_color, use_normal=args.use_normal, use_multiview=args.use_multiview, augment=augment ) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=True) return dataset, dataloader def get_model(args): # load model input_channels = int(args.use_multiview) * 128 + int(args.use_normal) * 3 + int(args.use_color) * 3 + int(not args.no_height) model = PointNetExtractor(pretrain_mode=True, feature_channels=input_channels).cuda() path = os.path.join(CONF.PATH.OUTPUT, args.folder, "model.pth") model.load_state_dict(torch.load(path), strict=False) model.eval() return model def get_scanrefer(args): scanrefer = SCANREFER_TRAIN if args.use_train else SCANREFER_VAL all_scene_list = sorted(list(set([data["scene_id"] for data in scanrefer]))) if args.scene_id: assert args.scene_id in all_scene_list, "The scene_id is not found" scene_list = [args.scene_id] else: scene_list = sorted(list(set([data["scene_id"] for data in scanrefer]))) scanrefer = [data for data in scanrefer if data["scene_id"] in scene_list] return scanrefer, scene_list def write_ply(verts, colors, indices, output_file): if colors is None: colors = np.zeros_like(verts) if indices is None: indices = [] file = open(output_file, 'w') file.write('ply \n') file.write('format ascii 1.0\n') file.write('element vertex {:d}\n'.format(len(verts))) file.write('property float x\n') file.write('property float y\n') file.write('property float z\n') file.write('property uchar red\n') file.write('property uchar green\n') file.write('property uchar blue\n') file.write('element face {:d}\n'.format(len(indices))) file.write('property list uchar uint vertex_indices\n') file.write('end_header\n') for vert, color in zip(verts, colors): file.write("{:f} {:f} {:f} {:d} {:d} {:d}\n".format(vert[0], vert[1], vert[2] , int(color[0]*255), int(color[1]*255), int(color[2]*255))) for ind in indices: file.write('3 {:d} {:d} {:d}\n'.format(ind[0], ind[1], ind[2])) file.close() def write_bbox(bbox, mode, output_file): """ bbox: (cx, cy, cz, lx, ly, lz, r), center and length in three axis, the last is the rotation output_file: string """ def create_cylinder_mesh(radius, p0, p1, stacks=10, slices=10): import math def compute_length_vec3(vec3): return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2]) def rotation(axis, angle): rot = np.eye(4) c = np.cos(-angle) s = np.sin(-angle) t = 1.0 - c axis /= compute_length_vec3(axis) x = axis[0] y = axis[1] z = axis[2] rot[0,0] = 1 + t*(x*x-1) rot[0,1] = z*s+t*x*y rot[0,2] = -y*s+t*x*z rot[1,0] = -z*s+t*x*y rot[1,1] = 1+t*(y*y-1) rot[1,2] = x*s+t*y*z rot[2,0] = y*s+t*x*z rot[2,1] = -x*s+t*y*z rot[2,2] = 1+t*(z*z-1) return rot verts = [] indices = [] diff = (p1 - p0).astype(np.float32) height = compute_length_vec3(diff) for i in range(stacks+1): for i2 in range(slices): theta = i2 * 2.0 * math.pi / slices pos = np.array([radius*math.cos(theta), radius*math.sin(theta), height*i/stacks]) verts.append(pos) for i in range(stacks): for i2 in range(slices): i2p1 = math.fmod(i2 + 1, slices) indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) ) indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) ) transform = np.eye(4) va = np.array([0, 0, 1], dtype=np.float32) vb = diff vb /= compute_length_vec3(vb) axis = np.cross(vb, va) angle = np.arccos(np.clip(np.dot(va, vb), -1, 1)) if angle != 0: if compute_length_vec3(axis) == 0: dotx = va[0] if (math.fabs(dotx) != 1.0): axis = np.array([1,0,0]) - dotx * va else: axis = np.array([0,1,0]) - va[1] * va axis /= compute_length_vec3(axis) transform = rotation(axis, -angle) transform[:3,3] += p0 verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts] verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts] return verts, indices def get_bbox_edges(bbox_min, bbox_max): def get_bbox_verts(bbox_min, bbox_max): verts = [ np.array([bbox_min[0], bbox_min[1], bbox_min[2]]), np.array([bbox_max[0], bbox_min[1], bbox_min[2]]), np.array([bbox_max[0], bbox_max[1], bbox_min[2]]), np.array([bbox_min[0], bbox_max[1], bbox_min[2]]), np.array([bbox_min[0], bbox_min[1], bbox_max[2]]), np.array([bbox_max[0], bbox_min[1], bbox_max[2]]), np.array([bbox_max[0], bbox_max[1], bbox_max[2]]), np.array([bbox_min[0], bbox_max[1], bbox_max[2]]) ] return verts box_verts = get_bbox_verts(bbox_min, bbox_max) edges = [ (box_verts[0], box_verts[1]), (box_verts[1], box_verts[2]), (box_verts[2], box_verts[3]), (box_verts[3], box_verts[0]), (box_verts[4], box_verts[5]), (box_verts[5], box_verts[6]), (box_verts[6], box_verts[7]), (box_verts[7], box_verts[4]), (box_verts[0], box_verts[4]), (box_verts[1], box_verts[5]), (box_verts[2], box_verts[6]), (box_verts[3], box_verts[7]) ] return edges def get_bbox_corners(bbox): centers, lengths = bbox[:3], bbox[3:6] xmin, xmax = centers[0] - lengths[0] / 2, centers[0] + lengths[0] / 2 ymin, ymax = centers[1] - lengths[1] / 2, centers[1] + lengths[1] / 2 zmin, zmax = centers[2] - lengths[2] / 2, centers[2] + lengths[2] / 2 corners = [] corners.append(np.array([xmax, ymax, zmax]).reshape(1, 3)) corners.append(np.array([xmax, ymax, zmin]).reshape(1, 3)) corners.append(np.array([xmin, ymax, zmin]).reshape(1, 3)) corners.append(np.array([xmin, ymax, zmax]).reshape(1, 3)) corners.append(np.array([xmax, ymin, zmax]).reshape(1, 3)) corners.append(np.array([xmax, ymin, zmin]).reshape(1, 3)) corners.append(np.array([xmin, ymin, zmin]).reshape(1, 3)) corners.append(np.array([xmin, ymin, zmax]).reshape(1, 3)) corners = np.concatenate(corners, axis=0) # 8 x 3 return corners radius = 0.03 offset = [0,0,0] verts = [] indices = [] colors = [] corners = get_bbox_corners(bbox) box_min = np.min(corners, axis=0) box_max = np.max(corners, axis=0) palette = { 0: [0, 255, 0], # gt 1: [0, 0, 255] # pred } chosen_color = palette[mode] edges = get_bbox_edges(box_min, box_max) for k in range(len(edges)): cyl_verts, cyl_ind = create_cylinder_mesh(radius, edges[k][0], edges[k][1]) cur_num_verts = len(verts) cyl_color = [[c / 255 for c in chosen_color] for _ in cyl_verts] cyl_verts = [x + offset for x in cyl_verts] cyl_ind = [x + cur_num_verts for x in cyl_ind] verts.extend(cyl_verts) indices.extend(cyl_ind) colors.extend(cyl_color) write_ply(verts, colors, indices, output_file) def read_mesh(filename): """ read XYZ for each vertex. """ assert os.path.isfile(filename) with open(filename, 'rb') as f: plydata = PlyData.read(f) num_verts = plydata['vertex'].count vertices = np.zeros(shape=[num_verts, 6], dtype=np.float32) vertices[:,0] = plydata['vertex'].data['x'] vertices[:,1] = plydata['vertex'].data['y'] vertices[:,2] = plydata['vertex'].data['z'] vertices[:,3] = plydata['vertex'].data['red'] vertices[:,4] = plydata['vertex'].data['green'] vertices[:,5] = plydata['vertex'].data['blue'] return vertices, plydata['face'] def export_mesh(vertices, faces): new_vertices = [] for i in range(vertices.shape[0]): new_vertices.append( ( vertices[i][0], vertices[i][1], vertices[i][2], vertices[i][3], vertices[i][4], vertices[i][5], ) ) vertices = np.array( new_vertices, dtype=[ ("x", np.dtype("float32")), ("y", np.dtype("float32")), ("z", np.dtype("float32")), ("red", np.dtype("uint8")), ("green", np.dtype("uint8")), ("blue", np.dtype("uint8")) ] ) vertices = PlyElement.describe(vertices, "vertex") return PlyData([vertices, faces]) def align_mesh(scene_id): vertices, faces = read_mesh(SCANNET_MESH.format(scene_id, scene_id)) for line in open(SCANNET_META.format(scene_id, scene_id)).readlines(): if 'axisAlignment' in line: axis_align_matrix = np.array([float(x) for x in line.rstrip().strip('axisAlignment = ').split(' ')]).reshape((4, 4)) break # align pts = np.ones((vertices.shape[0], 4)) pts[:, :3] = vertices[:, :3] pts = np.dot(pts, axis_align_matrix.T) vertices[:, :3] = pts[:, :3] mesh = export_mesh(vertices, faces) return mesh def dump_results(args, scanrefer, data, config): dump_dir = os.path.join(CONF.PATH.OUTPUT, args.folder, "vis") os.makedirs(dump_dir, exist_ok=True) # from inputs ids = data['scan_idx'].detach().cpu().numpy() point_clouds = data['point_clouds'].cpu().numpy() batch_size = point_clouds.shape[0] pcl_color = data["pcl_color"].detach().cpu().numpy() if args.use_color: pcl_color = (pcl_color * 256 + MEAN_COLOR_RGB).astype(np.int64) # from network outputs # detection # ground truth gt_center = data['ref_center_label'].cpu().numpy() # (B,MAX_NUM_OBJ,3) gt_size_residual = data['ref_size_residual_label'].cpu().numpy() # B,K2,3 # reference nyu40_label = data["ref_nyu40_label"].detach().cpu().numpy() prediction = torch.argmax(data["ref_obj_cls_scores"], dim=1).detach().cpu().numpy() + 1 global global_correct global global_total global_correct += np.sum(nyu40_label == prediction) global_total += batch_size print("NYU40_LABEL", [DC.nyu40id2label[i] for i in list(nyu40_label)]) print("PREDICTION", [DC.nyu40id2label[i] for i in list(prediction)]) print("ACC", global_correct / global_total) for i in range(batch_size): # basic info idx = ids[i] scene_id = scanrefer[idx]["scene_id"] object_id = scanrefer[idx]["object_id"] object_name = scanrefer[idx]["object_name"] ann_id = scanrefer[idx]["ann_id"] # scene_output scene_dump_dir = os.path.join(dump_dir, scene_id) if not os.path.exists(scene_dump_dir): os.mkdir(scene_dump_dir) # # Dump the original scene point clouds mesh = align_mesh(scene_id) mesh.write(os.path.join(scene_dump_dir, 'mesh.ply')) write_ply_rgb(point_clouds[i], pcl_color[i], os.path.join(scene_dump_dir, 'pc.ply')) # visualize the gt reference box # NOTE: for each object there should be only one gt reference box object_dump_dir = os.path.join(scene_dump_dir, "gt_{}_{}_{}_{}_{}.ply".format(scene_id, object_id, ann_id, DC.nyu40id2label[nyu40_label[i]], DC.nyu40id2label[prediction[i]])) gt_obb = np.zeros((7,)) gt_obb[0:3] = gt_center[i] gt_obb[3:6] = gt_size_residual[i] gt_bbox = get_3d_box(gt_size_residual[i], 0, gt_center[i]) if not os.path.exists(object_dump_dir): write_bbox(gt_obb, 0, os.path.join(object_dump_dir)) def visualize(args): # init training dataset print("preparing data...") scanrefer, scene_list = get_scanrefer(args) # dataloader _, dataloader = get_dataloader(args, scanrefer, scene_list, "val", DC, False) # model model = get_model(args) model.eval() # evaluate print("visualizing...") for data in tqdm(dataloader): for key in data: data[key] = data[key].cuda() # feed with torch.no_grad(): data = model(data) # visualize dump_results(args, scanrefer, data, DC) print("done!") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--folder", type=str, help="Folder containing the model", required=True) parser.add_argument("--gpu", type=str, help="gpu", default="0") parser.add_argument("--scene_id", type=str, help="scene id", default="") parser.add_argument("--batch_size", type=int, help="batch size", default=2) parser.add_argument('--num_points', type=int, default=40000, help='Point Number [default: 40000]') parser.add_argument('--num_proposals', type=int, default=256, help='Proposal number [default: 256]') parser.add_argument('--num_scenes', type=int, default=-1, help='Number of scenes [default: -1]') parser.add_argument('--no_height', action='store_true', help='Do NOT use height signal in input.') parser.add_argument('--no_nms', action='store_true', help='do NOT use non-maximum suppression for post-processing.') parser.add_argument('--use_train', action='store_true', help='Use the training set.') parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.') parser.add_argument('--use_normal', action='store_true', help='Use RGB color in input.') parser.add_argument('--use_multiview', action='store_true', help='Use multiview images.') args = parser.parse_args() # setting os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu os.environ["CUDA_LAUNCH_BLOCKING"] = "1" visualize(args)
nseppi/scan2cap
scan2cap/scripts/visualize_pretrain.py
visualize_pretrain.py
py
15,949
python
en
code
1
github-code
6
1375960664
# -*- coding: utf-8 -*- import numpy as np from deap import algorithms from deap import base from deap import creator from deap import tools from deap import gp from deap.algorithms import varAnd from adan.aiem.genetics.evaluators import * import array import random as traditional_random #import pathos import pathos import operator #from adan import functions from adan.functions import * from adan.aidc.feature_selection import * import time def eaSimple_island(population,toolbox, cxpb, mutpb, ngen,halloffame=None, verbose=__debug__,allowed_time=np.inf, stats=None,FREQ=None, percentage_migration=0.1): """ ngen is used both for the total generations and for the within island generatins. So, the total number of gens will be ngen**2. FREQ: How often migration takes place. If FREQ=None, then it is set to ngen/3 """ #FREQ is how often migration takes place if FREQ is None: FREQ=int(ngen/3) if FREQ<0: FREQ=1 toolbox.register("algorithm", eaSimple_timed, toolbox=toolbox, cxpb=cxpb, mutpb=mutpb, ngen=ngen, verbose=verbose,stats=stats,halloffame=halloffame) islands = population #The GA runs each time for ngen, and then it runs for a total number of equal to ngen/FREQ for i in range(0, ngen): start = time.time() results = toolbox.map(toolbox.algorithm, islands) islands = [pop for pop, logbook in results] if i % FREQ ==0: print('******MIGRATION TAKING PLACE******') tools.migRing(islands, int(percentage_migration*len(islands[0])), tools.selBest) end = time.time() if (end-start)>allowed_time: if verbose: print('Time-out. Maximum allowed time exceeded.') break return islands def eaSimple_timed(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__,allowed_time=np.inf): """This is a copy of the eaSimple() method from DEAP, but adjusted to support time-out. In case of timeout, the most recent generation is returned. """ logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): #-2 is the 'fail' value (e.g. the fitness function couldn't be computed) if fit is None: fit=(-2,) ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) start = time.time() # Begin the generational process for gen in range(1, ngen+1): # Select the next generation individuals offspring = toolbox.select(population, len(population)) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): if fit is None: fit=(-2,) ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) end = time.time() if (end-start)>allowed_time: if verbose: print('Time-out. Maximum allowed time exceeded.') break return population, logbook def calcNewFeatures(result_set,df,features='best'): """ returns the best features alongside the variables participating in the complex variables """ all_features=[] complex_features=[] pset=setPset(df) toolbox = base.Toolbox() toolbox.register("compile", gp.compile, pset=pset) complex_columns=[] all_columns=[] simple_columns=[] if features=='best': dummy='best_individuals_object' elif features=='all': dummy='all_features_individuals_object' for feat in result_set[dummy]: complex_features.append(toolbox.compile(feat)) all_features.append(toolbox.compile(feat)) complex_columns.append(str(feat)) all_columns.append(str(feat)) simple_features=[] for feat in result_set['variables']: simple_features.append(df[feat]) simple_columns.append(str(feat)) all_features.append(df[feat]) all_columns.append(str(feat)) return pd.DataFrame(np.column_stack(all_features),columns=all_columns),pd.DataFrame(np.column_stack(complex_features),columns=complex_columns),pd.DataFrame(np.column_stack(simple_features),columns=simple_columns) def setPset(df): pset = gp.PrimitiveSet("MAIN", 0,prefix="coef") pset.addPrimitive(add,2) pset.addPrimitive(sub, 2) pset.addPrimitive(mul, 2) pset.addPrimitive(div, 2) for fun in singlefunctions: pset.addPrimitive(fun,1) for col in df.columns.values: #we must use strings for column names otherwise the functions interpret the #column names as numbers pset.addTerminal(df[col].values,name=col) return pset def findFeaturesGP(df,target,population=300,ngen=50,cxpb=0.9,features=-1, max_tree=3,evaluator=evalPearsonCorNumba, task="regression",n_processes=1,allowed_time=None,target_sampling=0.8): """ This function calculates complex features that correlate with the response variable. Output: A dictionary with the following fields: best_features: a list of lists, where every element is a feature selected by the best n features as defined by the cbf method best_features_plus_cols: a list of lists, where every element is a feature selected by the best n features as defined by the cbf method plus any original features participating in the creation of the individuals best_individuals_equations: the equations used to compute the best_features (this is the string version of best_individuals_object) best_individuals_plus_columns: like the previous, plus the column names of the individual features best_individuals_object: the programs used to compute the best_features scores: the score of each individual produced during the genetic programming scores_cbf: the cbf score of each feature (all features not just the best ones) variables: the names of the original variables that participate in the creation of the features in the best_features all_features: a list of lists with all the features produced by the genetic algorithm all_features_individuals: the programs used to compute all_features features: if features<1, then the algorithm simply defaults to 1 target_sampling: When the features are evaluated, we can sample a % of the targets, and evaluate the performace on this subset. This should help with overfitting and finding better solutions. """ if features<1: features=1 if task=='regression' and evaluator==None: evaluator=evalPearsonCorNumba elif task=='classification' and evaluator==None: evaluator=evalANOVANumba mutpb=1-cxpb # for col in df.columns: # df[col]=df[col].astype('float64') pset=setPset(df) creator.create("FitnessMax", base.Fitness, weights=(1,)) creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=max_tree) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("compile", gp.compile, pset=pset) #need to do that because multithreading does not support functions with more than one arguments def evaluate(x): return evaluator(x,toolbox=toolbox,targets=target,sampling=target_sampling) #toolbox.register("evaluate", evaluator,toolbox=toolbox, targets=targets) toolbox.register("evaluate", evaluate) #toolbox.register("select", tools.selTournament, tournsize=3) #toolbox.register("select", tools.selNSGA2) toolbox.register("select", tools.selDoubleTournament,fitness_size=3,parsimony_size=1.4,fitness_first=True) toolbox.register("mate", gp.cxOnePoint) toolbox.register("expr_mut", gp.genFull, min_=0, max_=max_tree) toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset) toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=max_tree)) toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=max_tree)) if type(population)==type([]): toolbox.register("deme", tools.initRepeat, list, toolbox.individual) DEME_SIZES = population pop = [toolbox.deme(n=i) for i in DEME_SIZES] hof = tools.HallOfFame(sum(population)) else: pop = toolbox.population(n=population) hof = tools.HallOfFame(population) stats_fit = tools.Statistics(lambda ind: ind.fitness.values) stats_size = tools.Statistics(len) mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size) mstats.register("avg", np.mean) mstats.register("std", np.std) mstats.register("min", np.min) mstats.register("max", np.max) if n_processes>1: pool = pathos.multiprocessing.ProcessingPool(n_processes) toolbox.register("map", pool.map) # pop, log = algorithms.eaMuPlusLambda(pop, toolbox, mu,lamb, cxpb,mutpb,ngen=ngen, stats=mstats, # halloffame=hof, verbose=True) # if allowed_time is None: # pop, log = algorithms.eaSimple(pop, toolbox, cxpb,mutpb, ngen=ngen, stats=mstats, # halloffame=hof, verbose=True) if type(population)==type([]): pop = eaSimple_island(pop, toolbox, cxpb,mutpb, ngen=ngen, stats=mstats, halloffame=hof, verbose=True, allowed_time=allowed_time) else: pop, log = eaSimple_timed(pop, toolbox, cxpb,mutpb, ngen=ngen, stats=mstats, halloffame=hof, verbose=True, allowed_time=allowed_time) allfeatures=[] allfeatures_individuals_object=[] scores=[] feature_names=[] best_individuals_object=[] for i in range(0,len(hof.items)): # print(hof.items[i]) feature=toolbox.compile(hof.items[i]) if not np.isnan(feature).any(): #need to guard against zero variance features if np.var(feature)>0.0: allfeatures.append(feature) allfeatures_individuals_object.append(hof.items[i]) feature_names.append(str(hof.items[i])) best_individuals_object.append(hof.items[i]) #for some reason in DEAP the key in the hall-of-fame is the score # if features>0: # cbfscores=cbfSelectionNumba(allfeatures,target,task=task) # bestindices=sorted(range(len(cbfscores)), key=lambda x: cbfscores[x],reverse=True) # else: # cbfscores=np.ones(len(allfeatures)) # bestindices=range(len(allfeatures)) cbfscores=cbfSelectionNumba(allfeatures,target,task=task) bestindices=sorted(range(len(cbfscores)), key=lambda x: cbfscores[x],reverse=True) bestfeatures=[] bestindividuals=[] bestindividuals_plus_cols=[] scorescbf=[] best_features_plus_cols=[] best_individuals_object_final=[] for i in range(0,int(features)): index=bestindices[i] bestfeatures.append(allfeatures[index]) best_features_plus_cols.append(allfeatures[index]) bestindividuals.append(feature_names[index]) bestindividuals_plus_cols.append(feature_names[index]) best_individuals_object_final.append(best_individuals_object[i]) # scores.append(eval(str(hof.keys[index]))) # scorescbf.append(cbfscores[index]) #all features includes the best variables, plus any single variables which might participate in the creation of the complex variables final_vars=[] str_individuals=str(bestindividuals) for col in df.columns: if str_individuals.find(col)>-1: final_vars.append(col) #append the original variable to bestfeatures if it exists in a complex feature best_features_plus_cols.append(df[col].values) bestindividuals_plus_cols.append(col) #combine all features (individual and composite) into one df best_all_feats_df=pd.DataFrame(np.column_stack(best_features_plus_cols),columns=bestindividuals_plus_cols) return {'best_features':bestfeatures,'best_features_plus_cols':best_features_plus_cols, 'best_individuals_equations':bestindividuals,'best_individuals_object':best_individuals_object_final, 'scores':scores,'scores_cbf':scorescbf,'variables':final_vars, 'all_features':allfeatures,'all_features_individuals_object':allfeatures_individuals_object,'best_all_feats_df':best_all_feats_df} def findEquationFeatures(features_to_be_used,task,target,ngen=10,population=10,crossover_prob=0.5,mut_prob=0.1,individual_mut=0.1,tournsize=3): """ Performs feature selection over the set of features before doing the symbolic modelling individual_mut: If a mutation occurs, then each item might be flipped according to this probability """ creator.create("FitnessMax", base.Fitness, weights=(1.0,)) import array creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax) toolbox = base.Toolbox() # Attribute generator toolbox.register("attr_bool", traditional_random.getrandbits,1) # Structure initializers toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, features_to_be_used.shape[1]) toolbox.register("population", tools.initRepeat, list, toolbox.individual) #we import here to avoid a cyclical import from adan.aiem.symbolic_modelling import findSymbolicExpressionL1_regression_helper, findSymbolicExpressionL1_classification_helper def evalOneMax(individual): if sum(individual)==0: return -100, else: ind=np.array(individual,bool) if task=='regression': models=findSymbolicExpressionL1_regression_helper(features_to_be_used.loc[:,ind].values,target) elif task=='classification': models=findSymbolicExpressionL1_classification_helper(features_to_be_used.loc[:,ind].values,target) performances=[perf[1] for perf in models] maximum=max(performances) return maximum, toolbox.register("evaluate", evalOneMax) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=individual_mut) toolbox.register("select", tools.selTournament, tournsize=tournsize) pop = toolbox.population(n=population) hof = tools.HallOfFame(1) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", np.mean) stats.register("std", np.std) stats.register("min", np.min) stats.register("max", np.max) pop, log = algorithms.eaSimple(pop, toolbox, cxpb=crossover_prob, mutpb=mut_prob, ngen=ngen, stats=stats, halloffame=hof, verbose=True) final_choice=hof.items[0] final_choice=np.array(final_choice,bool) #return pop, log, hof return final_choice
stelios12312312/ADAN
adan/aiem/genetics/genetic_programming.py
genetic_programming.py
py
16,827
python
en
code
0
github-code
6
28664991218
m = int(input("Enter your marks : ")) if(m >= 90 and m <= 100): print("Exelent") elif(m >= 80 and m <= 89): print("A Grade") elif(m >= 70 and m <= 79): print("B Grade") elif(m >= 60 and m <= 69): print("C Grade") elif(m >= 50 and m <= 59): print("D Grade") elif(m < 50): print("Fail") #************************************************ # Another way m = int(input("Enter your marks : ")) if(m >= 90 and m <= 100): Grade = "Exelent" elif(m >= 80 and m <= 89): Grade = "A" elif(m >= 70 and m <= 79): Grade = "B" elif(m >= 60 and m <= 69): Grade = "C" elif(m >= 50 and m <= 59): Grade = "D" elif(m < 50): Grade = "F" print("Your Grade is : " + Grade) # Concadinating
vikaskr-gupta/Python
6 Conditional Expression/9B_Problem_06.py
9B_Problem_06.py
py
718
python
en
code
1
github-code
6
74959980988
"""system URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from clubs import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.home, name='home'), path('user_dashboard/', views.user_dashboard, name='user_dashboard'), path('user_profile/', views.user_profile, name='user_profile'), path('user_profile/edit', views.edit_user_profile, name='edit_user_profile'), path('user_profile/change_password', views.change_password, name='change_password'), path('user_profile/<int:user_id>/<int:membership_id>', views.user_profile, name='user_profile'), path('member_profile/<int:membership_id>', views.member_profile, name='member_profile'), path('log_in/', views.log_in, name='log_in'), path('log_out/', views.log_out, name='log_out'), path('sign_up/', views.sign_up, name='sign_up'), path('membership_application/', views.membership_application, name='membership_application'), path('new_club/', views.club_creation, name='new_club'), path('available_clubs/', views.available_clubs, name='available_clubs'), path('club/<int:club_id>', views.club_dashboard, name='club_dashboard'), path('club_memberships/', views.club_memberships, name='club_memberships'), path('my_applications/', views.my_applications, name='my_applications'), path('club/<int:club_id>/<int:user_id>/promote', views.promote_member, name='promote_member'), path('club/<int:club_id>/<int:user_id>/demote', views.demote_member, name='demote_member'), path('club/<int:club_id>/<int:user_id>/kick', views.kick_member, name='kick_member'), path('club/<int:club_id>/edit', views.edit_club, name='edit_club'), path('club/<int:club_id>/leave', views.leave_club, name='leave_club'), path('tournament/<int:tournament_id>', views.tournament_dashboard, name='tournament_dashboard'), path('club/<int:club_id>/transfer_ownership/<int:user_id>', views.transfer_ownership, name='transfer_ownership'), path('membership/<int:membership_id>/approve', views.accept_membership, name='accept_membership'), path('membership/<int:membership_id>/deny', views.reject_membership, name='reject_membership'), path('new_tournament/<int:club_id>', views.tournament_creation, name='new_tournament'), path('tournament/<int:tournament_id>/join', views.join_tournament, name='join_tournament'), path('tournament/<int:tournament_id>/leave', views.leave_tournament, name='leave_tournament'), path('tournament/<int:tournament_id>/cancel', views.cancel_tournament, name='cancel_tournament'), path('tournament/<int:tournament_id>/generate_matches', views.generate_matches, name='generate_matches') ]
amir-rahim/ChessClubManagementSystem
system/urls.py
urls.py
py
3,313
python
en
code
1
github-code
6
7763839215
from Monitor import Monitor import MonitorVarTypes import requests monitor_var = {'PreviousClosingPrice': MonitorVarTypes.FLOAT} monitor_text = "URL FORMAT: https://api.polygon.io/v2/aggs/ticker/{TICKER}/prev?apiKey={APIKEY}; \nGo to https://polygon.io/docs/get_v1_meta_symbols__stocksTicker__news_anchor for more info" class PolygonStockAPIMonitor(Monitor): def _mapper(self): return {'PreviousClosingPrice': self._price_check} def _price_check(self, func, val): try: r = requests.get(self.src) if r.status_code == 200: stock_json = r.json() closing_price = stock_json['results'][0]['c'] return func(closing_price, val), closing_price except Exception: raise ValueError def start(trigger): monitor = PolygonStockAPIMonitor(trigger) monitor.run()
YuHanjiang/IFTTT-backend
Monitors/PolygonStockAPIMonitor.py
PolygonStockAPIMonitor.py
py
881
python
en
code
1
github-code
6
41996069005
import logging import platform import sys import json from getpass import getpass from pathlib import Path from typing import Union, Dict, Tuple from shapely.geometry import Polygon import os import couchdb import xmltodict from lxml import etree from tqdm import tqdm from geojson_rewind import rewind logging.basicConfig(level="INFO") log = logging.getLogger(__name__) def getBbox(coordinateList): """ input: list of lon/lat coordinate pairs for CAP polygon as [[lat,lon],[lat,log],...] output: two points defining the bounding box as [lon,lat,lon,lat] """ return list(Polygon(coordinateList).bounds) class CapToDB: def __init__(self): self._xmlschema = Path("cap_v1.2_schema.xml").read_text() self._xml_validator = None # set at first usage def run(self, path: Union[str, Path], db_warnings: couchdb.client.Database, db_incidents: couchdb.client.Database): """Run conversion and upload to db for all xml files in path Args: path: Path to xml files to be stored in DB db_warnings: CouchDB database to store warnings db_incidents: CouchDB database to store incident (number / names) """ capdir = Path(path) for fn in tqdm(list(capdir.glob("**/METfare*.xml"))): dic = self.xml_to_dict(fn) warning, incident = self.map_dict(dic) try: log.debug("\n\nSaving to warnings DB for fn: %s", fn) log.debug("content %s", warning) id = warning["_id"] if id in db_warnings: print(id, "**** already exists, deleting") db_warnings.delete(db_warnings[id]) else: try: warning['source'] = f'lustre_archive,{fn.name}' with open(f'{warning["_id"]}.geojson', 'w') as file: file.write(json.dumps(warning)) file.close() # fh = open(f'{warning["_id"]}.geojson', 'w') # fh.write(warning) # fh.close(); except Exception as e: print(e) db_warnings.save(warning) log.debug("upload attachment") db_warnings.put_attachment(warning, fn.read_bytes(), fn.name) except couchdb.http.ResourceConflict: log.exception("Could not update for %s. See log.", fn.name) pass # store incident number & update name, if available # if incident is None: # log.debug("No incident info") # continue # saved_entry = db_incidents.get(incident["_id"]) # if saved_entry is None: # log.debug("Creating incidents database") # db_incidents.save(incident) # elif "name" not in saved_entry and "name" in incident: # log.debug("Updating incidents database") # saved_entry.update(incident) # db_incidents.save(saved_entry) # else: # log.debug("Entry in db_incident exists already. No changes.") def xml_to_dict(self, fn: Union[Path, str]) -> Dict: """Convert xml to dictionary. Args: fn: Input filename """ string = Path(fn).read_text() try: self.validate(string) except etree.XMLSyntaxError as e: log.warning("fn: %s is not a valid xml: %s.", fn, e) return xmltodict.parse(string) def validate(self, string: str) -> None: """Validates xml string against schema. Args: string: String to be validated. Raises: lxml.etree.XMLSyntaxError: If string is not a valid according to the provided schema """ if self._xml_validator is None: log.debug("Attempt to process xml schema") schema_root = etree.XML(self._xmlschema.encode()) schema = etree.XMLSchema(schema_root) self._xml_validator = etree.XMLParser(schema=schema) log.info("Processed xml schema") etree.fromstring(string.encode(), self._xml_validator) def map_dict(self, event: Dict) -> Tuple[Dict, Union[None, Dict]]: """Maps xml-dict to DB keys Results: warning: Information for warnings DB incident: Information for incidents DB. None if no incident number. """ warning = {} alert = event['alert'] info = self.single_lang_evt_from_cap(alert) # Variable keys # format: "partition:name" # warning["_id"] = f'metfare:{alert["identifier"]}' warning["_id"] = f'{alert["identifier"]}' warning["saved_at"] = alert["sent"] warning["transmitted_at"] = alert["sent"] warning["onset"] = info["onset"] warning["expires"] = info["expires"] warning["phenomenon"] = info["eventCode"]["value"] # Info may not exist if "incidents" in alert: warning["incident"] = alert["incidents"] # Fixed keys: warning["archived"] = True warning["author"] = f"{os.path.basename(__file__)}@met.no" # warning["author"] = f"{__file__}@{platform.node()}" warning["transmission_state"] = "transmitted" warning["source"] = "lustre_archive" # new keys warning["status"] = alert["status"] if "references" in warning: warning["references"] = alert["references"] warning["certainty"] = info["certainty"] warning["severity"] = info["severity"] warning["msgType"] = alert["msgType"] warning["altitude"] = info["area"]["altitude"] warning["ceiling"] = info["area"]["ceiling"] warning["areaDesc"] = { "en": info["area"]["areaDesc"], "nb": info["area"]["areaDesc"], } warning["type"] = "FeatureCollection" orig_polygon = info["area"]["polygon"].split() polygon = [] for coor in orig_polygon: lon, lat = coor.split(",") polygon.append((float(lat), float(lon))) coordinates = [ polygon, ] geometry = { "type": "Polygon", "coordinates": coordinates, } bbox = getBbox(coordinates[0]) feature = { "geometry": geometry, "type": "Feature", "properties": {"customArea": False, "bbox": bbox}, } feature = rewind(feature) warning["features"] = [feature,] # warning["color"] # warning["ref_by"] # keys that are not relevant: # "transmitted_at", "drafted_at", "author" # incident-info incident = None if "incidents" in alert: incident = {} incident["_id"] = warning["incident"].zfill(10) for parameter in info["parameter"]: if parameter["valueName"] == "incidentName": incident["name"] = parameter["value"] return warning, incident def single_lang_evt_from_cap(self, evt: Dict, lang="no") -> Dict: """Gets `events` of one language from mutlilang-CAP file""" evt_no = evt["info"][0] if evt_no["language"].lower() != lang: raise ValueError("CAPs XML file scheme must have changed") for evt_other_lang in evt["info"][1:]: if evt_other_lang["language"] == lang: raise ValueError("CAPs XML file scheme must have changed") return evt_no def save_incident(self, event: Dict): alert = event['alert'] info = self.single_lang_evt_from_cap(alert) if __name__ == "__main__": user = input("user:") password = getpass("password:") couch = couchdb.Server("http://%s:%[email protected]:5984/" % (user, password)) captodb = CapToDB() path = "test_data" if len(sys.argv) == 1 else sys.argv[1] # captodb.run(path, couch["archive_warnings"], couch["archive_incidents"]) # captodb.run(path, couch["junk-warnings"], couch["junk-incidents"]) captodb.run(path, couch["jjw"], couch["jji"]) # captodb.run(path, couch["warnings"], couch["incidents"])
metno/weamyl-metcap
scripts/lustre_archive_importer.py
lustre_archive_importer.py
py
8,431
python
en
code
0
github-code
6
4406242971
import random def max_lenght_of_sub_array_with_sum0(arr, k): if arr is None or len(arr) == 0 or k <= 0: return 0 ans = 0 for i in range(len(arr)): for j in range(i, len(arr)): if k == sum(arr[i:j+1]): ans = max(ans, j-i+1) return ans def max_lenght_of_sub_array_with_sum1(arr, k): if arr is None or len(arr) == 0 or k <= 0: return 0 left, right = 0, 0 current = arr[0] ans = 0 while right < len(arr): if current == k: ans = max(ans, right-left+1) current -= arr[left] left += 1 elif current < k: right += 1 if right != len(arr): current += arr[right] else: current -= arr[left] left += 1 return ans def test(count, maxval): arr = [random.randint(1, maxval) for _ in range(count)] total = sum(arr) for k in range(total+1): ans0 = max_lenght_of_sub_array_with_sum0(arr, k) ans1 = max_lenght_of_sub_array_with_sum1(arr, k) assert(ans0 == ans1) if __name__ == '__main__': test(10, 10) test(10, 100) test(100, 10)
guzhoudiaoke/data_structure_and_algorithms
coding_interview_guide/8_array_and_matrix/10/10.py
10.py
py
1,186
python
en
code
0
github-code
6
4915045825
def sum_diagonal(data): data = sum([int(i) for i in data]) return data n = int(input()) matrix = [input().split(", ") for _ in range(n)] first_diagonal = [matrix[row_index][col_index] for row_index in range(len(matrix)) for col_index in range(len(matrix[row_index])) if row_index == col_index] second_diagonal = [matrix[row_index][col_index] for row_index in range(len(matrix)) for col_index in range(len(matrix[row_index])) if row_index + col_index == len(matrix) - 1] print(f"First diagonal: {', '.join(first_diagonal)}. Sum: {sum_diagonal(first_diagonal)}") print(f"Second diagonal: {', '.join(second_diagonal)}. Sum: {sum_diagonal(second_diagonal)}")
M0673N/Python-Advanced
04_comprehensions/exercise/05_problem.py
05_problem.py
py
703
python
en
code
0
github-code
6
25146242563
import numpy as np import netCDF4 as nd import matplotlib.pyplot as plt from calc_irr import * def get_sample_points(origin, dir , ns=10): gps = np.zeros((origin.shape[0],dir.shape[0])) gps[0] = np.tan(dir/180.*np.pi) * origin[2] + origin[0] gps[1,:] = origin[1]*1 gps[2,:] = 0 ds = np.linspace(0,1,ns) v = np.zeros((ds.shape[0],origin.shape[0],dir.shape[0])) v = np.reshape(origin,(1,origin.shape[0],1)) + (gps - np.reshape(origin,(origin.shape[0],1))) * np.reshape(ds,(ds.shape[0],1,1)) return v def get_boxindex(p,grid): dxi = np.array([grid[3],grid[4],grid[5]]) bounds = np.array([grid[0],grid[1],grid[2]]) index = np.zeros_like(p) try: for i in range(len(index)): index[i] = p[i]//grid[i+3] if index[i] < 0: index[i]+=grid[i] if index[i] > grid[i]-1: index[i] -= grid[i] except: for i in range(p.shape[0]): for xi in range(3): for k in range(p.shape[2]): index[i,xi,k] = p[i,xi,k]//dxi[xi] if index[i,xi,k] < 0: index[i,xi,k] += bounds[xi] if index[i,xi,k] > bounds[xi]-1: index[i,xi,k] -= bounds[xi] return index.astype(int) def get_e(p,grid,fpath="job_0.183435_36.600028/mc.flx.spc.nc"): edirs = nd.Dataset(fpath,'r') Edir = np.zeros(p.shape[1]) Edown = np.zeros(p.shape[1]) Eup = np.zeros(p.shape[1]) for I in range(p.shape[1]): i,j,k = get_boxindex(p[:,I],grid) Edir[I] = edirs["Edir"][j,i,k,:] Edown[I] = edirs["Edown"][j,i,k,:] Eup[I] = edirs["Eup"][j,i,k,:] edirs.close() return Edir,Edown,Eup def get_rad(p,grid): Eup = np.zeros(p.shape[1]) Edown = np.zeros_like(Eup) Eu,Ed = calc_Es(UMUS,PHIS,wumu,wphi,"mc.rad.spc.nc","radiance") for I in range(p.shape[1]): i,j,k = get_boxindex(p[:,I],grid) Eup[I] = Eu["radiance"][j,i,k,:] Edown[I] = Ed["radiance"][j,i,k,:] return Eup,Edown UMUS = np.loadtxt("input_params.txt",dtype=str, max_rows=1) PHIS = np.loadtxt("input_params.txt",dtype=str,skiprows=1, max_rows=1) wumu = np.loadtxt("numus.txt", skiprows=1, max_rows=1) wphi = np.loadtxt("nphis.txt", skiprows=1, max_rows=1) Nx,Ny,dx,dy = np.loadtxt("input_params.txt", skiprows = 6, max_rows=1) Zlev = np.loadtxt("input_params.txt", skiprows = 4, max_rows=1) Nz = 2 #Zlev.shape[0] dz = 1 sza = np.loadtxt("input_params.txt", skiprows = 2, max_rows=1) mu = np.cos(sza/180.*np.pi) albedo = 0.2 grid = np.array([Nx,Ny,Nz,dx,dy,dz]) cloudx = np.array([3,4]) cloudy = np.array([0]) cloudz = np.array([0,1]) camerapos = np.array([1.5,0.01,2]) camerafov = 90. camerapixels = 90 pixeledges = np.linspace(-camerafov/2.,camerafov/2,camerapixels+1) pixelangles = (pixeledges[0:-1] + pixeledges[1:])/2. pixelvalues = np.zeros(pixelangles.shape) pixelground = get_sample_points(camerapos,pixelangles)[-1] Edir,Edown,Eup = get_e(pixelground,grid) #Eu,Ed = get_rad(pixelground,grid) # #pixelvalues = Edir * albedo / np.pi + Ed*albedo/np.pi #palt = Edir *albedo/np.pi + Edown*albedo/np.pi # #truth = nd.Dataset("job_panorama/mc.rad.spc.nc" , "r") Eu,Ed = calc_Es(UMUS,PHIS,wumu,wphi,"mc.rad.spc.nc","radiance") #fig,ax = plt.subplots(3,1) #ax[0].plot(np.arange(pixelvalues.shape[0]),pixelvalues,label="with Edown from radiances") #ax[1].plot(np.arange(palt.shape[0]),palt,label="with Edown from flx file") #ax[2].plot(np.arange(truth["radiance"][0,:,0,0].shape[0]),truth["radiance"][0,:,0,0], label="from mystic panorama") #ax[0].legend() #ax[1].legend() #ax[2].legend() # #plt.tight_layout() #plt.show()
MujkanovicMax/master-thesis
radiances/raytr.py
raytr.py
py
3,788
python
en
code
0
github-code
6
27103187909
"""Fedor's Upper Envelope algorithm. Based on the original MATLAB code by Fedor Iskhakov: https://github.com/fediskhakov/dcegm/blob/master/model_retirement.m """ from typing import Callable from typing import Dict from typing import List from typing import Tuple import numpy as np from dcegm.interpolation import linear_interpolation_with_extrapolation from scipy.optimize import brenth as root eps = 2.2204e-16 def upper_envelope( policy: np.ndarray, value: np.ndarray, exog_grid: np.ndarray, state_choice_vec: np.ndarray, params: Dict[str, float], compute_utility: Callable, ) -> Tuple[np.ndarray, np.ndarray]: """Runs the Upper Envelope algorithm and drops sub-optimal points. Calculates the upper envelope over the overlapping segments of the decision-specific value functions, which in fact are value "correspondences" in this case, where multiple solutions are detected. The dominated grid points are then eliminated from the endogenous wealth grid. Discrete choices introduce kinks and non-concave regions in the value function that lead to discontinuities in the policy function of the continuous (consumption) choice. In particular, the value function has a non-concave region where the decision-specific values of the alternative discrete choices (e.g. continued work or retirement) cross. These are referred to as "primary" kinks. As a result, multiple local optima for consumption emerge and the Euler equation has multiple solutions. Moreover, these "primary" kinks propagate back in time and manifest themselves in an accumulation of "secondary" kinks in the choice-specific value functions in earlier time periods, which, in turn, also produce an increasing number of discontinuities in the consumption functions in earlier periods of the life cycle. These discontinuities in consumption rules in period t are caused by the worker's anticipation of landing exactly at the kink points in the subsequent periods t + 1, t + 2, ..., T under the optimal consumption policy. Args: policy (np.ndarray): Array of choice-specific consumption policy of shape (2, n_grid_wealth). Position [0, :] of the arrays contain the endogenous grid over wealth M, and [1, :] stores the corresponding value of the (consumption) policy function c(M, d), for each time period and each discrete choice. value (np.ndarray): Array of choice-specific value function of shape (2, n_grid_wealth). Position [0, :] of the array contains the endogenous grid over wealth M, and [1, :] stores the corresponding value of the value function v(M, d), for each time period and each discrete choice. exog_grid (np.ndarray): 1d array of exogenous savings grid of shape (n_grid_wealth,). choice (int): The current choice. params (dict): Dictionary containing the model's parameters. compute_value (callable): Function to compute the agent's value. Returns: (tuple) Tuple containing - policy_refined (np.ndarray): Worker's *refined* (consumption) policy function of the current period, where suboptimal points have been dropped and the kink points along with the corresponding interpolated values of the policy function have been added. Shape (2, 1.1 * n_grid_wealth). - value_refined (np.ndarray): Worker's *refined* value function of the current period, where suboptimal points have been dropped and the kink points along with the corresponding interpolated values of the value function have been added. Shape (2, 1.1 * n_grid_wealth). """ n_grid_wealth = len(exog_grid) min_wealth_grid = np.min(value[0, 1:]) credit_constr = False if value[0, 1] <= min_wealth_grid: segments_non_mono = locate_non_concave_regions(value) else: # Non-concave region coincides with credit constraint. # This happens when there is a non-monotonicity in the endogenous wealth grid # that goes below the first point. # Solution: Value function to the left of the first point is analytical, # so we just need to add some points to the left of the first grid point. credit_constr = True expected_value_zero_wealth = value[1, 0] policy, value = _augment_grid( policy, value, state_choice_vec, expected_value_zero_wealth, min_wealth_grid, n_grid_wealth, params, compute_utility=compute_utility, ) segments_non_mono = locate_non_concave_regions(value) if len(segments_non_mono) > 1: _value_refined, points_to_add = compute_upper_envelope(segments_non_mono) index_dominated_points = find_dominated_points( value, _value_refined, significance=10 ) if credit_constr: value_refined = np.hstack( [np.array([[0], [expected_value_zero_wealth]]), _value_refined] ) else: value_refined = _value_refined policy_refined = refine_policy(policy, index_dominated_points, points_to_add) else: value_refined = value policy_refined = policy # Fill array with nans to fit 10% extra grid points, # as the true shape is unknown ex ante policy_refined_with_nans = np.empty((2, int(1.1 * n_grid_wealth))) value_refined_with_nans = np.empty((2, int(1.1 * n_grid_wealth))) policy_refined_with_nans[:] = np.nan value_refined_with_nans[:] = np.nan policy_refined_with_nans[:, : policy_refined.shape[1]] = policy_refined value_refined_with_nans[:, : value_refined.shape[1]] = value_refined return policy_refined_with_nans, value_refined_with_nans def locate_non_concave_regions( value: np.ndarray, ) -> List[np.ndarray]: """Locates non-concave regions. Find non-monotonicity in the endogenous wealth grid where a grid point to the right is smaller than its preceding point. Put differently, the value function bends "backwards". Non-concave regions in the value function are reflected by non-monotonous regions in the underlying endogenous wealth grid. Multiple solutions to the Euler equation cause the standard EGM loop to produce a "value correspondence" rather than a value function. The elimination of suboptimal grid points converts this correspondence back to a proper function. Args: value (np.ndarray): Array storing the choice-specific value function "correspondences". Shape (2, *n_endog_wealth_grid*), where *n_endog_wealth_grid* is of variable length depending on the number of kinks and non-concave regions in the value function. In the presence of kinks, the value function is a "correspondence" rather than a function due to non-concavities. Returns: (tuple) Tuple containing: - value_refined (np.ndarray): Array of shape (2, *n_grid_refined*) containing the *refined* choice-specific value functions, which means that suboptimal points have been removed from the endogenous wealth grid and the value function "correspondence". Furthermore, kink points and the corresponding interpolated values of the value function have been added. - points_to_add (np.ndarray): Array of shape (*n_kink_points*,) containing the kink points and corresponding interpolated values of the *refined* value function that have been added to ``value_refined``. *n_kink_points* is of variable length. - index_dominated_points (np.ndarray): Array of shape (*n_dominated_points*,) containing the indices of dominated points in the endogenous wealth grid, where *n_dominated_points* is of variable length. """ segments_non_mono = [] is_monotonic = value[0, 1:] > value[0, :-1] niter = 0 move_right = True while move_right: index_non_monotonic = np.where(is_monotonic != is_monotonic[0])[0] # Check if we are beyond the starting (left-most) point if len(index_non_monotonic) == 0: if niter > 0: segments_non_mono += [value] move_right = False break else: index_non_monotonic = min(index_non_monotonic) # left-most point part_one, part_two = _partition_grid(value, index_non_monotonic) segments_non_mono += [part_one] value = part_two # Move point of first non-monotonicity to the right is_monotonic = is_monotonic[index_non_monotonic:] niter += 1 return segments_non_mono def compute_upper_envelope( segments: List[np.ndarray], ) -> Tuple[np.ndarray, np.ndarray]: """Compute upper envelope and refines value function correspondence. The upper envelope algorithm detects suboptimal points in the value function correspondence. Consequently, (i) the suboptimal points are removed and the (ii) kink points along with their corresponding interpolated values are included. The elimination of suboptimal grid points converts the value correspondence back to a proper function. Applying both (i) and (ii) yields the refined endogenous wealth grid and the *refined* value function. Args: segments (List[np.ndarray]): List of non-monotonous segments in the endogenous wealth grid, which results in non-concavities in the corresponding value function. The list contains n_non_monotonous np.ndarrays of shape (2, *len_non_monotonous*), where *len_non_monotonous* is of variable length denoting the length of the given non-monotonous segment. Returns: (tuple) Tuple containing: - points_upper_env_refined (np.ndarray): Array containing the *refined* endogenous wealth grid and the corresponding value function. *refined* means suboptimal points have been dropped and the kink points along with the corresponding interpolated values of the value function have beend added. Shape (2, *n_grid_refined*), where *n_grid_refined* is the length of the *refined* endogenous grid. - points_to_add (np.ndarray): Array containing the kink points and corresponding interpolated values of the value function that have been added to ``points_upper_env_refined``. Shape (2, *n_intersect_points*), where *n_intersect_points* is the number of intersection points between the two uppermost segments (i.e. ``first_segment`` and ``second_segment``). """ endog_wealth_grid = np.unique( np.concatenate([segments[arr][0] for arr in range(len(segments))]) ) values_interp = np.empty((len(segments), len(endog_wealth_grid))) for i, segment in enumerate(segments): values_interp[i, :] = linear_interpolation_with_inserting_missing_values( x=segment[0], y=segment[1], x_new=endog_wealth_grid, missing_value=-np.inf, ) # values_interp has in each row the corresponding values of the upper curve # in the overlapping seg max_values_interp = np.tile(values_interp.max(axis=0), (3, 1)) # need this below top_segments = values_interp == max_values_interp[0, :] grid_points_upper_env = [endog_wealth_grid[0]] values_upper_env = [values_interp[0, 0]] intersect_points_upper_env = [] values_intersect_upper_env = [] move_right = True while move_right: # Index of top segment, starting at first (left-most) grid point index_first_segment = np.where(top_segments[:, 0])[0][0] for i in range(1, len(endog_wealth_grid)): index_second_segment = np.where(top_segments[:, i] == 1)[0][0] if index_second_segment != index_first_segment: first_segment = index_first_segment second_segment = index_second_segment first_grid_point = endog_wealth_grid[i - 1] second_grid_point = endog_wealth_grid[i] values_first_segment = ( linear_interpolation_with_inserting_missing_values( x=segments[first_segment][0], y=segments[first_segment][1], x_new=np.array([first_grid_point, second_grid_point]), missing_value=np.nan, ) ) values_second_segment = ( linear_interpolation_with_inserting_missing_values( x=segments[second_segment][0], y=segments[second_segment][1], x_new=np.array([first_grid_point, second_grid_point]), missing_value=np.nan, ) ) if np.all( np.isfinite( np.vstack([values_first_segment, values_second_segment]) ) ) and np.all(np.abs(values_first_segment - values_second_segment) > 0): intersect_point = root( _subtract_values, first_grid_point, second_grid_point, args=( segments[first_segment], segments[second_segment], ), ) value_intersect = ( linear_interpolation_with_inserting_missing_values( x=segments[first_segment][0], y=segments[first_segment][1], x_new=np.array([intersect_point]), missing_value=np.nan, )[0] ) values_all_segments = np.empty((len(segments), 1)) for segment in range(len(segments)): values_all_segments[ segment ] = linear_interpolation_with_inserting_missing_values( x=segments[segment][0], y=segments[segment][1], x_new=np.array([intersect_point]), missing_value=-np.inf, )[ 0 ] index_max_value_intersect = np.where( values_all_segments == values_all_segments.max(axis=0) )[0][0] if (index_max_value_intersect == first_segment) | ( index_max_value_intersect == second_segment ): # There are no other functions above grid_points_upper_env.append(intersect_point) values_upper_env.append(value_intersect) intersect_points_upper_env.append(intersect_point) values_intersect_upper_env.append(value_intersect) if second_segment == index_second_segment: move_right = False # Add point if it lies currently on the highest segment if ( any(abs(segments[index_second_segment][0] - endog_wealth_grid[i]) < eps) is True ): grid_points_upper_env.append(endog_wealth_grid[i]) values_upper_env.append(max_values_interp[0, i]) index_first_segment = index_second_segment points_upper_env_refined = np.empty((2, len(grid_points_upper_env))) points_upper_env_refined[0, :] = grid_points_upper_env points_upper_env_refined[1, :] = values_upper_env points_to_add = np.empty((2, len(intersect_points_upper_env))) points_to_add[0] = intersect_points_upper_env points_to_add[1] = values_intersect_upper_env return points_upper_env_refined, points_to_add def find_dominated_points( value_correspondence: np.ndarray, value_refined: np.ndarray, significance: int = 10, ) -> np.ndarray: """Returns indexes of dominated points in the value function correspondence. Equality is measured up to 10**(-``significance``). Args: value_correspondence (np.ndarray): Array storing the choice-specific value function correspondences. Shape (2, n_endog_wealth_grid), where n_endog_wealth_grid is of variable length depending on the number of kinks and non-concave regions in the value function. In the presence of kinks, the value function is a correspondence rather than a function due to non-concavities. value_refined (np.ndarray): Array of refined value function, where suboptimal points have been dropped and kink points along with the corresponding interpolated values of the value function have been added. Shape (2, n_grid_refined), where n_grid_refined is the length of the refined endogenous grid. significance (float): Level of significance. Equality is measured up to 10**(-``significance``). Returns: index_dominated_points (np.ndarray): Array of shape (n_dominated_points,) containing the indices of dominated points in the endogenous wealth grid, where n_dominated_points is of variable length. """ sig_pos = 10**significance sig_neg = 10 ** (-significance) grid_all = np.round(value_correspondence[0, :] * sig_pos) * sig_neg grid_refined_sig = np.round(value_refined[0, :] * sig_pos) * sig_neg value_all = np.round(value_correspondence[1, :] * sig_pos) * sig_neg value_refined_sig = np.round(value_refined[1, :] * sig_pos) * sig_neg index_all = np.arange(len(grid_all)) index_dominated_points = np.union1d( index_all[~np.isin(grid_all, grid_refined_sig)], index_all[~np.isin(value_all, value_refined_sig)], ) return index_dominated_points def refine_policy( policy: np.ndarray, index_dominated_points: np.ndarray, points_to_add: np.ndarray ) -> np.ndarray: """Drop suboptimal points from policy correspondence and add new optimal ones. Args: points_to_add (np.ndarray): Array of shape (*n_kink_points*,), containing the kink points and corresponding interpolated values of the refined value function, where *n_kink_points* is of variable length. index_dominated_points (np.ndarray): Array of shape (*n_dominated_points*,) containing the indices of dominated points in the endogenous wealth grid, where *n_dominated_points* is of variable length. Returns: (np.ndarray): Array of shape (2, *n_grid_refined*) containing the *refined* choice-specific policy function, which means that suboptimal points have been removed from the endogenous wealth grid and the policy "correspondence". Furthermore, kink points and the corresponding interpolated values of the policy function have been added. """ # Remove suboptimal consumption points endog_wealth_grid = np.delete(policy[0, :], index_dominated_points) optimal_consumption = np.delete(policy[1, :], index_dominated_points) # Add new optimal consumption points new_points_policy_interp = [] for new_grid_point in range(len(points_to_add[0, :])): all_points_to_the_left = np.where( policy[0, :] < points_to_add[0, new_grid_point] )[0] all_points_to_the_right = np.where( policy[0, :] > points_to_add[0, new_grid_point] )[0] last_point_to_the_left = max( all_points_to_the_left[ ~np.isin(all_points_to_the_left, index_dominated_points) ] ) # Find (scalar) point interpolated from the left interp_from_the_left = linear_interpolation_with_extrapolation( x=policy[0, :][last_point_to_the_left : last_point_to_the_left + 2], y=policy[1, :][last_point_to_the_left : last_point_to_the_left + 2], x_new=points_to_add[0][new_grid_point], ) first_point_to_the_right = min( all_points_to_the_right[ ~np.isin(all_points_to_the_right, index_dominated_points) ] ) # Find (scalar) point interpolated from the right interp_from_the_right = linear_interpolation_with_extrapolation( x=policy[0, :][first_point_to_the_right - 1 : first_point_to_the_right + 1], y=policy[1, :][first_point_to_the_right - 1 : first_point_to_the_right + 1], x_new=points_to_add[0, new_grid_point], ) new_points_policy_interp += [ np.array( [ points_to_add[0, new_grid_point], interp_from_the_left, interp_from_the_right, ] ) ] # Insert new points into the endogenous wealth grid and consumption policy for to_add in range(len(new_points_policy_interp)): index_insert = np.where( endog_wealth_grid > new_points_policy_interp[to_add][0] )[0][0] # 1) Add new points to policy TWICE to accurately describe discontinuities endog_wealth_grid = np.insert( endog_wealth_grid, index_insert, new_points_policy_interp[to_add][0], ) endog_wealth_grid = np.insert( endog_wealth_grid, index_insert + 1, new_points_policy_interp[to_add][0] - 0.001 * 2.2204e-16, ) # 2a) Add new optimal consumption point, interpolated from the left optimal_consumption = np.insert( optimal_consumption, index_insert, new_points_policy_interp[to_add][1], ) # 2b) Add new optimal consumption point, interpolated from the right optimal_consumption = np.insert( optimal_consumption, index_insert + 1, new_points_policy_interp[to_add][2], ) policy_refined = np.stack([endog_wealth_grid, optimal_consumption]) # Make sure first element in endogenous wealth grid and optiomal consumption policy # are both 0. if policy_refined[0, 0] != 0.0: policy_refined = np.hstack([np.zeros((2, 1)), policy_refined]) return policy_refined def _augment_grid( policy: np.ndarray, value: np.ndarray, state_choice_vec: np.ndarray, expected_value_zero_wealth: np.ndarray, min_wealth_grid: float, n_grid_wealth: int, params, compute_utility: Callable, ) -> Tuple[np.ndarray, np.ndarray]: """Extends the endogenous wealth grid, value, and policy function to the left. Args: policy (np.ndarray): Array storing the choice-specific policy function. Shape (2, *n_endog_wealth_grid*), where *n_endog_wealth_grid* is of variable length depending on the number of discontinuities in the policy function. In the presence of discontinuities, the policy function is a "correspondence" rather than a function due to multiple local optima. value (np.ndarray): Array storing the choice-specific value function. Shape (2, *n_endog_wealth_grid*), where *n_endog_wealth_grid* is of variable length depending on the number of kinks and non-concave regions in the value function. In the presence of kinks, the value function is a "correspondence" rather than a function due to non-concavities. expected_value_zero_wealth (float): The agent's expected value given that she has a wealth of zero. min_wealth_grid (float): Minimal wealth level in the endogenous wealth grid. n_grid_wealth (int): Number of grid points in the exogenous wealth grid. params (dict): Dictionary containing the model's parameters. compute_value (callable): Function to compute the agent's value. Returns: policy_augmented (np.ndarray): Array containing endogenous grid and policy function with ancillary points added to the left. Shape (2, *n_grid_augmented*). value_augmented (np.ndarray): Array containing endogenous grid and value function with ancillary points added to the left. Shape (2, *n_grid_augmented*). """ grid_points_to_add = np.linspace(min_wealth_grid, value[0, 1], n_grid_wealth // 10)[ :-1 ] utility = compute_utility( consumption=grid_points_to_add, params=params, **state_choice_vec, ) values_to_add = utility + params["beta"] * expected_value_zero_wealth value_augmented = np.vstack( [ np.append(grid_points_to_add, value[0, 1:]), np.append(values_to_add, value[1, 1:]), ] ) policy_augmented = np.vstack( [ np.append(grid_points_to_add, policy[0, 1:]), np.append(grid_points_to_add, policy[1, 1:]), ] ) return policy_augmented, value_augmented def _partition_grid( value_correspondence: np.ndarray, j: int ) -> Tuple[np.ndarray, np.ndarray]: """Splits the grid into two parts, 1,..., j and j, j+1,..., J. Note that the index ``j``, after which the separation occurs, is also included in the second partition. Args: value_correspondence (np.ndarray): Array storing the choice-specific value function "correspondences". Shape (2, *n_endog_wealth_grid*), where *n_endog_wealth_grid* is of variable length depending on the number of kinks and non-concave regions in the value function. In the presence of kinks, the value function is a "correspondence" rather than a function due to non-concavities. j (int): Index denoting the location where the endogenous wealth grid is separated. Returns: part_one (np.ndarray): Array of shape (2, : ``j`` + 1) containing the first partition. part_two (np.ndarray): Array of shape (2, ``j``:) containing the second partition. """ j = min(j, value_correspondence.shape[1]) part_one = np.vstack( [ value_correspondence[0, : j + 1], # endogenous wealth grid value_correspondence[1, : j + 1], # value function ] ) # Include boundary points in both partitions part_two = np.vstack([value_correspondence[0, j:], value_correspondence[1, j:]]) return part_one, part_two def _subtract_values(grid_point: float, first_segment, second_segment): """Subtracts the interpolated values of the two uppermost segments.""" values_first_segment = linear_interpolation_with_extrapolation( x=first_segment[0], y=first_segment[1], x_new=grid_point ) values_second_segment = linear_interpolation_with_extrapolation( x=second_segment[0], y=second_segment[1], x_new=grid_point ) diff_values_segments = values_first_segment - values_second_segment return diff_values_segments def linear_interpolation_with_inserting_missing_values(x, y, x_new, missing_value): """Linear interpolation with inserting missing values. Args: x (np.ndarray): 1d array of shape (n,) containing the x-values. y (np.ndarray): 1d array of shape (n,) containing the y-values corresponding to the x-values. x_new (np.ndarray or float): 1d array of shape (m,) or float containing the new x-values at which to evaluate the interpolation function. missing_value (np.ndarray or float): Flat array of shape (1,) or float to set for values of x_new outside of the range of x. Returns: np.ndarray or float: 1d array of shape (m,) or float containing the new y-values corresponding to the new x-values. In case x_new contains values outside of the range of x, these values are set equal to missing_value. """ interpol_res = linear_interpolation_with_extrapolation(x, y, x_new) where_to_miss = (x_new < x.min()) | (x_new > x.max()) interpol_res[where_to_miss] = missing_value return interpol_res
OpenSourceEconomics/dcegm
tests/utils/upper_envelope_fedor.py
upper_envelope_fedor.py
py
28,814
python
en
code
15
github-code
6
14169799786
import random import numpy as np class Tablica: def __init__(self, size): self.size = size self.plansza = [[-1 for y in range(self.size)] for x in range(self.size)] self.generate() self.generate() self.nextLeft = self.plansza self.nextRight = self.plansza self.nextUp = self.plansza self.nextDown = self.plansza self.leftPoints = 0 self.rightPoints = 0 self.upPoints = 0 self.downPoints = 0 def generate(self): rand = random.randint(0, 15) while self.plansza[int(rand / self.size)][rand % self.size] != -1: rand = random.randint(0, self.size*self.size-1) self.plansza[int(rand / self.size)][rand % self.size] = 1 if random.randint(0, 9) != 0 else 2 def isNotFull(self): return any([any([x == -1 for x in el]) for el in self.plansza]) def print(self): for el in self.plansza: print([int(pow(2, x)) for x in el]) def move(self, movement): moved = True points = 0 if movement == 0 and self.plansza != self.nextLeft: self.plansza = self.nextLeft points = self.leftPoints self.clearPoints() # print("lewo") elif movement == 1 and self.plansza != self.nextRight: # print("Prawo") self.plansza = self.nextRight points = self.rightPoints self.clearPoints() elif movement == 2 and self.plansza != self.nextUp: self.plansza = self.nextUp points = self.upPoints self.clearPoints() elif movement == 3 and self.plansza != self.nextDown: self.plansza = self.nextDown points = self.downPoints self.clearPoints() else: moved = False return moved, points def clearPoints(self): self.leftPoints = 0 self.rightPoints = 0 self.upPoints = 0 self.downPoints = 0 def hasNext(self): self.nextLeft = [self.left(x) for x in self.plansza] self.nextRight = [self.right(x) for x in self.plansza] self.nextUp = np.array([self.left(x, "up") for x in np.array(self.plansza).T.tolist()]).T.tolist() self.nextDown = np.array([self.right(x, "down") for x in np.array(self.plansza).T.tolist()]).T.tolist() if self.plansza != self.nextLeft: # print("Istnieje ruch w lewo") return True if self.plansza != self.nextRight: # print("Istnieje ruch prawo") return True if self.plansza != self.nextUp: # print("Istnieje ruch w gore") return True if self.plansza != self.nextDown: # print("Istnieje ruch w dół") return True return False def left(self, x, direction="left"): result = [number for number in x if number != -1] while len(result) != len(x): result.append(-1) # print(result) for i in range(len(x) - 1): if result[i] == result[i + 1] and result[i] != -1: result[i] += 1 if direction == "up": self.upPoints += pow(2, result[i]) else: self.leftPoints += pow(2, result[i]) for j in range(i + 1, len(x) - 1): result[j] = result[j + 1] result[-1] = -1 return result def right(self, x, direction="right"): result = [number for number in x if number != -1] while len(result) != len(x): result.insert(0, -1) for i in range(len(x) - 1)[::-1]: if result[i] == result[i + 1] and result[i] != -1: result[i + 1] += 1 if direction == "down": self.downPoints += pow(2, result[i+1]) else: self.rightPoints += pow(2, result[i+1]) for j in range(1, i + 1)[::-1]: result[j] = result[j - 1] result[0] = -1 return result @staticmethod def up(x): return x @staticmethod def down(x): return x
tomasz-skrzypczyk/My2048
tablica.py
tablica.py
py
4,370
python
en
code
0
github-code
6
71484464508
N = int(input()) P = list(map(int, input().split())) max_point = sum(P) dp = [False] * (max_point + 1) dp[0] = True for p in P: dp_next = dp[:] for i in range(max_point): if dp[i]: dp_next[i+p] = True dp = dp_next[:] print(dp.count(True))
knuu/competitive-programming
atcoder/dp/tdpc_a.py
tdpc_a.py
py
260
python
en
code
1
github-code
6
17607810708
from calendar import c n = int(input("enter the number :")) r = 1 while r<=n: c = 1 while c<=r: print(chr(65+r+c+1)) c = c + 1 print() r = r+1
maheshyadav84481/Problem_solution_with_python_MAHESH_YADAV
abcd_reverse.py
abcd_reverse.py
py
162
python
en
code
0
github-code
6
26818962506
import json import urllib import requests import types class MovesAPIError(Exception): """Raised if the Moves API returns an error.""" pass class MovesAPINotModifed(Exception): """Raised if the document requested is unmodified. Need the use of etag header""" pass class MovesClient(object): """OAuth client for the Moves API""" api_url = "https://api.moves-app.com/api/1.1" app_auth_url = "moves://app/authorize" web_auth_uri = "https://api.moves-app.com/oauth/v1/authorize" token_url = "https://api.moves-app.com/oauth/v1/access_token" tokeninfo_url = "https://api.moves-app.com/oauth/v1/tokeninfo" refresh_url = "https://api.moves-app.com/oauth/v1/access_token" def __init__(self, client_id=None, client_secret=None, access_token=None, use_app=False): self.client_id = client_id self.client_secret = client_secret self.access_token = access_token self.auth_url = self.app_auth_url if use_app else self.web_auth_uri self.use_app = use_app self._last_headers = None def parse_response(self, response): """Parse JSON API responses.""" return json.loads(response.text) def build_oauth_url(self, redirect_uri=None, scope="activity location"): params = { 'client_id': self.client_id, 'scope': scope } if not self.use_app: params['response_type'] = 'code' if redirect_uri: params['redirect_uri'] = redirect_uri # Moves hates +s for spaces, so use %20 instead. encoded = urllib.urlencode(params).replace('+', '%20') return "%s?%s" % (self.auth_url, encoded) def get_oauth_token(self, code, **kwargs): params = { 'client_id': self.client_id, 'client_secret': self.client_secret, 'code': code, 'grant_type': kwargs.get('grant_type', 'authorization_code') } if 'redirect_uri' in kwargs: params['redirect_uri'] = kwargs['redirect_uri'] response = requests.post(self.token_url, params=params) response = json.loads(response.content) try: return response['access_token'], response['refresh_token'] except: error = "<%(error)s>: %(error_description)s" % response raise MovesAPIError(error) def refresh_oauth_token(self, refresh_token, **kwargs): params = { 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': refresh_token, 'grant_type': kwargs.get('grant_type', 'refresh_token') } response = requests.post(self.refresh_url, params=params) response = json.loads(response.content) try: return response['access_token'], response['refresh_token'] except: error = "<%(error)s>: %(error_description)s" % response raise MovesAPIError(error) def tokeninfo(self): params = { 'access_token': self.access_token } response = requests.get(self.tokeninfo_url, params=params) response = json.loads(response.content) try: return response except: error = "<%(error)s>: %(error_description)s" % response raise MovesAPIError(error) def api(self, path, method='GET', **kwargs): params = kwargs['params'] if 'params' in kwargs else {} data = kwargs['data'] if 'data' in kwargs else {} if not self.access_token and 'access_token' not in params: raise MovesAPIError("You must provide a valid access token.") url = "%s/%s" % (self.api_url, path) if 'access_token' in params: access_token = params['access_token'] del(params['access_token']) else: access_token = self.access_token headers = { "Authorization": 'Bearer ' + access_token } if 'etag' in params: headers['If-None-Match'] = params['etag'] del(params['etag']) resp = requests.request(method, url, data=data, params=params, headers=headers) if str(resp.status_code)[0] not in ('2', '3'): raise MovesAPIError("Error returned via the API with status code (%s):" % resp.status_code, resp.text) if resp.status_code == 304: raise MovesAPINotModifed("Unmodified") self._last_headers = resp.headers return resp def get(self, path, **params): return self.parse_response( self.api(path, 'GET', params=params)) def post(self, path, **data): return self.parse_response( self.api(path, 'POST', data=data)) def set_first_date(self): if not self.first_date: response = self.user_profile() self.first_date = response['profile']['firstDate'] def __getattr__(self, name): '''\ Turns method calls such as "moves.foo_bar(...)" into a call to "moves.api('/foo/bar', 'GET', params={...})" and then parses the response. ''' base_path = name.replace('_', '/') # Define a function that does what we want. def closure(*path, **params): 'Accesses the /%s API endpoints.' path = list(path) path.insert(0, base_path) return self.parse_response( self.api('/'.join(path), 'GET', params=params) ) # Clone a new method with the correct name and doc string. retval = types.FunctionType( closure.func_code, closure.func_globals, name, closure.func_defaults, closure.func_closure) retval.func_doc = closure.func_doc % base_path # Cache it to avoid additional calls to __getattr__. setattr(self, name, retval) return retval # Give Access to last attribute _move_client_status = ['etag', 'x-ratelimit-hourlimit', 'x-ratelimit-hourremaining', 'x-ratelimit-minutelimit', 'x-ratelimit-minuteremaining'] for att in _move_client_status: att = att.replace('-', '_') setattr(MovesClient, att, property(lambda self,att=att: self._last_headers.get(att, None) if self._last_headers else att))
lysol/moves
moves/_moves.py
_moves.py
py
6,546
python
en
code
58
github-code
6
14975435890
"""DuerOS entity class.""" from __future__ import annotations from dueros_smarthome.client import DeviceActionResponse from dueros_smarthome.const import STATUS_OK, STATUS_NOT_LOGIN from dueros_smarthome.models import Appliance, Connectivity from homeassistant.core import callback from homeassistant.exceptions import ConfigEntryAuthFailed, IntegrationError from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import DOMAIN, NAME, VERSION, LOGGER from .coordinator import DuerOSDataUpdateCoordinator, get_unique_id class DuerOSEntity(CoordinatorEntity): """DuerOSEntity class.""" def _set_unique_id(self) -> None: self._attr_unique_id = get_unique_id(self._appliance) def __init__( self, coordinator: DuerOSDataUpdateCoordinator, appliance: Appliance ) -> None: """Initialize.""" super().__init__(coordinator) self._attr_available = False self._attr_has_entity_name = True self._update(appliance) self._set_unique_id() self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, self.unique_id)}, name=NAME, model=VERSION, manufacturer=self._appliance.bot_name, ) def _update(self, appliance: Appliance): self._appliance = appliance self._attr_available = ( self._appliance.state_settings.connectivity.value == Connectivity.REACHABLE ) self._attr_name = self._appliance.friendly_name @callback def _handle_coordinator_update(self) -> None: self._update(self.coordinator.data[self.unique_id]) self.async_write_ha_state() @property def available(self) -> bool: return self._attr_available @staticmethod def _check_response(rsp: DeviceActionResponse) -> None: if STATUS_NOT_LOGIN == rsp.status: LOGGER.error(rsp.msg) raise ConfigEntryAuthFailed(rsp.msg) if STATUS_OK != rsp.status: LOGGER.error(rsp.msg) raise IntegrationError(rsp.msg)
zsy056/dueros-ha
custom_components/dueros/entity.py
entity.py
py
2,131
python
en
code
0
github-code
6
73340450429
import string import math # ---------------------------------------------------- # Parameters: None # Return: polybius_square (string) # Description: Returns the following polybius square # as a sequential string: # [1] [2] [3] [4] [5] [6] [7] [8] # [1] ! " # $ % & ' # [2] ( ) * + ' - . / # [3] 0 1 2 3 4 5 6 7 # [4] 8 9 : ; < = > ? # [5] @ A B C D E F G # [6] H I J K L M N O # [7] P Q R S T U V W # [8] X Y Z [ \ ] ^ _ # --------------------------------------------------- def get_polybius_square(): polybius_square = '' for i in range (32,96): char = str(chr(int(i))) polybius_square+= char return polybius_square # -------------------------------------------------------------- # Parameters: plaintext(string) # key (none) # Return: ciphertext (string) # Description: Encryption using Polybius Square # -------------------------------------------------------------- def e_polybius(plaintext, key): ciphertext = '' sqr = get_polybius_square() p = plaintext.split('\n') for plain in p: for i in plain: j = sqr.find(i.upper()) num = str(j+11+2*(j//8)) ciphertext+=str(num) if '8567' in ciphertext: print("newline found") ciphertext.replace('8567', '\n') ciphertext+='\n' return ciphertext # --------------------------------- # Problem 5 # # --------------------------------- # ------------------------------------------------------- # Parameters: ciphertext(string) # key (none) # Return: plaintext (string) # Description: Decryption using Polybius Square Cipher # Detects invalid ciphertext --> print error msg and return '' # Case 1: #of chars (other than \n) is not even # Case 2: the ciphertext contains non-numerical chars (except \n') # ------------------------------------------------------- def d_polybius(ciphertext, key): plaintext = '' sqr = get_polybius_square() text = ciphertext.split("\n") for x in text: x = x.strip() if len(x)%2!=0: print("Invalid ciphertext! Decryption Failed!") return '' if x.isdigit() or x==0: for i in range(0, len(x),2): s = int(x[i:i+2]) if s< 19: a = 0 elif s%10 > 5: a = 2*round((s-11)/11) else: a = 2*round((s-11)/10) asky = s-11-a char = sqr[asky] plaintext +=char plaintext += '\n' elif len(x)==0: plaintext+='\n' else: print("Invalid ciphertext! Decryption Failed!") return plaintext
shuaibr/Encryption-and-Security
Polybius Square Cipher.py
Polybius Square Cipher.py
py
3,099
python
en
code
0
github-code
6
72627151867
import sys import pandas as pd import pmd def get_system_info(csv_file, id): print('ID:', id) df = pd.read_csv(csv_file) row = df['ID'] == int(id) smiles = df.loc[row, 'SMILES'].item() smiles_solvent = df.loc[row, 'SMILES_solvent'].item() ratio = df.loc[row, 'Ratio'].item() return smiles, smiles_solvent, ratio if __name__ == '__main__': # Get system ID from command line argument try: system_id = sys.argv[1] except IndexError: print('System ID is not provided, please pass in ID as an argument') exit() # Get system-dependent parameters from the csv file try: system_info_csv = 'solvent_diffusivity.csv' smiles, solvent, ratio = get_system_info(system_info_csv, system_id) except FileNotFoundError: raise FileNotFoundError( 'Having trouble getting info from the csv file') system = pmd.SolventSystem(smiles=smiles, solvent_smiles=solvent, ru_nsolvent_ratio=ratio, density=0.8, natoms_total=5000, natoms_per_chain=150, builder=pmd.PSP(force_field='gaff2-am1bcc')) lmp = pmd.Lammps(read_data_from=system) lmp.add_procedure(pmd.Minimization()) lmp.add_procedure( pmd.Equilibration(Teq=300, Peq=1, Tmax=600, Pmax=49346.163)) lmp.add_procedure( pmd.NPT(Tinit=300, Tfinal=300, Pinit=1, Pfinal=1, duration=10000000, reset_timestep_before_run=True)) lmp.add_procedure( pmd.MSDMeasurement(T=300, group=system.solvent_group, create_block_every=10000000, duration=200000000, dump_image=True, reset_timestep_before_run=True)) job = pmd.Torque(run_lammps=lmp, jobname=system_id, project='GT-rramprasad3-CODA20', nodes=3, ppn=24, walltime='72:00:00') run = pmd.Pmd(system, lmp, job) run.create(system_id, save_config=True)
ritesh001/Polymer-Molecular-Dynamics
scripts/Solvent_diffusivity/mkinput_solvent.py
mkinput_solvent.py
py
2,301
python
en
code
0
github-code
6
2785491141
# 205. Isomorphic Strings # Input: s = "egg", t = "add" # Output: true # Input: s = "foo", t = "bar" # Output: False # Input: s = "paper", t = "title" # Output: true # I learn to solve this after watching a solution video. so cool! def isomorphic(s,t): dict1, dict2 = {},{} for i in range(len(s)): c1, c2 = s[i], t[i] if (c1 in dict1 and dict1[c1] != c2) or (c2 in dict2 and dict2[c2] != c1): return False dict1[c1] = c2 dict2[c2] = c1 return True # s= "paper" # t = "title" # s= "foo" # t="bar" s = "bbbaaaba" t = "aaabbbba" print(isomorphic(s,t))
Helenyixuanwang/algos
leet_205_isomorphicString.py
leet_205_isomorphicString.py
py
621
python
en
code
0
github-code
6
7605645692
#two dimensional nlist=['kumar','krihna priya','athul','Ravi'] deglist=['developer','tester','junior developer','HR'] salary=[54000,40000,30000,55000] emp={'name':nlist,'Designation':deglist,'Salary':salary} print(emp['name'][0]) lg=len(emp) print("Name,Designation,Salary") for j in range(lg): print(emp['name'][j],emp['Designation'][j],emp['Salary'][j]) a=12
sathu341/pythonWork
Pythonworks/dictionary_emp.py
dictionary_emp.py
py
378
python
en
code
0
github-code
6
6419648862
import time import mysql.connector as mysql try: datebase_sql = mysql.connect( host="database-1.cqpxsublkhcn.eu-central-1.rds.amazonaws.com", port=3306, user="user1", passwd="1Passw0rd1", database="QAP-05", ) except Exception as err: print(err) cursor = datebase_sql.cursor(dictionary=True) group_name = """( SELECT s.name, s.surname, g.name as group_name, l.book_title, l.return_date FROM students s LEFT JOIN library l ON s.id = l.student LEFT JOIN `groups` g ON s.id = g.id )""" cursor.execute(group_name) result_table = cursor.fetchall() count = 0 for students in result_table: if students["return_date"] != None: students["return_date"] = time.strftime( "%B %d, %Y", time.strptime(students["return_date"], "%Y-%m-%d") ) if students["return_date"] is None: students["return_date"] = "неизвестного времени" if students["book_title"] is None: students["book_title"] = "не брал книгу" if students["group_name"] is None: students["group_name"] = "нет информации" print( f"Студент {students['name']} {students['surname']} учится в группе {students['group_name']} и взял в библиотеке следующую книгу: {students['book_title']} до {students['return_date']} года" ) datebase_sql.commit() datebase_sql.close()
APOSHAml/My-pieces-of-code
Homework_26/test_sql.py
test_sql.py
py
1,500
python
en
code
0
github-code
6
74531247866
""" bst.py Student: P.K Buddhika Chaturanga Mail: [email protected] Reviewed by: Tom Smedsaas Date reviewed: 2021-110-03 """ from math import log2 from linked_list import LinkedList class BST: class Node: def __init__(self, key, left=None, right=None): self.key = key self.left = left self.right = right def __iter__(self): # Discussed in the text on generators if self.left: yield from self.left yield self.key if self.right: yield from self.right def __init__(self, root=None): self.root = root def __iter__(self): # Discussed in the text on generators if self.root: yield from self.root def insert(self, key): self.root = self._insert(self.root, key) def _insert(self, r, key): if r is None: return self.Node(key) elif key < r.key: r.left = self._insert(r.left, key) elif key > r.key: r.right = self._insert(r.right, key) else: pass # Already there return r def insertX(self, key): new_node = self.Node(key) x = self.root y = None while x is not None: # monitoring root y = x if key < x.key: x = x.left elif key > x.key: x = x.right else: break if y is None: # -> means tree is empty and new_node will be the root y = new_node self.root = y elif key < y.key: # -> means new_Node will be connected to to left side to current leaf node y.left = new_node else: y.right = new_node return y def print(self): self._print(self.root) def _print(self, r): if r: self._print(r.left) print(r.key, end=' ') self._print(r.right) def contains(self, k): n = self.root while n and n.key != k: if k < n.key: n = n.left else: n = n.right return n is not None def _containsX(self, n, k): if n and n.key == k: return True elif n is None: return False if k < n.key: n = n.left else: n = n.right return self._containsX(n, k) def containsX(self, k): n = self.root return self._containsX(n, k) def size(self): return self._size(self.root) def _size(self, r): if r is None: return 0 else: return 1 + self._size(r.left) + self._size(r.right) # experimental # def sizeX(self): # size = 0 # size += (1 for ele in self.root if ele.left or ele.right) # return size # # Methods to be completed # def _height(self, r): if r is None: return 0 else: return 1 + max(self._height(r.left), self._height(r.right)) def height(self): # Compulsory if self.root is None: return 0 r = self.root if r.left is None and r.right is None: return 1 return self._height(r) def remove(self, key): self.root = self._remove(self.root, key) def _remove(self, r, k): # Compulsory def smalleKeyNode(node): current = node while (current.left is not None): current = current.left return current if r is None: return None elif k < r.key: r.left = self._remove(r.left, k) elif k > r.key: r.right = self._remove(r.right, k) else: # This is the key to be removed if r.left is None: # Easy case return r.right elif r.right is None: # Also easy case return r.left else: # This is the tricky case. # Find the smallest key in the right subtree small_node = smalleKeyNode(r.right) # Put that key in this node r.key = small_node.key # Remove that key from the right subtree r.right = self._remove(r.right, small_node.key) return r # Remember this! It applies to some of the cases above def __str__(self): # Compulsory if self.root is None: return '<>' return '<' + ', '.join(str(ele) for ele in self) + '>' def to_list(self): # Compulsory if self.root is None: return [] lst = [ele for ele in self] return lst # complexity of the function below - Theta(n.log(n)) def to_LinkedList(self): # Compulsory lst = LinkedList() if self.root is None: return lst [lst.insert(ele) for ele in self] return lst def _ipl(self, r, lvl): if r == None: return 0 else : return lvl + self._ipl(r.left,lvl+1) + self._ipl(r.right,lvl+1) '''' r_cnt = 0 l_cnt = 0 if not (r.right or r.left): return 0 if r.left is not None: l_cnt += 1 l_cnt *= lvl l_cnt += self._ipl(r.left, lvl + 1) if r.right is not None: r_cnt += 1 r_cnt *= lvl r_cnt += self._ipl(r.right, lvl + 1) return r_cnt + l_cnt ''' def ipl(self): # Compulsory return self._ipl(self.root, 1) def random_tree(n): # Useful import random bst = BST() for x in range(n): bst.insert(random.random()) return bst ''' def fib(n): if n <= 1: return n, n else: return fib(n - 1)[0] + fib(n - 2)[0], n def multi_fib(fr=1, to=18): from concurrent import futures as f l = [i for i in range(fr, to + 1)] with f.ProcessPoolExecutor() as ex: results = ex.map(fib, l) d = dict() for value, key in results: d[key] = value print(d) return d ''' def main(): t = BST() for x in [4, 1, 3, 6, 7, 1, 1, 5, 8]: t.insertX(x) t.print() print() print('size : ', t.size()) for k in [0, 1, 2, 5, 9]: print(f"contains({k}): {t.containsX(k)}") n_nodes = [1, 2, 4, 8, 16, 32, 64, 128] cum_ipl = 0 for n in n_nodes: bst = random_tree(n) ipl = bst.ipl() est_ipl = round(1.39 * n * log2(n), 2) cum_ipl += ipl print("BST size : ", bst.size(), " BST height : ", bst.height(), " BST IPL : ", ipl, \ " BST [IPL/n] Avg : ", round(ipl / n, 2), " EST IPL : ", est_ipl, " IPL Δ: ", \ abs(round(ipl - est_ipl, 2)), " Cumulative IPL : ", cum_ipl) #multi_fib() if __name__ == "__main__": main() """ What is the generator good for? ============================== 1. computing size? 2. computing height? 3. contains? 4. insert? 5. remove? generator good for replacing iterator protocol ,hence its so efficient suitable for iterate through current BST Hence we can use it for Contains , computing height , computing Size, some cautions :- https://www.python.org/dev/peps/pep-0380/#optimisations Results for ipl of random trees =============================== # without O(n) operation - 1:39nlog2(n) Sample one - number of nodes - [1, 2, 4, 8, 16, 32, 64 , 128] BST size : 1 BST height : 1 BST IPL : 1 BST [IPL/n] Avg : 1.0 EST IPL : 0.0 IPL Δ: 1.0 Cumulative IPL : 1 BST size : 2 BST height : 2 BST IPL : 3 BST [IPL/n] Avg : 1.5 EST IPL : 2.78 IPL Δ: 0.22 Cumulative IPL : 4 BST size : 4 BST height : 3 BST IPL : 8 BST [IPL/n] Avg : 2.0 EST IPL : 11.12 IPL Δ: 3.12 Cumulative IPL : 12 BST size : 8 BST height : 4 BST IPL : 22 BST [IPL/n] Avg : 2.75 EST IPL : 33.36 IPL Δ: 11.36 Cumulative IPL : 34 BST size : 16 BST height : 8 BST IPL : 70 BST [IPL/n] Avg : 4.38 EST IPL : 88.96 IPL Δ: 18.96 Cumulative IPL : 104 BST size : 32 BST height : 8 BST IPL : 155 BST [IPL/n] Avg : 4.84 EST IPL : 222.4 IPL Δ: 67.4 Cumulative IPL : 259 BST size : 64 BST height : 11 BST IPL : 380 BST [IPL/n] Avg : 5.94 EST IPL : 533.76 IPL Δ: 153.76 Cumulative IPL : 639 BST size : 128 BST height : 16 BST IPL : 1132 BST [IPL/n] Avg : 8.84 EST IPL : 1245.44 IPL Δ: 113.44 Cumulative IPL : 1771 Sample Two number of nodes - [1, 2, 5, 7, 11, 13, 29, 47, 123] Prime nodes BST size : 1 BST height : 1 BST IPL : 1 BST [IPL/n] Avg : 1.0 EST IPL : 0.0 IPL Δ: 1.0 Cumulative IPL : 1 BST size : 2 BST height : 2 BST IPL : 3 BST [IPL/n] Avg : 1.5 EST IPL : 2.78 IPL Δ: 0.22 Cumulative IPL : 4 BST size : 5 BST height : 3 BST IPL : 11 BST [IPL/n] Avg : 2.2 EST IPL : 16.14 IPL Δ: 5.14 Cumulative IPL : 15 BST size : 7 BST height : 5 BST IPL : 20 BST [IPL/n] Avg : 2.86 EST IPL : 27.32 IPL Δ: 7.32 Cumulative IPL : 35 BST size : 11 BST height : 6 BST IPL : 43 BST [IPL/n] Avg : 3.91 EST IPL : 52.89 IPL Δ: 9.89 Cumulative IPL : 78 BST size : 13 BST height : 7 BST IPL : 61 BST [IPL/n] Avg : 4.69 EST IPL : 66.87 IPL Δ: 5.87 Cumulative IPL : 139 BST size : 29 BST height : 8 BST IPL : 137 BST [IPL/n] Avg : 4.72 EST IPL : 195.83 IPL Δ: 58.83 Cumulative IPL : 276 BST size : 47 BST height : 10 BST IPL : 280 BST [IPL/n] Avg : 5.96 EST IPL : 362.88 IPL Δ: 82.88 Cumulative IPL : 556 BST size : 123 BST height : 14 BST IPL : 890 BST [IPL/n] Avg : 7.24 EST IPL : 1186.96 IPL Δ: 296.96 Cumulative IPL : 1446 Machine - (Intel Corei7 Gen 11 Windows 11 x64) i > As experimentally shown above when number of numbers exponentially grows up the deviation between theoretical IPL - calculated IPL getting much deviated even without adding O(n) operation Bit of disagreement happens when the number of nodes goes too high. ii > height approximately twice of the value of (Average IPL/n ) h ≈ ipl/n """
bupa8694/programming2
Pyhton_Assignments/MA3/MA3/bst.py
bst.py
py
10,192
python
en
code
1
github-code
6
5734551584
from time import time start = time() def josephus(n): if n == 0: return False flag = n%2; counter = 0 index = n-1 people = [1]*n while True: if sum(people) == 1: return index%n #for pattern finding counter, flag, n] elif people[index%n] == 1: temp_index = (index%n)+1 while True: if people[temp_index%n] == 1: people[temp_index%n] = 0 break else: temp_index += 1 index += 1 if index%n == 0: counter += 1 pattern = [] for a in range(500): pattern.append((josephus(a), a)) print(pattern) print(time()-start)
wittwang98/Random
Josephus Problem.py
Josephus Problem.py
py
719
python
en
code
0
github-code
6
719390909
""" mcandecode.py MCAN Modul Modul zur Verwaltung, Analyse und Ersstellung von Maerklin CAN-Bus Meldungen Author: Rainer Maier-Lohmann --------------------------------------------------------------------------- "THE BEER-WARE LICENSE" (Revision 42): <[email protected]> wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day, and you think this stuff is worth it, you can buy me a beer in return. --------------------------------------------------------------------------- (c) 2020 """ from struct import unpack from os import linesep from .mcanmsgarray import McanMsgArray # ----------------------------------------------------------------------------- # Klasse zur Analyse eines Maerklin CANbus Datenframes # ----------------------------------------------------------------------------- class McanDecode(McanMsgArray): __commands = { 0 : 'System command' , 2 : 'MFX Discovery' , 4 : 'MFX Bind' , 6 : 'MFX Verify' , 8 : 'Loc speed' , 10 : 'Loc direction' , 12 : 'Loc function' , 14 : 'Loc read config' , 16 : 'Loc write config' , 22 : 'Equipment switch' , 34 : 'Track state' , 48 : 'Member ping' , 58 : 'Statusdata config' } __subcmds = { 0 : 'STOPP' , 1 : 'GO' , 2 : 'HALT' , 3 : 'Loc emergency stop' , 4 : 'Loc end cycle' , 9 : 'MFX new notifying counter' , 10 : 'SYSTEM OVERLOAD' , 11 : 'System status' , 48 : 'System ???' } __cmdType = { 0: 'command' , 1: 'response' } __directions={ 0 : 'remain' , 1 : 'forward' , 2 : 'backward' , 3 : 'switch' } __outFormat = ' {:15} {}' # 1 4 7 10 13 16 19 22 25 28 31 33 36 : Laenge: 37 # 0 3 6 9 12 15 18 21 24 27 30 32 35 # 00 00 cf 52 06 43 54 5a 86 30 01 00 00 # p cr hh hl dl d0 d1 d2 d3 d4 d5 d6 d7 def __init__(self, message): super().__init__(unpack('13B', message)) self.__command = self.getByte('cmdAndResp') & 0xfe self.__response = self.getByte('cmdAndResp') & 0x01 def decode(self): out = str(self) out += linesep out += self.__getFormatedOut('Msg-Type:', self.__cmdType[self.__response]) out += self.__getFormatedOut('Command:', self.__decodeCmd()) out += self.__getFormatedOut('DataLenCount:', self.getByte('dlc')) if self.__isValidCmd(): decodeFuncs = { 0 : self.__decodeCmd00 , 2 : self.__decodeCmd02 , 4 : self.__decodeCmd04 , 6 : self.__decodeCmd06 , 8 : self.__decodeCmd08 , 10 : self.__decodeCmd10 , 12 : self.__decodeCmd12 , 14 : self.__decodeCmd14 , 16 : self.__decodeCmd16 , 22 : self.__decodeCmd22 , 34 : self.__decodeCmd34 , 48 : self.__decodeCmd48 , 58 : self.__decodeCmd58 } out += decodeFuncs[self.__command]() return out def __isValidCmd(self): return self.__command in self.__commands.keys() def __isValidSubCmd(self): return self.getByte('d4') in self.__subcmds.keys() def __getFormatedOut(self, msg, val): return self.__outFormat.format(msg, val) + linesep def __getFormatedIdOut(self): deviceId = '{:02x}'.format(self.getByte('d0')) deviceId += ' {:02x}'.format(self.getByte('d1')) deviceId += ' {:02x}'.format(self.getByte('d2')) deviceId += ' {:02x}'.format(self.getByte('d3')) return self.__getFormatedOut('Device-ID:', deviceId) def __decodeCmd00(self): out = self.__getFormatedIdOut() if self.__isValidSubCmd(): subCmd = self.getByte('d4') subCmdB = self.getByte('d4').to_bytes(1, 'little') subCmdName = '{} ({}) {}'.format(subCmd, subCmdB.hex(), self.__subcmds[subCmd]) out += self.__getFormatedOut('Subcommand:',subCmdName) decodeFuncs = { 0 : self.__decodeCmd00Sub00 , 1 : self.__decodeCmd00Sub01 , 2 : self.__decodeCmd00Sub02 , 3 : self.__decodeCmd00Sub03 , 4 : self.__decodeCmd00Sub04 , 9 : self.__decodeCmd00Sub09 , 10 : self.__decodeCmd00Sub0a , 11 : self.__decodeCmd00Sub0b , 48 : self.__decodeCmd00Sub30 } out += decodeFuncs[subCmd]() else: out += self.__getFormatedOut('Subcommand:','{} ({}) unknown subcommand'.format(subCmd, subCmdB.hex())) return out def __decodeCmd00Sub00(self): return '' def __decodeCmd00Sub01(self): return '' def __decodeCmd00Sub02(self): return '' def __decodeCmd00Sub03(self): return '' def __decodeCmd00Sub04(self): return '' def __decodeCmd00Sub09(self): return self.__getFormatedOut('NN-counter:','{} {}'.format(self.getByte('d5') ,self.getByte('d6'))) def __decodeCmd00Sub0a(self): return self.__getFormatedOut('Chanel:',self.getByte('d5')) def __decodeCmd00Sub0b(self): return self.__getFormatedOut('Chanel:',self.getByte('d5')) def __decodeCmd00Sub30(self): return self.__getFormatedOut('Value:',self.getByte('d5')) def __decodeCmd02(self): out = '' if self.__dlc in [1,5,6]: decodeFuncs = { 1 : self.__decodeCmd02Dlc01 , 5 : self.__decodeCmd02Dlc05 , 6 : self.__decodeCmd02Dlc06 } out += decodeFuncs[self.__dlc]() else: out += self.__getFormatedOut('Subcommand:','unknown datalength for this subcommand') return out def __decodeCmd02Dlc01(self): out = '' if self.__d0 == 33: out += self.__getFormatedOut('Protocol:','MM2') else: if self.__d0 < 33: out += self.__getFormatedOut('Protocol:','MFX-ProgRail - {:02x}'.format(self.getByte('d0'))) else: out += self.__getFormatedOut('Protocol:','MFX-MainRail - {:02x}'.format(self.getByte('d0'))) return out def __decodeCmd02Dlc05(self): out = self.__getFormatedIdOut() if self.__d4 == 33: out += self.__getFormatedOut('Protocol:','MM2') else: if self.__d4 < 33: out += self.__getFormatedOut('Protocol:','MFX-ProgRail - {:02x}'.format(self.getByte('d4'))) else: out += self.__getFormatedOut('Protocol:','MFX-MainRail - {:02x}'.format(self.getByte('d4'))) return out def __decodeCmd02Dlc06(self): out = self.__decodeCmd02Dlc05() out += self.__getFormatedOut('Signal-Quality:',self.__bToHex(self.__d5)) return out def __decodeCmd04(self): out = self.__getFormatedIdOut() return out def __decodeCmd06(self): out = self.__getFormatedIdOut() return out def __decodeCmd08(self): out = self.__getFormatedIdOut() return out def __decodeCmd10(self): out = self.__getFormatedIdOut() return out def __decodeCmd12(self): out = self.__getFormatedIdOut() return out def __decodeCmd14(self): out = self.__getFormatedIdOut() return out def __decodeCmd16(self): out = self.__getFormatedIdOut() return out def __decodeCmd22(self): out = self.__getFormatedIdOut() out += self.__getFormatedOut('Position:', self.getByte('d4')) out += self.__getFormatedOut('Strom:', self.getByte('d5')) if self.getByte('dlc') == 8: out += self.__getFormatedOut('Schaltzeit:', '{} {}'.format(self.getByte('d6'), self.getByte('d7'))) return out def __decodeCmd34(self): out = self.__getFormatedIdOut() out += self.__getFormatedOut('device:', self.getByte('d0')*256 + self.getByte('d1')) out += self.__getFormatedOut('contact:', self.getByte('d2')*256 + self.getByte('d3')) out += self.__getFormatedOut('state(recent):', self.getByte('d4')) out += self.__getFormatedOut('state:', self.getByte('d5')) return out def __decodeCmd48(self): out = self.__getFormatedIdOut() if self.__response != 1: pass else: out += self.__getFormatedOut('SW-Version:', '{}.{}'.format(self.getByte('d4'), self.getByte('d5'))) out += self.__getFormatedOut('DB-Version:', '{}.{}'.format(self.getByte('d6'), self.getByte('d7'))) return out def __decodeCmd58(self): dlc = self.getByte('dlc') if dlc == 5 or dlc == 6: return self.__getFormatedIdOut() def __decodeCmd(self): out = '{0} ({0:02x}) - '.format(self.__command) if self.__isValidCmd(): out += self.__commands[self.__command] else: out += 'unknown command' return out
rml60/mcan
mcan/mcandecode.py
mcandecode.py
py
8,968
python
en
code
0
github-code
6
11630342993
import os """ The os functions that we are given are: os.path.getsize(path) os.path.isfile(path) os.listdir(path) os.path.join(path, filename) """ def disk_usage_tail_recursion(path, size_so_far=0): """ Tail recursion implementation of the disk usage function. """ size_so_far += os.path.getsize(path) # 1- base case if os.path.isfile(path): print('{0:<7}'.format(size_so_far), path) return size_so_far # 2- solve sub-problems step for child in os.listdir(path): child_path = os.path.join(path, child) size_so_far = disk_usage_tail_recursion(child_path, size_so_far) # 3- combine sub-solutions # no need print('{0:<7}'.format(size_so_far), path) return size_so_far if __name__ == '__main__': disk_usage_tail_recursion('/Users/junior/geekgap/Repos/geekgap_webinars')
geekgap-io/geekgap_webinars
geekgap_webinars/notebooks/webinar_2/disk_usage_tail_recursion.py
disk_usage_tail_recursion.py
py
863
python
en
code
1
github-code
6
24252533109
from phrase import Phrase import random class Game: def __init__(self): self.missed = 0 self.phrases = self.create_phrases() self.active_phrase = self.get_random_phrase() self.guesses = [] def create_phrases(self): phrases = [Phrase("Most things that never get done never get done because they never get started"), Phrase("Discipline equals freedom"), Phrase("Do what you can with all you have wherever you are"), Phrase("Get after it"), Phrase("Up and Rock and Roll")] return phrases def get_random_phrase(self): return random.choice(self.phrases) def welcome(self): print("="*60+""" *** WELCOME TO NIKOLAI'S MOTIVATIONAL PHRASE HUNTER 2020 *** """+"="*60, "\nRULES ===> You've got 5 tries to guess the phrase.\nPlease enter 1 letter at a time.\n") def get_guess(self): while True: user_guess = (input("Please enter a letter: ")).lower() if not user_guess.isalpha(): print("That's not a valid selection. Please enter a letter.") elif len(user_guess) != 1: print("Please enter one letter at a time.") else: return user_guess def start(self): self.welcome() self.active_phrase.display(self.guesses) while not self.missed >= 5: print(f"*** Number missed: {self.missed} *** \n") user_guess = self.get_guess() self.guesses.append(user_guess) if self.active_phrase.check_guess(user_guess): print("YAY!\n") self.active_phrase.display(self.guesses) if self.active_phrase.check_complete(self.guesses): print("CONGRATS! You win!\n") break if not self.active_phrase.check_guess(user_guess): self.missed += 1 print("\nBummer :(\n") if self.missed == 5: print("You lost. Please play again!\n")
Nikolai-O/python-techdegree-project3
game.py
game.py
py
2,068
python
en
code
0
github-code
6
16432205393
# IndicatosStrategy class IndicatorStrategy(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) self.SetEndDate(2021, 1, 1) self.SetCash(10000) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.sma = CustomSimpleMovingAverage("CustomSMA", 30) self.RegisterIndicator(self.spy, self.sma, Resolution.Daily) #self.sma = self.SMA(self.spy, 30, Resolution.Daily) # 30 perod Simple Moving Average #closing_prices = self.History(self.spy, 30, Resolution.Daily)['close'] # this get the simple moving average for the days before the start data so it would be ready from the begining #for time, price in closing_prices.loc[self.spy].items(): # self.sma.Update(time, price) def OnData(self, data): if not self.sma.IsReady: return # get historical data for 1 year hist = self.History(self.spy, timedelta(365), Resolution.Daily) low = min(hist["low"]) # get the low of that period high = max(hist["high"]) # get the maximun value of that period price = self.Securities[self.spy].Price # is the spy price is within 5% of the 365 day high and the price is above the simple moving average? if price * 1.05 >= high and self.sma.Current.Value < price: # if yest check if we have a open position if not self.Portfolio[self.spy].IsLong: # if you don't have open posittion invest 100% of the portfolio self.SetHoldings(self.spy, 1) # if the price is 5% of the low and the SMA is above the current price elif price * 0.95 <= low and self.sma.Current.Value > price: if not self.Portfolio[self.spy].IsShort: self.SetHoldings(self.spy, -1) else: self.Liquidate() self.Plot("Benchmark", "52w-High", high) self.Plot("Benchmark", "52w-low", low) self.Plot("Benchmark", "SMA", self.sma.Current.Value)
sotoblanco/QuantConnectTrading
IndicatosStrategy.py
IndicatosStrategy.py
py
2,046
python
en
code
0
github-code
6
75241220986
""" Author: Tyler Wagner Date Created: 7-21-23 Edited By: Tyler Van Pelt Edited On: 7-28-23 """ import tkinter as tk def draw_decision_tree(canvas, node, x, y, depth=0): if node is None: return # Draw the current node if node.attribute is not None and node.threshold is not None: node_size = 30 canvas.create_oval(x - node_size, y - node_size, x + node_size, y + node_size, fill="blue") text_x = x - 30 text_y = y - 10 # Convert node.threshold to float if it is numeric if node.threshold.replace('.', '', 1).isdigit(): node.threshold = float(node.threshold) canvas.create_text(text_x, text_y, text=f'Attr: {node.attribute}\nThresh: {node.threshold:.2f}', fill="black") else: canvas.create_text(text_x, text_y, text=f'Attr: {node.attribute}\nThresh: {node.threshold}', fill="black") if node.left is not None: x_left = x - 100 / (2 ** depth) y_left = y + 60 canvas.create_line(x, y, x_left, y_left, fill="red") draw_decision_tree(canvas, node.left, x_left, y_left, depth + 1) if node.right is not None: x_right = x + 100 / (2 ** depth) y_right = y + 60 canvas.create_line(x, y, x_right, y_right, fill="blue") draw_decision_tree(canvas, node.right, x_right, y_right, depth + 1) def display_results_window(predictions_test, predictions_new_data, root_node): window = tk.Tk() window.title("Decision Tree Results") canvas = tk.Canvas(window, width=800, height=600, bg="white") canvas.pack() # Test data predictions test_result_label = tk.Label(window, text="Predicted class labels for test data:") test_result_label.pack() test_results_var = tk.StringVar() test_results_var.set(predictions_test) test_results_label = tk.Label(window, textvariable=test_results_var) test_results_label.pack() # New data predictions new_data_result_label = tk.Label(window, text="Predicted class labels for new data:") new_data_result_label.pack() new_data_results_var = tk.StringVar() new_data_results_var.set(predictions_new_data) new_data_results_label = tk.Label(window, textvariable=new_data_results_var) new_data_results_label.pack() # Draw the decision tree draw_decision_tree(canvas, root_node, 400, 40) window.mainloop()
Tyler-Wagner/Programming-Assignment-2
GUI.py
GUI.py
py
2,389
python
en
code
0
github-code
6
6446901297
from telemetry.page import page as page_module from telemetry import story class StartedPage(page_module.Page): def __init__(self, url, startup_url, page_set): super(StartedPage, self).__init__( url=url, page_set=page_set, startup_url=startup_url) self.archive_data_file = 'data/startup_pages.json' def RunNavigateSteps(self, action_runner): action_runner.Wait(10) def RunPageInteractions(self, action_runner): self.RunNavigateSteps(action_runner) class StartupPagesPageSet(story.StorySet): """ Pages for testing starting Chrome with a URL. Note that this file can't be used with record_wpr, since record_wpr requires a true navigate step, which we do not want for startup testing. Instead use record_wpr startup_pages_record to record data for this test. """ def __init__(self): super(StartupPagesPageSet, self).__init__( archive_data_file='data/startup_pages.json', cloud_storage_bucket=story.PARTNER_BUCKET) # Typical page. self.AddStory(StartedPage('about:blank', 'about:blank', self)) # Typical page. self.AddStory(StartedPage('http://bbc.co.uk', 'http://bbc.co.uk', self)) # Horribly complex page - stress test! self.AddStory(StartedPage( 'http://kapook.com', 'http://kapook.com', self))
danrwhitcomb/Monarch
tools/perf/page_sets/startup_pages.py
startup_pages.py
py
1,298
python
en
code
5
github-code
6
25687467876
import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): def __init__(self, in_channel, out_channel, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channel) self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channel) self.shortcut = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channel) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResFeatureNet(nn.Module): def __init__(self): super().__init__() self.f1 = nn.Sequential( nn.Conv2d(1, 32, kernel_size=7, stride=1, padding=3), nn.BatchNorm2d(32), nn.ReLU()) self.res1 = BasicBlock(32, 64, stride=2) self.res2 = BasicBlock(64, 128, stride=2) self.res3 = BasicBlock(128, 128, stride=2) self.res4 = BasicBlock(128, 256, stride=2) # self.res5 = BasicBlock(512, 1024, stride=2) self.flatten = nn.Flatten() def forward(self, x): o = self.f1(x) o = self.res1(o) o = self.res2(o) o = self.res3(o) o = self.res4(o) # o = self.res5(o) o = self.flatten(o) return o class FeatureNet(nn.Module): def __init__(self): super(FeatureNet, self).__init__() self.f = nn.Sequential( nn.Conv2d(1, 24, kernel_size=7, stride=1, padding=3), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), nn.Conv2d(64, 96, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(96, 96, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(96, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), nn.Flatten(), # flatten directly without bottleneck ) def forward(self, x): out = self.f(x) return out class MetricNet(nn.Module): def __init__(self, in_dim=4096, hidden_size=512): super(MetricNet, self).__init__() self.fc = nn.Sequential( nn.Linear(in_dim * 2, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 2) ) def forward(self, x): return self.fc(x) class Projection(nn.Module): def __init__(self, in_dim=4096, hidden_size=1024): super(MetricNet, self).__init__() self.fc = nn.Sequential( nn.Linear(in_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size) ) def forward(self, x): return self.fc(x) if __name__ == "__main__": x = torch.randn(1, 1, 64, 64) # m = FeatureNet() m = ResFeatureNet() o = m(x) print(o.size()) from utils import cal_parameters print(cal_parameters(m))
p3i0t/task2
models.py
models.py
py
3,506
python
en
code
0
github-code
6
7170796324
# Answer to Apple and Orange # https://www.hackerrank.com/challenges/apple-and-orange/problem #!/bin/python3 import math import os import random import re import sys # Complete the countApplesAndOranges function below. def countApplesAndOranges(s, t, a, b, apples, oranges): apple, orange = 0, 0 for i in range(len(apples)): apples[i] += a for i in range(len(oranges)): oranges[i] += b for i in apples: if i >= s and i <= t: apple += 1 for i in oranges: if i >= s and i <= t: orange += 1 print(apple,orange,sep='\n') if __name__ == '__main__': st = input().split() s = int(st[0]) t = int(st[1]) ab = input().split() a = int(ab[0]) b = int(ab[1]) mn = input().split() m = int(mn[0]) n = int(mn[1]) apples = list(map(int, input().rstrip().split())) oranges = list(map(int, input().rstrip().split())) countApplesAndOranges(s, t, a, b, apples, oranges)
CompetitiveCode/hackerrank-python
Practice/Algorithms/Implementation/Apple and Orange.py
Apple and Orange.py
py
993
python
en
code
1
github-code
6
32197951073
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time driver=webdriver.Chrome(executable_path='./driver/chromedriver') driver.get('https://web.whatsapp.com/') input("please scan qr code and press any key to continue:") RM=driver.find_element_by_css_selector('span[title="Assignments & CT"]') RM.click() testinput=driver.find_element_by_xpath("/html/body/div/div[1]/div[1]/div[4]/div[1]/footer/div[1]/div[2]/div/div[1]/div/div[2]") time.sleep(10) testinput.send_keys("Hello friends") testinput.send_keys(Keys.RETURN)
AbhayPal005/Whatsaap-Automation-Using-Selenium
chrome_driver_windows.py
chrome_driver_windows.py
py
575
python
en
code
0
github-code
6
70064084669
from django.conf.urls import url from tests import views, exceptions urlpatterns = [ url(r'^snippets/$', views.SnippetList.as_view(), name='snippet-list'), url(r'^snippets2/$', views.SnippetList.as_view(), name='snippet2-list'), url(r'^snippet/(?P<pk>\d+)/$', views.SnippetDetail.as_view(), name='snippet-detail'), url(r'^server_error/$', exceptions.server_error, name='server-error'), url(r'^not_found/$', exceptions.not_found, name='not-found'), url(r'^method_not_allowed/$', exceptions.method_not_allowed, name='not-allowed'), url(r'^not_authenticated/$', exceptions.not_authenticated, name='not-authenticated'), ]
FutureMind/drf-friendly-errors
tests/urls.py
urls.py
py
673
python
en
code
129
github-code
6
26693503665
import pytorch_lightning as pl import pandas as pd import torch from torch import nn from torch.utils.data import DataLoader from sklearn.metrics import cohen_kappa_score from transformers import AutoTokenizer, RobertaForSequenceClassification from torch.utils.data import Dataset from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import (LearningRateMonitor, EarlyStopping, ModelCheckpoint, TQDMProgressBar) from pytorch_lightning import seed_everything import wandb import click def kappa(y, yhat): y = y.cpu().numpy() yhat = yhat.cpu().numpy() return cohen_kappa_score(y, yhat, weights="quadratic") class SmilesDataset(Dataset): def __init__(self, filename, load_labels=True ): self.load_labels = load_labels # Contains columns: Id, smiles, sol_category self.df = pd.read_csv(filename) self.smiles = (self.df["smiles"].values.tolist()) if self.load_labels: self.labels = self.df["sol_category"].values self.point_id = self.df["Id"].values # Need to override methods __len__ and __getitem__ def __len__(self): return self.df.shape[0] def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() smiles = self.smiles[idx] if "Id" in self.df.columns: ids = self.point_id[idx] if self.load_labels: labels = torch.as_tensor(self.labels[idx]) return smiles, labels, idx, ids else: return smiles, idx, ids else: if self.load_labels: labels = torch.as_tensor(self.labels[idx]) return smiles, labels, idx else: return smiles, idx class ChemBERTa(pl.LightningModule): def __init__(self, size, num_classes, data_dir, learning_rate=1e-3, batch_size=300, dropout=0.3, weights=True, file_template="split_{}.csv", ): super().__init__() # Define loss function: if weights: print("*** training with weighted loss ***") self.Loss = nn.CrossEntropyLoss(weight=torch.Tensor([0.9711, 0.9599, 0.068]), reduction='mean') else: print("*** training WITHOUT weights ***") self.Loss = nn.CrossEntropyLoss(reduction='mean') # Data loading variables self.num_workers = 4*torch.cuda.device_count() # 8 self.batch_size = batch_size # Data paths self.data_dir = data_dir self.train_file = file_template.format("train") self.valid_file = file_template.format("valid") self.test_file = "test.csv" # Model specific variables self.learning_rate = learning_rate # Define PyTorch model self.pretrained = "DeepChem/ChemBERTa-10M-MTR" #DeepChem/ChemBERTa-77M-MTR self.tokenizer = (AutoTokenizer. from_pretrained( self.pretrained )) self.model = (RobertaForSequenceClassification .from_pretrained( self.pretrained, num_labels=num_classes )) def forward(self, x): # define prediction/inference actions x = self.tokenizer(list(x), return_tensors="pt", padding=True) x = {key: x[key].to("cuda:0") for key in x.keys()} return self.model(**x).logits def training_step(self, batch, batch_idx): # define train loop x, y, idxs, p_ids = batch logits = self(x) loss = self.Loss(logits, y) self.log(f"train_loss", loss, on_epoch=True, on_step=False) return loss def validation_step(self, batch, batch_idx): x, y, idxs, p_ids = batch logits = self(x) pred = nn.Softmax(dim=1)(logits) pred = torch.argmax(pred, dim=1) kap = kappa(y, pred) self.log(f"valid_kappa", kap, on_epoch=True, on_step=False, prog_bar=True) def test_step(self, batch, batch_idx): x, idxs, p_ids = batch logits = self(x) pred = nn.Softmax(dim=1)(logits) pred = torch.argmax(pred, dim=1).cpu().numpy() return pd.DataFrame(list(zip(p_ids, pred))) def test_epoch_end(self, outputs): # Concat all test results print(outputs) all_outs = pd.concat(outputs) print(all_outs) all_outs.columns = ["Id", "pred"] all_outs.to_csv(f"Chemberta_train.csv", index=False) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) lr_scheduler = { "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer=optimizer, mode="max", factor=0.3, patience=1, cooldown=0, verbose=True ), "monitor": "valid_kappa" } return [optimizer], [lr_scheduler] def setup(self, stage=None): # Assign train/val datasets for use in dataloaders if stage == "fit" or stage is None: self.train_data = SmilesDataset(self.data_dir + self.train_file) self.val_data = SmilesDataset(self.data_dir + self.valid_file) # Assign test dataset for use in dataloader(s) if stage == "test" or stage is None: self.test_data = SmilesDataset(self.data_dir + self.test_file, load_labels=False) def train_dataloader(self): return DataLoader(self.train_data, batch_size=self.batch_size, num_workers=self.num_workers) def test_dataloader(self): return DataLoader(self.test_data, batch_size=2000, num_workers=self.num_workers) def val_dataloader(self): return DataLoader(self.val_data, batch_size=2000, num_workers=self.num_workers) ############################################################# @click.command() @click.option("--size", type=int, default=300) @click.option("--num_classes", type=int, default=3) @click.option("--max_epochs", type=int, default=50) @click.option("--data_dir", type=str, default="../../data/") @click.option("--learning_rate", type=float, default=1e-3) @click.option("--batch_size", type=int, default=30) @click.option("--weights", is_flag=True) def main(size, num_classes, max_epochs, data_dir, learning_rate, batch_size, weights=True ): """ Train and evaluate model """ seed = 0 seed_everything(seed, workers=True) wandb.init(project="solubility_prediction") model = ChemBERTa( size=size, num_classes=num_classes, data_dir=data_dir, learning_rate=learning_rate, batch_size=batch_size, weights=True ) wandb_logger = WandbLogger() wandb.watch(model) checkpoint_callback = ModelCheckpoint(dirpath="models/checkpoint/", filename="best", save_last=False, save_top_k=1, monitor="valid_kappa", mode="max") earlystop_callback = EarlyStopping(monitor="valid_kappa", mode="max", patience=3, min_delta=0.001, verbose=True) trainer = pl.Trainer( accelerator="auto", devices=1 if torch.cuda.is_available() else None, max_epochs=max_epochs, callbacks=[TQDMProgressBar(refresh_rate=5), LearningRateMonitor(logging_interval="epoch"), #earlystop_callback, checkpoint_callback, ], logger=wandb_logger, deterministic=True ) # Train trainer.fit(model) # Save model torch.save(model.state_dict(), 'models/checkpoint/last_weights.pth') # Test model trainer.test(ckpt_path="best") if __name__ == "__main__": main()
maltefranke/solubility_prediction
models/ChemBERTa/chemberta10M.py
chemberta10M.py
py
8,935
python
en
code
1
github-code
6
46046555266
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase from django.template import Template, Context from django.utils.html import mark_safe from hooks.templatehook import hook from hooks.templatetags.hooks_tags import template_hook_collect from . import utils_hooks class HookTagTest(TestCase): def setUp(self): self.hook_name = 'myhook' hook.unregister_all(self.hook_name) utils_hooks.myhook.unregister_all() def test_hook_tag(self): def func(context, *args, **kwargs): self.assertEqual(args, ("foobar", )) self.assertEqual(kwargs, {'bar': "bar", }) self.assertEqual(context['foo'], "foo") return "hello" hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' bar='bar' %}" ).render(Context({"hook_name": self.hook_name, "foo": "foo", })) self.assertEqual(out, u"hello") def test_hook_tag_many(self): """ Should join multiple responses """ def func_a(*args, **kwargs): return "hello" def func_b(*args, **kwargs): return "goodbye" hook.register(self.hook_name, func_a) hook.register(self.hook_name, func_b) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "hello\ngoodbye") def test_hook_tag_escaped(self): """ Should escape responses (if they are not marked as safe) """ def func(*args, **kwargs): return "<span>hello</span>" hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "&lt;span&gt;hello&lt;/span&gt;") def test_hook_tag_mark_safe(self): """ Should not escape safe strings """ def func(*args, **kwargs): return mark_safe("<span>hello</span>") hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "<span>hello</span>") def test_template_hook_collect(self): def func(context, *args, **kwargs): self.assertEqual(context, "context") self.assertEqual(args, ("foo", )) self.assertEqual(kwargs, {'extra': "bar", }) return "hello" utils_hooks.myhook.register(func) res = template_hook_collect(utils_hooks, 'myhook', "context", "foo", extra="bar") self.assertEqual(res, u"hello") res = template_hook_collect(utils_hooks, 'badhook') self.assertEqual(res, u"") def test_template_hook_collect_escaped(self): def func(*args, **kwargs): return "<span>hello</span>" utils_hooks.myhook.register(func) res = template_hook_collect(utils_hooks, 'myhook', "context", "foo", extra="bar") self.assertEqual(res, "&lt;span&gt;hello&lt;/span&gt;")
nitely/django-hooks
hooks/tests/tests_templatetags.py
tests_templatetags.py
py
3,337
python
en
code
16
github-code
6
9002769780
# -*- coding: utf-8 -*- """ Created on Tue Feb 26 10:21:15 2019 This is the modl with Keras framework @author: ago """ from __future__ import print_function from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy import stats from IPython.display import display, HTML from sklearn import metrics from sklearn.metrics import classification_report from sklearn import preprocessing from sklearn.model_selection import train_test_split import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Reshape from keras.layers import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.layers import LSTM # Set some standard parameters upfront pd.options.display.float_format = '{:.1f}'.format sns.set() # Default seaborn look and feel plt.style.use('ggplot') print('keras version ', keras.__version__) # Same labels will be reused throughout the program LABELS = ['Frequency','V RMS','I ph.angle','V ph.angle','I RMS'] # The number of steps within one time segment TIME_PERIODS = 80 # The steps to take from one segment to the next; if this value is equal to # TIME_PERIODS, then there is no overlap between the segments STEP_DISTANCE = 40 def read_data(file_path): columns = ['Time','value a','value b','label'] df = pd.read_csv(file_path, header=None, names=columns) # will show up as NAN df.dropna(axis=0, how='any', inplace=True) return df def convert_to_float(x): try: return np.float(x) except: return np.nan def show_basic_dataframe_info(dataframe): # Shape and how many rows and columns print('Number of columns in the dataframe: %i' % (dataframe.shape[1])) print('Number of rows in the dataframe: %i\n' % (dataframe.shape[0])) # Load data set containing all the data from csv df = verticalStack # Describe the data show_basic_dataframe_info(df) df.head(20) # Define column name of the label vector LABEL = 'label' # Transform the labels from String to Integer via LabelEncoder le = preprocessing.LabelEncoder() # Add a new column to the existing DataFrame with the encoded values df[LABEL] = le.fit_transform(df['label'].values.ravel()) RANDOM_SEED =50 N_TIME_STEPS = 200 N_FEATURES = 2 classes= 4 step = 1 segments = [] labels = [] for i in range(1, len(df) - N_TIME_STEPS, step): x1 = df['value a'].values[i: i + N_TIME_STEPS] x2 = df['value b'].values[i: i + N_TIME_STEPS] label = stats.mode(df['label'][i: i + N_TIME_STEPS])[0][0] segments.append([x1,x2]) labels.append(label) reshaped_segments = np.asarray(segments, dtype= np.float32).reshape(-1, N_TIME_STEPS, N_FEATURES) labels = np.asarray(pd.get_dummies(labels), dtype = np.float32) X_train, X_test, y_train, y_test = train_test_split(reshaped_segments, labels, test_size=0.2, random_state=RANDOM_SEED) print('x_train shape: ', X_train.shape) print( X_train.shape[0], 'training samples') print('y_train shape: ', y_train.shape) model = Sequential() model.add(LSTM(200, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.3)) # model.add(LSTM(70)) # model.add(Dropout(0.3)) model.add(Dense(classes)) callbacks_list = [ keras.callbacks.ModelCheckpoint( filepath='best_model.{epoch:02d}-{val_loss:.2f}.h5', monitor='val_loss', save_best_only=True), keras.callbacks.EarlyStopping(monitor='acc', patience=1) ] model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) # Hyper-parameters BATCH_SIZE = 1024 EPOCHS =10 # Enable validation to use ModelCheckpoint and EarlyStopping callbacks. history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=callbacks_list, validation_split=0.2, verbose=1) plt.figure(figsize=(6, 4)) plt.plot(history.history['acc'], 'r', label='Accuracy of training data') plt.plot(history.history['val_acc'], 'b', label='Accuracy of validation data') plt.plot(history.history['loss'], 'r--', label='Loss of training data') plt.plot(history.history['val_loss'], 'b--', label='Loss of validation data') plt.title('Model Accuracy and Loss') plt.ylabel('Accuracy and Loss') plt.xlabel('Training Epoch') plt.ylim(0) plt.legend() plt.show() def show_confusion_matrix(validations, predictions): matrix = metrics.confusion_matrix(validations, predictions) plt.figure(figsize=(6, 4)) sns.heatmap(matrix, cmap='coolwarm', linecolor='white', linewidths=1, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt='d') plt.title('Confusion Matrix') plt.ylabel('True Label') plt.xlabel('Predicted Label') plt.show() y_pred_test = model.predict(X_test) # Take the class with the highest probability from the test predictions max_y_pred_test = np.argmax(y_pred_test, axis=1) max_y_test = np.argmax(y_test, axis=1) show_confusion_matrix(max_y_test, max_y_pred_test) print(classification_report(max_y_test, max_y_pred_test))
Dirbas/PMU_classifier
Keras_PMU.py
Keras_PMU.py
py
5,451
python
en
code
2
github-code
6
12814349068
import itertools import matplotlib.pyplot as plt import numpy as np def get_mtot(event_jets): all_px = sum([j.px ** 2 for j in event_jets]) all_py = sum([j.py ** 2 for j in event_jets]) all_pz = sum([j.pz ** 2 for j in event_jets]) all_e = sum([j.e for j in event_jets]) if all_e ** 2 - all_px - all_py - all_pz >= 0: return (all_e ** 2 - all_px - all_py - all_pz) ** 0.5 else: raise Exception('Bad MTot: all_e=%d, all_px=%d, all_py=%d, all_pz=%d'.format(all_e, all_px, all_py, all_pz)) def get_mjj(event_jets): """ The 2 first jets are the leading jets :param event_jets: :return: The mjj for the 2 leading jets """ e = event_jets[0].e + event_jets[1].e px = event_jets[0].px + event_jets[1].px py = event_jets[0].py + event_jets[1].py pz = event_jets[0].pz + event_jets[1].pz return (e ** 2 - px ** 2 - py ** 2 - pz ** 2) ** 0.5 def get_mjj_all_pairs(event_jets): mjj_all_pairs = [] for pair in itertools.product(event_jets, repeat=2): (jo, jt) = pair e = jo.e + jt.e px = jo.px + jt.px py = jo.py + jt.py pz = jo.pz + jt.pz if (e ** 2 - px ** 2 - py ** 2 - pz ** 2) >= 0: mjj_all_pairs += [(e ** 2 - px ** 2 - py ** 2 - pz ** 2) ** 0.5] else: raise Exception('Bad Mjj: e=%d, px=%d, py=%d, pz=%d'.format(e, px, py, pz)) return mjj_all_pairs def get_lead_pt(event_jets): return event_jets[0].pt def get_nj(event_jets): return len(event_jets) def get_mht(event_jets, pt_cutoff=30, eta_cutoff=5): all_px = np.array([jet.px for jet in event_jets if (jet.pt > pt_cutoff and jet.eta < eta_cutoff)]) all_py = np.array([jet.py for jet in event_jets if (jet.pt > pt_cutoff and jet.eta < eta_cutoff)]) return sum(np.square(all_px) + np.square(all_py)) ** 0.5 def get_ht(event_jets, pt_cutoff=30, eta_cutoff=2.5): all_px = np.array([jet.px for jet in event_jets if (jet.pt > pt_cutoff and jet.eta < eta_cutoff)]) all_py = np.array([jet.py for jet in event_jets if (jet.pt > pt_cutoff and jet.eta < eta_cutoff)]) return sum(np.square(all_px) + np.square(all_py)) ** 0.5 def get_meff(event_jets): all_px = np.array([jet.px for jet in event_jets]) all_py = np.array([jet.py for jet in event_jets]) return sum(jet.pt for jet in event_jets) + (sum(np.square(all_px) + np.square(all_py)))**0.5 def plot_histogram(data, x_label, y_label, color='b'): plt.figure() plt.hist(data, bins=50, facecolor=color, alpha=0.2) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() def plot_scatter(x, y, x_label, y_label): plt.figure() plt.scatter(x, y) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() def get_m1(event_jets): jet1 = event_jets[0] return (jet1.e ** 2 - jet1.px ** 2 - jet1.py ** 2 - jet1.pz ** 2) ** 0.5 def get_m2(event_jets): jet2 = event_jets[1] return (jet2.e ** 2 - jet2.px ** 2 - jet2.py ** 2 - jet2.pz ** 2) ** 0.5 def get_m1_sub_m2(event_jets): return abs(get_m1(event_jets) - get_m2(event_jets))
rotemov/ML4Jets-HUJI
jupyter_methods.py
jupyter_methods.py
py
3,097
python
en
code
1
github-code
6