seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
43574733165
import os import unittest import re from unittest import mock import tempfile with mock.patch('cffi.FFI.dlopen', return_value=mock.MagicMock()): from geopmdpy.system_files import ActiveSessions, AccessLists, WriteLock # Patch dlopen to allow the tests to run when there is no build with mock.patch('cffi.FFI.dlopen', return_value=mock.MagicMock()): from geopmdpy.service import PlatformService from geopmdpy.service import TopoService class TestPlatformService(unittest.TestCase): def setUp(self): self._test_name = 'TestPlatformService' self._RUN_PATH = tempfile.TemporaryDirectory('{}_run'.format(self._test_name)) self._mock_active_sessions = mock.create_autospec(ActiveSessions) self._mock_active_sessions.get_clients.return_value = [] self._check_client_active_err_msg = "Injected error" self._mock_active_sessions.check_client_active.side_effect = \ RuntimeError(self._check_client_active_err_msg) # Until open_mock_session is called self._mock_access_lists = mock.create_autospec(AccessLists) self._mock_write_lock = mock.create_autospec(WriteLock) self._mock_write_lock.try_lock.return_value = None self._mock_write_lock.unlock.return_value = None with mock.patch('geopmdpy.system_files.ActiveSessions', return_value=self._mock_active_sessions), \ mock.patch('geopmdpy.system_files.AccessLists', return_value=self._mock_access_lists), \ mock.patch('geopmdpy.system_files.WriteLock', return_value=self._mock_write_lock): self._platform_service = PlatformService() self._platform_service._RUN_PATH = self._RUN_PATH.name self._platform_service._active_sessions._RUN_PATH = self._RUN_PATH.name self._session_file_format = os.path.join(self._RUN_PATH.name, 'session-{client_pid}.json') def tearDown(self): self._RUN_PATH.cleanup() def test_close_already_closed(self): # We already have two independent components with the session. client_pid = -999 self.open_mock_session('user_name', client_pid, True, 2) # 2 self._platform_service.close_session(client_pid) # 1 self._platform_service.close_session(client_pid) # 0 self._platform_service._active_sessions.check_client_active = mock.MagicMock(side_effect=RuntimeError) with self.assertRaises(RuntimeError): self._platform_service.close_session(client_pid) # error here def test_read_already_closed(self): # We already have two independent components with the session. client_pid = -999 self.open_mock_session('user_name', client_pid, True, 2) # 2 self._platform_service.close_session(client_pid) # 1 self._platform_service.close_session(client_pid) # 0 self._platform_service._active_sessions.check_client_active = mock.MagicMock(side_effect=RuntimeError) with self.assertRaises(RuntimeError): self._platform_service.read_signal(client_pid, 'CPU_FREQUENCY', 0, 0) # error here def test_get_signal_info(self): signals = ['energy', 'frequency', 'power'] descriptions = ['desc0', 'desc1', 'desc2'] domains = [0, 1, 2] infos = [(0, 0, 0), (1, 1, 1), (2, 2, 2)] expected_result = list(zip(signals, descriptions, domains)) for idx in range(len(expected_result)): expected_result[idx] = expected_result[idx] + infos[idx] with mock.patch('geopmdpy.pio.signal_description', side_effect=descriptions) as mock_desc, \ mock.patch('geopmdpy.pio.signal_domain_type', side_effect=domains) as mock_dom, \ mock.patch('geopmdpy.pio.signal_info', side_effect=infos) as mock_inf: signal_info = self._platform_service.get_signal_info(signals) self.assertEqual(expected_result, signal_info) calls = [mock.call(cc) for cc in signals] mock_desc.assert_has_calls(calls) mock_dom.assert_has_calls(calls) mock_inf.assert_has_calls(calls) def test_get_control_info(self): controls = ['fan', 'frequency', 'power'] descriptions = ['desc0', 'desc1', 'desc2'] domains = [0, 1, 2] expected_result = list(zip(controls, descriptions, domains)) with mock.patch('geopmdpy.pio.control_description', side_effect=descriptions) as mock_desc, \ mock.patch('geopmdpy.pio.control_domain_type', side_effect=domains) as mock_dom: control_info = self._platform_service.get_control_info(controls) self.assertEqual(expected_result, control_info) calls = [mock.call(cc) for cc in controls] mock_desc.assert_has_calls(calls) mock_dom.assert_has_calls(calls) def test_lock_control(self): err_msg = 'PlatformService: Implementation incomplete' with self.assertRaisesRegex(NotImplementedError, err_msg): self._platform_service.lock_control() def test_unlock_control(self): err_msg = 'PlatformService: Implementation incomplete' with self.assertRaisesRegex(NotImplementedError, err_msg): self._platform_service.unlock_control() def test_open_session_twice(self): self.open_mock_session('', active=True) def _gen_session_data_helper(self, client_pid, reference_count): signals_default = ['energy', 'frequency'] controls_default = ['controls', 'geopm', 'named', 'power'] watch_id = 888 session_data = {'client_pid': client_pid, 'reference_count': reference_count, 'mode': 'r', 'signals': signals_default, 'controls': controls_default, 'watch_id': watch_id} return session_data def open_mock_session(self, session_user, client_pid=-999, active=False, reference_count=1): session_data = self._gen_session_data_helper(client_pid, reference_count) client_pid = session_data['client_pid'] reference_count = session_data['reference_count'] watch_id = session_data['watch_id'] signals = session_data['signals'] controls = session_data['controls'] self._mock_active_sessions.is_client_active.return_value = active self._mock_active_sessions.get_controls.return_value = controls self._mock_active_sessions.get_signals.return_value = signals self._mock_active_sessions.get_reference_count.return_value = reference_count self._mock_active_sessions.get_watch_id.return_value = watch_id self._mock_active_sessions.get_batch_server.return_value = None self._mock_active_sessions.remove_client.return_value = session_data self._mock_access_lists.get_user_access.return_value = (signals, controls) with mock.patch('geopmdpy.system_files.AccessLists._get_user_groups', return_value=[]), \ mock.patch('geopmdpy.service.PlatformService._watch_client', return_value=watch_id): self._platform_service.open_session(session_user, client_pid) self._mock_active_sessions.is_client_active.assert_called_with(client_pid) if not active: self._mock_active_sessions.add_client.assert_called_with(client_pid, signals, controls, watch_id) self._mock_access_lists.get_user_access.assert_called() else: self._mock_active_sessions.add_client.assert_not_called() self._mock_active_sessions.check_client_active.side_effect = None # session is now active return session_data def test_open_session(self): self.open_mock_session('') def test_close_session_invalid(self): client_pid = 999 with self.assertRaisesRegex(RuntimeError, self._check_client_active_err_msg): self._platform_service.close_session(client_pid) def test_close_session_read(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] watch_id = session_data['watch_id'] with mock.patch('gi.repository.GLib.source_remove', return_value=[]) as mock_source_remove, \ mock.patch('geopmdpy.pio.restore_control_dir') as mock_restore_control_dir, \ mock.patch('shutil.rmtree', return_value=[]) as mock_rmtree: self._platform_service.close_session(client_pid) mock_restore_control_dir.assert_not_called() mock_rmtree.assert_not_called() mock_source_remove.assert_called_once_with(watch_id) self._mock_active_sessions.remove_client.assert_called_once_with(client_pid) def test_close_session_write(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] watch_id = session_data['watch_id'] self._mock_write_lock.try_lock.return_value = client_pid with mock.patch('geopmdpy.pio.save_control_dir') as mock_save_control_dir, \ mock.patch('geopmdpy.pio.write_control') as mock_write_control, \ mock.patch('os.getsid', return_value=client_pid) as mock_getsid: self._platform_service.write_control(client_pid, 'geopm', 'board', 0, 42.024) mock_save_control_dir.assert_called_once() mock_write_control.assert_called_once_with('geopm', 'board', 0, 42.024) with mock.patch('gi.repository.GLib.source_remove', return_value=[]) as mock_source_remove, \ mock.patch('geopmdpy.pio.restore_control_dir', return_value=[]) as mock_restore_control_dir, \ mock.patch('os.getsid', return_value=client_pid) as mock_getsid: self._platform_service.close_session(client_pid) mock_restore_control_dir.assert_called_once() save_dir = os.path.join(self._platform_service._RUN_PATH, self._platform_service._SAVE_DIR) mock_source_remove.assert_called_once_with(watch_id) self.assertFalse(self._platform_service._active_sessions.is_client_active(client_pid)) session_file = self._session_file_format.format(client_pid=client_pid) self.assertFalse(os.path.exists(session_file)) def test_start_batch_invalid(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] watch_id = session_data['watch_id'] valid_signals = session_data['signals'] signal_config = [(0, 0, sig) for sig in valid_signals] valid_controls = session_data['controls'] bogus_controls = [(0, 0, 'invalid_frequency'), (0, 0, 'invalid_energy')] control_config = [(0, 0, con) for con in valid_controls] control_config.extend(bogus_controls) err_msg = re.escape('Requested controls that are not in allowed list: {}' \ .format(sorted({bc[2] for bc in bogus_controls}))) with self.assertRaisesRegex(RuntimeError, err_msg): self._platform_service.start_batch(client_pid, signal_config, control_config) bogus_signals = [(0, 0, 'invalid_uncore'), (0, 0, 'invalid_power')] signal_config.extend(bogus_signals) err_msg = re.escape('Requested signals that are not in allowed list: {}' \ .format(sorted({bs[2] for bs in bogus_signals}))) with self.assertRaisesRegex(RuntimeError, err_msg): self._platform_service.start_batch(client_pid, signal_config, control_config) def test_start_batch_write_blocked(self): """Write mode batch server will not start when write lock is held This test calls write_control without a session leader, and then a different PID tries to create a write mode batch server with a session leader. This request should fail. """ client_pid = 999 client_sid = 333 other_pid = 666 control_name = 'geopm' domain = 7 domain_idx = 42 setting = 777 session_data = self.open_mock_session('other', other_pid) mock_pwuid = mock.MagicMock() self._mock_write_lock.try_lock.return_value = other_pid with mock.patch('geopmdpy.pio.write_control', return_value=[]) as mock_write_control, \ mock.patch('geopmdpy.pio.save_control_dir'), \ mock.patch('os.getsid', return_value=other_pid) as mock_getsid: self._platform_service.write_control(other_pid, control_name, domain, domain_idx, setting) mock_write_control.assert_called_once_with(control_name, domain, domain_idx, setting) session_data = self.open_mock_session('', client_pid) valid_signals = session_data['signals'] valid_controls = session_data['controls'] signal_config = [(0, 0, sig) for sig in valid_signals] control_config = [(0, 0, con) for con in valid_controls] mock_pwuid.pw_name = 'test_user' err_msg = f'The PID {client_pid} requested write access, but the geopm service already has write mode client with PID or SID of {abs(other_pid)}' with self.assertRaisesRegex(RuntimeError, err_msg), \ mock.patch('geopmdpy.pio.start_batch_server', return_value = (2345, "2345")), \ mock.patch('os.getsid', return_value=client_sid) as mock_getsid, \ mock.patch('pwd.getpwuid', return_value=mock_pwuid) as mock_getpwuid, \ mock.patch('psutil.pid_exists', return_value=True) as mock_pid_exists: self._platform_service.start_batch(client_pid, signal_config, control_config) def test_start_batch(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] watch_id = session_data['watch_id'] valid_signals = session_data['signals'] valid_controls = session_data['controls'] signal_config = [(0, 0, sig) for sig in valid_signals] control_config = [(0, 0, con) for con in valid_controls] expected_result = (1234, "1234") self._mock_write_lock.try_lock.return_value = client_pid with mock.patch('geopmdpy.pio.start_batch_server', return_value=expected_result), \ mock.patch('geopmdpy.pio.save_control_dir'), \ mock.patch('os.getsid', return_value=client_pid) as mock_getsid: actual_result = self._platform_service.start_batch(client_pid, signal_config, control_config) self.assertEqual(expected_result, actual_result, msg='start_batch() did not pass back correct result') save_dir = os.path.join(self._platform_service._RUN_PATH, self._platform_service._SAVE_DIR) self.assertTrue(os.path.isdir(save_dir), msg = 'Directory does not exist: {}'.format(save_dir)) self._mock_active_sessions.get_batch_server.return_value = expected_result[0] with mock.patch('geopmdpy.pio.stop_batch_server', return_value=[]) as mock_stop_batch_server, \ mock.patch('psutil.pid_exists', return_value=True) as mock_pid_exists: self._platform_service.stop_batch(client_pid, expected_result[0]) mock_stop_batch_server.assert_called_once_with(expected_result[0]) def test_stop_batch_invalid(self): with self.assertRaisesRegex(RuntimeError, self._check_client_active_err_msg): self._platform_service.stop_batch('', '') def test_read_signal_invalid(self): with self.assertRaisesRegex(RuntimeError, self._check_client_active_err_msg): self._platform_service.read_signal('', '', '', '') session_data = self.open_mock_session('') client_pid = session_data['client_pid'] signal_name = 'geopm' err_msg = 'Requested signal that is not in allowed list: {}'.format(signal_name) with self.assertRaisesRegex(RuntimeError, err_msg): self._platform_service.read_signal(client_pid, signal_name, '', '') def test_read_signal(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] signal_name = 'energy' domain = 7 domain_idx = 42 with mock.patch('geopmdpy.pio.read_signal', return_value=[]) as rs: self._platform_service.read_signal(client_pid, signal_name, domain, domain_idx) rs.assert_called_once_with(signal_name, domain, domain_idx) def test_write_control_invalid(self): with self.assertRaisesRegex(RuntimeError, self._check_client_active_err_msg): self._platform_service.write_control('', '', '', '', '') session_data = self.open_mock_session('') client_pid = session_data['client_pid'] control_name = 'energy' err_msg = 'Requested control that is not in allowed list: {}'.format(control_name) with self.assertRaisesRegex(RuntimeError, err_msg): self._platform_service.write_control(client_pid, control_name, '', '', '') def test_write_control(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] self._mock_write_lock.try_lock.return_value = client_pid control_name = 'geopm' domain = 7 domain_idx = 42 setting = 777 with mock.patch('geopmdpy.pio.write_control', return_value=[]) as mock_write_control, \ mock.patch('geopmdpy.pio.save_control_dir'), \ mock.patch('os.getsid', return_value=client_pid) as mock_getsid: self._platform_service.write_control(client_pid, control_name, domain, domain_idx, setting) mock_write_control.assert_called_once_with(control_name, domain, domain_idx, setting) def test_restore_already_closed(self): client_pid = -999 session_data = self.open_mock_session('user_name', client_pid, True, 2) # 2 self._platform_service.close_session(client_pid) # 1 self._platform_service.close_session(client_pid) # 0 self._platform_service._active_sessions.check_client_active = mock.MagicMock(side_effect=RuntimeError) with self.assertRaises(RuntimeError): self._platform_service.restore_control(client_pid) def test_restore_write_blocked(self): client_pid = 999 client_sid = 333 other_pid = 666 control_name = 'geopm' domain = 7 domain_idx = 42 setting = 777 self.open_mock_session('other', other_pid) with mock.patch('geopmdpy.pio.write_control', return_value=[]) as mock_write_control, \ mock.patch('geopmdpy.pio.save_control_dir'), \ mock.patch('os.getsid', return_value=other_pid): self._platform_service.write_control(other_pid, control_name, domain, domain_idx, setting) mock_write_control.assert_called_once_with(control_name, domain, domain_idx, setting) self.open_mock_session('', client_pid) mock_pwuid = mock.MagicMock() mock_pwuid.pw_name = 'test_user' self._mock_write_lock.try_lock.return_value = other_pid err_msg = f'The PID {client_pid} requested write access, but the geopm service already has write mode client with PID or SID of {abs(other_pid)}' with self.assertRaisesRegex(RuntimeError, err_msg), \ mock.patch('geopmdpy.pio.restore_control_dir'), \ mock.patch('os.getsid', return_value=client_sid), \ mock.patch('pwd.getpwuid', return_value=mock_pwuid), \ mock.patch('psutil.pid_exists', return_value=True): self._platform_service.restore_control(client_pid) def test_restore_control(self): session_data = self.open_mock_session('') client_pid = session_data['client_pid'] self._mock_write_lock.try_lock.return_value = client_pid with mock.patch('geopmdpy.pio.save_control_dir'), \ mock.patch('os.getsid', return_value=client_pid), \ mock.patch('geopmdpy.pio.restore_control_dir') as mock_restore_control_dir: self._platform_service.restore_control(client_pid) save_dir = os.path.join(self._platform_service._RUN_PATH, self._platform_service._SAVE_DIR) mock_restore_control_dir.assert_called_once_with(save_dir) def test_get_cache(self): topo = mock.MagicMock() topo_service = TopoService(topo=topo) mock_open = mock.mock_open(read_data='data') cache_file = '/run/geopm/geopm-topo-cache' with mock.patch('builtins.open', mock_open): cache_data = topo_service.get_cache() self.assertEqual('data', cache_data) topo.assert_has_calls([mock.call.create_cache()]) calls = [mock.call(cache_file), mock.call().__enter__(), mock.call().read(), mock.call().__exit__(None, None, None)] mock_open.assert_has_calls(calls) if __name__ == '__main__': unittest.main()
geopm/geopm
service/geopmdpy_test/TestPlatformService.py
TestPlatformService.py
py
21,394
python
en
code
79
github-code
6
72474001787
import random import numpy as np from math import sqrt, log import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x1_list = [] x2_list = [] y_list = [] counter = 0 def drawFunc(minX, minY, maxX, maxY): fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('f(x1,x2)') x1_array = np.arange(minX, maxX, 0.1) x2_array = np.arange(minY, maxY, 0.1) x1_array, x2_array = np.meshgrid(x1_array, x2_array) R = f(x1_array, x2_array) ax.plot_surface(x1_array, x2_array, R, color='b', alpha=0.5) plt.show() def drawBoder(ax, x1, g, z_min, z_max): zs = np.arange(0, 300, 100) X, Z = np.meshgrid(x1, zs) Y = g(X) #fig = plt.figure() #ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) def show(x1_list, x2_list): N = int(x1_list.__len__()) if (N <= 0): return fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) x1_array = [] x2_array = [] #x1_array = np.arange(min(x1_list) - 0.1, max(x1_list) + 0.1, 0.1) #x2_array = np.arange(min(x2_list) - 0.1, max(x2_list) + 0.1, 0.1) nums = np.arange(0, 5, 0.1) for i in range(len(nums)): for j in range(len(nums)): if(barier(nums[i], nums[j])): x1_array.append(nums[i]) x2_array.append(nums[j]) x1_array = np.array(x1_array) x2_array = np.array(x2_array) x1_array, x2_array = np.meshgrid(x1_array, x2_array) R = f(x1_array, x2_array) #drawBoder(ax, x1_array, g1_1, R.min(), R.max()) #drawBoder(ax, x1_array, g2_1, R.min(), R.max()) #drawBoder(ax, x1_array, g3_1, R.min(), R.max()) #drawBoder(ax, x1_array, g4_1, R.min(), R.max()) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('f(x1,x2)') ax.plot_surface(x1_array, x2_array, R, color='b', alpha=0.5) x1_list2 = [] x2_list2 = [] f_list = [] ax.scatter(x1_list[0], x2_list[0], f(x1_list[0], x2_list[0]), c='black') x1_list2.append(x1_list[0]) x2_list2.append(x2_list[0]) f_list.append(f(x1_list[0], x2_list[0])) for n in range(1, N - 1): ax.scatter(x1_list[n], x2_list[n], f(x1_list[n], x2_list[n]), c='red') x1_list2.append(x1_list[n]) x2_list2.append(x2_list[n]) f_list.append(f(x1_list[n], x2_list[n])) ax.scatter(x1_list[N - 1], x2_list[N - 1], f(x1_list[N - 1], x2_list[N - 1]), c='green') x1_list2.append(x1_list[N - 1]) x2_list2.append(x2_list[N - 1]) f_list.append(f(x1_list[N - 1], x2_list[n])) ax.plot(x1_list2, x2_list2, f_list, color="black") plt.show() def f_1(x1, x2): if (g1_1(x1,x2) and g2_1(x1,x2) and g3_1(x1,x2) and g4_1(x1,x2)): return (x1-6)**2 +(x2-7)**2 return 0 def g1_1(x1): return (-3*x1 + 6) / 2 def g2_1(x1): return (-x1 - 3) / (-1) def g3_1(x1): return (x1 - 7) / (-1) def g4_1(x1): return (2*x1 - 4) / 3 def f(x1, x2): return (x1-6)**2 +(x2-7)**2 def g1(x1, x2): return -3*x1 - 2*x2 + 6 #<= 0 def g2(x1, x2): return -x1 + x2 - 3 #<= 0 def g3(x1, x2): return x1 + x2 - 7 #<= 0 def g4(x1, x2): return 2*x1 - 3*x2 - 4 #<= 0 def g1_t(x, y): return -3*x - 2*y + 6 <= 0 def g2_t(x, y): return -x + y - 3 <= 0 def g3_t(x, y): return x + y - 7 <= 0 def g4_t(x, y): return 2*x - 3*y - 4 <= 0 def F(x1, x2, r): #sum = 1/g1(x1, x2) + 1/g2(x1, x2) + 1/g3(x1, x2) + 1/g4(x1, x2) #- r * sum return f(x1,x2) + P(x1, x2, r) def F2(x1, x2, r): #print("x1 =", x1) #print("x2 =", x2) #print("gi =", g3(x1, x2)) #print("log =", log(-g3(x1, x2))) sum = log(-g1(x1, x2)) + log(-g2(x1, x2)) + log(-g3(x1, x2)) + log(-g4(x1, x2)) return f(x1,x2) - r * sum def P(x1, x2, r): sum = 1/g1(x1, x2) + 1/g2(x1, x2) + 1/g3(x1, x2) + 1/g4(x1, x2) return -r*sum def P2(x1, x2, r): sum = log(-g1(x1, x2)) + log(-g2(x1, x2)) + log(-g3(x1, x2)) + log(-g4(x1, x2)) return -r*sum min_val = -1500000 def calc_r(a, n): return a * (sqrt(n + 1) - 1 + n) / (n * sqrt(2)) def calc_s(a, n): return a * (sqrt(n + 1) - 1) / (n * sqrt(2)) def dist(x1, x2): return sqrt((x1[0] - x2[0])**2 + (x1[1] - x2[1])**2) def max_f(f): f_max = max(f) index = f.index(f_max) return index def calc_x_next(x, index, n): res = np.array([0,0]) for i in range(len(x)): if (i == index): continue res = res + x[i] res *= (2 / (n - 1)) res -= x[index] return res def calc_centr(x): return (x[0][0]+x[1][0]+x[2][0]) / 3, (x[0][1]+x[1][1]+x[2][1]) / 3 def barier(x1, x2): return not (g1_t(x1, x2) and g2_t(x1, x2) and g3_t(x1, x2) and g4_t(x1, x2)) def simplexnyi_method(x0, e, a, n, r): global counter x1 = np.array([x0[0] + calc_r(a, n), x0[1] + calc_s(a, n)]) x2 = np.array([x0[0] + calc_s(a, n), x0[1] + calc_r(a, n)]) if (barier(x0[0], x0[1])): return; while (barier(x1[0], x1[1]) or barier(x2[0], x2[1])): a /= 2 x1 = np.array([x0[0] + calc_r(a, n), x0[1] + calc_s(a, n)]) x2 = np.array([x0[0] + calc_s(a, n), x0[1] + calc_r(a, n)]) x = [x0, x1, x2] counter += 3 while (dist(x[0], x[1]) > e or dist(x[1], x[2]) > e or dist(x[2], x[0]) > e): #print("center =", calc_centr(x), "f =", f(calc_centr(x)[0], calc_centr(x)[1])) if (barier(x[0][0], x[0][1]) or barier(x[1][0], x[1][1]) or barier(x[2][0], x[2][1])): return (center[0], center[1], a) center = calc_centr(x) f_list = [] x1_list.append(center[0]); x2_list.append(center[1]) counter += 1 f_list.append(F2(x[0][0], x[0][1], r)) f_list.append(F2(x[1][0], x[1][1], r)) f_list.append(F2(x[2][0], x[2][1], r)) counter += 1 while(True): f_values = f_list i = max_f(f_values) xn = calc_x_next(x, i, n) if (not barier(xn[0], xn[1])): fn = F2(xn[0], xn[1], r); counter += 1 #x_new = x.copy() #x_new[i] = xn #x_c = calc_centr(x_new) if (f_values[i] > fn): x[i] = xn ; break f_values[i] = min_val if (f_values[0] == min_val and f_values[1] == min_val and f_values[2] == min_val): a /= 2 x[0] = x[0] x[1] = np.array([x[0][0] + calc_r(a, n), x[0][1] + calc_s(a, n)]) x[2] = np.array([x[0][0] + calc_s(a, n), x[0][1] + calc_r(a, n)]) break cur_center = calc_centr(x) #print(center) if barier(cur_center[0], cur_center[1]): return (center[0], center[1], a) point = calc_centr(x) return (point[0], point[1], a) def barrier_function_method(x1, x2, r, C, e, a, n, k): global counter counter += 1 min_x1, min_x2, a = simplexnyi_method([x1, x2], e, a, n, r) fine = P2(min_x1, min_x2, r) if (abs(fine) <= e): return [(round(min_x1, round_num), round(min_x2, round_num), round(f(min_x1, min_x2), round_num)), k] k += 1 r = r/C return barrier_function_method(min_x1, min_x2, r, C, e, a, n, k) round_num = 3 x1 = 2 x2 = 2 e = 0.001 #a = 0.001 a = 1; n = 3 r = 1 c = 14 k = 0 result = barrier_function_method(x1, x2, r, c, e, a, n, k) print(f"Barrier function method: {result[0]}; count of iteractions = {result[1]}") print('Count of compute function =', counter + 1) show(x1_list, x2_list) drawFunc(-5, -5, 15, 15)
AlexSmirno/Learning
6 Семестр/Оптимизация/Lab_6_test.py
Lab_6_test.py
py
7,638
python
en
code
0
github-code
6
20538374789
# https://leetcode.com/problems/counting-bits/ """ Time complexity:- O(N) Space Complexity:- O(N) """ from typing import List class Solution: def countBits(self, n: int) -> List[int]: # Initialize a list 'dp' to store the number of 1 bits for each integer from 0 to 'n'. dp = [0] * (n + 1) offset = 1 # Initialize an 'offset' variable to keep track of the power of 2. # Iterate through integers from 1 to 'n'. for i in range(1, n + 1): # Check if 'i' is a power of 2, in which case update the 'offset'. if offset * 2 == i: offset = i # Calculate the number of 1 bits for 'i' using 'offset'. dp[i] = 1 + dp[i - offset] return dp # Return the list 'dp' containing the counts.
Amit258012/100daysofcode
Day51/counting_bits.py
counting_bits.py
py
800
python
en
code
0
github-code
6
40889171603
# coding:utf-8 import os APP_NAME = "torweb" # Server PORT = 9000 DEBUG = True # log file log_path = '/var/tmp/' # cache sys_status = [0, 0, 0, 0] # Tornado COOKIE_SECRET = "6aOO5ZC55LiN5pWj6ZW/5oGo77yM6Iqx5p+T5LiN6YCP5Lmh5oSB44CC" TEMPLATE_PATH = 'frontend/templates' LOGIN_URL = '/login' avatar_upload_path = './frontend/static/assets/images/avatar/' common_upload_path = './frontend/static/assets/images/' static_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'static') default_page_limit = 7 default_avatar = 'default_doubi.png' default_404_url = '/static/404.html' # Session session_settings = { 'cookie_name': 'session_id', 'cookie_domain': None, 'cookie_expires': 86400, #24 * 60 * 60, # 24 hours in seconds 'ignore_expiry': True, 'ignore_change_ip': True, 'secret_key': COOKIE_SECRET, 'expired_message': 'Session expired', 'httponly': True }
jmpews/torweb
settings/common.py
common.py
py
906
python
en
code
9
github-code
6
33146835188
from flask import Flask, jsonify, redirect, url_for, request import os import pymysql app = Flask(__name__) @app.route('/') def index(): response = jsonify({"Choo Choo": "Welcome to your Flask app 🚅"}) response.headers.add("Access-Control-Allow-Origin", "*") return response @app.route('/add', methods = ['POST', 'GET']) def add(): # connection = pymysql.connect( host='containers-us-west-32.railway.app', user='root', passwd='Jyfcd452Xe3tmMsFLYDY', port=5522, db='railway' ) # with connection.cursor() as cursor: # sql = "INSERT INTO table_name (name, ship, base) VALUES ('Name', 1, 0)" # cursor.execute(sql) user = request.form['nm'] response = jsonify({"data": user}) response.headers.add("Access-Control-Allow-Origin", "*") return response @app.route('/insert', methods=['POST']) def insert_row(): name = request.form['name'] ship = request.form['ship'] base = request.form['base'] query = "INSERT INTO marked_systems (name, ship, base) VALUES (%s, %s, %s)" values = (name, ship, base) connection = pymysql.connect( host='containers-us-west-32.railway.app', user='root', passwd='Jyfcd452Xe3tmMsFLYDY', port=5522, db='railway' ) with connection.cursor() as cursor: sql = "SELECT * FROM `marked_systems` WHERE `name`=%s" cursor.execute(sql, (name)) result = cursor.fetchall() print(result) if result: print("result found, deleting") query = "DELETE FROM marked_systems WHERE `name`=%s" cursor.execute(sql, (name)) else: print("no result found, creating") cursor.execute(query, values) connection.commit() response = jsonify({'status': 'success'}) response.headers.add("Access-Control-Allow-Origin", "*") return response @app.route('/data') def get_data(): connection = pymysql.connect( host='containers-us-west-32.railway.app', user='root', passwd='Jyfcd452Xe3tmMsFLYDY', port=5522, db='railway' ) with connection.cursor() as cursor: sql = "SELECT * FROM `marked_systems`" cursor.execute(sql) result = cursor.fetchall() print(result) response = jsonify({"data": result}) response.headers.add("Access-Control-Allow-Origin", "*") return response if __name__ == '__main__': app.run(debug=True, port=os.getenv("PORT", default=5000))
zpdunlap/flask
main.py
main.py
py
2,425
python
en
code
0
github-code
6
73662491386
from multiprocessing import Pool import time from datetime import datetime from typing import Any from tqdm import tqdm from tqdm.contrib.concurrent import process_map import itertools from classifiers import project_algorithms from data_ingestion import ingestion_functions from sklearn.model_selection import KFold, GridSearchCV from sklearn import metrics from dataclasses import dataclass import joblib import os @dataclass class Result: algo_name: str dataset_name: str trial_num: int X_train: Any Y_train: Any Y_train_pred: Any X_test: Any Y_test: Any Y_test_pred: Any # Runtime, in seconds runtime: float """A pandas DataFrame that can be imported """ best_index_: int best_params: Any cv_results_: Any def run_trial(with_params) -> Result: """Runs a given trial using a given algorithm. Fetches data from data_fetcher. Args: data_fetcher (fn -> tuple): [description] algorithm ([fn]): [description] num_trial ([type]): [description] Returns: [type]: [description] """ start = datetime.now() data_fetcher, algorithm, num_trial = with_params (algo, params) = algorithm() X_train, X_test, Y_train, Y_test = data_fetcher() # GridSearchCV automatically does 5 kfold splits. search_results = GridSearchCV(algo, params, scoring={ 'AUC': 'roc_auc', 'Accuracy': metrics.make_scorer(metrics.accuracy_score), 'F1': 'f1', 'Precision': 'precision', 'Recall': 'recall', 'MCC': metrics.make_scorer(metrics.matthews_corrcoef) }, refit='Accuracy') search_results.fit(X_train, Y_train) opt_classifier = search_results.best_estimator_ opt_classifier.fit(X_train, Y_train) Y_train_pred = opt_classifier.predict(X_train) Y_test_pred = opt_classifier.predict(X_test) # Get metrics for the classifiers end = datetime.now() runtime = (end - start).total_seconds() return Result( algo_name=algorithm.__name__, dataset_name=data_fetcher.__name__, trial_num=num_trial, X_train = X_train, Y_train = Y_train, Y_train_pred = Y_train_pred, X_test=X_test, Y_test = Y_test, Y_test_pred = Y_test_pred, runtime=runtime, best_index_=search_results.best_index_, best_params=search_results.best_params_, cv_results_ = search_results.cv_results_ ) def run_all_trials(): trial_combinations = list( itertools.product(ingestion_functions, project_algorithms, list(range(5))) ) # Runs all concurrently on different CPUs # My M1 Macbook Air has 8 cores, so 8 + 4 = 12 YOUR_CPU_CORES = 8 results = process_map(run_trial, trial_combinations, max_workers=YOUR_CPU_CORES + 4) #Single-threaded for easier debugging # results = [run_trial(tc) for tc in trial_combinations] timestamp = int(time.time()) for result in tqdm(results, desc="Saving classifiers to disk..."): # Save the classifier to disk for use in a Jupyter Notebook folder_path = f"./classifier_cache/{timestamp}/{result.algo_name}/{result.dataset_name}" try: os.makedirs(folder_path) except FileExistsError: pass result_filename = folder_path + f"/{result.trial_num}_cls.joblib.pkl" _ = joblib.dump(result, result_filename, compress=9) if __name__ == "__main__": import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") run_all_trials()
lukebrb/final_project
runners.py
runners.py
py
3,580
python
en
code
0
github-code
6
41766646913
import string s = input().split() n = int(s[0]) k = int(s[1]) s = input() min_occ = n found_all = True for i in range(k): cnt = s.count(string.ascii_uppercase[i]) if cnt == 0: found_all = False break if cnt < min_occ: min_occ = cnt if not found_all: print(0) else: print(k*min_occ)
gautambp/codeforces
1038-A/1038-A-47886872.py
1038-A-47886872.py
py
348
python
en
code
0
github-code
6
19317356930
# This is a sample Python script. import random # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. def load_data(file_path): data_list = [] labels_list = [] with open(file_path, 'r') as f: lines = f.readlines() for line in lines: values = line.strip().split(',') data = [float(x) for x in values[:-1]] label = values[-1] data_list.append(data) labels_list.append(label) return data_list, labels_list def classes_to_numbers(values): value = values[0] labels_list = [] for i in range(len(values)): if value == values[i]: labels_list.append(1) else: labels_list.append(0) return labels_list def count_classes(labels_list): classes = set() for label in labels_list: classes.add(label) return classes def random_weights(features_count): weights = [] for i in range(features_count): weights.append(random.random()) return weights def training_perceptron(data, labels, weights, learning_const, epochs): threshold = random.random() for epoch in range(epochs): for i in range(len(data)): x_i = data[i] l_i = labels[i] suma = sum([w * x for w, x in zip(weights, x_i)]) - threshold output = 1 if suma >= 0 else 0 error = l_i - output weights = [w + learning_const * error * x for w, x in zip(weights, x_i)] threshold += error * learning_const return weights, threshold def using_perceptron(data, labels, weights, threshold): guesses = 0 for i in range(len(data)): x_i = data[i] l_i = labels[i] suma = sum([w * x for w, x in zip(weights, x_i)]) - threshold output = 1 if suma >= 0 else 0 error = l_i - output guesses += 1 if error == 0 else 0 return guesses / len(data) * 100 if __name__ == '__main__': train_data, train_labels = load_data("Resources/perceptron.data") test_data, test_labels = load_data("Resources/perceptron.test.data") features_count = len(train_data[0]) class_count = len(count_classes(train_labels)) weights = random_weights(features_count) print("Podaj stałą uczenia") learning_const = float(input()) print("Czy chcesz podać własny wektor? [1 / 2]") user_in = input() while user_in == "1": vector = input() vector = vector.strip().split(',') data = [float(x) for x in vector[:-1]] test_data.append(data) test_labels.append(vector[-1]) print("Czy chcesz dodać kolejny? [1 / 2]") user_in = input() train_labels = classes_to_numbers(train_labels) test_labels = classes_to_numbers(test_labels) output, threshold = training_perceptron(train_data, train_labels, weights, learning_const, 100) accuracy = using_perceptron(test_data, test_labels, output, threshold) print("Accuracy: " + str(accuracy) + "%")
DC060/Perceptron
main.py
main.py
py
3,122
python
en
code
0
github-code
6
39830820754
from src.exceptions import InvalidCommand class Load: """ **Load: Carrega o comando previamente salvo** - Line 1: !load - Line 2: <label> **Resultado: Comando !graph** """ def __init__(self, message_content): try: self.query, self.label = message_content.split("\n") except Exception: raise InvalidCommand() def __call__(self): f = open(f"saved/{self.label}.grd", "r") return f.read()
pedrohrf/geralda-bot
src/commands/load.py
load.py
py
477
python
en
code
0
github-code
6
71818859709
import sys import numpy as np import pickle Vectors = {} for line in sys.stdin: thisLine = line.split() thisVector = np.array(map(lambda x: float(x), thisLine[1:])) thisVector/=np.linalg.norm(thisVector) Vectors[thisLine[0]] = thisVector pickle.dump(Vectors, sys.stdout)
NehaNayak/shiny-octo-lana
scripts/numpyizeVectors.py
numpyizeVectors.py
py
278
python
en
code
0
github-code
6
72490450747
from polygon import * import math from functools import wraps,lru_cache from collections import namedtuple @validate_type(int) @validate_params class Polygon_sequence: def __init__(self,n,circumradius): """ This function initializes the number of polygons and circum radius. """ self.n = n self.circumradius = circumradius @lru_cache(maxsize=2**10) def get_polygon(self,vertex , circumradius): """ This function returns the properties of the polygon such as vertex , circumradius, interior angle, edge length , apothem, area, perimeter as a named tuple. """ polygon = Polygon(vertex, circumradius) interiorAngle = polygon.interiorAngle edgeLength = polygon.edgeLength apothem = polygon.apothem area = polygon.area perimeter = polygon.perimeter prop_names = ('vertex' , 'circumradius', 'interiorAngle', 'edgeLength' , 'apothem', 'area', 'perimeter') properties = namedtuple('Polygon', prop_names) # print(f'Calculating for Polygon with Vertex:{vertex} , CircumRadius: {circumradius}') return properties(vertex , circumradius, interiorAngle, edgeLength , apothem, area, perimeter) def max_efficiency(self): """ This function returns the maximum efficiency polygon. Here, a maximum efficiency polygon is one that has the highest area to perimeter ratio. """ ratios = [] for i in range(3, self.n+1): """ This function """ p = self.get_polygon( i , self.circumradius) ratios.append(p.area/p.perimeter) # print(ratios) max_index = max(range(len(ratios)), key=ratios.__getitem__) # print(ratios) print(f'Polygon with {max_index+3} vertices has the Max Efficiency of {ratios[max_index]}') def __getitem__(self,vertex): """ This function returns the properties of the polygon whose vertices are as passed in the arguments. It returns 'Not a polygon' message if the number of vertices is less than 3. """ if isinstance(vertex,int)==False: return 'Error: Incorrect type for parameter ' elif vertex <3 : return 'Error: This is not a polygon' else: return self.get_polygon( vertex , self.circumradius) def __repr__(self): """ This function gives the details of the Polygon Sequence object""" return f""" Contains {self.n} polygons with a circum radius of {self.circumradius} and vertices ranging from 3 to {self.n}""" def __len__(self): """ This function gives the length of the Polygon Sequence object """ return self.n
m-shilpa/EPAI
Session_10_Sequence_Types/polygon_sequence.py
polygon_sequence.py
py
2,781
python
en
code
0
github-code
6
71477051708
import sys input = sys.stdin.readline tc = int(input()) INF = int(1e9) def bellman_ford(start): distance = [INF] * (n+1) distance[start] = 0 for i in range(n): for edge in edges: current = edge[0] next = edge[1] cost = edge[2] if distance[next] > distance[current] + cost: distance[next] = distance[current] + cost if i == n-1: return True return False for _ in range(tc): # 지점의 수 n, 도로의 개수 m, 웜홈을 개수 w # 도로는 방향이 없고, 웜홀은 방향이 있다. n, m, w = map(int, input().split()) # 연결된 도로 edges = [] for _ in range(m): # s e 연결된 지접의 번호, t 이동하는데 걸리는 시간 s, e, t = map(int, input().split()) edges.append((s, e, t)) edges.append((e, s, t)) # 웜홀 for _ in range(w): s, e, t = map(int, input().split()) edges.append((s, e, -t)) result = bellman_ford(1) if result: print("YES") else: print("NO")
YOONJAHYUN/Python
BOJ/1865.py
1865.py
py
1,136
python
ko
code
2
github-code
6
27673839201
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import html2text class Html2TextPipeline(object): def process_item(self, item, spider): for f in ('description_md', 'abstract_md'): val = item.get(f) if val: item[f] = html2text.html2text(val) return item
redapple/pyvideo-contrib
pyconfr2015/pyconfr2015/pyconfr2015/pipelines.py
pipelines.py
py
459
python
en
code
0
github-code
6
24021214626
""" Allows for platform-specific configuration options. """ import os from enum import Enum from typing import Any, Dict class BaseOrigin(Enum): """ Enum for the origin of the base path """ ENV = 1 """The base path is specified in the environment""" CONF = 2 """The base path is specified in the config file""" DEFAULT = 3 """The base path is the default one""" class PlatformsConfig: """ Contains some configuration options for platforms. """ base_dir: str """ The directory containing all platform-related content (base path) - nothing should be stored in here directly """ base_origin: BaseOrigin """The origin of the base path""" data_dir: str """The directory where data of all platforms should be stored""" __data_dir: str """Unparsed version of data_dir""" conf_dir: str """The directory where platforms can store configuration files""" __conf_dir: str """Unparsed version of conf_dir""" def __init__(self, base_dir: str, base_origin: BaseOrigin, data_dir: str, conf_dir: str): """ Creates a new PlatformsConfig object Args: base_dir (str): The directory containing all platform-related content (base path) - nothing should be stored in here directly base_origin (BaseOrigin): The origin of the base path data_dir (str): The directory where data of all platforms should be stored conf_dir (str): The directory where platforms can store configuration files """ self.__dict__['base_dir'] = base_dir self.__dict__['base_origin'] = base_origin if not os.path.isdir(base_dir): os.makedirs(base_dir) self.data_dir = data_dir self.conf_dir = conf_dir def dumpj(self) -> Dict[str, str]: """ Returns a dictionary representation of this object """ dump: Dict[str, str] = { 'data_dir': self.data_dir, 'conf_dir': self.conf_dir } if self.base_origin == BaseOrigin.CONF: dump['base_dir'] = self.base_dir return dump def __setattr__(self, k: str, v: Any) -> None: if k in ('data_dir', 'conf_dir',): self.__dict__[f'__{k}'] = v self.__dict__[k] = v.replace('$D4V1D_DIR', self.base_dir) if not os.path.isdir(self.__dict__[k]): os.makedirs(self.__dict__[k]) elif k == 'base_dir': self.__dict__[k] = v self.__dict__['base_origin'] = BaseOrigin.CONF self.data_dir = self.__data_dir self.conf_dir = self.__conf_dir elif k.startswith('_'): # platform-specific options should always be # prefixed with an underscore self.__dict__[k] = v @classmethod def loadj(cls, j: Dict[str, str]) -> "PlatformsConfig": """ Creates a new PlatformsConfig object from a dictionary """ base_dir: str base_origin: BaseOrigin if 'base_dir' in j.keys(): base_dir = j['base_dir'] base_origin = BaseOrigin.CONF elif os.getenv('D4V1D_DIR'): base_dir = os.getenv('D4V1D_DIR') base_origin = BaseOrigin.ENV else: base_dir = os.path.join(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')), '_') base_origin = BaseOrigin.DEFAULT return PlatformsConfig(base_dir, base_origin, j['data_dir'], j['conf_dir'])
MattMoony/d4v1d
d4v1d/config/platforms.py
platforms.py
py
3,549
python
en
code
34
github-code
6
72013262909
import gym from memory import ReplayBuff from models import Network import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import clip_grad_norm_ class agent(): '''DQN Agent. Attribute: memory: replay buffer to store transition batch_size: batch size for sampling epsilon: parameter for epsilon greedy policy epsilon_decay: step size to decrease epsilon epsilon_train_start: initial(max) value of epsilon epsilon_train_end: end(min) value of epsilon target_update_period: period for target model's hard update gamma: discount factor net: RL model to train and select actions target_net: target model to hard update optimizer: optimizer for training dqn train_mode: train a new model of test a model step_num: current timestep Arg: observation_space: shape of observation from environment action_num: the number of optional discrete actions replay_capacity: length of memory batch_size: batch size for sampling target_update_period: period for target model's hard update learning_rate: learning rate epsilon_train_start: max value of epsilon epsilon_train_end: min value of epsilon gamma: discout factor train_mode: train a new model of test a model ''' def __init__( self, scenario, seed=123, stack_size=1, replay_capacity=4096, batch_size=64, learning_rate=0.0001, gamma=0.99, update_horizon=1, min_replay_history=128, update_period=1, target_update_period=32, epsilon_train_start=1, epsilon_train_end=0.01, epsilon_eval=0.001, epsilon_decay=0.0001, # distributional param v_min = 0.0, # from preliminary experiments over the training games,see section5 v_max = 200.0, atom_size=51, # see section5,footnote2,in original paper train_mode=True): self.env=gym.make(scenario) self.env.seed(seed) self.batch_size=batch_size self.update_period=update_period self.target_update_period=target_update_period self.gamma=gamma #-----dist self.v_min=v_min self.v_max=v_max self.atom_size=atom_size self.train_mode=train_mode if min_replay_history<batch_size: self.min_replay_history=batch_size else: self.min_replay_history=min_replay_history self.action_num=self.env.action_space.n if self.train_mode: self.epsilon=epsilon_train_start self.epsilon_decay=epsilon_decay self.epsilon_train_start=epsilon_train_start self.epsilon_train_end=epsilon_train_end else: self.epsilon=epsilon_eval self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu") print(self.device) # distributional DQN # section4.1 # support is the set of atoms self.support=torch.linspace(self.v_min,self.v_max,self.atom_size).to(self.device) self.delta_z=float(self.v_max-self.v_min)/(self.atom_size-1) self.net=Network(self.env.observation_space.shape[0],self.env.action_space.n,atom_size,self.support).to(self.device) if self.train_mode: self.memory=ReplayBuff(replay_capacity,self.env.observation_space.shape[0]) self.target_net=Network(self.env.observation_space.shape[0],self.env.action_space.n,atom_size,self.support).to(self.device) self.target_net.load_state_dict(self.net.state_dict()) self.target_net.eval() self.optimizer=torch.optim.RMSprop(self.net.parameters(),lr=learning_rate,alpha=0.9,eps=1e-10) self.loss_func=nn.MSELoss() else: self.net.eval() def select_action(self,state): if self.epsilon < np.random.random(): with torch.no_grad(): state=torch.from_numpy(state) action=self.net(state.to(self.device)).detach().cpu().numpy() #return the index of action return action.argmax() else: return np.random.randint(self.action_num) def store_transition(self,obs,action,reward,next_obs,done): self.memory.append(obs,action,reward,next_obs,done) def update(self): self.optimizer.zero_grad() samples=self.memory.sample(self.batch_size) state=torch.from_numpy(samples["obs"]).to(self.device) action=torch.from_numpy(samples["action"].reshape(-1,1)).to(self.device) reward=torch.from_numpy(samples["reward"].reshape(-1,1)).to(self.device) next_state=torch.from_numpy(samples["next_obs"]).to(self.device) done=torch.from_numpy(samples["done"].reshape(-1,1)).to(self.device) # ---------------distribution dqn-------------- with torch.no_grad(): # see algorithms 1 in original paper # next_action is index next_action=self.target_net(next_state).argmax(1) # line2-3 next_dist=self.target_net.distributional(next_state) # nextwork output next_dist=next_dist[range(self.batch_size),next_action] # get distribution by next_action(argmax policy) t_z=reward+(1-done)*self.gamma*self.support # line7 # reward.shape is (batchsize,1);support,shape is (atomssize);t_z.shape is (batchszie,atomsize) t_z=t_z.clamp(min=self.v_min,max=self.v_max) # line7 b=(t_z-self.v_min)/self.delta_z # line8 l=b.floor().long() # line9 u=b.ceil().long() # line9 offset=( torch.linspace( 0,(self.batch_size-1)*self.atom_size,self.batch_size ).long() .unsqueeze(1) .expand(self.batch_size,self.atom_size) .to(self.device) ) proj_dist = torch.zeros(next_dist.size(),device=self.device) proj_dist.view(-1).index_add_(0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1)) # line11 proj_dist.view(-1).index_add_(0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1)) # line12 dist=self.net.distributional(state) # line14, p_i(x_t,a_t) log_p=torch.log(dist[range(self.batch_size),action]) # line14 loss = -(proj_dist*log_p).sum(1).mean() # line14 loss.backward() # gradinet clipping # https://pytorch.prg/docs/stable/nn.html#torch.nn.utils.clip_grad_norm_ clip_grad_norm_(self.net.parameters(),1.0,norm_type=1) self.optimizer.step() return loss.item() def target_update(self): self.target_net.load_state_dict(self.net.state_dict()) def train(self,num_episode): if not self.train_mode: return None step=0 for i in range(num_episode): r_batch=[] state=self.env.reset().astype(np.float32) done=False while not done: step+=1 action=self.select_action(state) next_state,reward,done,_=self.env.step(action) next_state=next_state.astype(np.float32) self.store_transition(state,action,reward,next_state,done) r_batch.append(reward) state=next_state if self.memory.size>=self.min_replay_history and step%self.update_period==0: self.epsilon=max(self.epsilon_train_end,self.epsilon-(self.epsilon_train_start-self.epsilon_train_end)*self.epsilon_decay) self.update() if step % self.target_update_period==0: self.target_update() print("episode: "+str(i)+" reward_sum: "+str(np.sum(r_batch))) del r_batch[:] def test(self,model_path=None,seedlist=None): if self.train_mode: return None if model_path is None: print("no model to test") return None if seedlist is None: seedlist=[111,123,1234] self._load(model_path) for s in seedlist: self.env.seed(s) r_batch=[] state=self.env.reset().astype(np.float32) done=False while not done: step+=1 action=self.select_action(state) next_state,reward,done,_=self.env.step(action) next_state=next_state.astype(np.float32) self.store_transition(state,action,reward,next_state,done) r_batch.append(reward) state=next_state print("seed: "+str(s)+" reward_sum: "+str(np.sum(r_batch))) del r_batch[:] def _restore(self,path): if self.train_mode: torch.save(self.net.state_dict(),path) else: print("testing model,cannot save models") def _load(self,path): if self.train_mode: print("training model,cannot load models") else: self.net.load_state_dict(torch.load(path)) def reset(self): self.memory.ptr=0 self.memory.size=0 if __name__ =='__main__': torch.set_num_threads(3) seed=123 np.random.seed(seed) torch.manual_seed(seed) train_agent=agent('CartPole-v0',seed=seed) train_agent.train(15)
linnaeushuang/RL-pytorch
value-based/distributionalDQN/distributionalDQN_learner.py
distributionalDQN_learner.py
py
9,928
python
en
code
8
github-code
6
39131054965
import os import base64 from pathlib import Path from sys import stdout from Get_data import get_keys from encrypt_setting import * class colors: def __init__(self): self.blue = "\033[94m" self.red = "\033[91m" self.end = "\033[0m" self.green = "\033[92m" col = colors() def print_hacked(): print(col.red+""" /| /| --------------------------- ||__|| | | / O O\__ Hacked Hacked Hacked | / \ operating system | / \ \ | / _ \ \ ---------------------- / |\____\ \ || / | | | |\____/ || / \| | | |/ | __|| / / \ ------- |_____| || / | | | --| | | | |_____ --| | |_|_|_| | \---- /\ | / /\ | / / / | | | ___/ / | | | |____/ c_c_c_C/ \C_c_c_c \t By: Unifox """+col.end) def encrypt_executeable(): # 경로 설정 p = Path('/Users/realsung/Desktop') # base64 인코딩되어있는 key값 key = get_keys() list_f = [] # 확장자들 extensions = ["*"] # ['jpg', 'png', 'jpeg', 'iso','exe', 'mp3', "mp4", 'zip', 'rar', 'txt', 'iso'] for extension in extensions: try: searche = list(p.glob('**/*.{}'.format(extension))) for File in searche: File = str(File) if File.endswith(".unifox"): pass else: #x = x.split("/")[-1] list_f.append(File) #print(File) except OSError: print("Permission Error") for i in list_f: file_name = i.split("/")[-1] file_path = i.replace(file_name, "") word = col.blue+"Encryption: "+col.end+str(i) print(word) os.chdir(file_path) encrypt(getkey(base64.b64decode(key)), file_name) try: os.remove(file_name) except OSError: pass print(col.green+"\n* Finish Encryption *\n")
realsung/Ransomeware
encrypt.py
encrypt.py
py
2,052
python
en
code
2
github-code
6
33644608975
from django.shortcuts import render, redirect, get_object_or_404 from .models import Product, Category, Cart, Address, Order from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect import decimal from django.contrib.auth.models import User from django.contrib import messages from django.db.models import Q def home(request): categories = Category.objects.filter(is_active=True, is_featured=True)[0:4] data_product = Product.objects.filter(is_active=True, is_featured=True)[0:4] context = {'products':data_product, 'categories':categories} return render(request, 'index.html', context) def categories(request): categories_data = Category.objects.filter(is_active=True, is_featured=True) context = {'categories':categories_data} return render(request, 'categories.html', context) def product_detail(request, slug): one_product = Product.objects.get(slug=slug) related_products = Product.objects.exclude(id=one_product.id).filter(is_active=True, category=one_product.category) context = {'item':one_product, 'related_products':related_products} return render(request, 'product_detail.html', context) @login_required(login_url='signin') def add_to_cart(request): user = request.user product_id = request.GET.get('product_id') product = get_object_or_404(Product, id=product_id) # Check Whether the Product is Already in Cart or Not item_already_in_cart = Cart.objects.filter(product=product_id, user=user) if item_already_in_cart: cp = get_object_or_404(Cart, product=product_id, user=user) cp.quantity += 1 cp.save() else: Cart(user=user, product=product).save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) @login_required(login_url='signin') def cart(request): user = request.user cart_product = Cart.objects.filter(user=user) amount = decimal.Decimal(0) shipping_charges = decimal.Decimal(100) cp = [p for p in Cart.objects.all() if p.user == user] if cp: for p in cp: temp_amount = (p.quantity * p.product.price) amount += temp_amount # Customer Address address = Address.objects.filter(user=user) context = { 'cart_products':cart_product, 'amount':amount, 'shipping_charges':shipping_charges, 'address':address, 'total':amount + shipping_charges, } return render(request, 'cart.html', context) @login_required(login_url='signin') def remove_cart(request, id): cd = Cart.objects.get(id=id) cd.delete() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) @login_required(login_url='signin') def profile(request): orders = Order.objects.filter(user=request.user) user = User.objects.get(username=request.user) address = Address.objects.filter(user=request.user) context = {'user':user, 'useraddress':address, 'orders':orders} return render(request, 'profile.html', context) @login_required(login_url='signin') def address(request): if request.GET.get('q'): mycheck = request.GET.get('q') if mycheck: if request.method == 'POST': locality = request.POST['locality'] city = request.POST['city'] state = request.POST['state'] get_address = Address(user=request.user, locality=locality, city=city, state=state) get_address.save() messages.success(request, 'Address has been Added.') return redirect('checkout') else: if request.method == 'POST': locality = request.POST['locality'] city = request.POST['city'] state = request.POST['state'] get_address = Address(user=request.user, locality=locality, city=city, state=state) get_address.save() messages.success(request, 'Address has been Added.') return redirect('profile') return render(request, 'address.html') def trash_address(request, id): del_address = Address.objects.get(id=id) del_address.delete() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) def plus_cart(request, cart_id): cp = get_object_or_404(Cart, id=cart_id) cp.quantity += 1 cp.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) def minus_cart(request, cart_id): cp = get_object_or_404(Cart, id=cart_id) if cp.quantity == 1: cp.delete() else: cp.quantity -= 1 cp.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) @login_required(login_url='signin') def checkout(request): if request.method == 'POST': try: radioAddress = request.POST['radioAddress'] order_address = Address.objects.get(user=request.user, id=radioAddress) cart_items = Cart.objects.filter(user=request.user) for cart in cart_items: price = cart.quantity * cart.product.price orders = Order(user=request.user, address=order_address, product=cart.product, quantity=cart.quantity, total_price=price) orders.save() cart.delete() return redirect('orders') except Exception as error: print(error) messages.error(request, 'Add Shipping Address.') check_address = Address.objects.filter(user=request.user) total_cart_amount = Cart.objects.filter(user=request.user) total_amount = decimal.Decimal(0) shipping_charges = decimal.Decimal(100) for cart in total_cart_amount: carts = cart.quantity * cart.product.price total_amount += carts context = { 'address':check_address, 'price_amount':total_amount, 'shipping_charges':shipping_charges, 'total_amount':total_amount + shipping_charges } return render(request, 'checkout.html', context) @login_required(login_url='signin') def orders(request): all_orders = Order.objects.filter(user=request.user).order_by('-ordered_date') context = {'all_orders':all_orders} return render(request, 'orders.html', context) # Categories def category_product(request, slug): category = get_object_or_404(Category, slug=slug) products = Product.objects.filter(is_active=True, category=category) context = {'products':products, 'category':category} return render(request, 'search.html', context) def search(request): search_query = request.GET.get('q') if len(search_query) > 80: products = Product.objects.none() else: # product_title = Product.objects.filter(is_active=True, title__icontains=search_query) # product_category = Product.objects.filter(is_active=True, category__icontains=search_query) # product_short_desc = Product.objects.filter(is_active=True, short_description__icontains=search_query) # product_long_desc = Product.objects.filter(is_active=True, detail_description__icontains=search_query) # products = product_title.values_list().union(product_short_desc.values_list(), product_long_desc.values_list()) products = Product.objects.filter(is_active=True, title__icontains=search_query) # if products.count() == 0: # messages.warning(request, 'Query Not Found.') context = {'products':products, 'query':search_query} return render(request, 'search.html', context)
digital-era-108/Ecommerce-django
storeApp/views.py
views.py
py
7,779
python
en
code
0
github-code
6
31280749903
import numpy as np, glob, face_recognition, ntpath, pickle, os from os.path import basename from shutil import copyfile def copy_face_image(): for i in glob.glob("data/avatars/*.jpg"): image = face_recognition.load_image_file(i) face_locations = face_recognition.face_locations(image) if face_locations: print(i) copyfile(i, "data/human_face/" + ntpath.basename(i)) def encoding(): known_faces = [] name_index = [] for i in glob.glob("data/human_face/*.jpg"): print(i) image = face_recognition.load_image_file(i) face_encoding = face_recognition.face_encodings(image)[0] known_faces.append(face_encoding) filename = os.path.splitext(basename(i))[0] name_index.append(filename) with open('data/encodings', 'wb') as fp: pickle.dump(known_faces, fp) with open('data/index', 'wb') as fp: pickle.dump(name_index, fp) def test_encoding(): with open('data/encodings', 'rb') as fp: known_faces = pickle.load(fp) with open('data/index', 'rb') as fp: name_index = pickle.load(fp) test_file = "data/avatars/4557.jpg" image = face_recognition.load_image_file(test_file) face_encoding = face_recognition.face_encodings(image)[0] face_distances = face_recognition.face_distance(known_faces, face_encoding) min_index = np.argmin(face_distances) print(name_index[min_index]) #copy_face_image() encoding() test_encoding()
chechiachang/scouter
face_recognition/encoding_file_generator.py
encoding_file_generator.py
py
1,509
python
en
code
13
github-code
6
35474166745
from collections import defaultdict from warhound import util class PlayerRoundStats: __slots__ = ('raw') def __init__(self): self.raw = None class RoundSummary: __slots__ = ('raw', 'list_dict_player_round_stats_by_player_id', 'dict_player_round_stats_by_player_id') def __init__(self): self.raw = None self.list_dict_player_round_stats_by_player_id = util.mk_oil() self.dict_player_round_stats_by_player_id = {} class TeamUpdate: __slots__ = ('raw') def __init__(self): self.raw = None class Outcome: __slots__ = ('raw', 'list_round_summary', 'dict_team_update_by_team_id') def __init__(self): self.raw = None self.list_round_summary = [] self.dict_team_update_by_team_id = {} def mk_player_round_stats(): return PlayerRoundStats() def mk_round_summary(): round_summary = RoundSummary() # one dict for each side... round_summary.list_dict_player_round_stats_by_player_id.append({}) round_summary.list_dict_player_round_stats_by_player_id.append({}) return round_summary def mk_team_update(): return TeamUpdate() def mk_outcome(num_rounds): outcome = Outcome() outcome.list_round_summary = \ [mk_round_summary() for i in range(0, num_rounds)] return outcome def process_round_stats(round_summary, data, state): player_id = data['userID'] side = state['dict_side_by_player_id'][player_id] player_round_stats = mk_player_round_stats() player_round_stats.raw = data round_summary.list_dict_player_round_stats_by_player_id[side][player_id] = \ player_round_stats round_summary.dict_player_round_stats_by_player_id[player_id] = \ player_round_stats return None def process_round_finished_event(outcome, data, state): ordinal = data['round'] round_summary = outcome.list_round_summary[ordinal] round_summary.raw = data for obj_stats in data['playerStats']: process_round_stats(round_summary, obj_stats, state) return None def process_match_finished_event(outcome, data, state): outcome.raw = data return None def process_team_update_event(outcome, data, state): team_id = data['teamID'] team_update = mk_team_update() team_update.raw = data outcome.dict_team_update_by_team_id[team_id] = team_update return None PROCESSOR_BY_EVENT_TYPE = \ { 'Structures.RoundFinishedEvent': process_round_finished_event, 'Structures.MatchFinishedEvent': process_match_finished_event, 'com.stunlock.battlerite.team.TeamUpdateEvent': process_team_update_event }
odeumgg/warhound
warhound/outcome.py
outcome.py
py
2,834
python
en
code
1
github-code
6
25272911980
T = int(input()) for _ in range(T): L = list(map(int, input().split())) a = L[0] b = L[1] % 4 if L[1] % 4 != 0 else 4 test = pow(a, b) if test % 10 == 0: print(10) else: print(test % 10)
powerticket/algorithm
Baekjoon/B3_1009_solved.py
B3_1009_solved.py
py
226
python
en
code
0
github-code
6
8316768665
from brownie import FundMe from scripts.helpful_scripts import get_account def fund(): # Set variable fund_me to the latest deployment of the FundMe contract fund_me = FundMe[-1] account = get_account() entrance_fee = fund_me.getEntranceFee() print(entrance_fee) print(f"The current entry fee is {entrance_fee}") print("Funding") fund_me.fund({"from": account, "value": entrance_fee}) def withdraw(): fund_me = FundMe[-1] account = get_account() fund_me.withdraw({"from": account}) # 0.025000000000000000 ether (at 1 ETH = $2000) def main(): fund() withdraw()
AgenP/brownie_fund_me
scripts/fund_and_withdraw.py
fund_and_withdraw.py
py
618
python
en
code
0
github-code
6
27535979388
import os import matplotlib.pyplot as plt def get_project_path(project_name): """ :param project_name: 项目名称,如pythonProject :return: ******/project_name """ # 获取当前所在文件的路径 cur_path = os.path.abspath(os.path.dirname(__file__)) # 获取根目录 return cur_path[:cur_path.find(project_name)] + project_name def draw_img_groups(img_groups: list, imgs_every_row: int = 8, block: bool = True, show_time: int = 5): num_groups = len(img_groups) for i in range(num_groups): assert img_groups[i].shape[0] >= imgs_every_row img_groups[i] = img_groups[i].cpu().squeeze(1).detach().numpy() fig = plt.figure() gs = fig.add_gridspec(num_groups, imgs_every_row) for i in range(num_groups): for j in range(imgs_every_row): ax = fig.add_subplot(gs[i, j]) ax.imshow(img_groups[i][j], cmap="gray") ax.axis("off") plt.tight_layout() plt.show(block=block) if not block: plt.pause(show_time) plt.close("all") print(get_project_path(project_name="Defense"))
fym1057726877/Defense
utils.py
utils.py
py
1,115
python
en
code
0
github-code
6
40243178863
import cv2 from snooker_table import find_snooker_table from balls import find_balls from holes import find_holes # Videó feldolgozás def process_video(input_path, output_path): # Open the video file video_capture = cv2.VideoCapture(input_path) # Get video properties frame_width = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(video_capture.get(cv2.CAP_PROP_FPS)) # Create VideoWriter object to save the processed video out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height)) frame_count = 0 previous_result = {} balls_expected_location = {} disappeared_balls = {} balls_in_pocket = { "top_left": [], "top_middle": [], "top_right": [], "bottom_left": [], "bottom_middle": [], "bottom_right": [] } while video_capture.isOpened(): frame_count += 1 ret, frame = video_capture.read() if not ret: break # Find snooker table boundaries snooker_table, x, y, w, h = find_snooker_table(frame.copy()) # Find balls present on table # RESULT CONTAINS LOCATION OF BALLS result = { "red": [] } balls = find_balls(snooker_table.copy(), result) # Itt nézzük, hogy előző frame-ben volt, most nincs golyó for prev_key in previous_result: if prev_key != 'white' and prev_key not in result: disappeared_balls[prev_key] = frame_count if prev_key == 'red' and len(previous_result[prev_key]) != len(result[prev_key]): pass # TODO: szükséges a red-ek cimkezese, jelenleg nem tudjuk megkülönböztetni őket # Itt nézzük, hogy tényleg eltűnt-e for disappeared_ball in list(disappeared_balls.keys()): if disappeared_ball in result.keys(): del disappeared_balls[disappeared_ball] else: if disappeared_balls[disappeared_ball] > 10: # Eltűnés frame határérték del disappeared_balls[disappeared_ball] balls_in_pocket[balls_expected_location[disappeared_ball]].append(disappeared_ball) previous_result = result # Find holes holes = find_holes(snooker_table.copy(), balls_in_pocket) # Final image final_image = cv2.addWeighted(balls, 0.5, holes, 0.5, 0) # Lehetséges leütések számítása for ball in result: white = result.get("white") other = result.get(ball) golyok = [] if ball == "red": golyok = other else: golyok.append(other) for golyo in golyok: if (white and golyo) and (white != golyo): white_ball_position = (white.get("x"), white.get("y")) # Example coordinates of the white ball (x, y) other_ball_position = (golyo.get("x"), golyo.get("y")) # Example coordinates of the other ball (x, y) # Calculate the line between the two points line_thickness = 2 cv2.line(final_image, white_ball_position, other_ball_position, (255, 0, 0), line_thickness) # Calculate the extended line beyond the other ball's position delta_x = other_ball_position[0] - white_ball_position[0] delta_y = other_ball_position[1] - white_ball_position[1] temp_x, temp_y = other_ball_position while 0 < temp_x < final_image.shape[1] and 0 <= temp_y < final_image.shape[0]: temp_x += delta_x temp_y += delta_y extended_position = (int(temp_x), int(temp_y)) # Draw the extended line cv2.line(final_image, other_ball_position, extended_position, (0, 255, 0), line_thickness) ######################################################################################################## # Hova mehet be a golyó, ha most leütjük? # Initial position of the line starting from the other ball current_x, current_y = other_ball_position # Iterate and extend the line until reaching the edge of the image while 0 <= current_x < final_image.shape[1] and 0 <= current_y < final_image.shape[0]: current_x += delta_x current_y += delta_y if current_x > final_image.shape[1]: current_x = final_image.shape[1] if current_y < final_image.shape[0]: current_y = final_image.shape[0] # Mark the final point where the line reaches the edge final_position = (int(current_x), int(current_y)) # Find the intersection point with the image boundary max_x, max_y = final_image.shape[1], final_image.shape[0] if delta_x == 0: # Vertical line final_position = (other_ball_position[0], 0 if delta_y < 0 else max_y - 1) else: slope = delta_y / delta_x if abs(slope) <= max_y / max_x: # Intersects with left or right boundary final_position = ( 0 if delta_x < 0 else max_x - 1, int(other_ball_position[1] - slope * other_ball_position[0])) else: # Intersects with top or bottom boundary final_position = (int(other_ball_position[0] - (1 / slope) * ( other_ball_position[1] - (0 if delta_y < 0 else max_y - 1))), 0 if delta_y < 0 else max_y - 1) cv2.circle(final_image, final_position, 5, (0, 0, 255), -1) ######################################################################################################## # Melyik lyukhoz lenne a golyó legközelebb? top_boundary = int(final_image.shape[0] * 0.2) # 20% of the image height bottom_boundary = int(final_image.shape[0] * 0.8) # 80% of the image height left_boundary = int(final_image.shape[1] * 0.333) # 33.3% of the image width right_boundary = int(final_image.shape[1] * 0.666) # 66.6% of the image width # Check the position of the marked point relative to the defined boundaries if final_position[1] < top_boundary: if final_position[0] < left_boundary: balls_expected_location[ball] = "top_left" elif left_boundary <= final_position[0] <= right_boundary: balls_expected_location[ball] = "top_middle" else: balls_expected_location[ball] = "top_right" elif final_position[1] > bottom_boundary: if final_position[0] < left_boundary: balls_expected_location[ball] = "bottom_left" elif left_boundary <= final_position[0] <= right_boundary: balls_expected_location[ball] = "bottom_middle" else: balls_expected_location[ball] = "bottom_right" # Write the processed frame to the output video frame[y:y + h, x:x + w] = final_image out.write(frame) # Display the processed frame (optional) cv2.imshow('Processed Frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Release video capture and writer video_capture.release() out.release() cv2.destroyAllWindows()
hirschabel/SZTE-snooker
snooker/process.py
process.py
py
8,137
python
en
code
0
github-code
6
25294948506
from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse from .forms import * from .models import * import psycopg2 from mysite.settings import DATABASES from psycopg2.extras import RealDictCursor def db_answer(query): try: connection = psycopg2.connect( database=DATABASES['default']['NAME'], user=DATABASES['default']['USER'], host=DATABASES['default']['HOST'], port=DATABASES['default']['PORT'], password=DATABASES['default']['PASSWORD'] ) cursor = connection.cursor(cursor_factory=RealDictCursor) cursor.execute(query) result = cursor.fetchall() return result except Exception as err: print(err) print('ЧТо то пошло не так!') finally: cursor.close() connection.close() def index(request): query1 = """SELECT * FROM employees_worker;""" all_workers = db_answer(query1) query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) query3 = """SELECT * FROM employees_position;""" all_pos = db_answer(query3) context = { 'workers': all_workers, 'cats': all_cat, 'positoin': all_pos, 'title': 'Главная страница', } return render(request, 'employees/index.html', context=context) def adduser(request): # добавление сотрудника if request.method == 'POST': # проверка валиднасти данных, если данные не верны вернёться заполненная форма form = AddWorkerForm(request.POST) if form.is_valid(): try: Worker.objects.create(**form.cleaned_data) return redirect('home') except: form.add_error(None, "Ошибка добавления поста!") else: form = AddWorkerForm() query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) context = { 'cats': all_cat, 'form': form, 'title': 'Добавление сотрудника', } return render(request, 'employees/adduser.html', context=context) def create_user(request, w_id): # редактирование должности query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) work_up = Worker.objects.get(pk=w_id) if request.method == 'POST': # проверка валиднасти данных, если данные не верны вернёться заполненная форма form = AddWorkerForm(request.POST, instance=work_up) if form.is_valid(): form.save() return redirect('home') else: form = AddWorkerForm(instance=work_up) context = { 'cats': all_cat, 'form': form, 'title': 'Главная страница', } return render(request, 'employees/create_user.html', context=context) def add_position(request): # добавление дожности if request.method == 'POST': # проверка валиднасти данных, если данные не верны вернёться заполненная форма form = AddPositionForm(request.POST) if form.is_valid(): form.save() return redirect('home') else: form = AddPositionForm() query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) context = { 'cats': all_cat, 'form': form, 'title': 'Добавление должности', } return render(request, 'employees/add_position.html', context=context) def show_worker(request, pos_id): # выводит всех сотрудников работающих на конкретной должности query1 = f"SELECT * FROM employees_worker WHERE pos_id = {pos_id};" all_workers = db_answer(query1) query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) query3 = f"SELECT * FROM employees_position" all_pos = db_answer(query3) context = { 'workers': all_workers, 'cats': all_cat, 'positoin': all_pos, 'title': 'Главная страница', } return render(request, 'employees/show_worker.html', context=context) def show_cats(request, cat_id): # Выводит все должности в категории form = AddPositionForm() query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) query3 = f"SELECT * FROM employees_position WHERE cat_id = {cat_id};" all_pos = db_answer(query3) context = { 'cats': all_cat, 'positoin': all_pos, 'form': form, 'title': 'Главная страница', } return render(request, 'employees/show_cats.html', context=context) def create_position(request, pos_id): # редактирование должности query2 = """SELECT * FROM employees_category;""" all_cat = db_answer(query2) query3 = f"SELECT * FROM employees_position WHERE id = {pos_id};" pos = db_answer(query3) pos_up = Position.objects.get(pk=pos_id) if request.method == 'POST': # проверка валиднасти данных, если данные не верны вернёться заполненная форма form = AddPositionForm(request.POST, instance=pos_up) if form.is_valid(): form.save() return redirect('home') else: form = AddPositionForm(instance=pos_up) context = { 'cats': all_cat, 'positoin': pos, 'form': form, 'title': 'Главная страница', } return render(request, 'employees/create_position.html', context=context) def del_worker(request, w_id): get_worker = Worker.objects.get(pk=w_id) get_worker.delete() return redirect(reverse('home')) def del_position(request, pos_id): get_pos = Position.objects.get(pk=pos_id) get_pos.delete() return redirect(reverse('home'))
Fastsnai1/Employee_log
mysite/employees/views.py
views.py
py
6,205
python
en
code
0
github-code
6
17034068791
import logging, os, json from rest_framework.response import Response from rest_framework.decorators import api_view from rest_framework import status from app.worker.tasks import recommend_options_exe logger = logging.getLogger(__name__) @api_view(['GET']) def get_recommend_options(request, format=None): key = os.environ.get('STOCK_API_KEY') if request.META['HTTP_AUTHORIZATION'] == None or key != request.META['HTTP_AUTHORIZATION']: return Response('', status=status.HTTP_401_UNAUTHORIZED) if request.method == 'POST': data = request.data if 'tickers' in data: for ticker in data['tickers']: recommend_options_exe.delay(ticker) return Response(data, status=status.HTTP_200_OK) return Response('', status=status.HTTP_403_FORBIDDEN)
dearvn/tdameritrade-bot
app/api/views.py
views.py
py
816
python
en
code
1
github-code
6
8829781188
from Node import Node # Node pointers head = None second = None third = None # Assign data using constructor. head = Node(10) second = Node(20) third = Node(30) # Assign data using "." operator. # head.data = 10 # second.data = 20 # third.data = 30 head.next = second # Link first (head) node with second. second.next = third # Link second node with the third. third.next = None # Set last Node (tail) as NULL. print(f"Value in the First Node (head): {head.data}") print(f"Value in the Second Node: {second.data}") print(f"Value in the Third Node (tail): {third.data}")
drigols/studies
modules/algorithms-and-ds/modules/data-structures/linear/lists/src/python/singly-linked-list/driver_insert_using_node_class.py
driver_insert_using_node_class.py
py
593
python
en
code
0
github-code
6
35935636198
from gpt4all import GPT4All import asyncio import websockets import datetime print(r''' $$$$$$\ $$\ $$\ $$$$$$\ $$$$$$\ $$ __$$\ $$ | \__| $$ __$$\ \_$$ _| $$ / $$ |$$ | $$\ $$$$$$\ $$$$$$\ $$\ $$ / $$ | $$ | $$$$$$$$ |$$ | $$ |\____$$\ $$ __$$\ $$ | $$$$$$$$ | $$ | $$ __$$ |$$$$$$ / $$$$$$$ |$$ | \__|$$ | $$ __$$ | $$ | $$ | $$ |$$ _$$< $$ __$$ |$$ | $$ | $$ | $$ | $$ | $$ | $$ |$$ | \$$\\$$$$$$$ |$$ | $$ | $$ | $$ |$$$$$$\ \__| \__|\__| \__|\_______|\__| \__| \__| \__|\______| ''') print('Akari AI Server v1.2b\nhttps://github.com/76836/Akari') print('[ok]Preparing AI...') model = GPT4All("gpt4all-falcon-q4_0.gguf", allow_download=True) prompt_template = 'USER: {0}\nAKARI: ' tokens_added = "" print('[ok]Server running.') async def handle_websocket(websocket, path): try: while True: message = await websocket.recv() uprompt = message print(f"[in]Received message: {uprompt}") if (message == "test"): print('\n[ok]Testing connection.\n') response = f"Akari AI v1.2b connected" else: prompts = [uprompt] current_time = datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S") print('[ok]Generating response... ('+current_time+')') system_template = '''You are Akari Crimson AI, you have a kind, joking personality. Write detailed quick answers for any question. Give one answer at a time. (Akari AI Server v1.2b, system time:'''+current_time+''')''' first_input = system_template + prompt_template.format(prompts[0]) def stop_on_token_callback(token_id, token_string): global tokens_added tokens_added = tokens_added + token_string if "USER:" in tokens_added: print('[ok]Generation stopped.') tokens_added ='' return False # If the string is not found, continue generating tokens return True response = model.generate(first_input, max_tokens=512, temp=0.7, top_k=40, top_p=0.4, repeat_penalty=1.99, repeat_last_n=512, n_batch=8, n_predict=None, callback=stop_on_token_callback) response = response.replace('USER:', '') await websocket.send(response) tokens_added = '' print(f"[out]Sent message: {response}") except websockets.exceptions.ConnectionClosed: print("\n[Error]WebSocket connection closed\n") start_server = websockets.serve(handle_websocket, "localhost", 8765) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
76836/Akari
experimental/server.py
server.py
py
3,098
python
en
code
0
github-code
6
17640174097
""" Use blender to convert FBX (T-pose) to BVH file """ import os import bpy import numpy as np def get_bvh_name(filename): filename = filename.split(".")[-2] return filename + ".bvh" def main(): fbx_dir = "./mixamo/fbx/" bvh_dir = "./mixamo/bvh/" for filename in os.listdir(fbx_dir): fbx_path = os.path.join(fbx_dir, filename) bvh_path = os.path.join(bvh_dir, get_bvh_name(filename)) bpy.ops.import_scene.fbx(filepath=fbx_path) action = bpy.data.actions[-1] frame_start = action.frame_range[0] frame_end = max(60, action.frame_range[1]) bpy.ops.export_anim.bvh(filepath=bvh_path, frame_start=int(frame_start), frame_end=int(frame_end), root_transform_only=True) bpy.data.actions.remove(bpy.data.actions[-1]) if __name__ == "__main__": main()
awkrail/mixamo_preprocessor
fbx2bvh.py
fbx2bvh.py
py
935
python
en
code
0
github-code
6
1499727625
from bs4 import BeautifulSoup import json import logging import requests from Mongo import client as MongoClient from Redis import client as RedisClient WEB = 'https://www.gensh.in/events/promotion-codes' class RequestErrorException(Exception): def __init__(self, message, resp): super().__init__(message) self.resp = resp self.message = message def scrapper(): logging.info("Running scrapper") try: codes = _scrapCodes() except RequestErrorException as e: logging.warning("%s\nStatus code %s", e.message, e.resp.status_code) return for code in codes: if MongoClient.existCode(code["id"]): continue else: logging.info("[%s] - New code detected",code["id"]) RedisClient.sendCode(json.dumps(code)) logging.info("[%s] - Notification sent",code["id"]) MongoClient.insertCode(code) logging.info("[%s] - Saved on Mongo",code["id"]) logging.info("Scrapper finished") def _scrapCodes(): resp = requests.get(WEB) if not resp: raise RequestErrorException(resp=resp,message="There was an error on the request") source = resp.text soup = BeautifulSoup(source, 'lxml') table = soup.find('table') headers = [heading.text for heading in table.find_all('th')] table_rows = [row for row in table.find_all('tr')] results = [{headers[index] : cell.text for index,cell in enumerate(row.find_all('td')) } for row in table_rows] while {} in results: results.remove({}) results = list(map(_formatter,results)) codes = [] for result in results: code = { "id":result["NA"], "date_added":result["Date Added"], "rewards":result["Rewards"], "expired":result["Expired"], "eu":result["EU"], "na":result["NA"], "sea":result["SEA"] } codes.append(code) return codes def _formatter(result): result = {x.strip(): v.strip() for x, v in result.items()} return result
BRAVO68WEB/genshin-notify
scrapperCodes/scrapper.py
scrapper.py
py
2,107
python
en
code
1
github-code
6
19499795421
# -*- coding: utf-8 -*- class Solution: def fromMiddles(self, mid_f: int, mid_s: int, s: str) -> (int, int): dis = start = end = 0 # condition ensures we don't point beyond the beginning of the word while dis <= mid_f: pstart = mid_f - dis pend = mid_s + dis if len(s) - pend == 0: break # reached end of word if s[pstart] == s[pend]: end = pend start = pstart else: break dis += 1 return start, end def longestPalindrome(self, s: str) -> str: longest = "" for ix in range(len(s)): st, en = self.fromMiddles(ix, ix, s) # if we're not on the last letter, consider an even palindrome if ix + 1 <= len(s): dst, den = self.fromMiddles(ix, ix + 1, s) if den - dst > en - st: st = dst en = den if en - st + 1 > len(longest): longest = s[st : en + 1] return longest # vim: autoindent tabstop=4 shiftwidth=4 expandtab softtabstop=4
michaeldye/mdye-python-samples
src/mdye_leetcode/solution_5.py
solution_5.py
py
1,177
python
en
code
0
github-code
6
10230270575
import numpy as np from pyparsing import Any import evals import evals.elsuite.steganography.steganography as steganography import evals.metrics from evals.api import CompletionFn, DummyCompletionFn from evals.eval import Eval from evals.record import RecorderBase class Steganography(Eval): def __init__( self, completion_fns: list[CompletionFn], samples_jsonl: str, *args, prompt_version: str = "scratch", reconstruction_error_metric: str = "semantic_distance", **kwargs, ): super().__init__(completion_fns, *args, **kwargs) if len(completion_fns) == 1 and isinstance( completion_fns[0], DummyCompletionFn ): completion_fn = completion_fns[0] completion_fns = [completion_fn, completion_fn] assert ( len(completion_fns) == 2 ), f"Steganography requires 2 completion_fns (the 1st is the target model, the 2nd is the monitor model), received {len(completion_fns)}." self.completion_fns = completion_fns self.samples_jsonl = samples_jsonl self.prompt_version = prompt_version self.reconstruction_error_metric = reconstruction_error_metric def eval_sample(self, sample: Any, *_): assert isinstance(sample, dict), "sample must be a dict" assert "payload_text" in sample, "sample must have a payload_text key" assert "task_prompt" in sample, "sample must have a task_prompt key" assert "task_output" in sample, "sample must have a task_output key" assert isinstance(sample["payload_text"], str), "payload_text must be a string" assert isinstance(sample["task_prompt"], str), "task_prompt must be a string" assert isinstance(sample["task_output"], str), "task_output must be a string" payload = sample["payload_text"] task_prompt = sample["task_prompt"] reference_output = sample["task_output"] results = steganography.run_eval( task_prompt=task_prompt, reference_output=reference_output, payload=payload, completion_fn=self.completion_fns[0], monitor_completion_fn=self.completion_fns[1], prompt_version=self.prompt_version, metadata=sample, ) evals.record.record_metrics( undetected_acc=results["undetected_acc"], detectability=results["detected"], reconstruction_error=results[self.reconstruction_error_metric], character_error_rate_cap1=results["character_error_rate_cap1"], semantic_distance=results["semantic_distance"], rule_violated=results["rule_violated"], ) def run(self, recorder: RecorderBase): samples = self.get_samples() self.eval_all_samples(recorder, samples) metrics = recorder.get_metrics() return { "undetected_acc": np.mean([d["undetected_acc"] for d in metrics]), "detectability": np.mean([d["detectability"] for d in metrics]), "reconstruction_error": np.mean([d["reconstruction_error"] for d in metrics]), "character_error_rate_cap1": np.mean([d["character_error_rate_cap1"] for d in metrics]), "semantic_distance": np.mean([d["semantic_distance"] for d in metrics]), "rule_violated": np.mean([d["rule_violated"] for d in metrics]), }
openai/evals
evals/elsuite/steganography/eval.py
eval.py
py
3,437
python
en
code
12,495
github-code
6
28985765692
import community as community_louvain import networkx as nx #read file graph_file = 'abide_au_2_4132_sparse.txt' #label_file='4132_regions.txt' with open(graph_file) as f: graph = f.readlines() graph = [x.strip() for x in graph] G = nx.parse_edgelist(graph, delimiter="\t", nodetype=int) partition = community_louvain.best_partition(G) #print(partition) comm_file=open("vertex_community_au_sparse2_run2.txt","w") for comm in sorted(partition): comm_file.write(str(comm)+'\t'+str(partition[comm])+'\n') comm_file.close() num_comm = max(partition.values())+1 vertex_subsets = [set() for i in range(num_comm)] subgraphs = [set() for i in range(num_comm)] cut_edges = set() for key in partition: vertex_subsets[partition[key]].add(key) for edge in graph: u,v=edge.split("\t") u,v=int(u),int(v) flag = 0 for comm in range(num_comm): if u in vertex_subsets[comm] and v in vertex_subsets[comm]: subgraphs[comm].add(edge) flag = 1 break if flag == 0: cut_edges.add(edge) #print(cut_edges) for i in range(num_comm): print("subgraph ",i," contains ",len(subgraphs[i])," number of edges") print("Cut edges are - ",len(cut_edges)) subgraph_file=open("subgraphs_au_sparse2_run2.txt","w") for comm in range(num_comm): subgraph_file.write(str(comm)+'\n') subgraph_file.write(str(len(vertex_subsets[comm]))+'\t'+str(len(subgraphs[comm]))+'\n') #subgraph_file.write(sorted(vertex_subsets[comm]), key = lambda x: (len (x), x)) i = 0 vertid = dict() for vertex in sorted(vertex_subsets[comm]): vertid[vertex] = i i += 1 subgraph_file.write(str(vertex)+'\n') #subgraph_file.write(sorted(subgraphs[comm]),key = lambda x: (len (x), x)) edgelist = [[0 for k in range(2)] for m in range(len(subgraphs[comm]))] j=0 for edge in sorted(subgraphs[comm]): u,v=edge.split("\t") u,v=int(u),int(v) edgelist[j][0],edgelist[j][1] = vertid[u],vertid[v] j += 1 for l in sorted(edgelist,key=lambda x: (x[0],x[1])): subgraph_file.write(str(l[0])+'\t'+str(l[1])+'\t'+str(1)+'\n') subgraph_file.close()
chandrashekar-cds/Graph-Coarsening
louvain_subgraphs_label.py
louvain_subgraphs_label.py
py
2,184
python
en
code
0
github-code
6
21053864803
# Import the necessary libraries import PySimpleGUI as sg import qrcode # Set the theme for the UI sg.theme('GreenMono') # Define the layout for the app layout = [ [sg.Text('Enter Text: ', font=('Helvetica', 12, 'bold')), sg.InputText(font=('Helvetica', 12), size=(30,1))], [sg.Button('Create', font=('Helvetica', 12), button_color=('white', '#007F00')), sg.Button('Exit', font=('Helvetica', 12), button_color=('white', 'firebrick'))], [sg.Image(key='-IMAGE-', size=(200, 150))] ] # Create the window window = sg.Window('QR Code Generator', layout) # Event loop for the app while True: # Read events and values from the window event, values = window.read() # If the Exit button or window is closed, exit the app if event in (sg.WIN_CLOSED, 'Exit'): break # If the Create button is clicked, generate the QR code image if event == 'Create': # Get the text input from the user data = values[0] # If the text input is not empty, generate the QR code if data: # Generate the QR code image img = qrcode.make(data) # Save the QR code image to a file img.save('qrcode.png') # Update the image in the UI window['-IMAGE-'].update(filename='qrcode.png') # Close the window and exit the app window.close()
haariswaqas/Project2
QR Code Generator.py
QR Code Generator.py
py
1,401
python
en
code
0
github-code
6
36572760050
import random import colorgram from turtle import Turtle, Screen colors = colorgram.extract("./example.jpg", 10) list_colors = [] for color in colors: current_color = color.rgb color_tuple = (current_color[0], current_color[1], current_color[2]) list_colors.append(color_tuple) porto = Turtle() porto.penup() porto.hideturtle() porto.speed('fast') screen = Screen() screen.colormode(255) number_dots = 100 porto.seth(225) porto.fd(300) porto.seth(0) for dot in range(1, number_dots + 1): porto.dot(20, random.choice(list_colors)) porto.fd(50) if dot % 10 == 0: porto.seth(90) porto.fd(50) porto.seth(180) porto.fd(500) porto.seth(0) screen.exitonclick()
porto-o/Python_projects
18. hirst-painting/main.py
main.py
py
725
python
en
code
1
github-code
6
18537329449
# prob_link: https://www.codingninjas.com/codestudio/problems/trapping-rain-water_8230693?challengeSlug=striver-sde-challenge&leftPanelTab=0 from os import * from sys import * from collections import * from math import * def getTrappedWater(height, n) : # Write your code here. n = len(height) pre = [0]*n suff = [0]*n for i in range(len(height)): if i==0: pre[i]=height[0] continue pre[i]=max(pre[i-1],height[i]) n = len(height) for i in range(len(height)-1,-1,-1): if i==n-1: suff[i] = height[-1] continue suff[i]=max(suff[i+1],height[i]) ans = 0 #suff = suff[::-1] for i in range(1,len(suff)-1): mini = min(suff[i],pre[i]) ans += mini - height[i] return ans
Red-Pillow/Strivers-SDE-Sheet-Challenge
P40_Trapping_Rain_Water.py
P40_Trapping_Rain_Water.py
py
729
python
en
code
0
github-code
6
9816344184
# Nearest stars to Earth # star1 = 'Sol' # star2 = 'Alpha Centauri' # star3 = 'Barnard' # star4 = 'Wolf 359' stars = [ "sol", "Alpaha", "Barnard", "Wolf 359" ] print(stars[3]) # # Highest peak on each tectonic plate # Antarctic = 'Vinson' # Australian = 'Puncak Jaya' # Eurasian = 'Everest' # North_American = 'Denali' # Pacific = 'Mauna Kea' # South_American = 'Aconcagua' peacks ={ "antractc":"Vinson", "Australian":"Puncak Jaya", "Eurasian":"Everest", "North_American":"Deali", "Pacific":"Mauna Kea", "South_American": "Aconcagua" } print(peacks["Pacific"])
fouad963/linked-in
Exercise FilesProgramming Foundations Beyond the Fundamentals/Ch01/01_06/begin/collections.py
collections.py
py
602
python
en
code
0
github-code
6
35743712704
import sys import read_write as rw import numpy as np import scipy.sparse from MatrixFactorization import MatrixFactorization if (__name__ == '__main__'): finput_dataset = sys.argv[1] finput_K = (int)(sys.argv[2]) iu_matrix_train_path = "../../Data/" + finput_dataset + "/iu_sparse_matrix_train.npz" iu_matrix_test_path = "../../Data/" + finput_dataset + "/iu_sparse_matrix_test.npz" train_item_id_path = "../../Data/" + finput_dataset + "/train_item_id" test_item_id_path = "../../Data/" + finput_dataset + "/test_item_id" item_sim_matrix_path = "../../Data/" + finput_dataset + "/item_sim_matrix" # pass ui_matrix_train = scipy.sparse.load_npz(iu_matrix_train_path).T ui_matrix_test = scipy.sparse.load_npz(iu_matrix_test_path).T ui_matrix = scipy.sparse.csr_matrix(np.hstack((ui_matrix_train.toarray(), np.zeros(ui_matrix_test.shape)))) train_item_id = rw.readffile(train_item_id_path) test_item_id = rw.readffile(test_item_id_path) item_sim_matrix = rw.readffile(item_sim_matrix_path) # Computing Score for user (Score = [user number, new item number]) Score = (ui_matrix_train * item_sim_matrix.loc[train_item_id, test_item_id]) / \ ((ui_matrix_train != 0) * item_sim_matrix.loc[train_item_id, test_item_id]) # Active Learning train_item_num = len(train_item_id) ui_matrix = ui_matrix.tolil() ui_matrix_test = ui_matrix_test.tolil() for i in range(len(test_item_id)): ind = np.argsort(-Score[:, i]) if finput_K < ind.shape[0]: topK = ind[:(finput_K+1)] else: topK = ind ui_matrix[topK, i+train_item_num] = ui_matrix_test[topK, i] ui_matrix_test[topK, i] = 0 # Matrix Factorization nonzero = scipy.sparse.find(ui_matrix) train_lst = [] for uid, itemid, rating in zip(nonzero[0], nonzero[1], nonzero[2]): train_lst.append((uid, itemid, float(rating))) MF = MatrixFactorization(usernum=ui_matrix.shape[0], itemnum=ui_matrix.shape[1]) try: user_profile, item_profile = MF.matrix_factorization(train_lst) except: MF.end() MF = MatrixFactorization() user_profile, item_profile = MF.matrix_factorization(train_lst) pred_rating = np.dot(user_profile, item_profile[train_item_num:, :].T) nonzero_num = ui_matrix_test.getnnz() ui_matrix_test_arr = ui_matrix_test.toarray() RMSE = np.sum(((ui_matrix_test_arr != 0)*(pred_rating - ui_matrix_test_arr))**2 / nonzero_num)**0.5 print("RMSE: %.4f"%RMSE) MF.end()
clamli/Dissertation
Baselines/Content-based Active Learning/content_based_active_learning.py
content_based_active_learning.py
py
2,632
python
en
code
28
github-code
6
18997085490
import torch.nn as nn from efficientnet_pytorch import EfficientNet class EfficientNetCustom(nn.Module): def __init__(self, model_name, in_channels, num_classes, load_pretrained_weights=True, train_only_last_layer=False): super(EfficientNetCustom, self).__init__() self.model_name = model_name self.in_channels = in_channels self.num_classes = num_classes # self.image_size = EfficientNet.get_image_size(self.model_name) self.load_pretrained_weights = load_pretrained_weights self.train_only_last_layer = train_only_last_layer if self.load_pretrained_weights: self.features = EfficientNet.from_pretrained(self.model_name, in_channels=self.in_channels) else: self.features = EfficientNet.from_name(self.model_name, in_channels=self.in_channels) if self.train_only_last_layer: print('Training only last layer...') for param in self.features.parameters(): param.requires_grad = False in_ftrs = self.features._fc.in_features self.features._fc = nn.Linear(in_ftrs, self.num_classes) # self.features._fc.requires_grad = True def forward(self, inputs): x = self.features(inputs) return x
sanjeebSubedi/cats-dogs-efficientnet
efficientNetCustom.py
efficientNetCustom.py
py
1,204
python
en
code
0
github-code
6
74743366586
from decimal import Decimal, setcontext, ExtendedContext setcontext(ExtendedContext) precision = Decimal('0.000001') class LocationStore(object): def __init__(self): self.locations = {} def add(self, latitude, longitude, name, url=None, primary=False): latitude = makedecimal(latitude).quantize(precision).normalize() longitude = makedecimal(longitude).quantize(precision).normalize() for location, data in self.locations.iteritems(): (other_lat, other_lon) = location if latitude == other_lat and longitude == other_lon: if url is not None: data['url'] = url if primary is True: data['primary'] = True break else: #new location self.locations[(latitude, longitude)] = {'name': name, 'primary': primary} if url is not None: self.locations[(latitude, longitude)]['url'] = url def to_list(self): out = [] for location, data in self.locations.iteritems(): (data['latitude'], data['longitude']) = location out.append(data) return out def makedecimal(value): if isinstance(value, float): return Decimal(str(value)) else: return Decimal(value)
kurtraschke/cadors-parse
src/cadorsfeed/cadorslib/locations.py
locations.py
py
1,387
python
en
code
1
github-code
6
5123241016
""" Requests モジュールによりリモートファイルを読み込むサンプル 事前にRequestsモジュールをインストールしましょう # pip install requests """ import requests url = 'https://it-engineer-lab.com/feed' try: r = requests.get(url, timeout=10.0) print(r.text) except requests.exceptions.RequestException as err: print(err) # ダウンロード(読み込み + ローカル保存) # ダウンロードして rss.xml というファイル名で保存する例 try: r = requests.get(url, timeout=10.0) with open('rss.xml', mode='w') as f: f.write(r.text) except requests.exceptions.RequestException as err: print(err)
toksan/python3_study
network/get_by_requests.py
get_by_requests.py
py
690
python
ja
code
2
github-code
6
1948037648
from django.contrib import admin from django.db.models import QuerySet from django.db.models.expressions import RawSQL from django.forms import ModelForm from django.urls import reverse from django.utils.safestring import mark_safe from tree.models import Category from django.utils.html import format_html from django import forms from treebeard.admin import TreeAdmin @admin.register(Category) class CategoryAdmin(admin.ModelAdmin): def get_queryset(self, request): qs: QuerySet = super(admin.ModelAdmin, self).get_queryset(request) return qs \ .annotate(parent=RawSQL(""" select id from tree_category tc where tc.depth="tree_category"."depth"-1 and "tree_category"."path" like tc.path || '%%' """, [] )) list_display = ( 'id', 'path', 'depth', 'numchild', 'name', 'parent', ) class CategoryForm(ModelForm): parent_link = forms.BooleanField(required=False, disabled=True) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) url = reverse('admin:tree_category_change', args=[self.instance.parent]) self.fields['parent_link'].label = format_html('<a href="{}">Link to Parent</a>', url) class Meta: model = Category fields = '__all__' form = CategoryForm def parent(self, obj): # result = obj.grade_avg if obj.parent is None: return format_html("<b><i>{}</i></b>", obj.parent) url = reverse('admin:tree_category_change', args=[obj.parent]) return format_html('<a href="{}"> Parent</a>', url) # list_select_related = () # raw_id_fields = ("id",)
Vulwsztyn/django_treebeard_admin
tree/admin.py
admin.py
py
1,783
python
en
code
0
github-code
6
72340847227
# Tower of Hanoi # code by Akshat Aryan def tower(n, src, aux, dest): if n == 1: print("Move Disk from", src, "to", dest) else: tower(n - 1, src, dest, aux) print("Move Disk from", src, "to", dest) tower(n - 1, aux, src, dest) if(__name__ == "__main__"): n = int(input("Enter the number of disks:")) print("Follow these steps:") tower(n, "Source", "Auxiliary", "Destination")
crazydj8/DesignAlgorithms
Misc. Algos/Recursive_algos/towerofhanoi.py
towerofhanoi.py
py
437
python
en
code
1
github-code
6
27259334450
"""We are the captains of our ships, and we stay 'till the end. We see our stories through. """ """1059. All Paths from Source Lead to Destination """ class Solution: def leadsToDestination(self, n, edges, s, d): visited = [0] * n graph = [[] for _ in range(n)] def dfs(i): if len(graph[i]) == 0: return i == d if visited[i] == 1: return True if visited[i] == -1: return False visited[i] = -1 for neighbour in graph[i]: if not dfs(neighbour): return False visited[i] = 1 return True for u, v in edges: graph[u].append(v) dfs(s)
asperaa/back_to_grind
Graphs/1059. All Paths from Source Lead to Destination.py
1059. All Paths from Source Lead to Destination.py
py
756
python
en
code
1
github-code
6
6323414106
from contextlib import suppress import random import asyncio from typing import * import traceback import hikari from hikari import Embed import lightbulb from lightbulb import events, errors from lightbulb.context import Context from core import Inu from utils.language import Human from .help import OutsideHelp from core import getLogger, BotResponseError, Inu, InteractionContext log = getLogger("Error Handler") pl = lightbulb.Plugin("Error Handler") bot: Inu ERROR_JOKES = [ "Wait, there is a difference between beta and production?", "Seems like someone was to lazy to test me -- _again_", "Y'know: _my_ ordinary life is generating errors", "You expected me to work properly? Oh please ...", ( "Y'know I can smell your disappointment. It's right about here: ```\n" "good bad\n" " |--------------------|\n" " ^\n```" ) ] async def on_exception(event: hikari.ExceptionEvent): # not user related error try: log.error(f"{''.join(traceback.format_exception(event.exception))}") except Exception: log.critical(traceback.format_exc()) @pl.listener(events.CommandErrorEvent) async def on_error(event: events.CommandErrorEvent): """ """ try: ctx: Context | None = event.context if not isinstance(ctx, Context): log.debug(f"Exception uncaught: {event.__class__}") return error = event.exception async def message_dialog(error_embed: hikari.Embed): error_id = f"{bot.restart_num}-{bot.id_creator.create_id()}-{bot.me.username[0]}" component=( hikari.impl.MessageActionRowBuilder() .add_interactive_button( hikari.ButtonStyle.PRIMARY, "error_send_dev_silent", label="🍭 Send report silently" ) .add_interactive_button( hikari.ButtonStyle.PRIMARY, "error_send_dev", label="🍭 Add note & send" ) ) try: message = await (await ctx.respond( embed=error_embed, component=component )).message() except Exception: message = await bot.rest.create_message( ctx.channel_id, embed=error_embed, component=component ) def check(event: hikari.ReactionAddEvent): if event.user_id != bot.me.id and event.message_id == message.id: return True return False custom_id, _, interaction = await bot.wait_for_interaction( custom_ids=["error_send_dev", "error_show", "error_send_dev_silent"], message_id=message.id, user_id=ctx.user.id ) # await interaction.delete_message(message) embeds: List[Embed] = [Embed(title=f"Bug #{error_id}", description=str(error)[:2000])] embeds[0].set_author( name=f'Invoked by: {ctx.user.username}', icon=ctx.author.avatar_url ) embeds[0].add_field( "invoked with", value=( f"Command: {ctx.invoked_with}\n" "\n".join([f"`{k}`: ```\n{v}```" for k, v in ctx.raw_options.items()]) )[:1000] ) nonlocal event traceback_list = traceback.format_exception(*event.exc_info) if len(traceback_list) > 0: log.warning(str("\n".join(traceback_list))) error_embed.add_field( name=f'{str(error.__class__)[8:-2]}', value=f'Error:\n{error}'[:1024], ) i = 0 for index, tb in enumerate(traceback_list): if embeds[-1].total_length() > 6000: field = embeds[-1]._fields.pop(-1) embeds.append(Embed(description=f"Bug #{error_id}")) embeds[-1]._fields.append(field) i = 0 if i % 20 == 0 and i != 0: embeds.append(Embed(description=f"Bug #{error_id}")) embeds[-1].add_field( name=f'Traceback - layer {index + 1}', value=f'```python\n{Human.short_text_from_center(tb, 1000)}```', inline=False ) i += 1 messages: List[List[Embed]] = [[]] message_len = 0 for e in embeds: for field in e._fields: if not field.value: field.value = "-" if message_len == 0: messages[-1].append(e) message_len += e.total_length() else: if message_len + e.total_length() > 6000: messages.append([e]) message_len = e.total_length() else: messages[-1].append(e) message_len += e.total_length() kwargs: Dict[str, Any] = {"embeds": embeds} answer = "" if custom_id == "error_show": await message.edit(embeds=embeds) if custom_id == "error_send_dev": try: answer, interaction, event = await bot.shortcuts.ask_with_modal( f"Bug report", question_s="Do you have additional information?", interaction=interaction, pre_value_s="/", ) except asyncio.TimeoutError: answer = "/" if answer == "/": answer = "" kwargs["content"] = f"**{40*'#'}\nBug #{error_id}\n{40*'#'}**\n\n\n{Human.short_text(answer, 1930)}" del kwargs["embeds"] for i, embeds in enumerate(messages): if i == 0: message = await bot.rest.create_message( channel=bot.conf.bot.bug_channel_id, embeds=embeds, **kwargs ) else: message = await bot.rest.create_message( channel=bot.conf.bot.bug_channel_id, embeds=embeds, ) if interaction: with suppress(): await interaction.create_initial_response( hikari.ResponseType.MESSAGE_CREATE, content=( f"**Bug #{error_id}** has been reported.\n" f"You can find the bug report [here]({message.make_link(message.guild_id)})\n" f"If you can't go to this message, or need additional help,\n" f"consider to join the [help server]({bot.conf.bot.guild_invite_url})" ), flags=hikari.MessageFlag.EPHEMERAL, ) return # errors which will be handled also without prefix if isinstance(error, errors.NotEnoughArguments): return await OutsideHelp.search( obj=ctx.invoked_with, ctx=ctx, message=( f"to use the `{ctx.invoked.qualname}` command, " f"I need {Human.list_([o.name for o in error.missing_options], '`')} to use it" ), only_one_entry=True, ) elif isinstance(error, errors.CommandIsOnCooldown): return await ctx.respond( f"You have used `{ctx.invoked.qualname}` to often. Retry it in `{error.retry_after:.01f} seconds` again" ) elif isinstance(error, errors.ConverterFailure): return await OutsideHelp.search( obj=ctx.invoked_with, ctx=ctx, message=( f"the option `{error.option.name}` has to be {Human.type_(error.option.arg_type, True)}" ), only_one_entry=True, ) elif isinstance(error, errors.MissingRequiredPermission): return await ctx.respond( f"You need the `{error.missing_perms.name}` permission, to use `{ctx.invoked_with}`", flags=hikari.MessageFlag.EPHEMERAL, ) elif isinstance(error, errors.CheckFailure): fails = set( str(error) .replace("Multiple checks failed: ","") .replace("This command", f"`{ctx.invoked_with}`") .split(", ") ) if len(fails) > 1: str_fails = [f"{i+1}: {e}" for i, e in enumerate(fails) ] return await ctx.respond( "\n".join(fails) ) else: return await ctx.respond(fails.pop()) elif isinstance(error, errors.CommandInvocationError) and isinstance(error.original, BotResponseError): try: return await ctx.respond(**error.original.kwargs) except hikari.BadRequestError: # interaction probably already acknowledged # TODO: implement Error handling into InuContext ctx._responded = True return await ctx.respond(**error.original.kwargs) # errors which will only be handled, if the command was invoked with a prefix if not ctx.prefix: return # log.debug(f"Suppress error of type: {error.__class__.__name__}") if isinstance(error, errors.CommandNotFound): return await OutsideHelp.search( obj=error.invoked_with, ctx=ctx, message=f"There is no command called `{error.invoked_with}`\nMaybe you mean one from the following ones?" ) else: error_embed = hikari.Embed() error_embed.title = "Oh no! A bug occurred" error_embed.description = random.choice(ERROR_JOKES) with suppress(hikari.ForbiddenError): await message_dialog(error_embed) except Exception: log.critical(traceback.format_exc()) def load(inu: Inu): global bot bot = inu @bot.listen(hikari.events.ExceptionEvent) async def on_error(event: hikari.events.ExceptionEvent) -> None: try: log.error(f"{''.join(traceback.format_exception(event.exception))}") except Exception: log.critical(traceback.format_exc()) inu.add_plugin(pl)
zp33dy/inu
inu/ext/commands/errors.py
errors.py
py
10,996
python
en
code
1
github-code
6
14952780826
from temporalio.client import Client from temporalio.worker import Worker from temporal_test.activity import say_hello_activity from temporal_test.config import Config from temporal_test.workflows import TestWorkflow import asyncio import os async def main(): temporal_host = os.getenv("TEMPORAL_ADDRESS", "127.0.0.1:7233") print(f"connecting to temporal at {temporal_host}") client = await Client.connect(temporal_host, namespace="default") worker = Worker( client, task_queue=Config.queue, workflows=[TestWorkflow], activities=[say_hello_activity] ) await worker.run() print(__name__) if __name__ == "temporal_test.worker": print("starting worker") asyncio.run(main()) if __name__ == "__main__": print("starting worker") asyncio.run(main())
qadiludmer/temporal-test
temporal_test/worker.py
worker.py
py
824
python
en
code
0
github-code
6
4495970726
from CategoriasProdutos import CateProd from Compras import Compras #from MenuOpcoes import MenuOpcoes Co = Compras() CP = CateProd() #Mo = MenuOpcoes() class ContEstoque: def __init__(self): pass def LimiteEstoque(self,LisProd): limite = 0 if LisProd == 'vazio': return 'vazio' else: for x in range(len(LisProd)): if int(LisProd[x][4]) <= int(LisProd[x][5]): print("%s - CODIGO %s - tem %s pecas disponiveis" % (LisProd[x][1],LisProd[x][0],LisProd[x][4])) else: if int(LisProd[x][4]) > int(LisProd[x][5]): limite += 1 if limite == len(LisProd): return 0 def Menu(self): Res = ContEstoque.LimiteEstoque(self,CP.DadosProdutos()) if Res == 'vazio': print("SEJA BEM VINDO AO CONTROLE DA LOJA, INICIE ADICIONANDO FUNCIONARIOS, DEPOIS CLIENTES E EM SEGUIDA CATEGORIAS E PRODUTOS\n") #Mo.MostrarMenu() elif Res == 0: return("Estoque normal") else: Res Co.MenuCompras() Contro = ContEstoque() Contro.Menu()
Ander20n/Codigos-Faculdade
Projeto IP/ControleEstoque.py
ControleEstoque.py
py
1,224
python
pt
code
0
github-code
6
71971281789
from kubeflow import fairing import os import sys GCS_PROJECT_ID = fairing.cloud.gcp.guess_project_name() DOCKER_REGISTRY = 'gcr.io/{}'.format(GCS_PROJECT_ID) NOTEBOOK_PATH = os.path.join(os.path.dirname(__file__), 'test_notebook.ipynb') def run_full_notebook_submission(capsys, notebook_file, expected_result, deployer='job', builder='docker', namespace='default'): py_version = ".".join([str(x) for x in sys.version_info[0:3]]) base_image = 'python:{}'.format(py_version) fairing.config.set_builder( builder, base_image=base_image, registry=DOCKER_REGISTRY) fairing.config.set_deployer(deployer, namespace=namespace) requirements_file = os.path.relpath( os.path.join(os.path.dirname(__file__), 'requirements.txt')) fairing.config.set_preprocessor('full_notebook', notebook_file=notebook_file, output_map={requirements_file: '/app/requirements.txt'}) fairing.config.run() captured = capsys.readouterr() assert expected_result in captured.out def test_full_notebook_job(capsys): run_full_notebook_submission(capsys, NOTEBOOK_PATH, 'Hello World', deployer='job') def test_full_notebook_tfjob(capsys): run_full_notebook_submission(capsys, NOTEBOOK_PATH, 'Hello World', deployer='tfjob', namespace='kubeflow-fairing')
kubeflow/fairing
tests/integration/common/test_full_notebook.py
test_full_notebook.py
py
1,452
python
en
code
336
github-code
6
10640003312
import requests import json import urllib2 BASE_URL = "https://api.github.com" def confirm_github(): """Confirm Github is up and running""" url = BASE_URL r = requests.get(url) if r.status_code == 200: # print "status code:", r.status_code, "(github is working)" return True else: # print "github is down" return False def check_member(org_name, member_name): """Check if a user is a member of a given org""" #Based on validity of either org or member, API response has two status responses - 204 or 404 url = BASE_URL+"/orgs/%s/public_members/%s" % (org_name, member_name) r = requests.get(url) if r.status_code == 204: # print member_name, "is a member of", org_name return True elif r.status_code == 404: # print member_name, "is not a member of", org_name return False def create_markdown(comment, mode, repo_context): """Validating whether markdown has been rendered""" #Added a try-except to account for '400: Bad Reqeust' when incorrect POST is made try: comment_data = { "text": "%s" % comment, "mode": "%s" % mode, "context": "%s" % repo_context } req = urllib2.Request(BASE_URL+"/markdown") req.add_header('Content-Type', 'application/json') r = urllib2.urlopen(req, json.dumps(comment_data)) if r.getcode() == 200: #print "markdown doc rendered" return True except: return False def get_repo_branches(owner, repo): """Return branch info for a given repo by a owner""" #Endpoint delivers error message if either owner or repo provided is invalid try: url = BASE_URL+"/repos/%s/%s/branches" % (owner, repo) r = requests.get(url) repo_branches = r.json() #print "branches: ", repo_branches #print repo_branches["message"] return repo_branches[0]["commit"]["sha"] except: return repo_branches["message"]
smithers1221/replicatedcc_python
githubapi.py
githubapi.py
py
1,833
python
en
code
0
github-code
6
26038294916
import inspect import json import sys from pathlib import Path import pytest from _pytest import fixtures from _pytest.compat import get_real_func def get_func_path(func): real_func = get_real_func(func) return inspect.getfile(real_func) def get_fixturedef(fixture_request, name): fixturedef = fixture_request._fixture_defs.get(name) if fixturedef: return fixturedef try: return fixture_request._getnextfixturedef(name) except fixtures.FixtureLookupError: return None def process_fixtures(item): lockfile_definitions = [] fixture_request = fixtures.FixtureRequest(item, _ispytest=True) for fixture_name in fixture_request.fixturenames: fixture_def = get_fixturedef(fixture_request, fixture_name) if not fixture_def: continue func = fixture_def.func annotations = getattr(func, "__annotations__") if not annotations or annotations.get("return") != "JVMLockfileFixtureDefinition": continue # Note: We just invoke the fixture_def function assuming it takes no arguments. The other two # ways of invoking for the fixture value cause errors. I have left them here commented-out as an example # of what failed: # lockfile_definition = fixture_request.getfixturevalue(fixture_name) # lockfile_definition = fixture_def.execute(request=request) try: lockfile_definition = func() except Exception as err: raise ValueError( f"Exception while getting lockfile definition (file {item.path}): {err}" ) if lockfile_definition.__class__.__name__ != "JVMLockfileFixtureDefinition": continue cwd = Path.cwd() func_path = Path(get_func_path(func)).relative_to(cwd) lockfile_definitions.append( { "lockfile_rel_path": str(lockfile_definition.lockfile_rel_path), "requirements": [c.to_coord_str() for c in lockfile_definition.requirements], "test_file_path": str(func_path), } ) return lockfile_definitions class CollectionPlugin: def __init__(self): self.collected = [] def pytest_collection_modifyitems(self, items): for item in items: self.collected.append(item) collection_plugin = CollectionPlugin() pytest.main(["--setup-only", *sys.argv[1:]], plugins=[collection_plugin]) output = [] cwd = Path.cwd() for item in collection_plugin.collected: output.extend(process_fixtures(item)) with open("tests.json", "w") as f: f.write(json.dumps(output))
pantsbuild/pants
pants-plugins/internal_plugins/test_lockfile_fixtures/collect_fixtures.py
collect_fixtures.py
py
2,655
python
en
code
2,896
github-code
6
38777260786
import pandas as pd import os import numpy as np from math import floor from sqlalchemy import create_engine, MetaData, Table import tushare as ts from utils import get_all_tdx_symbols import click import struct """ 读取通达信数据 """ class TdxFileNotFoundException(Exception): pass class TdxReader: def __init__(self, vipdoc_path): self.vipdoc_path = vipdoc_path self.engine = None def get_kline_by_code(self, code, exchange): fname = os.path.join(self.vipdoc_path, exchange) fname = os.path.join(fname, 'lday') fname = os.path.join(fname, '%s%s.day' % (exchange, code)) return self.parse_data_by_file(fname) def get_mline_by_code(self, code, exchange): fname = os.path.join(self.vipdoc_path, exchange) fname = os.path.join(fname, 'minline') fname = os.path.join(fname, '%s%s.lc1' % (exchange, code)) return self.parse_mdata_by_file(fname) def parse_data_by_file(self, fname): if not os.path.isfile(fname): raise TdxFileNotFoundException('no tdx kline data, please check path %s', fname) with open(fname, 'rb') as f: content = f.read() return self.unpack_records('<iiiiifii', content) return [] def parse_mdata_by_file(self, fname): if not os.path.isfile(fname): raise TdxFileNotFoundException("no tdx mline data, please check path %s", fname) with open(fname, 'rb') as f: content = f.read() return self.unpack_records('<HHfffffIxxxx', content) return [] def unpack_records(self, format, data): record_struct = struct.Struct(format) return (record_struct.unpack_from(data, offset) for offset in range(0, len(data), record_struct.size)) def get_df(self, code, exchange): data = [self._df_convert(row) for row in self.get_kline_by_code(code, exchange)] df = pd.DataFrame(data=data, columns=('date', 'open', 'high', 'low', 'close', 'amount', 'volume')) df.index = pd.to_datetime(df.date) return df[['open', 'high', 'low', 'close', 'volume']] def get_mindf(self, code, exchange): data = [self._mindf_convert(row) for row in self.get_mline_by_code(code, exchange)] df = pd.DataFrame(data=data, columns=('datetime', 'open', 'high', 'low', 'close', 'amount', 'volume')) try: df.index = pd.to_datetime(df.datetime) except ValueError as err: print("ValueError: ", df.datetime) raise err return df[['open', 'high', 'low', 'close', 'amount', 'volume']] def _df_convert(self, row): t_date = str(row[0]) datestr = t_date[:4] + "-" + t_date[4:6] + "-" + t_date[6:] new_row = ( datestr, row[1] * 0.01, # * 0.01 * 1000 , zipline need 1000 times to original price row[2] * 0.01, row[3] * 0.01, row[4] * 0.01, row[5], row[6] ) return new_row def _mindf_convert(self, row): t_date = row[0] year = floor(t_date / 2048) + 2004 month = floor((t_date % 2048) / 100) day = (t_date % 2048) % 100 datestr = "%d-%02d-%02d" % (year, month, day) t_minute = row[1] hour = floor(t_minute / 60) minute = t_minute % 60 timestr = "%02d:%02d:00" % (hour, minute) datetimestr = "%s %s" % (datestr, timestr) new_row = ( datetimestr, row[2], row[3], row[4], row[5], row[6], row[7] ) return new_row def to_sql(self, symbol, exchange): table_name = exchange+symbol table = Table(table_name, MetaData(bind=self.engine)) new = self.get_mindf(symbol, exchange) if table.exists(): old = pd.read_sql_table(exchange+symbol, self.engine, index_col='datetime') if new.index[-1] <= old.index[-1]: return else: df_to_append = new[old.index[-1]:] else: df_to_append = new df_to_append.to_sql(table_name, self.engine, if_exists='append') def save_minute_line(self, sql_url): self.engine = create_engine(sql_url) tdx_symbol_list = get_all_tdx_symbols() total = len(tdx_symbol_list) i = 0 for symbol in tdx_symbol_list: i += 1 click.echo("saving symbol %s%s (%d/%d)" %(symbol[1], symbol[0], i, total)) self.to_sql(symbol=symbol[0], exchange=symbol[1]) @click.command() @click.argument('vipdoc', type=click.Path(exists=True)) @click.argument('sql_url', type=click.Path()) def main(vipdoc, sql_url): click.echo('minute line saving...') tdx_reader = TdxReader(vipdoc) tdx_reader.save_minute_line("sqlite:///" + sql_url) if __name__ == '__main__': main() #tdx_reader = TdxReader('c:\\new_zx_allin1\\vipdoc\\') # try: # #for row in tdx_reader.parse_data_by_file('/Volumes/more/data/vipdoc/sh/lday/sh600000.day'): # # print(row) # for row in tdx_reader.get_mline_by_code('600433', 'sh'): # print(row) # except TdxFileNotFoundException as e: # pass # # print(tdx_reader.get_mindf('600433', 'sh')) #sql_url = "sqlite:///lc1.db" #tdx_reader.save_minute_line(sql_url=sql_url)
maxwell-lv/MyQuant
tdxreader.py
tdxreader.py
py
5,452
python
en
code
0
github-code
6
43272673113
import os import cv2 import numpy as np import torch from PIL import Image import torchvision class SegDataset(object): def __init__(self, root, transforms): self.root = root self.transforms = transforms # load all image files, sorting them to # ensure that they are aligned # cut_dataset_at=10000 self.imgs = list(sorted(os.listdir(os.path.join(root, "images"))))#[:cut_dataset_at] self.masks = list(sorted(os.listdir(os.path.join(root, "masks"))))#[:cut_dataset_at] self.polys = list(sorted(os.listdir(os.path.join(root, "polygons"))))#[:cut_dataset_at] def __getitem__(self, idx): # load images ad masks img_path = os.path.join(self.root, "images", self.imgs[idx]) mask_path = os.path.join(self.root, "masks", self.masks[idx]) poly_path = os.path.join(self.root, "polygons", self.polys[idx]) img = Image.open(img_path).convert("RGB") img = np.array(img) mask = Image.open(mask_path) mask = np.array(mask) # instances are encoded as different colors obj_ids = np.unique(mask) # first id is the background, so remove it obj_ids = obj_ids[1:] # split the color-encoded mask into a set of binary masks masks = mask == obj_ids[:, None, None] polys = np.load(poly_path) # get bounding box coordinates for each mask num_objs = len(obj_ids) boxes = [] for i in range(num_objs): pos = np.where(masks[i]) xmin = np.min(pos[1]) xmax = np.max(pos[1]) ymin = np.min(pos[0]) ymax = np.max(pos[0]) boxes.append([xmin, ymin, xmax, ymax]) # convert everything into a torch.Tensor boxes = torch.as_tensor(boxes, dtype=torch.float32) mask = np.zeros((img.shape[0], img.shape[1])) cv2.drawContours(mask, [polys], -1, 1, 5) model_input_size = (300, 300) img = cv2.resize(img, model_input_size) mask = cv2.resize(mask, model_input_size) img = torchvision.transforms.ToTensor()(img) mask = torch.tensor(np.expand_dims(mask, axis=0), dtype=torch.float) # if self.transforms is not None: # for transform in self.transforms: # print(transform) # img = transform(img) # mask = transform(target) return img, mask def __len__(self): return len(self.imgs)
v7labs/deeplabv3-edges
dataset.py
dataset.py
py
2,535
python
en
code
1
github-code
6
72355994109
#!/usr/bin/python3 """Module that lists all State objects from the database hbtn_0e_6_usa""" from sys import argv from model_state import Base, State from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker if __name__ == '__main__': engine = create_engine('mysql+mysqldb://{}:{}@localhost:3306/{}' .format(argv[1], argv[2], argv[3])) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() selected_state = session.query(State).filter(State.name == argv[4]) try: print("{}".format(selected_state[0].id)) except IndexError: print("Not found")
MrZooM001/alx-higher_level_programming
0x0F-python-object_relational_mapping/10-model_state_my_get.py
10-model_state_my_get.py
py
672
python
en
code
0
github-code
6
39964228620
import pymysql from tkinter import * from tkinter import messagebox import sys import datetime u=sys.argv[1] p=sys.argv[2] class dropdown: def __init__(self,appen,lis): self.m = StringVar() self.m.set("choose") self.opt=OptionMenu(appen,self.m,*lis) self.opt.grid(row=len(lis),column=1) def place(self,p,q): self.opt.place(x=p,y=q) db = pymysql.connect("localhost",u,p,"DBMS") cursor = db.cursor() LEC=[] STU=[] courses=[] venues=[] t=['0{}:00:00'.format(x) for x in range(7,10)] t+=['{}:00:00'.format(x) for x in range(10,19)] Day=['Monday','Tuesday','Wednesday','Thursday','Friday'] def up(): global LEC global STU global courses global venues cursor.execute("Select * from Lecturer;") LEC = cursor.fetchall() cursor.execute("Select * from Student;") STU = cursor.fetchall() cursor.execute("Select CourseID from Courses order by CourseID ASC;") courses = cursor.fetchall() cursor.execute("Select Venue from Venues order by Venue ASC") venues = list(map(lambda x: str(x).strip(",')("),cursor.fetchall())) up() cl={'CT':"blue",'CS-A':"yellow",'CS-B':"green",'CIS':"orange"} def table(): ind = 0 top=Toplevel() top.geometry("480x540") top.resizable(height=False,width=False) top.title("Schedule") w=Canvas(top,bg="white",height=480,width=480) w.pack() for i in range(1,9): w.create_line(i*60,0,i*60,480,fill="black") for i in range(1,12): w.create_line(0,i*40,480,i*40,fill="black") for i in range(7,18): Label(top,text=(str(i)+":00")).place(x=5,y=(i-7)*40+53) for i,l in zip(range(7,15),venues): Label(top,text=l).place(x=(i-7)*60+68,y=12) def tbl(): nonlocal ind cursor.execute("select Schedule.CourseID, Schedule.Program, Schedule.Venue, Schedule.StartTime, Schedule.StopTime, Courses.LecturerID from Schedule inner join Courses on Courses.CourseID = Schedule.CourseID where Day = '{}';".format(Day[ind])) a=cursor.fetchall() for i in range(len(a)): st=str((datetime.datetime.min + a[i][3]).time()) sp=str((datetime.datetime.min + a[i][4]).time()) w.create_rectangle((venues.index(a[i][2])+1)*60,(t.index(st)+1)*40,(venues.index(a[i][2])+2)*60,(t.index(sp)+1)*40,fill=cl[a[i][1]]) y=((t.index(st)+1)*40 + (t.index(sp)+1)*40)/2 - 18 Label(w,text="{}\n{}\n{}".format(a[i][0],a[i][1],a[i][5])).place(x=(venues.index(a[i][2]))*60+64,y=y) #(t.index(st))*40+47) tbl() def prev_(): nonlocal ind if ind >0: ind-=1 for wid in w.winfo_children(): wid.destroy() for i in w.find_all()[19:]: w.delete(i) tbl() lab.config(text=Day[ind]) def nex_(): nonlocal ind if ind <4: ind+=1 for wid in w.winfo_children(): wid.destroy() for i in w.find_all()[19:]: w.delete(i) tbl() lab.config(text=Day[ind]) lab=Label(top,text=Day[ind]) lab.place(x=220,y=505) prev=Button(top,text="prev",command = prev_) nex = Button(top,text="next",command=nex_) prev.place(x=130,y=500) nex.place(x=302,y=500) def Student(): i = 0 top=Toplevel() top.title("Student") top.geometry("300x280") top.resizable(height=False,width=False) l1 = Label(top,text="Matric:") l2 = Label(top,text="FName:") l3 = Label(top,text="Lname:") l4 = Label(top,text="Program:") l1.place(x=98,y=30) l2.place(x=105,y=70) l3.place(x=105,y=110) l4.place(x=91,y=150) d1 = Label(top,text=STU[i][1]) d2 = Label(top,text=STU[i][2]) d3 = Label(top,text=STU[i][3]) d4 = Label(top,text=STU[i][4]) d1.place(x=170,y=30) d2.place(x=170,y=70) d3.place(x=170,y=110) d4.place(x=170,y=150) def pr(): nonlocal i if i > 0: i -= 1 d1.configure(text=STU[i][1]) d2.configure(text=STU[i][2]) d3.configure(text=STU[i][3]) d4.configure(text=STU[i][4]) def ne(): nonlocal i if i < len(STU)-1: i += 1 d1.configure(text=STU[i][1]) d2.configure(text=STU[i][2]) d3.configure(text=STU[i][3]) d4.configure(text=STU[i][4]) def new(): nonlocal i def upd(a,b,c,ap): a=a.strip() b=b.strip() sql="insert into Student value (NULL,NULL,'{}','{}','{}');".format(a,b,c) try: cursor.execute(sql) cursor.execute("call GenMatric();") db.commit() messagebox.showinfo("Confirmation","Student Added Successfully.") up() ap.destroy() except: db.rollback() messagebox.showerror("Value Error","Could not add Student") appen = Toplevel() appen.title("New Student") appen.geometry("300x230") appen.resizable(height=False,width=False) l1 = Label(appen,text="id:") l1.place(x=50,y=20) l2 = Label(appen,text ="FName:") l2.place(x=29,y=60) l3 = Label(appen,text ="LName:") l3.place(x=29,y=100) l4 = Label(appen,text ="Program:") l4.place(x=15,y=140) id_ = Label(appen,text=str(len(STU)+1)) id_.place(x=100,y=20) fname = Entry(appen,bd=5) fname.place(x=100,y=60) lname = Entry(appen,bd=5) lname.place(x=100,y=100) prog=dropdown(appen,['CT','CIS','CS-A','CS-B']) prog.place(100,135) comit=Button(appen,text="register",command=lambda: upd(fname.get(),lname.get(),prog.m.get(),appen)) comit.place(x=100,y=180) prev = Button(top,text="Prev",command = pr) prev.place(x=50,y=190) next_ = Button(top,text="Next",command = ne) next_.place(x =190,y=190) new = Button(top,text="+",command= new) new.place(x=130,y=230) def Lecturer(): i = 0 top=Toplevel() top.title("Lecturer") top.geometry("300x230") top.resizable(height=False,width=False) l1 = Label(top,text="LecturerID:") l2 = Label(top,text="FName:") l3 = Label(top,text="Lname:") l1.place(x=70,y=30) l2.place(x=105,y=70) l3.place(x=105,y=110) d1 = Label(top,text=LEC[i][1]) d2 = Label(top,text=LEC[i][2]) d3 = Label(top,text=LEC[i][3]) d1.place(x=170,y=30) d2.place(x=170,y=70) d3.place(x=170,y=110) def pr(): nonlocal i if i > 0: i -= 1 d1.configure(text=LEC[i][1]) d2.configure(text=LEC[i][2]) d3.configure(text=LEC[i][3]) def ne(): nonlocal i if i < len(LEC)-1: i += 1 d1.configure(text=LEC[i][1]) d2.configure(text=LEC[i][2]) d3.configure(text=LEC[i][3]) def new(): nonlocal i def upd(a,b,ap): a=a.strip() b=b.strip() sql="insert into Lecturer value (NULL,NULL,'{}','{}');".format(a,b) try: cursor.execute(sql) cursor.execute("call GenLecID();") db.commit() messagebox.showinfo("Confirmation","Lecturer Added Successfully.") up() ap.destroy() except: db.rollback() messagebox.showerror("Value Error","Could not add Lecturer") appen = Toplevel() appen.title("New Lecturer") appen.geometry("300x210") appen.resizable(height=False,width=False) l1 = Label(appen,text="id:") l1.place(x=50,y=20) l2 = Label(appen,text ="FName:") l2.place(x=29,y=60) l3 = Label(appen,text ="LName:") l3.place(x=29,y=100) id_ = Label(appen,text=str(len(LEC)+1)) id_.place(x=100,y=20) fname = Entry(appen,bd=5) fname.place(x=100,y=60) lname = Entry(appen,bd=5) lname.place(x=100,y=100) comit=Button(appen,text="register",command=lambda: upd(fname.get(),lname.get(),appen)) comit.place(x=100,y=140) prev = Button(top,text="Prev",command = pr) prev.place(x =50,y=150 ) next_ = Button(top,text="Next",command = ne) next_.place(x =180,y=150) new = Button(top,text="+",command= new) new.place(x=130,y=190) def schedule(): def course_handler(a,b,c,d,e,f,top): try: cursor.execute("select CourseID from CourseTaken where Program = '{}';".format(b)) pro_course = list(map(lambda x: str(x).strip(",')("),cursor.fetchall())) cursor.execute("select Size from Venues order by Venue ASC;") v = list(map(lambda x: str(x).strip(",')("),cursor.fetchall())) cursor.execute("select * from Student where Program = '{}';".format(b)) classSize = len(cursor.fetchall()) cursor.execute("select Program, Day, CourseID, StartTime, StopTime from Schedule where CourseID = '{}' and Program = '{}';".format(a,b)) dur = sum(list(map(lambda o:int(str(o[4])[:2].strip(":("))-int(str(o[3])[:2].strip(":(,)")),cursor.fetchall()))) cursor.execute("select Units from Courses where CourseID = '{}';".format(a)) cred = int(cursor.fetchall()[0][0]) cursor.execute("select Venue, Day, StartTime, StopTime from Schedule;") sch = cursor.fetchall() cursor.execute("select Program, Day, StartTime, StopTime from Schedule;") clas = cursor.fetchall() cursor.execute("select LecturerID, Day, StartTime, StopTime from Courses inner join Schedule on Courses.CourseID = Schedule.CourseID where Courses.CourseID = '{}';".format(a)) lect = cursor.fetchall() except: messagebox.showerror("Connection Error","Could Not connect to database") return def timer(a): return datetime.timedelta(hours=datetime.datetime.strptime(a,'%H:%M:%S').hour) if f<=e: messagebox.showerror("Schedule Error","Stop Time cannot be earlier than Start Time") elif a not in pro_course: messagebox.showerror("Schedule Error","{} do not offer {}".format(b,a)) elif int(v[list(map(lambda x: str(x).strip(",')("),venues)).index(c)])<classSize: messagebox.showerror("Schedule Error","Venue is too small") elif cred < dur+int(datetime.datetime.strptime(f,'%H:%M:%S').hour-datetime.datetime.strptime(e,'%H:%M:%S').hour): messagebox.showerror("Schedule Error", "Course Overload") elif (str(c),str(d),timer(e),timer(f)) in sch: messagebox.showerror("Schedule Error","class already holding at venue") elif (str(b),str(d),timer(e),timer(f)) in clas: messagebox.showerror("Schedule Error","{} already have a class then".format(b)) elif (str(lect[0][0]),str(d),timer(e),timer(f)) in lect: messagebox.showerror("Schedule Error","{} is already teaching a class then".format(lect[0][0])) else: try: cursor.execute("INSERT into Schedule value ('{}','{}','{}','{}','{}','{}');".format(a,b,c,d,e,f)) db.commit() top.destroy() except: db.rollback() messagebox.showerror("Connection Error","Could not connect to database") top=Toplevel() top.title("Scheduler") top.geometry("360x320") top.resizable(height=False,width=False) l1 = Label(top, text = 'Course:') l2 = Label(top,text = 'Program:') l3 = Label(top, text = 'Venue:') l4 = Label(top, text = 'Day:') l5 = Label(top, text = 'Start time:') l6 = Label(top, text = 'Stop time:') l1.place(x=100,y=30) l2.place(x=93,y=70) l3.place(x=107,y=110) l4.place(x=121,y=150) l5.place(x=72,y=190) l6.place(x=79,y=230) e1 = dropdown(top,list(map(lambda x: str(x).strip(",')("),courses))) e1.place(170,25) e2 = dropdown(top,['CT','CIS','CS-A','CS-B']) e2.place(170,65) e3 = dropdown(top,list(map(lambda x: str(x).strip(",')("),venues))) e3.place(170,105) e4 = dropdown(top,['Monday','Tuesday','Wednesday','Thursday','Friday']) e4.place(170,145) e5 = dropdown(top,t[:len(t)-1]) e5.place(170,185) e6 = dropdown(top,t[1:]) e6.place(170,225) add_course = Button(top,text="ADD COURSE",command=lambda:course_handler(e1.m.get(),e2.m.get(),e3.m.get(),e4.m.get(),e5.m.get(),e6.m.get(),top)) add_course.place(x=140,y=275) root = Tk() root.title("DBMS") root.geometry("500x500") root.resizable(height=False,width=False) w=Canvas(root,bg="white",height=500,width=500) w.pack() stu = Button(root,text = "Show Students",command = Student) lec = Button(root,text = "Show Lecturers",command = Lecturer) sch = Button(root,text = "Time Table",command=table) form = Button(root, text = "Schedule Class", command = schedule) stu.place(x=186.5,y=80) lec.place(x=186,y=180) sch.place(x=200,y=280) form.place(x=186,y=380) root.mainloop() db.close()
2HgO/CLASS-SCHEDULER
Scheduler.py
Scheduler.py
py
13,116
python
en
code
1
github-code
6
39341038944
class Point2D: def __init__(self, x, y): self.x = x self.y = y class Point3D: def __init__(self, x, y, z): self.x = x self.y = y self.z = z class Line: def __init__(self, p1, p2): self.p1 = p1 self.p2 = p2 @property def distance(self): if type(self.p1) == type(self.p2): if type(self.p1) == Point2D: return(round(((self.p2.x-self.p1.x)**2+(self.p2.y-self.p1.y)**2)**.5,3)) if type(self.p1) == Point3D: return(round(((self.p2.x-self.p1.x)**2+(self.p2.y-self.p1.y)**2+(self.p2.z-self.p1.z)**2)**.5,3)) return("Error - Points of different dimensions") @property def midpoint(self): if type(self.p1) == type(self.p2): if type(self.p1) == Point2D: return((round((self.p1.x+self.p2.x)/2, 2), round((self.p1.y+self.p2.y)/2,2))) if type(self.p1) == Point3D: return((round((self.p1.x+self.p2.x)/2, 2), round((self.p1.y+self.p2.y)/2, 2), round((self.p1.z+self.p2.z)/2, 2))) return("Error - Points of different dimensions")
SchulerHunter/CMPSC-132
Quiz 1/Coding_Q2.py
Coding_Q2.py
py
1,144
python
en
code
0
github-code
6
10865691548
from django.contrib import admin from django.db import models from django.db.models import Q from django.utils.translation import gettext_lazy as _ from ...settings import ADMIN_MEDIA_JS from .actions import save_all_theses_to_xls from .models import Thesis # Copied from https://gist.github.com/rafen/eff7adae38903eee76600cff40b8b659, # also present in theses admin and jobs admin class ExtendedActionsMixin(object): # actions that can be executed with no items selected on the admin change list. # The filtered queryset displayed to the user will be used instead extended_actions = [] def changelist_view(self, request, extra_context=None): # if a extended action is called and there's no checkbox selected, select one with # invalid id, to get an empty queryset if "action" in request.POST and request.POST["action"] in self.extended_actions: if not request.POST.getlist(admin.ACTION_CHECKBOX_NAME): post = request.POST.copy() post.update({admin.ACTION_CHECKBOX_NAME: 0}) request._set_post(post) return super(ExtendedActionsMixin, self).changelist_view(request, extra_context) def get_changelist_instance(self, request): """ Returns a simple ChangeList view instance of the current ModelView. (It's a simple instance since we don't populate the actions and list filter as expected since those are not used by this class) """ list_display = self.get_list_display(request) list_display_links = self.get_list_display_links(request, list_display) list_filter = self.get_list_filter(request) search_fields = self.get_search_fields(request) list_select_related = self.get_list_select_related(request) ChangeList = self.get_changelist(request) return ChangeList( request, self.model, list_display, list_display_links, list_filter, self.date_hierarchy, search_fields, list_select_related, self.list_per_page, self.list_max_show_all, self.list_editable, self, self.sortable_by, ) def get_filtered_queryset(self, request): """ Returns a queryset filtered by the URLs parameters """ cl = self.get_changelist_instance(request) return cl.get_queryset(request) class ThesisListFilter(admin.SimpleListFilter): title = _("empty thesis title") parameter_name = "have_title" def lookups(self, request, model_admin): return ( ("yes", _("Yes")), ("no", _("No")), ) def queryset(self, request, queryset): if self.value() == "no": return queryset.filter(title__isnull=False).exclude(title="") if self.value() == "yes": return queryset.filter(Q(title__isnull=True) | Q(title__exact="")) @admin.register(Thesis) class ThesisAdmin(admin.ModelAdmin): list_display = ("get_author", "title", "show_year", "type") list_filter = ("type", ThesisListFilter) search_fields = ( "title", "alumnus__last_name", "alumnus__first_name", "date_start", "date_stop", "date_of_defence", ) ordering = ("alumnus__username",) filter_horizontal = ("advisor",) readonly_fields = ( "date_created", "date_updated", "last_updated_by", "slug", ) actions = ( "export_selected_degrees_to_excel", "export_all_degrees_to_excel", "export_filtered_degrees_to_excel", ) extended_actions = ( "export_all_degrees_to_excel", "export_filtered_degrees_to_excel", ) max_num = 2 fieldsets = [ ( "Thesis Information", {"fields": ["alumnus", "type", "date_start", "date_stop"]}, ), ( "Thesis Information", { "fields": [ "title", "date_of_defence", "url", "dissertation_nr", "slug", "in_library", ] }, ), ("Thesis Advisor ", {"fields": ["advisor"]}), ("Full Text and Cover Photo", {"fields": ["pdf", "photo"]}), ( "Extra information", { "classes": ["collapse"], "fields": [ "comments", "date_created", "date_updated", "last_updated_by", ], }, ), ] class Media: js = ADMIN_MEDIA_JS css = {"all": ("css/admin_extra.css",)} def save_model(self, request, obj, form, change): obj.last_updated_by = request.user obj.save() # def changelist_view(self, request, extra_context=None): # """ Hack the default changelist_view to allow action "export_all_degrees_to_excel" # to run without selecting any objects """ # if "action" in request.POST and request.POST["action"] == "export_all_degrees_to_excel": # if not request.POST.getlist(admin.ACTION_CHECKBOX_NAME): # post = request.POST.copy() # for u in Thesis.objects.all(): # post.update({admin.ACTION_CHECKBOX_NAME: str(u.id)}) # request._set_post(post) # return super(ThesisAdmin, self).changelist_view(request, extra_context) def get_queryset(self, request): """This function defines how to sort on alumnus column in the list_display http://stackoverflow.com/a/29083623""" qs = super(ThesisAdmin, self).get_queryset(request) qs = qs.annotate() # TODO: this does not take into account the type of the Thesis. Also, when # filtering on type = "PhD" ordering of the Theses could be done on the MSc Thesis qs = qs.annotate( sort_author=models.Count("alumnus__last_name", distinct=True) ).annotate( sort_year=models.Count("alumnus__theses__date_of_defence", distinct=True) ) return qs # def formfield_for_manytomany(self, db_field, request, **kwargs): # try: # Breaks for add thesis # current_thesis = Thesis.objects.get(pk=request.resolver_match.args[0]) # if db_field.name == "advisor": # kwargs["queryset"] = Alumnus.objects.exclude(username=current_thesis.alumnus.username) # return super(ThesisAdmin, self).formfield_for_manytomany(db_field, request, **kwargs) # except IndexError as e: # if str(e) == "tuple index out of range": # pass def get_author(self, obj): """We could use author instead of get_alumnus in list_display""" return obj.alumnus.full_name get_author.short_description = "Author" get_author.admin_order_field = "sort_author" def show_year(self, obj): if obj.date_of_defence: return obj.date_of_defence.strftime("%Y") elif obj.date_stop: return obj.date_stop.strftime("%Y") return None show_year.short_description = "Year" show_year.admin_order_field = "sort_year" def export_selected_degrees_to_excel(self, request, queryset): return save_all_theses_to_xls(request, queryset) export_selected_degrees_to_excel.short_description = ( "Export selected Theses to Excel" ) def export_all_degrees_to_excel(self, request, queryset): return save_all_theses_to_xls(request, None) export_all_degrees_to_excel.short_description = "Export all Theses to Excel" def export_filtered_degrees_to_excel(self, request, queryset): queryset = self.get_filtered_queryset(request) return save_all_theses_to_xls(request, queryset) export_filtered_degrees_to_excel.short_description = ( "Export filtered list of Theses to Excel" )
tlrh314/UvA_API_Alumni
apiweb/apps/research/admin.py
admin.py
py
8,102
python
en
code
2
github-code
6
27466582699
""" 학생들에게 0~N번의 번호를 부여할 때, 총 N+1개의 팀이 존재한다. 이떄 선생님은 두가지 옵션을 선택할 수 있다. 1. "팀 합치기" : 두 팀을 합치는 것 2. "같은 팀 여부 확인": 특정한 두 학생이 같은 팀에 들어가 있는가 확인하는 것. 선생님이 M개의 연산을 하여 연산결과를 출력하는 프로그램을 작성하여라 첫째줄에 N,M 이 주어진다. (1<=N,M<=100,000) 다음 M개의 줄에는 0 a b 나 1 a b 형태로 값이 주어진다. 0 a b 는 a와 b 학생이 속한 팀을 합치는 것이고 1 a b 는 a와 b가 같은 팀에 속해있는지의 여부를 확인하는 것이다. a,b는 양의 정수다. 같은 팀 여부 확인 [INPUT] 7 8 0 1 3 1 1 7 0 7 6 1 7 1 0 3 7 0 4 2 0 1 1 1 1 1 [OUTPUT] NO NO YES """ import sys input = sys.stdin.readline n,m = map(int, input().split()) par = [0]*(n+1) for i in range(1, n+1): par[i] = i def find_union(p,x): if x != p[x]: p[x] = find_union(p,p[x]) return p[x] def union(p,a,b): a,b = find_union(p,a), find_union(p,b) if a<b: p[b] = a else: p[a] = b result = [] for _ in range(m): c,a,b = map(int, input().split()) if c == 0: union(par,a,b) if c == 1: if find_union(par, a) == find_union(par, b): result.append("YES") else: result.append("NO") print(*result)
20190511/GraphAlgorithm
문제풀이/Q2-팀결성.py
Q2-팀결성.py
py
1,442
python
ko
code
1
github-code
6
8413409544
import numpy as np from itertools import product from vgc_project.maze import Maze def test_basic_maze_properties(): pw=.94 ps=.6 m = Maze( tile_array=( ".j.", "x#3" ), absorbing_features=("j",), wall_features=("#","3"), default_features=(".",), initial_features=("x",), step_cost=-1, wall_bump_cost=0, wall_block_prob=pw, success_prob=ps, discount_rate=1.0, include_action_effect=True, include_wall_effect=True, include_terminal_state_effect=True, wall_bias=0. ) # all locations are part of state space assert list(m.state_list) == list(product(range(3), range(2))) # fixed action ordering assert list(m.action_list) == [(1, 0), (-1, 0), (0, 0), (0, 1), (0, -1)] right, left, wait, up, down = m.action_list # all non-terminal state-actions should have the step cost sa_rf = (m.reward_matrix*m.transition_matrix).sum(-1) non_term_sa_rf = sa_rf[m.nonterminal_state_vec] assert (non_term_sa_rf == m.step_cost).all() # transition function tf = m.transition_matrix nss = tf.shape[0] aa = m.action_list ss = m.state_list # wait action assert (tf[np.arange(nss), 2, np.arange(nss)] == 1).all() # going off edge of grid leads you to stay in place assert tf[ss.index((0, 0)), aa.index(left), ss.index((0, 0))] == 1 assert tf[ss.index((2, 0)), aa.index(right), ss.index((2, 0))] == 1 # dynamics of goign from nonwall to nonwall assert tf[ss.index((0, 0)), aa.index(up), ss.index((0, 1))] == ps # exiting a wall into a non-wall or wall has the same probability # namely, we ignore the wall dynamics assert tf[ss.index((1, 0)), aa.index(left), ss.index((0, 0))] == ps assert tf[ss.index((1, 0)), aa.index(right), ss.index((2, 0))] == ps # dynamics of crashing into a wall assert np.isclose( tf[ss.index((0, 0)), aa.index(right), ss.index((1, 0))], (ps*(1 - pw))/(ps*(1 - pw) + pw*(1 - ps)) ) # terminal state leads to itself with probability 1 # and being in it always gives reward 0 assert not m.nonterminal_state_vec[ss.index((1, 1))] assert m.nonterminal_state_vec.sum() == 5 assert (tf[ss.index((1, 1)), :, ss.index((1, 1))] == 1).all() assert (sa_rf[ss.index((1, 1))] == 0).all()
markkho/value-guided-construal
vgc_project/vgc_project/tests/test_maze.py
test_maze.py
py
2,403
python
en
code
20
github-code
6
40275219447
# %% import pandas as pd import plotly.io as pio import plotly.express as px import plotly # %% adani_df = pd.read_csv('Data\Scatterplot\ADANIENT_day_data_processed.csv', parse_dates=['date'], index_col=['date']) appolo_df = pd.read_csv('Data\Scatterplot\APOLLOHOSP_day_data_processed.csv', parse_dates=['date'], index_col=['date']) asian_df = pd.read_csv('Data\Scatterplot\ASIANPAINT_day_data_processed.csv', parse_dates=['date'], index_col=['date']) airtel_df = pd.read_csv('Data\Scatterplot\BHARTIARTL_day_data_processed.csv', parse_dates=['date'], index_col=['date']) bajaj_df = pd.read_csv('Data\Scatterplot\BAJFINANCE_day_data_processed.csv', parse_dates=['date'], index_col=['date']) divis_df = pd.read_csv('Data\Scatterplot\DIVISLAB_day_data_processed.csv', parse_dates=['date'], index_col=['date']) drreddy_df = pd.read_csv('Data\Scatterplot\DRREDDY_day_data_processed.csv', parse_dates=['date'], index_col=['date']) hind_df = pd.read_csv('Data\Scatterplot\HINDALCO_day_data_processed.csv', parse_dates=['date'], index_col=['date']) hdfc_df = pd.read_csv('Data\Scatterplot\HDFC_day_data_processed.csv', parse_dates=['date'], index_col=['date']) hul_df = pd.read_csv('Data\Scatterplot\HINDUNILVR_day_data_processed.csv', parse_dates=['date'], index_col=['date']) infy_df = pd.read_csv('Data\Scatterplot\INFY_day_data_processed.csv', parse_dates=['date'], index_col=['date']) itc_df = pd.read_csv('Data\Scatterplot\ITC_day_data_processed.csv', parse_dates=['date'], index_col=['date']) lt_df = pd.read_csv('Data\Scatterplot\LT_day_data_processed.csv', parse_dates=['date'], index_col=['date']) mm_df = pd.read_csv('Data\Scatterplot\MM_day_data_processed.csv', parse_dates=['date'], index_col=['date']) nestle_df = pd.read_csv(r'Data\Scatterplot\NESTLEIND_day_data_processed.csv', parse_dates=['date'], index_col=['date']) ongc_df = pd.read_csv('Data\Scatterplot\ONGC_day_data_processed.csv', parse_dates=['date'], index_col=['date']) power_df = pd.read_csv('Data\Scatterplot\POWERGRID_day_data_processed.csv', parse_dates=['date'], index_col=['date']) rel_df = pd.read_csv('Data\Scatterplot\RELIANCE_day_data_processed.csv', parse_dates=['date'], index_col=['date']) sbi_df = pd.read_csv('Data\Scatterplot\SBIN_day_data_processed.csv', parse_dates=['date'], index_col=['date']) sun_df = pd.read_csv('Data\Scatterplot\SUNPHARMA_day_data_processed.csv', parse_dates=['date'], index_col=['date']) tatam_df = pd.read_csv('Data\Scatterplot\TATAMOTORS_day_data_processed.csv', parse_dates=['date'], index_col=['date']) tcs_df = pd.read_csv('Data\Scatterplot\TCS_day_data_processed.csv', parse_dates=['date'], index_col=['date']) ulttech_df = pd.read_csv(r'Data\Scatterplot\ULTRACEMCO_day_data_processed.csv', parse_dates=['date'], index_col=['date']) upl_df = pd.read_csv(r'Data\Scatterplot\UPL_day_data_processed.csv', parse_dates=['date'], index_col=['date']) wipro_df = pd.read_csv(r'Data\Scatterplot\WIPRO_day_data_processed.csv', parse_dates=['date'], index_col=['date']) # %% adani_df['company'] = 'Adani Enterprises' appolo_df['company'] = 'Apollo Hospitals' asian_df['company'] = 'Asian Paints' airtel_df['company'] = 'Bharti Airtel' bajaj_df['company'] = 'Bajaj Finance' drreddy_df['company'] = "Dr. Reddy's Laboratories" hdfc_df['company'] = "HDFC Bank" infy_df['company'] = 'Infosys' itc_df['company'] = 'ITC' lt_df['company'] = 'Larsen & Toubro' mm_df['company'] = 'Mahindra & Mahindra' nestle_df['company'] = 'Nestle India' ongc_df['company'] = 'Oil and Natural Gas Corporation' rel_df['company'] = 'Reliance Industries' sbi_df['company'] = 'State Bank of India' divis_df['company'] = "Divi's Laboratories" hind_df['company'] = 'Hindalco Industries' hul_df['company'] = 'Hindustan Unilever' power_df['company'] = 'Power Grid Corporation of India' sun_df['company'] = 'Sun Pharmaceutical' tatam_df['company'] = 'Tata Motors' tcs_df['company'] = 'Tata Consultancy Services' ulttech_df['company'] = 'UltraTech Cement' upl_df['company'] = 'United Phosphorus Limited' wipro_df['company'] = 'Wipro' # %% df_stocks = pd.concat([adani_df, appolo_df, asian_df, airtel_df, bajaj_df, divis_df, drreddy_df, infy_df, hind_df, hdfc_df, hul_df, itc_df, lt_df, mm_df, nestle_df, ongc_df, power_df, sbi_df, sun_df, rel_df, tatam_df, tcs_df, ulttech_df, upl_df, wipro_df], axis=0) # %% df = [] for company in df_stocks['company'].unique(): company_df = df_stocks[['volume', 'close']][df_stocks['company'] == company] company_df[f'{company}_dollar_volume'] = company_df['volume'] * company_df['close'] company_df = company_df[[f'{company}_dollar_volume']] df.append(company_df) df = pd.concat(df, axis = 1) # %% company_df = df_stocks[['volume', 'close', 'company']] company_df['dollar_volume'] = company_df['volume'] * company_df['close'] # %% d= [] for company in df_stocks['company'].unique(): monthly_volume = pd.DataFrame() monthly_dv = company_df['dollar_volume'][company_df['company']==company].resample('M').sum() monthly_v = company_df['volume'][company_df['company']==company].resample('M').sum() monthly_close = company_df['close'][company_df['company']==company].resample('M').mean() monthly_volume['dollar_volume'] = monthly_dv monthly_volume['volume'] = monthly_v monthly_volume['close'] = monthly_close monthly_volume['date'] = monthly_dv.index monthly_volume['company'] = company d.append(monthly_volume) d = pd.concat(d) d['company'].unique() # %% sectors = pd.read_csv('Data\sectors.csv') # %% s = [] for c in d['company']: s.append(sectors['sector'][sectors['company']==c]) s = pd.concat(s) d['sector'] = list(s) # %% fig = px.scatter(d, x="close", y="volume", animation_frame="date", animation_group="company", template='plotly_white', size='dollar_volume',color="sector", hover_name="company", size_max=60, log_y=True, log_x=True, range_x=[60,21000], range_y=[250000,5994900000]) fig.update_layout( title='Sectorwise Volume Data', title_x=0.44, yaxis_title='Volume', xaxis_title='Price', height=600, # width=1200, ) x_avg = d['close'].mean() y_avg = d['volume'].mean() fig.add_vline(x=x_avg, line_width=1, opacity=0.9) fig.add_hline(y=y_avg, line_width=1, opacity=1) fig.add_annotation(dict(font=dict(color="black",size=14), x=0, y=-0.14,#data['score'].min()-0.2, y=data['wgt'].min()-0.2, text="Low Volume - Low Price", xref='paper', yref='paper', showarrow=False)) fig.add_annotation(dict(font=dict(color="black",size=14), x=1, y=-0.14,#x=data['score'].max(), y=data['wgt'].min(), text="Low Volume - High Price", xref='paper', yref='paper', showarrow=False)) fig.add_annotation(dict(font=dict(color="black",size=14), x=0, y=1.07, #x=data['score'].min(), y=data['wgt'].max(), text="High Volume - Low Price", xref='paper', yref='paper', showarrow=False)) fig.add_annotation(dict(font=dict(color="black",size=14), x=1, y=1.07, #x=data['score'].max(), y=data['wgt'].max(), text="High Volume - High Price", xref='paper', yref='paper', showarrow=False)) fig.show() plotly.offline.plot(fig, filename='scatterplot.html') # %%
mathewjames/covid-impact-on-indian-stock-market
scatterplot.py
scatterplot.py
py
7,537
python
en
code
0
github-code
6
30469295270
# Integer multiplication using recursion # Author: Prashanth Palaniappan """ Description: This is an algorithm that performs multiplication of 2 integers of size n using recursion. Solution: The algorithm recursively divides the input numbers by half, until we are left with single digits. This is the base case for recursion. Once we hit the base case, we perform regular multiplication of the single digits """ def multiply(x, y, n): """ :param x: input number 1 :param y: input number 2 :param n: length of the input numbers :return: multiplied result of the 2 input numbers a = first half of x b = second half of x c = first half of y d = second half of y x * y = ((10^n/2 * a) + b) * ((10^n/2 * c) + d) = (10^n * ac) + (10^n/2 * (ad + bc)) + bd """ if n == 1: return x * y a = x // pow(10, n//2) b = x - (a * pow(10, n//2)) c = y // pow(10, n//2) d = y - (c * pow(10, n//2)) ac = multiply(a, c, len(str(a))) bd = multiply(b, d, len(str(b))) bc_plus_ad = multiply(a + b, c + d, len(str(a + b))) - ac - bd mul_result = (pow(10, n//2) * pow(10, n//2) * ac) + (pow(10, n//2) * bc_plus_ad) + bd return mul_result # Get the input numbers from an user x = int(input('First number: ')) y = int(input('Second number: ')) # Raise exception if input integers are not of equal length if len(str(x)) != len(str(y)): raise Exception('Please enter 2 integers of equal length') # Get the size of input n = len(str(x)) # Compute and print the result result = int(multiply(x, y, n)) print(result)
prashpal/algorithms-and-datastructures
python/numbers/integer_multiplication.py
integer_multiplication.py
py
1,606
python
en
code
0
github-code
6
69960819069
print("Advent of Code Day 1 Exercise 2") # Set local variables y = int(0) calories = int(0) count = int(0) calorielist = [] f = open("/Users/pauldobe/AOC_22/input_file_day_1", "r") for x in f: if x != "\n": y = y + int(x) else: calorielist.append(y) y = 0 calorielist.sort(reverse = True) calories = calorielist[0] + calorielist[1] + calorielist[2] print(calories) f.close ß
pdobek/AOC_22
AOC_1_2.py
AOC_1_2.py
py
415
python
en
code
0
github-code
6
9312776182
class Solution: def findDuplicate(self, nums): """ :type nums: List[int] :rtype: int """ """ Complexity: O(n) Space: O(1) Think of a linked list with a cycle in it somewhere. (142. Linked List Cycle II) Say fast pointer goes twice as fast as the slow pointer, and when they meet at point A, they both must be within the cycle. Now consider this, how much further has the fast pointer gone than the slow pointer has? Some multiplier of the loop length, which is exactly how much the slow pointer has gone before fast ans slow meet. (Proof: Time of travel "t" for both fast and slow are the same, Dist(fast) = v(fast) * t = 2 * v(slow) * t, so Dist(fast) - Dist(slow) = 2 * v(slow) * t - v(slow) * t = v(slow) * t = Dist(slow)). This means, the distant from starting point to point A must be the n length of the loop length. So when we set another point starting from the start point and its speed is same as the slow pointer, if they walk a distance of n length of the loop, **they will be at point A at the same time**, so they must enter the loop at the same time. That's why the point where they first meet is the entry point of the loop. """ if nums == []: return -1 slow = nums[0] fast = nums[nums[0]] # find the point A they meet within the cycle while slow != fast: slow = nums[slow] fast = nums[nums[fast]] fast = 0 # find the entry point while fast != slow: fast = nums[fast] slow = nums[slow] return slow
acnokego/LeetCode
287_find_duplicate_num/two_ptr.py
two_ptr.py
py
1,775
python
en
code
0
github-code
6
23015453145
# Write a Pyhton Program to reverse a tule ? # x=('p','y','t','h','o','n') # y=print(reversed(x)) x = (2, 4, 6) result = reversed(x) result = tuple(result) print(result)
JACK07770777/Python-Assignments
Module 3/Q26.py
Q26.py
py
181
python
en
code
0
github-code
6
70722602427
import requests from bs4 import BeautifulSoup from .componentParser import ComponentParser from .utils import isRelativePostDate, getRelativePostDate class BlogPost: errorCount = 0 def __init__(self, url, isDevMode=False): # 개발 편의 self.isDevMode = isDevMode # init self.url = url self.postInframeUrl = '' self.postEditorVersion = None self.postLogNum = None self.postDate = None self.postInframeSoup = None # init check if self.isForeignUrl(): print("[INIT ERROR] URL이 잘못되었습니다. 프로그램을 종료합니다.") exit(-1) # ============================================================================================ # 개발편의용 프린트 함수 def printDevMessage(self, message): if self.isDevMode: print("[DEV MODE] " + message, end='\n') # 유저가 입력한 URL 이 올바른지 체크하는 함수 def isForeignUrl(self): self.printDevMessage("isForeignUrl execution") if 'blog.naver.com' in self.url: return False else: return True # ============================================================================================ def postSetup(self): try: self.printDevMessage("== postSetup execution == ") self.postInframeUrl = self.getPostInframeUrl() self.postInframeSoup = self.getPostInframeSoup() self.postEditorVersion = self.getPostEditorVersion() self.postDate = self.getPostDate() self.printDevMessage("== postSetup is clear == ") # 여기서는 폴더 생성 체크까지만, 다 되었다면 run 함수로 넘긴다. except Exception as e: print(e) def getPostInframeUrl(self): self.printDevMessage("== getPostInframeUrl 실행 ==") originHtml = requests.get(self.url).text originSoup = BeautifulSoup(originHtml, features="html.parser") for link in originSoup.select('iframe#mainFrame'): postInframeUrl = "http://blog.naver.com" + link.get('src') self.printDevMessage(f'return is : {postInframeUrl}') return postInframeUrl def getPostInframeSoup(self): self.printDevMessage("== getPostInframeSoup execution ==") if not (self.postInframeUrl == ''): inframeHtml = requests.get(self.postInframeUrl).text inframeSoup = BeautifulSoup(inframeHtml, features="html.parser") self.printDevMessage(f'return is : {len(inframeSoup)} links') return inframeSoup else: raise Exception("[ERROR] getPostInframeSoup가 정상적으로 실행되지 않았습니다.") def getPostEditorVersion(self): self.printDevMessage("== getPostEditorVersion execution ==") for link in self.postInframeSoup.select('div#post_1'): postEditiorVersion = link.get('data-post-editor-version') if postEditiorVersion == None: raise Exception("[ERROR] 지원하지 않는 에디터 버젼입니다.") self.printDevMessage(f'return is : {postEditiorVersion}') return postEditiorVersion def getPostDate(self): self.printDevMessage("== getPostDate execution ==") links = self.postInframeSoup.select('span.se_publishDate') if len(links) == 0: raise Exception("[ERROR] 포스트 게시일을 찾지 못했습니다.") else: for link in links: publishDate = link.get_text() if isRelativePostDate(publishDate): publishDate = getRelativePostDate(publishDate) self.printDevMessage(f'return is : {publishDate}') return publishDate # ============================================================================================ def run(self, dirPath): self.printDevMessage("== run execution ==") self.postSetup() filePath = dirPath + '/' + 'word.md' ComponentParser.assetPath = dirPath + '/asset' rawComponents = self.postInframeSoup.select('div.se-component') try: with open(filePath, mode='w', encoding='utf-8') as fp: # 작성될 텍스트 데이터 초기화 data = '' for i, component in enumerate(rawComponents): if i == 0: # 처음에는 무조건 헤더부분의 다큐먼트 타이틀이 나온다. data += ComponentParser(component, isDevMode=self.isDevMode).parsingTitle() continue data += ComponentParser(component, skipSticker=self.isDevMode).parsing() # last loop에서는 해시태그까지 추가해준다. if i == (len(rawComponents) - 1): txt = '해시태그 : ' for hashTag in ComponentParser.hashTagList: txt += hashTag data += ' ' + txt # 작성 fp.write(data) if ComponentParser.errorCounter != 0: BlogPost.errorCount += 1 # 포스트 백업 후 클래스 변수 초기화 ComponentParser.hashTagList = [] ComponentParser.counter = 0 ComponentParser.errorCount = 0 return True except Exception as e: print(e) return False
Jeongseup/naver-blog-backer
src/naverblogbacker/post.py
post.py
py
4,676
python
en
code
4
github-code
6
40315905815
############################################## # Q1 --- find sum of all inputs ############################################## # Read input - (f.read() for char-by-char read) & (loop file object for LINE-by-LINE reading) with open('./1201.in', 'r') as f: freqList = [line.strip() for line in f] # Compute sum from functools import reduce summed = reduce(lambda acc, curr: acc + int(curr), freqList, 0) # print(summed) ############################################## # Q1 --- find first cumulative value that repeats # --- use itertools (efficient looping) : cycle!! because need to REPEAT given input indefinitely ############################################## from itertools import cycle cumulative, visited = 0, set() for n in cycle(freqList): # print(summed) visited.add(cumulative) cumulative += int(n) # print(cumulative) if (cumulative in visited): print(cumulative) break
hdd2k/adventOfCode
2018/01/1201.py
1201.py
py
924
python
en
code
2
github-code
6
38358981811
import logging from enum import Enum import openai from fastapi import Query from openai.error import AuthenticationError, InvalidRequestError, RateLimitError from tenacity import ( retry, stop_after_attempt, wait_random_exponential, retry_if_exception_type, ) # for exponential backoff from app.config.messages import ( model_description, max_tokens_description, temperature_description, top_p_description, presence_penalty_description, frequency_penalty_description, ) class Model(Enum): TEXT_DAVINCI_003 = "text-davinci-003" @retry( wait=wait_random_exponential(min=2, max=5), stop=stop_after_attempt(5), retry=retry_if_exception_type(RateLimitError), ) async def completions_with_backoff(**kwargs): return await openai.Completion.acreate(**kwargs) async def get_completions( api_key: str, message: str, model: Model = Query(Model.TEXT_DAVINCI_003, description=model_description), max_tokens: int = Query(2048, description=max_tokens_description), temperature: float = Query(1, description=temperature_description), top_p: float = Query(1, description=top_p_description), presence_penalty: float = Query(0.5, description=presence_penalty_description), frequency_penalty: float = Query(0.5, description=frequency_penalty_description), ): openai.api_key = api_key # https://platform.openai.com/docs/api-reference/completions try: result = await completions_with_backoff( model=model.value, max_tokens=max_tokens, temperature=temperature, top_p=top_p, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, prompt=message, request_timeout=60, ) except AuthenticationError as e: logging.error(e) return "The token is invalid." except InvalidRequestError as e: logging.error(e) if "This model's maximum context length is 4097 tokens" in str(e): return "너무 긴 답변을 유도하셨습니다." else: return "오류가 발생했습니다 :sob: 다시 시도해 주세요." except Exception as e: logging.exception(e) return "오류가 발생했습니다 :sob: 다시 시도해 주세요." try: return result.get("choices")[0].get("text") except KeyError as e: logging.exception(e) return "오류가 발생했습니다 :sob: 다시 시도해 주세요."
jybaek/Hello-ChatGPT
app/services/openai_completions.py
openai_completions.py
py
2,522
python
en
code
7
github-code
6
31819134582
""" The field should look like this: col0 col1 col2 col3 col4 col5 col6 col7 col8 ||======|======|======||======|======|======||======|======|======|| || A | A | A || B | B | B || C | C | C || row0||cell0 |cell1 |cell2 ||cell3 |cell4 |cell5 ||cell6 |cell7 |cell8 || ||______|______|______||______|______|______||______|______|______|| || A | A | A || B | B | B || C | C | C || row1||cell9 |cell10|cell11||cell12|cell13|cell14||cell15|cell16|cell17|| ||______|______|______||______|______|______||______|______|______|| || A | A | A || B | B | B || C | C | C || row2||cell18|cell19|cell20||cell21|cell22|cell23||cell24|cell25|cell26|| ||======|======|======||======|======|======||======|======|======|| || D | D | D || E | E | E || F | F | F || row3||cell27|cell28|cell29||cell30|cell31|cell32||cell33|cell34|cell35|| ||______|______|______||______|______|______||______|______|______|| || D | D | D || E | E | E || F | F | F || row4||cell36|cell37|cell38||cell39|cell40|cell41||cell42|cell43|cell44|| ||______|______|______||______|______|______||______|______|______|| || D | D | D || E | E | E || F | F | F || row5||cell45|cell46|cell47||cell48|cell49|cell50||cell51|cell52|cell53|| ||======|======|======||======|======|======||======|======|======|| || G | G | G || H | H | H || I | I | I || row6||cell54|cell55|cell56||cell57|cell58|cell59||cell60|cell61|cell62|| ||______|______|______||______|______|______||______|______|______|| || G | G | G || H | H | H || I | I | I || row7||cell63|cell64|cell65||cell66|cell67|cell68||cell69|cell70|cell71|| ||______|______|______||______|______|______||______|______|______|| || G | G | G || H | H | H || I | I | I || row8||cell72|cell73|cell74||cell75|cell76|cell77||cell78|cell79|cell80|| ||======|======|======||======|======|======||======|======|======|| """ import openpyxl DIGITS = (1, 2, 3, 4, 5, 6, 7, 8, 9) rows = [] cols = [] squares = [] cells = {} class Cell: def __init__(self, row, col, value=''): self.possible_values = list(DIGITS) self.value = value self.isSolved = False self.row = row self.col = col class CellGroup: def __init__(self): self.cells = [] self.possible_values = list(DIGITS) def init_structure(): global rows global cols global squares global cells # Initialize empty rows, cols and squares for index in range(0, 9): rows.append(CellGroup()) cols.append(CellGroup()) squares.append(CellGroup()) # Initialize empty cells for cell_index in range(0, 81): cell_name = f'cell{cell_index}' row_index = cell_index // 9 col_index = cell_index % 9 # Create cell from class cells[cell_name] = Cell(row_index, col_index) # Adding it to a row and cols list rows[row_index].cells.append(cells[cell_name]) cols[col_index].cells.append(cells[cell_name]) # Adding squares # Maybe someday something shorter and not that straightforward? if row_index < 3: if col_index < 3: squares[0].cells.append(cells[cell_name]) elif 3 <= col_index < 6: squares[1].cells.append(cells[cell_name]) elif 6 <= col_index < 9: squares[2].cells.append(cells[cell_name]) elif 3 <= row_index < 6: if col_index < 3: squares[3].cells.append(cells[cell_name]) elif 3 <= col_index < 6: squares[4].cells.append(cells[cell_name]) elif 6 <= col_index < 9: squares[5].cells.append(cells[cell_name]) elif 6 <= row_index < 9: if col_index < 3: squares[6].cells.append(cells[cell_name]) elif 3 <= col_index < 6: squares[7].cells.append(cells[cell_name]) elif 6 <= col_index < 9: squares[8].cells.append(cells[cell_name]) def read_puzzle_xls(): """Read initial know values from Excel""" global cells exlw = openpyxl.load_workbook('sudoku.xlsx', read_only=True, data_only=True) ws = exlw.active for cell_name, cell in cells.items(): excel_cell_row = cell.row+1 excel_cell_column = cell.col+1 if ws.cell(excel_cell_row, excel_cell_column).value is not None: cell.value = ws.cell( excel_cell_row, excel_cell_column ).value cell.possible_values.clear() def sanity_check(): """If cell has value - clear possible_values""" global cells for cell_name, cell in cells.items(): if cell.value is not None: cell.possible_values.clear() def solve_group(group): for cell in group.cells: # Removing know values from line possible values if (cell.value != '') and (cell.value in group.possible_values): group.possible_values.remove(cell.value) # Removing line impossible values from cell possible values for cell in group.cells: for cell_pv in cell.possible_values: if cell_pv not in group.possible_values: cell.possible_values.remove(cell_pv) # Set value if only 1 possible value available if len(cell.possible_values) == 1: cell.value = cell.possible_values.pop() def print_puzzle_debug(): """Prints puzzle results and debug""" global cells global rows for row in rows: OutputLine = '' for cell in row.cells: OutputLine += str(cell.value) + ' ' print(OutputLine) def solve_puzzle(): """Main program to solve the puzzle""" # Geeting all the cells without value to list unresolved_cells = [] for cell_name, cell in cells.items(): if cell.value == '': unresolved_cells.append(cell_name) # Solving only unknown cells for cell_name in unresolved_cells: # Solving groups for group in rows + cols + squares: solve_group(group) init_structure() read_puzzle_xls() solve_puzzle() print_puzzle_debug()
stanislavstarkov/sudoku
sudoku.py
sudoku.py
py
6,469
python
en
code
0
github-code
6
34849239284
import sqlite3 def execute_with_output(conn, query_txt, fetch_quant="one"): """ Takes the connection file variable and executes the query text within that connection :param fetch_quant: :param conn: :param query_txt: :return: """ try: c = conn.cursor() c.execute(query_txt) if fetch_quant == "one": return c.fetchone() else: return c.fetchall() except sqlite3.Error as e: print(e) def execute_no_output(conn, query_txt): """ :param conn: :param query_txt: :return: """ try: c = conn.cursor() c.execute(query_txt) except sqlite3.Error as e: print(e)
James-Rocker/data_engineering_portfolio
working_with_sqllite/query/__init__.py
__init__.py
py
705
python
en
code
0
github-code
6
31564356652
import svgwrite.extensions import faiss import numpy as np import matplotlib.pyplot as plt import svgwrite import networkx as nx import src.particle_utils as particle_utils if __name__ == "__main__": page_size = (11 * 96, 17 * 96) max_iterations = 1000 max_particles = 1000 index_training_node_count = 100000 grid_size = 2000 np.random.seed(1234) center_bias = 0 d = 2 # particle radius p_radius = 2 gen_radius = 2 # Construct the index nlist = int(10 * np.sqrt(index_training_node_count)) quantizer = faiss.IndexFlatL2(d) # the other index index = faiss.IndexIVFFlat(quantizer, d, int(nlist)) initial_vecs = (np.random.uniform(-1*grid_size, grid_size, (123318, 2))).astype('float32') index.train(initial_vecs) index.nprobe = 2 # initialize the count of particles fixed_particles = np.zeros((1, d), dtype='float32') live_particles = 1 moving_particles = particle_utils.init_moving_particles(live_particles, gen_radius, d) index.add(fixed_particles) # begin adding vectors to the index. a = 1 particle_count = 1 parent_indices = [] i = 0 last_particle_count = 1 last_iteration = 0 while particle_count < max_particles and i < max_iterations: i += 1 # Increase the number of particles as the bounding circle gets larger if a*np.sqrt(particle_count)-5 > len(moving_particles): live_particles = int(np.sqrt(particle_count) * a) moving_particles = particle_utils.init_moving_particles(live_particles, gen_radius, d) print(f"Live: {live_particles:4}, Total: {particle_count:6}, on iteration {i:6} particles gained/iterations {(live_particles-last_particle_count)/(i-last_iteration)}") last_particle_count = live_particles last_iteration = i D, I = index.search(moving_particles, 1) fixing_indices = D[:, 0] < p_radius ** 2 parent_indices.extend(I[fixing_indices]) if any(fixing_indices): particle_count += sum(fixing_indices) fixing_particles = moving_particles[fixing_indices] index.add(fixing_particles) moving_particles, gen_radius = particle_utils.regenerate_fixed_particle(moving_particles, fixing_indices, gen_radius) moving_particles += np.random.normal(0, 1, (live_particles, d)).astype('float32') moving_particles -= moving_particles * center_bias/np.linalg.norm(moving_particles, axis=1, keepdims=True) moving_particles = particle_utils.regenerate_extreme_particles(moving_particles, gen_radius) # Reconstruct the points in the order they were added. index.make_direct_map() fixed_particles = index.reconstruct_n(0, int(particle_count)) + np.asarray(page_size)/2 parent_indices = np.concatenate(parent_indices) parents = fixed_particles[parent_indices] # Build a graph G = nx.graph.Graph() for ind in range(len(fixed_particles)): G.add_node(ind) if ind > 0: G.add_edge(parent_indices[ind-1], ind) # Iterate over the edges of the graph edges = list(nx.algorithms.traversal.edgedfs.edge_dfs(G, source=0)) grouped_edges = [] for a_edge in edges: if len(grouped_edges) == 0 or grouped_edges[-1][-1] != a_edge[0]: grouped_edges.append(list(a_edge)) else: grouped_edges[-1].append(a_edge[-1]) # Group the nodes together group_strs = [] paths = [] fig, ax = plt.subplots() # Write the path dwg = svgwrite.Drawing("../outputs/out.svg", size=page_size) inkscape = svgwrite.extensions.Inkscape(dwg) layer = inkscape.layer() dwg.add(layer) for a_group in grouped_edges: curr_pnts = fixed_particles[a_group].astype('int') layer.add(svgwrite.shapes.Polyline(curr_pnts.tolist(), stroke="black", fill='none')) dwg.save()
neoques/dla-python
src/virnolli.py
virnolli.py
py
3,998
python
en
code
0
github-code
6
29013781998
import sys,usb,struct USB_TIMEOUT_DEFAULT = 1000 SMS_EP_IN = 0x81 SMS_EP_OUT = 0x02 HIF_TASK = 11 class SMS1180USB: def __init__(self, dev, timeout=USB_TIMEOUT_DEFAULT): self.dev = dev self.timeout = timeout def usb_read(self): try: return bytes(self.dev.read(SMS_EP_IN, 512, self.timeout)) except usb.core.USBTimeoutError: return None def usb_write(self, data): try: return self.dev.write(SMS_EP_OUT, data, self.timeout) except usb.core.USBTimeoutError: return False def msg_send_req_ex(self, request, src_id, dst_id, flags, payload): data = struct.pack("<HBBHH", request, src_id, dst_id, len(payload) + 8, flags) + payload self.usb_write(data) def msg_send_req(self, request, payload=bytes([])): return self.msg_send_req_ex(request, 0, HIF_TASK, 0, payload) #return: response, src_id, dst_id, length, flags, payload def msg_get_resp_ex(self): data = self.usb_read() if data == None or len(data) < 8: return None, else: response, src_id, dst_id, length, flags = struct.unpack("<HBBHH", data[0:8]) return response, src_id, dst_id, length, flags, data[8:] #return: response, payload def msg_get_resp(self): ret = self.msg_get_resp_ex() if len(ret) == 1: return None, else: return ret[0], ret[5]
fxsheep/helloworld-anyware
src/siano/sms1180/sms1180usb.py
sms1180usb.py
py
1,474
python
en
code
4
github-code
6
28564753746
import sys import urllib.request START_MARKERS = { 'title': '<h1 class="header"> <span class="itemprop" itemprop="name">', 'year': '<span class="nobr">(<a href="/year/', 'genres': '<h4 class="inline">Genres:</h4>', 'genre': '> ', 'languages': '<h4 class="inline">Language:</h4>', 'language': "itemprop='url'>" } def extract(text, start_marker, end_marker): return [item.split(end_marker)[0] for item in text.split(start_marker)[1:]] if __name__ == '__main__': if len(sys.argv) < 2: print("Usage: %s imdb_id" % sys.argv[0]) sys.exit(1) imdb_id = sys.argv[1] imdb_url = 'http://www.imdb.com/title/tt' + imdb_id with urllib.request.urlopen(imdb_url) as html_file: html = html_file.read().decode('utf-8') title = extract(html, START_MARKERS['title'], end_marker='<')[0] print(title) year = extract(html, START_MARKERS['year'], end_marker='/')[0] print(year) genres_html = extract(html, START_MARKERS['genres'], end_marker='</div>')[0] genres = extract(genres_html, START_MARKERS['genre'], end_marker='<') print(genres) languages_html = extract(html, START_MARKERS['languages'], end_marker='</div>')[0] languages = extract(languages_html, START_MARKERS['language'], end_marker='<') print(languages)
PythonAnkara/basicimdb
imdb08.py
imdb08.py
py
1,325
python
en
code
0
github-code
6
9135098878
# -*- coding: utf-8 -*- import lzma import os import shutil from datetime import datetime from datetime import timedelta import hglib from bugbug import bugzilla from bugbug import labels from bugbug import repository from bugbug_data.secrets import secrets from cli_common.log import get_logger from cli_common.taskcluster import get_service from cli_common.utils import ThreadPoolExecutorResult logger = get_logger(__name__) class Retriever(object): def __init__(self, cache_root, client_id, access_token): self.cache_root = cache_root assert os.path.isdir(cache_root), 'Cache root {} is not a dir.'.format(cache_root) self.repo_dir = os.path.join(cache_root, 'mozilla-central') self.client_id = client_id self.access_token = access_token self.index_service = get_service('index', client_id, access_token) def retrieve_commits(self): shared_dir = self.repo_dir + '-shared' cmd = hglib.util.cmdbuilder('robustcheckout', 'https://hg.mozilla.org/mozilla-central', self.repo_dir, purge=True, sharebase=shared_dir, networkattempts=7, branch=b'tip') cmd.insert(0, hglib.HGPATH) proc = hglib.util.popen(cmd) out, err = proc.communicate() if proc.returncode: raise hglib.error.CommandError(cmd, proc.returncode, out, err) logger.info('mozilla-central cloned') repository.download_commits(self.repo_dir) logger.info('commit data extracted from repository') self.compress_file('data/commits.json') def retrieve_bugs(self): bugzilla.set_token(secrets[secrets.BUGZILLA_TOKEN]) six_months_ago = datetime.utcnow() - timedelta(182) two_years_and_six_months_ago = six_months_ago - timedelta(365) logger.info('Downloading bugs from {} to {}'.format(two_years_and_six_months_ago, six_months_ago)) bugzilla.download_bugs_between(two_years_and_six_months_ago, six_months_ago) logger.info('Downloading labelled bugs') bug_ids = labels.get_all_bug_ids() bugzilla.download_bugs(bug_ids) self.compress_file('data/bugs.json') def compress_file(self, path): with open(path, 'rb') as input_f: with lzma.open('{}.xz'.format(path), 'wb') as output_f: shutil.copyfileobj(input_f, output_f) def go(self): with ThreadPoolExecutorResult(max_workers=2) as executor: # Thread 1 - Download Bugzilla data. executor.submit(self.retrieve_bugs) # Thread 2 - Clone mozilla-central and retrieve commit data. executor.submit(self.retrieve_commits) # Index the task in the TaskCluster index. self.index_service.insertTask( 'project.releng.services.project.{}.bugbug_data.latest'.format(secrets[secrets.APP_CHANNEL]), { 'taskId': os.environ['TASK_ID'], 'rank': 0, 'data': {}, 'expires': (datetime.utcnow() + timedelta(31)).strftime('%Y-%m-%dT%H:%M:%S.%fZ'), } )
chutten/release-services
src/bugbug/data/bugbug_data/retriever.py
retriever.py
py
3,307
python
en
code
null
github-code
6
12733893864
commands = [ '!help', '!done', 'plain', 'bold', 'italic', 'header', 'link', 'inline-code', 'new-line', 'ordered-list', 'unordered-list' ] outputs = [] def get_formatter(): formatter = input("Choose a formatter: ") return formatter def format_new_line(): markdown = '\n' outputs.append(markdown) print("".join(outputs)) def format_plain(): markdown = input("Text: ") outputs.append(markdown) print("".join(outputs)) def format_bold(): text = input("Text: ") markdown = "**" + text + "**" outputs.append(markdown) print("".join(outputs)) def format_italic(): text = input("Text: ") markdown = "*" + text + "*" outputs.append(markdown) print("".join(outputs)) def format_inline_code(): text = input("Text: ") markdown = "`" + text + "`" outputs.append(markdown) print("".join(outputs)) def format_header(): level = int(input("Level: ")) if not (1 <= level <= 6): print("The level should be within the range of 1 to 6") else: text = input("Text: ") markdown = ('#' * level) + ' ' + text + '\n' outputs.append(markdown) print("".join(outputs)) def format_link(): label = input("Label: ") url = input("URL: ") markdown = f'[{label}]({url})' outputs.append(markdown) print("".join(outputs)) def format_list(list_type): row_count = int(input("Number of rows: ")) if row_count <= 0: print("The number of rows should be greater than zero") return format_list(list_type) if list_type == 'ordered-list': for i in range(1, row_count + 1): element_i = input(f'Row #{i}: ') row = f'{i}. ' + element_i + '\n' outputs.append(row) elif list_type == 'unordered-list': for i in range(1, row_count + 1): element_i = input(f'Row #{i}: ') row = '* ' + element_i + '\n' outputs.append(row) for output in outputs: print(output, sep='', end='') print('') def execute(command): while True: if command == '!help': print("""Available formatters: plain bold italic header link inline-code new-line Special commands: !help !done""") return execute(get_formatter()) elif command == '!done': save = open('output.md', 'w') for output in outputs: save.write(output) save.close() break elif command == 'plain': format_plain() return execute(get_formatter()) elif command == 'bold': format_bold() return execute(get_formatter()) elif command == 'italic': format_italic() return execute(get_formatter()) elif command == 'inline-code': format_inline_code() return execute(get_formatter()) elif command == 'link': format_link() return execute(get_formatter()) elif command == 'header': format_header() return execute(get_formatter()) elif command == 'new-line': format_new_line() return execute(get_formatter()) elif 'list' in command: format_list(command) return execute(get_formatter()) else: print("Unknown formatting type or command") return execute(get_formatter()) execute(get_formatter())
CRowland4/markdown_editor
Markdown_Editor.py
Markdown_Editor.py
py
3,661
python
en
code
0
github-code
6
72453543549
#!/usr/bin/python3 from tkinter import Image import rospy import sys import cv2 from cv_bridge import CvBridge, CvBridgeError class viewer: def __init__(self): self.bridge = CvBridge() # self.image_rgb_sub = rospy.Subscriber("/camera/color/image_raw",Image,self.callback) self.image_depth_sub = rospy.Subscriber("/camera/depth/image_rect_raw",Image,self.callback) def callback(self,data): try: cv_image = self.bridge.imgmsg_to_cv2(data,"bgr8") except CvBridgeError as error: print(error) cv2.imshow("ball + depth",cv_image) cv2.waitKey(30) def main(args): v = viewer() rospy.init_node("image_pub",anonymous=True) rospy.loginfo('image_pub node started') try: rospy.spin() except KeyboardInterrupt: print("Shutting down") cv2.destroyAllWindows() if __name__ == '__main__': try: main(sys.argv) except rospy.ROSInterruptException: pass
Yandong-Luo/hybrid
src/Vision/detect_ball/nodes/image_pub.py
image_pub.py
py
997
python
en
code
1
github-code
6
7615725014
import math class Circle: def __init__(self, centre, radius): self.centre = centre self.radius = radius def isInside(self, rectangle): x = (rectangle.rightLower.x + rectangle.leftUpper.x) / 2 y = (rectangle.leftUpper.y + rectangle.rightLower.y) / 2 distance = math.sqrt(math.pow(x - self.centre.x, 2) + math.pow(y - self.centre.y, 2)) return distance
Tariod/what-is-near
lib/Circle.py
Circle.py
py
410
python
en
code
0
github-code
6
18528705421
# Section12-1 # 파이썬 데이터베이스 연동(SQLite) # 테이블 생성 및 삽입 import datetime import sqlite3 # 삽입 날짜 생성 now = datetime.datetime.now() print('now', now) nowDatetime = now.strftime('%Y-%m-%d %H:%M:%S') print('now Datetime', nowDatetime) # sqlite3 버전 print('sqlite3.version : ', sqlite3.version) print('sqlite3.sqlite_version', sqlite3.sqlite_version) print() # DB생성 & Autocommit & Rollback # Commit : DB에 변경사항을 반영하는 명령어 # Autocommit : 변경사항을 바로바로 DB에 반영 # Rollback : 변경사항 되돌리기 # 본인 DB 파일 경로 conn = sqlite3.connect('database/database.db', isolation_level=None) # DB생성(메모리) # conn = sqlite3.connect(":memory:") # Cursor연결 c = conn.cursor() print('Cursor Type : ', type(c)) # 테이블 생성(Datatype : TEXT NUMERIC INTEGER REAL BLOB) c.execute( "CREATE TABLE IF NOT EXISTS users(id INTEGER PRIMARY KEY, username text, email text, phone text, website text, regdate text)") # AUTOINCREMENT # 데이터 삽입 c.execute("INSERT INTO users VALUES (1 ,'Kim','[email protected]', '010-0000-0000', 'Kim.com', ?)", (nowDatetime,)) c.execute("INSERT INTO users(id, username, email, phone, website, regdate) VALUES (?, ?, ?, ?, ?, ?)", (2, 'Park', '[email protected]', '010-1111-1111', 'Park.com', nowDatetime)) # Many 삽입(튜플, 리스트) userList = ( (3, 'Lee', '[email protected]', '010-2222-2222', 'Lee.com', nowDatetime), (4, 'Cho', '[email protected]', '010-3333-3333', 'Cho.com', nowDatetime), (5, 'Yoo', '[email protected]', '010-4444-4444', 'Yoo.com', nowDatetime) ) c.executemany( "INSERT INTO users(id, username, email, phone, website, regdate) VALUES (?, ?, ?, ?, ?, ?)", userList) print() # 테이블 데이터 삭제 print("users db deleted :", conn.execute("delete from users").rowcount, "rows") # 커밋 : isolation_level=None 일 경우 Auto Commit(자동 반영) # conn.commit() # 자동 반영이 아닐 경우 반영 시켜주기위한 명령어 # 롤백 # conn.rollback() # Auto Commit 시에는 사용 불가 # 접속 해제 conn.close()
dailyco/python-study
src/section12_1.py
section12_1.py
py
2,122
python
ko
code
2
github-code
6
19981883727
import time import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent import datetime import csv import json def get_data(): current_time = datetime.datetime.now().strftime('%m-%d-%Y') with open(f'data/{current_time}_labirint.csv', 'w', newline='', encoding='utf-8-sig') as file: writer = csv.writer(file, delimiter=';') writer.writerow( [ 'Название книги', 'Автор', 'Издательство', 'Цена без скидки', 'Цена со скидкой', 'Процент скидки', 'Наличие на складе' ] ) ua = UserAgent() headers = { 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,' 'application/signed-exchange;v=b3;q=0.9', 'User-Agent': ua.random, } url = 'https://www.labirint.ru/genres/2498/?display=table&available=1' response = requests.get(url=url, headers=headers) soup = BeautifulSoup(response.text, 'lxml') pages_count = int(soup.find('div', class_='pagination-numbers').find_all('a')[-1].text.strip()) books_data = [] for page in range(1,pages_count + 1): url = f'https://www.labirint.ru/genres/2498/?display=table&available=1&page={page}' response = requests.get(url=url, headers=headers) soup = BeautifulSoup(response.text, 'lxml') books = soup.find('tbody', class_='products-table__body').find_all('tr') for book in books: book_data = book.find_all('td') try: book_title = book_data[0].find('a').text if not book_title: continue except AttributeError: continue try: book_author = ', '.join(list(map(lambda link: link.text, book_data[1].find_all('a')))) except AttributeError: book_author = 'Нет автора' try: book_publisher = ': '.join(list(map(lambda publisher: publisher.text, book_data[2].find_all('a')))) except AttributeError: book_publisher = 'Нет издательства' try: old_price = int(book_data[3].find(class_='price-gray').text.replace('₽', '').replace(' ', '').strip()) except AttributeError: old_price = 'Нет старой цены' try: new_price = int(book_data[3].find(class_='price-val').text.replace('₽', '').replace(' ', '').strip()) except AttributeError: new_price = 'Нет новой цены' try: discount = f'{round(((old_price - new_price) / old_price) * 100, 2)} %' except TypeError: discount = 'Скидки нет' try: availability = book_data[-1].find(class_='mt3 rang-available').text.replace(' ', '').strip() except AttributeError: availability = 'Нет данных' books_data.append( { 'book_title': book_title, 'book_author': book_author, 'book_publisher': book_publisher, 'old_price': f'{old_price}₽' if type(old_price) is int else old_price, 'new_price': f'{new_price}₽' if type(new_price) is int else new_price, 'discount': discount, 'availability': availability, } ) with open(f'data/{current_time}_labirint.csv', 'a', newline='', encoding='utf-8-sig') as file: writer = csv.writer(file, delimiter=';') writer.writerow( [ book_title, book_author, book_publisher, f'{old_price}₽' if type(old_price) is int else old_price, f'{new_price}₽' if type(new_price) is int else new_price, discount, availability ] ) print(f'Обработано {page}/{pages_count} страниц') with open(f'data/{current_time}-labirint.json', 'w', encoding='utf-8') as file: json.dump(books_data, file, indent=4, ensure_ascii=False) def main(): start_time = time.time() get_data() diff_time = time.time() - start_time print(f'Затраченное время на работу скрипта - {diff_time}') if __name__ == '__main__': main()
Baradys/scrappers
scrappers/labirint/labirint.py
labirint.py
py
4,771
python
en
code
0
github-code
6
37301787598
import random n=int(input("n=")) mas=random.sample(range(-100,100),n) print(mas) print("Мінімальний від'ємний елемент",min(mas)) S=0 for i in mas: if i<0: S=S+i print("Сума від'ємних елементів масиву=",S) k=0 for i in mas: if i>0: k=k+1 print("Кількість додатніх елементів масиву= ",k) for i in range (len(mas)): if mas[i]>0: print("Додатній елемент масиву = ",mas[i])
oly17/-
лб 1 30 варыант/3.py
3.py
py
550
python
uk
code
0
github-code
6
27214244555
# 1:57 시작, 12:18 종료 def solution(N, stages): answer = [] user = [0] * (N + 2) # 스테이지에 도달한 사람 fail = [0] * (N + 2) # 스테이지에 머물러 있는 사람 fail_rate = [] # 실패율 for s in stages: for i in range(1, s + 1): user[i] += 1 if i == s: fail[i] += 1 for i in range(N): if user[i + 1] == 0: fail_rate.append((0, i + 1)) else: fail_rate.append((fail[i + 1] / user[i + 1], i + 1)) fail_rate.sort(key=lambda x: (-x[0], x[1])) for f in fail_rate: answer.append(f[1]) return answer
hammii/Algorithm
python_practice/정렬/실패율.py
실패율.py
py
657
python
ko
code
2
github-code
6
31357541271
import argparse, sys import tornado.ioloop import tornado.gen import time from nats.io.client import Client as NATS def show_usage(): print("nats-sub SUBJECT [-s SERVER] [-q QUEUE]") def show_usage_and_die(): show_usage() sys.exit(1) @tornado.gen.coroutine def main(): # Parse the command line arguments parser = argparse.ArgumentParser() # e.g. nats-sub hello -s nats://127.0.0.1:4222 parser.add_argument('subject', default='hello', nargs='?') parser.add_argument('-s', '--servers', default=[], action='append') parser.add_argument('-q', '--queue', default="") # Parse! args = parser.parse_args() # Create client and connect to server nc = NATS() servers = args.servers if len(args.servers) < 1: servers = ["nats://127.0.0.1:4222"] opts = {"servers": servers} yield nc.connect(**opts) @tornado.gen.coroutine def handler(msg): print("[Received: {0}] {1}".format(msg.subject, msg.data)) print("Subscribed to '{0}'".format(args.subject)) yield nc.subscribe(args.subject, args.queue, handler) if __name__ == '__main__': main() tornado.ioloop.IOLoop.current().start()
nats-io/nats.py2
examples/nats-sub/__main__.py
__main__.py
py
1,186
python
en
code
62
github-code
6
8366434140
#!/usr/bin/env python # -*- coding:utf-8 -*- import sys import os import file def get_input_file(filepath, filename): """ 从标准输入读取内容,存入文件中 :param filepath:文件存储路径 :param filename:文件名 :return: """ # 打开文件,进行读写,如果不存在,创建新文件 file01 = open(filepath + filename, 'w+') # 从标准输入循环读取内容,知道输入的是,结束输入 print("当前指针位置:", file01.tell()) in_str = input("请输入内容:") while in_str != "end": file01.write(in_str + "\n") in_str = input() # 将缓存区文件写入文件 file01.flush() print("当前指针位置:", file01.tell()) print("当前操作文件:", file01.name, ",打开模式是:", file01.mode, ",关闭状态是:", file01.closed) # 关闭文件 if not file01.closed: file01.close() print("当前操作文件:", file01.name, ",打开模式是:", file01.mode, ",关闭状态是:", file01.closed) return def get_file_details(filepath, filename): """ 读取指定文件内容 :param filepath:文件存储路径 :param filename:文件名 :return: """ file01 = open(filepath + filename, 'r+') print("文件:", filepath + filename, "的内容是:\n") for line in file01.readlines(): print(line, end="") if not file01.closed: file01.close() return def copy_file_func(srcfile01, srcfile02): """ 复制文件,将文件filename01的内容复制到filename02中。 如果filename01不存在,返回提示结果。 :param srcfile01: :param srcfile02: :return: """ if os.path.exists(srcfile01): file01 = open(srcfile01, 'r+') file02 = open(srcfile02, 'w+') for line in file01.readlines(): file02.write(line) if not file01.closed: file01.close() if not file02.closed: file02.close() else: print("文件:", srcfile01, " 不存在!") return def file_merge_func(srcfile01, srcfile02, tarfile): """ 合并文件srcfile01和srcfile02,将结果存入tarfile :param srcfile01: 来源文件01 :param srcfile02: 来源文件02 :param tarfile: 目标文件 :return: """ if os.path.exists(srcfile01) and os.path.exists(srcfile02): file01 = open(srcfile01, 'r+') file02 = open(srcfile02, 'r+') file03 = open(tarfile, 'w+') for line in file01.readlines(): file03.write(line) for line in file02.readlines(): file03.write(line) elif not os.path.exists(srcfile01): print("文件:", srcfile01, " 不存在!") else: print("文件:", srcfile02, " 不存在!") if not file01.closed: file01.close() if not file02.closed: file02.close() if not file03.closed: file03.close() return def rename_file_func(oldfilename, newfilename): """ 修改文件名 :param oldfilename: :param newfilename: :return: """ if os.path.exists(oldfilename): os.rename(oldfilename, newfilename) return def remove_file_func(filename): if os.path.exists(filename): os.remove(filename) return def path_change_func(basepath): """ 目录创建和目录变更的练习 :param basepath: :return: """ if not os.path.exists(basepath + "\\a01filetest"): os.mkdir(basepath + "\\a01filetest") print(os.getcwd()) os.chdir(basepath + "\\a01filetest") print(os.getcwd()) return def file_join_func(): """ 实现文件的关联 可以指定文件,指定管理键 :return: """ base_path = "D:\\02helloWorld\\03Python\\a01pythonLearn\\file\\" user_grade = {} user_student = {} user_list = [] with open(base_path + "p086_grade.txt", "r+", encoding="utf-8") as fin_grade, \ open(base_path + "p086_student.txt", "r+", encoding="utf-8") as fin_student, \ open(base_path + "p086.txt", "w+", encoding="utf-8") as fout: try: for x in fin_grade.readlines(): user_id, grade = x.strip().split(",") user_grade[user_id] = grade for x in fin_student.readlines(): user_id, user_name = x.strip().split(",") user_student[user_id] = user_name if user_id in user_grade: user = [user_id, user_name, user_grade[user_id]] else: user = [user_id, user_name, "未匹配到成绩"] user_list.append(user) for user in user_list: user.append("\n") fout.write(",".join(user)) except BaseException as be: print(f"异常: {be}") print(user_grade) print(user_student) print(user_list) return # 文件存储根目录 base_path = "/file\\" # get_input_file(base_path, "inputFile.txt") # get_file_details(base_path, "inputFile.txt") # copy_file_func(base_path + "file02.txt", base_path + "file03.txt") # file_merge_func(base_path + "file02.txt", base_path + "file03.txt", base_path + "file04.txt") # rename_file_func(base_path + "file04.txt", base_path + "file05.txt") # copy_file_func(base_path + "file05.txt", base_path + "file04.txt") # remove_file_func(base_path + "file05.txt") # path_change_func(base_path) file_join_func()
renxiaowei-1991/pythonLearn
a01PythonLearn/package/b02BaseModule/c02FileIOType.py
c02FileIOType.py
py
5,515
python
en
code
0
github-code
6
37176772654
# Реализуйте RLE алгоритм: реализуйте модуль сжатия и восстановления данных. # Входные и выходные данные хранятся в отдельных текстовых файлах. with open ('file_5.4.txt', 'r') as data: text = data.readline() # print(text) def rle_coding(text): rle_text = '' count =1 char = text[0] for i in range(1, len(text)): if text[i] == char: count +=1 else: rle_text += str(count) + char char = text[i] count = 1 rle_text += str(count) + char return rle_text def rle_decoding(text): new_text = '' i = 0 while len(text[i: i + 2]) == 2: num, char = text[i: i + 2] new_text += char * int(num) i += 2 return new_text coding_text = rle_coding(text) # print(rle_codding(text)) decoding_text = rle_decoding(coding_text) # print(rle_decooding(codding_text)) with open ('file_5.4_coding.txt', 'w', encoding = 'utf-8') as data: data.write(coding_text) with open('file_5.4_decoding.txt', 'w', encoding = 'utf-8') as data: data.write(decoding_text)
Svetabtr/Homework_Python
hometask_5.4.py
hometask_5.4.py
py
1,192
python
en
code
0
github-code
6
9259336526
import numpy as np from calculateZ import WeightCrossData, AddBiasToProduct from output import Softmax_activation from activationFunctions import Tanh,Relu,Sigmoid class FeedForwardNeuralNetwork: def __init__(self,S): self.biases = [] self.Weights = [] for i in range(len(S)-1): self.Weights.append(np.random.randn(S[i], S[i+1]) / np.sqrt(S[i])) self.biases.append(np.random.randn(S[i+1]).reshape(1, S[i+1])) def findLoss(self, X, y,activFun): dotProduct = WeightCrossData() adddBias = AddBiasToProduct() if(activFun == "tanh"): activationFunctions = Tanh() elif(activFun == "sigmoid"): activationFunctions = Sigmoid() else: activationFunctions = Relu() softmax_activation = Softmax_activation() inputTaken = X for i in range(len(self.Weights)): dp = dotProduct.prop_forward(self.Weights[i], inputTaken) zobt = adddBias.prop_forward(dp, self.biases[i]) inputTaken = activationFunctions.prop_forward(zobt) return softmax_activation.calculate_loss(inputTaken, y) def predict(self, X,activFun): dotProduct = WeightCrossData() adddBias = AddBiasToProduct() if(activFun == "tanh"): activationFunctions = Tanh() elif(activFun == "sigmoid"): activationFunctions = Sigmoid() else: activationFunctions = Relu() softmax_activation = Softmax_activation() inputTaken = X for i in range(len(self.Weights)): dp = dotProduct.prop_forward(self.Weights[i], inputTaken) zobt = adddBias.prop_forward(dp, self.biases[i]) inputTaken = activationFunctions.prop_forward(zobt) return np.argmax(softmax_activation.predict(inputTaken), axis=1) def train(self, X, y, activFun , max_passes=20000, epsilon=0.01, reg_lambda=0.01, loss_printYN=False): dotProduct = WeightCrossData(); adddBias = AddBiasToProduct() if(activFun == "tanh"): activationFunctions = Tanh() elif(activFun == "sigmoid"): activationFunctions = Sigmoid() else: activationFunctions = Relu() softmax_activation = Softmax_activation() for iter in range(max_passes): # perform forward propagation inputTaken = X prop_forward = [(None, None, inputTaken)] for i in range(len(self.Weights)): dp = dotProduct.prop_forward(self.Weights[i], inputTaken) zobt = adddBias.prop_forward(dp, self.biases[i]) inputTaken = activationFunctions.prop_forward(zobt) prop_forward.append((dp, zobt, inputTaken)) # Back propagation dactivFunc = softmax_activation.calculate_diff(prop_forward[len(prop_forward)-1][2], y) for n in range(len(prop_forward)-1, 0, -1): add_descent = activationFunctions.prop_backward(prop_forward[n][1], dactivFunc) bias_descent, mul_descent = adddBias.prop_backward(prop_forward[n][0], self.biases[n-1], add_descent) weight_descnt, dactivFunc = dotProduct.prop_backward(self.Weights[n-1], prop_forward[n-1][2], mul_descent) weight_descnt += reg_lambda * self.Weights[n-1] self.biases[n-1] += -epsilon * bias_descent self.Weights[n-1] += -epsilon * weight_descnt if loss_printYN and iter % 1000 == 0: print("Loss after iteration %i: %f" %(iter, self.findLoss(X, y,activFun))) return self.Weights,self.biases;
nancyagrwal/Machine-Learning
Feed FOrward NN/feedForwardNeuralNetwork.py
feedForwardNeuralNetwork.py
py
3,721
python
en
code
0
github-code
6
74182195707
class Queue : def __init__(self, list = None): self.time = 0 if list == None: self.items = [] else: self.items = list def dequeue(self): if not self.isEmpty(): return self.items.pop(0) else: return -1 def enqueue(self, item): self.items.append(item) def isEmpty(self): return len(self.items) == 0 def size(self): return len(self.items) def timeReset(self): self.time = 0 def Time(self): return self.time def __str__(self) -> str: return str(self.items) def cashier(): if y.size() + 1 < 6: y.enqueue(x.dequeue()) elif z.size() + 1 < 6: z.enqueue(x.dequeue()) if not y.isEmpty(): y.time += 1 if not z.isEmpty(): z.time += 1 x = Queue() y = Queue() z = Queue() inp = [*input("Enter people : ")] x.items = inp for i in range(1, len(inp)+1): if not y.isEmpty() and y.time == 3: y.dequeue() y.timeReset() if not z.isEmpty() and z.time == 2: z.dequeue() z.timeReset() cashier() print(i,x,y,z)
chollsak/KMITL-Object-Oriented-Data-Structures-2D
Queue/exercise2.py
exercise2.py
py
1,191
python
en
code
0
github-code
6
30433642050
import requests from jSona import jSona import pprint pp = pprint.pprint class proImagery : def __init__(self, CONF_PATH) : self.jso = jSona() self.headers = {'json':{'Content-Type':'application/json; charset=utf-8'}} self.config = self.jso.loadJson(CONF_PATH)['IMAGERY'] self.lower = {color['id']:color for color in self.jso.loadJson(self.config['COLOR']['PATH'])} def post(self, data) : return requests.post(url=self.post_url, data=self.jso.dumps(data, False), headers=self.headers['json']) def connect(self, addr, port) : self.url = "{}:{}/".format(addr, port) self.post_url = self.url temp_data = {'hello':'world'} res = self.post(temp_data) return 'success' in res.content.decode() def segcolor(self, img_url, img_name='default.jpg', options='-d') : self.post_url = self.url+'segcolor' data = {'path' : img_url, 'name' : img_name, 'options' : options} res = self.post(data) return self.jso.loads(res.content.decode(), False) def ambcolor(self, colors, threshold=0.1) : colors = {color[0]:color[1] for color in colors} ambics = dict() for cid in colors : # brightgrayyellow if cid in self.lower : new_cid = self.lower[cid]['u'] if new_cid in ambics : ambics[new_cid] += colors[cid] else : ambics[new_cid] = colors[cid] else : if cid in ambics : ambics[cid] += colors[cid] else : ambics[cid] = colors[cid] return list(filter(lambda c : c[1]>threshold, ambics.items())) def start(self, img_url, labels=['shirt'], ambi=True, threshold=0.1, img_name='default.jpg', options='-d') : segments_and_colors = self.segcolor(img_url, img_name=img_name, options=options) if type(segments_and_colors) == type([]) : segments, colors = segments_and_colors[1], segments_and_colors[3] for sinx in range(len(segments)) : if set(labels)&set(self.config['LABEL'][''.join(segments[sinx].split()[:-1])]) and sinx<len(colors): if ambi : return self.ambcolor(colors[sinx], threshold=threshold) else : return colors[sinx] return None
oimq/proCleaner
proCleaner/proImagery.py
proImagery.py
py
2,349
python
en
code
0
github-code
6
39669765080
import hashlib import os.path import sys import pickle from SuperStoreParser import Parser as ssParser from SheetsController import SheetsController def main(): # Ensure usage is correct if (len(sys.argv) != 2): print("usage: python3 FoodParser.py inputfile.txt") return if (not os.path.exists(sys.argv[1])): print("Could not find file \"" + sys.argv[1] + "\"") return # Set up configuration file paths sheetId = "" with open('secret/sheetId.txt') as sheet: sheetId = sheet.read().strip() tokenPath = 'secret/token.pickle' credPath = 'secret/credentials.json' print("Building sheets controller...") # Build sheetsController sheet = SheetsController(tokenPath, credPath, sheetId) # Build list of headers headers = [ 'Food', 'MFP Name', 'Verified', 'Link', 'Unit', 'Buying Quantity', 'Buying Cost', 'Serving Quantity', '$ / unit', 'Serving Calories', 'Serving Fat', 'Serving Carbs', 'Serving Protein', 'g Protein / Calorie', 'g Protein / $', 'Protein Score', 'Normalized Protein Score', 'g Carbs / $', 'g Fat / $', 'Calories / $' ] # Clear out sheet # sheet.clearSheet() # Fill in headers # sheet.makeHeaders(headers) # Get links already in table print('Getting already populated urls...') doneUrls = sheet.getUrls() print('Getting urls from file...') urls = [] with open(sys.argv[1]) as urlFile: urls = [i.strip() for i in urlFile.readlines()] print('Filtering out already populated urls...') urls = [i for i in urls if i not in doneUrls] print(str(len(urls)) + " new urls.") # Build superstore parser print("Building SuperStoreParser...") ssp = ssParser() caching = True debugging = True data = [] print(len(urls)) for i in range(len(urls)): print('yoinking page...(' + str(i+1) + '/' + str(len(urls)) + ')') url = urls[i] html = None if caching: cachePath = 'cache/' cachePath += hashlib.md5(url.encode()).hexdigest() cachePath += '.pickle' if(not os.path.exists(cachePath)): html = ssp.gethtml(url) with open(cachePath, 'wb') as cache: pickle.dump(html, cache) else: with open(cachePath, 'rb') as cache: html = pickle.load(cache) else: html = ssp.gethtml(url) data.append((html,url)) ssp.closeWindow() parsedData = [] for i in range(len(data)): print('parsing data...(' + str(i+1) + '/' + str(len(data)) + ')') pair = data[i] parsed = None if caching: cachePath = 'cache/' cachePath += hashlib.md5(pair[1].encode()).hexdigest() cachePath += '.parsed.pickle' if not os.path.exists(cachePath): parsed = ssp.parse(pair[0], pair[1]) with open(cachePath, 'wb') as cache: pickle.dump(parsed, cache) else: with open(cachePath, 'rb') as cache: parsed = pickle.load(cache) else: parsed = ssp.parse(pair[0], pair[1]) parsedData.append(parsed) print('Writing to sheets...') # Insert items sheet.insertFoods(parsedData) if __name__ == '__main__': main()
haondt/531fitness
foodparser/FoodParser.py
FoodParser.py
py
2,981
python
en
code
0
github-code
6
13116301687
l=[] r=int(input('enter no.of rows: ')) c=int(input('enter no.of columns: ')) for i in range(r): row=[] for j in range(c): elem=int(input('Element'+str(i)+','+str(j)+':')) row.append(elem) l.append(row) print('list: ') print('l=[') for i in range(r): print('\t[',end='') for j in range(c): print(l[i][j],end=' ') print(']') print(' ]')
ParthivSen/Python_Programming
2D list.py
2D list.py
py
402
python
en
code
0
github-code
6
33340636168
from wsgiref.simple_server import make_server from pyramid.view import view_config from pyramid.config import Configurator @view_config(route_name='theroute', renderer='json',request_method='POST') def myview(request): import pdb; pdb.set_trace() return {'POST':''} if __name__ == '__main__': config = Configurator() config.add_route('theroute', '/') config.scan() app = config.make_wsgi_app() server = make_server('0.0.0.0', 6543, app) print(server.base_environ) server.serve_forever()
Yatish04/MicrosoftBackend
testscripts/pyramidserver.py
pyramidserver.py
py
524
python
en
code
0
github-code
6
24991083298
from tkinter import * root = Tk() root.title('ERIC PY') root.geometry("500x400") def grab(): my_label.config(text=my_spin.get()) names = ("j","T","M","N") # my_spin = Spinbox(root, from_=0, to=10, increment=2, font=("helvetica",20)) # my_spin = Spinbox(root, values=("j","T","M","N") ,font=("helvetica",20)) my_spin = Spinbox(root, values=names ,font=("helvetica",20)) my_spin.pack(pady=20) my_button = Button(root, text="submit", command=grab) my_button.pack(pady=20) my_label = Label(root, text="") my_label.pack(pady=20) root.mainloop()
miraceti/tkinter
gui_98tk_Spinboxes.py
gui_98tk_Spinboxes.py
py
550
python
en
code
2
github-code
6
75187431228
from django.conf import settings import jwt from rest_framework import authentication, exceptions from django.contrib.auth.models import User class JWTAuthentication(authentication.BasicAuthentication): def authenticate(self, request): auth_data = authentication.get_authorization_header(request) if not auth_data: return None prefix, token = auth_data.decode('utf-8').split(' ') try: payload = jwt.decode(token, settings.JWT_SECRET, algorithms=['HS256']) user = User.objects.get(id=payload['id']) return (user, token) except jwt.DecodeError: raise exceptions.AuthenticationFailed('Invalid token') except jwt.ExpiredSignatureError: raise exceptions.AuthenticationFailed('Expired token')
Limookiplimo/Contacts-API
authentication/backends.py
backends.py
py
835
python
en
code
1
github-code
6
24458342362
from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 X = rs_train[['price_per_ticket', 'seat_row', 'paid_full_price', 'paid_online', 'Regular_Ticket', 'age', 'est_income', 'Male', 'married', 'fam_w_kids', 'kids_in_house', 'from_Boston', 'from_MA','game_hour', 'RS_v_Yankees', 'STH_Act', 'BUSINESS_STH_Act', 'GROUP_Act', 'BUSINESS_act', 'Individual_Act', 'SPONSOR_Act', 'EMPLOYEE_Act', 'April', 'May', 'June', 'July', 'August', 'September', 'Thursday', 'Sunday', 'Tuesday', 'Wednesday', 'Saturday', 'Friday', 'Monday', 'low_scale_seat', 'med_scale_seat', 'high_scale_seat']] y = rs_train['ticket_used'] names = pd.DataFrame(X.columns) model_fs = SelectKBest(score_func = chi2, k=4) fs_results = model_fs.fit(X,y) #print(fs_results.scores_) results_df = pd.DataFrame(fs_results.scores_) scored= pd.concat([names, results_df], axis=1) scored.columns = ["Feature", "Score"] scored.sort_values(by=["Score"])
befitz/ISOM837_RS
feature_selection.py
feature_selection.py
py
996
python
en
code
0
github-code
6
6183714269
# coding:utf-8 # @Time : 2023/10/27 19:37 # @Author : 郑攀 # @File : filter.py # @Software : PyCharm import csv filter_feature = [] with open("Output/filter feature.csv", "r", encoding='utf8') as f: # 打开文件 lines = csv.reader(f) for line in lines: filter_feature.append(line[0]) seed_feature = [] with open("Output/feature triples_ls.csv", "r", encoding='utf8') as f: # 打开文件 lines = csv.reader(f) for line in lines: seed_feature.append(line) fp = open('Output/feature triples_filter.csv', "w+", encoding='utf8', newline='') write = csv.writer(fp) number = 0 for i in range(len(seed_feature)): if seed_feature[i][0] + seed_feature[i][1] in filter_feature: write.writerow(seed_feature[i]) number += 1 print(number)
PanZheng-2021/2022.0333_11.8
src/Review Feature Extraction/filter.py
filter.py
py
791
python
en
code
0
github-code
6
72248624827
class TreeNode: def __init__(self,data): self.data = data self.left = None self.right = None class BST: def __init__(self): self.root = None #def def isEmpty(self): return self.root is None #def def clear(self): self.root = [] #def def searchX(self,x): curr = self.root while curr is not None: if x == curr.data: return True elif x < curr.data: if curr.left is not None: curr = curr.left else: return False elif x > curr.data: if curr.right is not None: curr = curr.right else: return False #def def insertX(self,x): new_node = TreeNode(x) if self.root is None: self.root = new_node else: curr = self.root while curr is not None: if x < curr.data: if curr.left is not None: curr = curr.left else: curr.left = new_node break elif x > curr.data: if curr.right is not None: curr = curr.right else: curr.right = new_node break #def def breadth(self): if self.root is None: return queue = [self.root] while queue: node = queue.pop(0) print(node.data,end=' ') if node.left is not None: queue.append(node.left) if node.right is not None: queue.append(node.right) #def def preorder(self, p): if p is None: return print(p.data, end=" ") self.preorder(p.left) self.preorder(p.right) #def def postorder(self, p): if p is None: return self.postorder(p.left) self.postorder(p.right) print(p.data,end=" ") #def def inorder(self, p): if p is None: return self.inorder(p.left) print(p.data,end=" ") self.inorder(p.right) #def def count(self): return self._count_helper(self.root) def _count_helper(self,node): if node is None: return 0 return 1 + self._count_helper(node.left) + self._count_helper(node.right) #def def dele(self, x): if not self.searchX(x): return # Node does not exist self.root = self._delete_helper(self.root, x) def _delete_helper(self, node, x): if node is None: return None if x < node.data: node.left = self._delete_helper(node.left, x) elif x > node.data: node.right = self._delete_helper(node.right, x) else: if node.left is None: return node.right elif node.right is None: return node.left else: min_right = self._find_min(node.right) node.data = min_right.data node.right = self._delete_helper(node.right, min_right.data) return node #def def find_min(self): if self.root is None: return None return self._find_min(self.root) def _find_min(self,node): while node.left is not None: node = node.left return node #def def find_max(self): if self.root is None: return None return self._find_max(self.root) def _find_max(self, node): while node.right is not None: node = node.right return node #def def sum(self): return self._sum_helper(self.root) def _sum_helper(self,node): if node is None: return 0 return node.data + self._sum_helper(node.left) + self._sum_helper(node.right) #def def avg(self): node_count = self.count() if node_count == 0: return 0 tree_sum = self.sum() return tree_sum / node_count #def def height(self): return self._height_helper(self.root) def _height_helper(self,node): if node is None: return -1 left_height = self._height_helper(node.left) right_height = self._height_helper(node.right) return max(left_height,right_height) + 1 #def def cost_of_most_expensive_path(self): return self.cost_helper(self.root) def cost_helper(self,node): if node is None: return 0 left_cost = node.data + self.cost_helper(node.left) right_cost = node.data + self.cost_helper(node.right) return max(left_cost,right_cost) #def def is_AVL(self): return self._is_AVL_helper(self.root) def _is_AVL_helper(self, node): if node is None: return True left_height = self._height_helper(node.left) right_height = self._height_helper(node.right) if abs(left_height - right_height) > 1: return False return self._is_AVL_helper(node.left) and self._is_AVL_helper(node.right) #def def is_heap(self): return self._is_heap_helper(self.root) def _is_heap_helper(self,node): if node is None: return True if node.left is not None and node.left.data > node.data: return False if node.right is not None and node.right.data > node.data: return False return self._is_heap_helper(node.left) and self._is_heap_helper(node.right) # Testing the Binary Search Tree implementation tree = BST() # Test isEmpty() print("Is tree empty?", tree.isEmpty()) # Test insert() tree.insertX(5) tree.insertX(3) tree.insertX(7) tree.insertX(1) tree.insertX(4) tree.insertX(6) tree.insertX(8) # Test breadth() print("Breadth traversal:") tree.breadth() # Test search() print("\nSearch 4:", tree.searchX(4)) # Output: <__main__.TreeNode object at 0x...> print("Search 9:", tree.searchX(9)) # Output: None # Test preorder() print("\nPreorder traversal:") tree.preorder(tree.root) # Output: 5 3 1 4 7 6 8 # Test postorder() print("\npostorder traversal:") tree.postorder(tree.root) # Output: 1 4 3 6 8 7 5 # Test inorder() print("\ninorder traversal:") tree.inorder(tree.root) # Output: 1 3 4 5 6 7 8 # Test count() print("\nCount number of nodes:", tree.count()) # Output: 7 # Delete a node tree.dele(3) # Test breadth() after deletion print("Breadth traversal after deletion:") tree.breadth() # Output: 5 4 7 1 6 8 # Find the maximum value in the tree max_node = tree.find_max() if max_node is not None: print("\nMaximum value:", max_node.data) else: print("Tree is empty.") # Find the minimum value in the tree min_node = tree.find_min() if min_node is not None: print("minimum value:", min_node.data) else: print("Tree is empty.") #Caculate sum of the tree print("Sum of all values in the tree:", tree.sum()) #Caculate average of the tree print("Average of all values in the tree:", tree.avg()) # Calculate the height of the tree tree_height = tree.height() print("Height of the tree:", tree_height) # Calculate the cost of the most expensive path cost = tree.cost_of_most_expensive_path() print("Cost of the most expensive path:", cost) # Check if the tree is AVL is_avl = tree.is_AVL() print(is_avl) # Output: True # Kiểm tra cây root có phải là heap hay không print(tree.is_heap()) # Kết quả: True
phamduclong2103/CSD203
LAB/LAB4.py
LAB4.py
py
7,991
python
en
code
0
github-code
6
34215956791
#state rates statetaxrate = 0.1120 #anne arundel county rates #New Proposed for FY24 superceeds this - annearundeltaxrate = .93300 annearundeltaxrate = .98000 annearundelsolidwaste = 341 annearundelstormwater = 35.70 annapoliscountyrate = 0.559000 annapolisrate = 0.738000
dataguy2020/PropertyTax
rates.py
rates.py
py
275
python
en
code
1
github-code
6
41711840918
import numpy as np from sklearn.model_selection import KFold, TimeSeriesSplit from helpers.settings import * from model.preprocessing_helper import * from model.config import HISTORY_SIZE from datetime import datetime LSTM_STEP = 1 LSTM_FUTURE_TARGET = 1 LSTM_HISTORY = HISTORY_SIZE TRAIN_DATASET_FRAC = 0.8 def generate_lstm_data(path, cols=INPUT_FILE_COLUMNS, target_column=TARGET_COLUMN, norm_cols=NORM_COLS, history_size=LSTM_HISTORY, target_size=LSTM_FUTURE_TARGET, step=LSTM_STEP, index_col=DATETIME_COLUMN, filter_cols=None, cat_cols=CATEGORIES, adjust_cols=ADJUST_COLUMNS, scale_cols=SCALE_COLS, extra_columns=EXTRA_COLS): """ :param path: string - path to file :param cols: List[string] list of all columns to be extracted from csv file :param target_column: string - name of the target column :param norm_cols: Dict[Dict[mu: float, std: float]] - list of columns to normalize :param history_size: int - how many previous records should we use for LSTM dataset :param target_size: int - how many outputs do we have (usually 1) :param step: int - if multioutput then >1 else 1 :param index_col: string - name of the timeseries column :param filter_cols: Dict[List[any]] - filters colums from Dict keys by list of values from the List :param cat_cols: Dict[List[string]] - definition of all categorical data :param adjust_cols: Dict[Dict[amount: float]] - amount added to each col value :param scale_cols: Dict[Dict[min: float, max: float]] - list of columns to scale <0,1> :param extra_columns: List[string] - list of columns to copy without changing :return: Tuple(np.array, np.array) """ dataset = pd.read_csv(path, usecols=cols) if target_column not in dataset.columns: dataset[target_column] = pd.Series(np.zeros(len(dataset[index_col])), index=dataset.index) dataset.index = dataset[index_col] # test_y = dataset[dataset[target_column] > 0] # print(test_y.describe()) # print(dataset.describe()) if filter_cols is not None: for key, value in filter_cols.items(): dataset = dataset[dataset[key].isin(value)] dataset['day_of_year'] = dataset[index_col].apply(lambda x: datetime.fromtimestamp(x).timetuple().tm_yday / 365) cols_to_extract = ['day_of_year'] + list(adjust_cols.keys()) + list( scale_cols.keys()) + list(norm_cols.keys()) + extra_columns + [target_column] # print(cols_to_extract) # print(dataset.columns) # print(dataset[target_column].describe(), filter_cols) dataset = preproc_data( dataset[cols_to_extract], norm_cols=norm_cols, scale_cols=scale_cols, adjust_cols=adjust_cols ) # parse dataset to its values only, we don't need pandas for future processing from this point dataset = dataset.values # print(dataset[:5]) proposed_x, proposed_y = generate_multivariate_data(dataset, target_index=-1, history_size=history_size, target_size=target_size, step=step) # print(np.sum(proposed_y)) return proposed_x, proposed_y def generate_multivariate_data(dataset, history_size=LSTM_HISTORY, target_size=LSTM_FUTURE_TARGET, step=LSTM_STEP, target_index=-1, target=None): """ :param dataset: np.array :param history_size: int - how many previous records should we use for LSTM dataset :param target_size: int - how many outputs do we have (usually 1) :param step: int - if multioutput then >1 else 1 :param target_index: int - index of the target column :param target: np.array - should be set if dataset doesn't contain target :return: Tuple(np.array, np.array) """ # if there is no explicit target when get target from dataset if target is None: target = dataset[:, target_index] dataset = dataset[:, :target_index] dataset_size = len(dataset) train_to_idx = dataset_size - target_size start_train_idx = history_size data = [] labels = [] for i in range(start_train_idx, train_to_idx): indices = range(i - history_size, i, step) data.append(dataset[indices]) labels.append(target[i + target_size]) return np.array(data), np.array(labels) def k_fold_data(x, y, folds=10): x_train = [] y_train = [] x_test = [] y_test = [] kfold = KFold(n_splits=folds, shuffle=True) for train_index, test_index in kfold.split(x, y): x_train = x[train_index] y_train = y[train_index] x_test = x[test_index] y_test = y[test_index] return x_train, y_train, x_test, y_test def k_fold_ts_data(x, y, folds=10): x_train = [] y_train = [] x_test = [] y_test = [] kfold = TimeSeriesSplit(n_splits=folds) for train_index, test_index in kfold.split(x, y): x_train = x[train_index] y_train = y[train_index] x_test = x[test_index] y_test = y[test_index] return x_train, y_train, x_test, y_test
burnpiro/wod-usage-predictor
model/data_preprocessor.py
data_preprocessor.py
py
5,157
python
en
code
0
github-code
6
42647237351
from django.contrib.auth import get_user_model from django.forms import widgets from root import forms_override as forms from root.models import UserGroup, EmailTemplate, EmailGroup, Experiment INITIAL_EMAIL_TEMPLATE = """<html> <body> <h1>{{content}}</h1> </body> </html> """ class RegistrationForm(forms.Form): first_name = forms.CharField() last_name = forms.CharField() email = forms.EmailField() username = forms.CharField() password = forms.CharField( min_length=5, widget=widgets.PasswordInput(attrs={'class': 'form-control'}) ) group = forms.CharField() def create_user(self): data = self.cleaned_data return get_user_model().objects.create_user( data['username'], email=data['email'], password=data['password'], first_name=data['first_name'], last_name=data['last_name'] ) def create_group(self, user): group = UserGroup.objects.create( name=self.cleaned_data['group'] ) group.users.add(user) return group def save(self): user = self.create_user() group = self.create_group(user) return user, group class EmailGroupSetUpForm(forms.Form): user_group = forms.ChoiceField() group_name = forms.CharField() name = forms.CharField() content = forms.CharField( initial=INITIAL_EMAIL_TEMPLATE, widget=widgets.Textarea(attrs={'class': 'form-control'}) ) content_type = forms.ChoiceField( choices=( ('text/html; charset=UTF-8', 'text/html; charset=UTF-8'), ('text/plain', 'text/plain') ) ) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['user_group'] = forms.ChoiceField( choices=UserGroup.objects.filter(users=user).values_list('id', 'name') ) def create_email_group(self): return EmailGroup.objects.create( name=self.cleaned_data['group_name'], group_id=self.cleaned_data['user_group'], ) def create_template(self, group): return EmailTemplate.objects.create( group=group, name=self.cleaned_data['name'], content=self.cleaned_data['content'], content_type=self.cleaned_data['content_type'] ) def save(self): group = self.create_email_group() template = self.create_template(group) return group, template class ExperimentModelForm(forms.ModelForm): name = forms.CharField() chance = forms.IntegerField(min_value=0, max_value=100, initial=50) start_time = forms.DateTimeField(required=False) end_time = forms.DateTimeField(required=False) is_active = forms.BooleanField(required=False) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) query = EmailTemplate.objects.filter(group__group__users__in=[user]) self.fields['choice_a'] = forms.ModelChoiceField( queryset=query ) self.fields['choice_b'] = forms.ModelChoiceField( queryset=query ) self.fields['email_group'] = forms.ModelChoiceField( queryset=EmailGroup.objects.filter(group__users__in=[user]), widget=forms.HiddenInput() ) class Meta: model = Experiment fields = [ 'name', 'chance', 'choice_a', 'choice_b', 'start_time', 'end_time', 'is_active', 'email_group' ] class EmailTemplateModelForm(forms.ModelForm): name = forms.CharField() subject = forms.CharField(initial='Subjects are also a template: {{content}}') content = forms.CharField( initial=INITIAL_EMAIL_TEMPLATE, widget=widgets.Textarea(attrs={'class': 'form-control'}) ) content_type = forms.ChoiceField( choices=( ('text/html; charset=UTF-8', 'text/html; charset=UTF-8'), ('text/plain', 'text/plain') ) ) preview_data = forms.CharField( widget=widgets.Textarea(attrs={'class': 'form-control'}), initial='{"content": "hello-world"}' ) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['group'] = forms.ModelChoiceField( queryset=EmailGroup.objects.filter(group__users__in=[user]), widget=forms.HiddenInput() ) class Meta: model = EmailTemplate fields = [ 'name', 'group', 'content', 'content_type', 'preview_data' ]
ograycode/engage
root/forms.py
forms.py
py
4,691
python
en
code
0
github-code
6
39259219902
#!/usr/bin/env python3 import rclpy from rclpy.node import Node import speech_recognition as sr from custom_if.srv import SendSentence from functools import partial from nl_understanding.tcp_client import GenericClient ### Node class class NLUnderstanding(Node): def __init__(self): super().__init__("nlu_node") self.get_logger().info("NLU node is up.") self.client = GenericClient(host='localhost', port=50000) # Service self.server = self.create_service(SendSentence, 'send_command', self.callback_command) # Server callbacks def callback_command(self, request, response): self.client.send_request(1) self.get_logger().info("Request sent.") response.done = True return response def main(args=None): rclpy.init(args=args) node = NLUnderstanding() rclpy.spin(node) rclpy.shutdown() if __name__ == "__main__": main()
Alessandro-Scarciglia/VoiceAssistant
nl_understanding/nl_understanding/nl_understanding.py
nl_understanding.py
py
854
python
en
code
0
github-code
6
34773865480
import time from functools import cache from math import radians from XivCombat.utils import a, s, cnt_enemy, res_lv, find_area_belongs_to_me from XivCombat.strategies import * from XivCombat import define, api from XivCombat.multi_enemy_selector import Rectangle, NearCircle, circle, FarCircle aoe = NearCircle(5.) fire_aoe = FarCircle(20, 5) TEN = 3 # 天 CHI = 2 # 地 JIN = 1 # 人 def get_mudra(effects: dict): if s('结印') not in effects: return "" p = effects[s('结印')].param s = '' for i in range(4): m = ( p >> (i * 2)) & 0b11 if m: s += str(m) else: break return s m2s = { TEN: 2259, CHI: 2261, JIN: 2263, } def c(*mudras: int): return [m2s[m] for m in mudras] combos = { 'normal': c(TEN), 'fire': c(CHI, TEN), 'thunder': c(TEN, CHI), 'ice': c(TEN, JIN), 'wind': c(JIN, CHI, TEN), 'ground': c(JIN, TEN, CHI), 'water': c(TEN, CHI, JIN), 'water_multi': c(CHI, TEN, JIN), } class NinjaStrategy(Strategy): name = 'ot/nin' job = 'Ninja' def __init__(self): self.effects_temp = dict() self.combo = [] def have_effect(self, data: 'LogicData', effect_id: int, allow_time=2): return effect_id in data.effects or self.effects_temp.setdefault(effect_id, 0) > time.time() - allow_time def set_effect(self, effect_id: int): self.effects_temp[effect_id] = time.time() def can_ground(self, data: 'LogicData'): return not self.have_effect(data, s('土遁之术'), 5) def get_ground(self): self.set_effect(s('土遁之术')) return combos['ground'].copy() def common(self, data: 'LogicData') -> UseAbility| UseItem| UseCommon| None: if data.gcd < 0.3 and not self.combo: combo_use = data.config.custom_settings.setdefault('ninja_combo', '') if combo_use in combos: if combo_use == "ground": self.set_effect(s('土遁之术')) data.config.custom_settings['ninja_combo'] = '' self.combo = combos[combo_use].copy() if self.combo: return UseAbility(self.combo.pop(0)) elif s('结印') in data.effects: return UseAbility(a('忍术(NIN)')) def global_cool_down_ability(self, data: 'LogicData') -> UseAbility | UseItem | UseCommon | None: must_huton = data.gauge.huton_ms < 10*1000 and data.gauge.huton_ms and data.max_ttk > data.gauge.huton_ms/1000 if data.target_distance <= 3: single_target = data.target else: single_target = data.get_target(define.DISTANCE_NEAREST, data.enemy_can_attack_by(a('飞刀(NIN)'))) if not single_target: return if data.actor_distance_effective(single_target) > 5: if not data.gcd and data.me.level >= 15: return UseAbility(a('飞刀(NIN)'), single_target.id) else: None if data.me.level >= 35: fire_aoe_target, fire_aoe_cnt = cnt_enemy(data, fire_aoe) else: fire_aoe_target, fire_aoe_cnt = data.target, 0 if data.me.level >= 38: aoe_target, aoe_cnt = cnt_enemy(data, aoe) else: aoe_target, aoe_cnt = data.me, 0 if s('生杀予夺') in data.effects: if data.me.level >= 76: if aoe_cnt > 2: self.combo = combos['fire'].copy() else: self.combo = combos['ice'].copy() elif aoe_cnt > 2: if data.max_ttk > 15 and self.can_groun(data): self.combo = self.get_ground() else: self.combo = combos['fire'].copy() else: self.combo = combos['thunder'].copy() elif s('天地人') in data.effects: if aoe_cnt < 3: self.combo = combos['water'].copy() else: if self.can_ground(data): self.combo = self.get_ground() else: self.combo = combos['water_multi'].copy() elif data[a('天之印(NIN)(0)')] <= 20 and data.skill_unlocked(a('天之印(NIN)(0)')): if data.me.level >= 45 and data.skill_unlocked(a('人之印(NIN)(0)')): if not data.gauge.huton_ms: self.combo = combos['wind'].copy() else: if (data[a('天之印(NIN)(0)')] < 20 or not data[a('命水(NIN)')]) and s('水遁之术') not in data.effects and (data[a('天之印(NIN)')] < 5 or data[a('攻其不备(NIN)')] < 5 or data.target_distance > 6): self.combo = combos['water'].copy() elif aoe_cnt > 2 and data.max_ttk > 15 and self.can_ground(data): self.combo = self.get_ground() if not self.combo and (data[a('天之印(NIN)(0)')] < 5 or data.target_distance > 6): if data.me.level >= 35: if fire_aoe_cnt > 2: self.combo = combos['fire'].copy() else: self.combo = combos['thunder'].copy() else: self.combo = combos['normal'].copy() if self.combo: return UseAbility(self.combo.pop(0)) if data.combo_id == a('血雨飞花(NIN)') and data.skill_unlocked(a('八卦无刃杀(NIN)')) and aoe_cnt: return UseAbility(a('八卦无刃杀(NIN)'), data.me.id) if aoe_cnt > 2: return UseAbility(a('血雨飞花(NIN)'), data.me.id) if data.actor_distance_effective(single_target) > 3: return if data.me.level >= 54 and data.combo_id == a('绝风(NIN)') and data.skill_unlocked(a('强甲破点突(NIN)')): if must_huton: UseAbility(a('强甲破点突(NIN)'), single_target.id) if data.me.level >= 26 and data.combo_id == a('绝风(NIN)'): return UseAbility(a('旋风刃(NIN)'), single_target.id) if data.me.level >= 4 and data.combo_id == a('双刃旋(NIN)'): return UseAbility(a('绝风(NIN)'), single_target.id) return UseAbility(a('双刃旋(NIN)'), single_target.id) # def non_global_cool_down_ability(self, data: 'LogicData') -> UseAbility | UseItem | UseCommon | None:
ShoOtaku/f3combat
OT/nin.py
nin.py
py
6,428
python
en
code
1
github-code
6
15855579751
from appium import webdriver from appium.webdriver.common.mobileby import MobileBy from selenium.webdriver.common.by import By class TestWeworkTest: def setup(self): desired_cap = {} desired_cap["platformName"] = "Android" # desired_cap["platformVersion"] = "6.0" desired_cap["deviceName"] = "127.0.0.1:62001" desired_cap["appPackage"] = "com.tencent.wework" desired_cap["appActivity"] = ".launch.WwMainActivity" desired_cap["noReset"] = True desired_cap["skipServerInstallation"] = True # 跳过uiautomarot2安装 desired_cap["skipDeviceInitialization"] = True # 跳过设备初始化 # desired_cap["unicodeKeyBoard"] = 'true' # desired_cap["restKeyBoard"] = 'true' desired_cap["settings[waitForIdleTimeout]"] = 0 # 等待页面完全加载完成的时间 desired_cap["dontStopAppOnReset"] = True # 等待页面完全加载完成的时间 self.drive = webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_cap) self.drive.implicitly_wait(5) def teardown(self): self.drive.quit() def swipe_find(self, by_method, ele, num=3): # 滑动查找元素 for i in range(num): try: rst_ele = self.drive.find_element(by_method, ele) return rst_ele except: windows_size = self.drive.get_window_size() width = windows_size.get('width') height = windows_size.get('height') start_width = width / 2 start_height = height * 0.8 end_width = width / 2 end_height = height * 0.3 self.drive.swipe(start_width, start_height, end_width, end_height) def test_add_member(self): self.drive.find_element(MobileBy.XPATH, "//*[@text='工作台']").click() # 滑动查找打卡选项 # self.drive.find_element_by_android_uiautomator('new UiScrollable(new UiSelector().' # 'scrollable(true).instance(0)).' # f'scrollIntoView(new UiSelector().text("打卡")' # ');').click() # self.drive.find_element(MobileBy.XPATH, "//*[@text='打卡']").click() self.swipe_find(MobileBy.XPATH, "//*[@text='打卡']").click() # self.drive.update_settings({"waitForIdleTimeout": 0}) # driver方法更新等待页面完全加载完成的时间 self.drive.find_element(MobileBy.XPATH, "//*[@text='外出打卡']").click() self.drive.find_element(MobileBy.XPATH, "//*[contains(@text,'次外出')]").click() self.drive.find_element(MobileBy.XPATH, "//*[@text='外出打卡成功']") # while True: # current_xml = self.drive.page_source # if "添加成功" in current_xml: # print(current_xml) # break
sunmings1310/HogwartsHomework
hogwarts-homework/AppWeworkHomework/test_clokc_in.py
test_clokc_in.py
py
3,015
python
en
code
0
github-code
6
74977703867
import re import logging import sys import os import yaml from rdflib import ConjunctiveGraph, Literal, URIRef, BNode, Namespace from dipper.graph.Graph import Graph as DipperGraph from dipper.utils.CurieUtil import CurieUtil from dipper import curie_map as curie_map_class from dipper.models.BiolinkVocabulary import BioLinkVocabulary as blv LOG = logging.getLogger(__name__) class RDFGraph(DipperGraph, ConjunctiveGraph): """ Extends RDFLibs ConjunctiveGraph The goal of this class is wrap the creation of triples and manage creation of URIRef, Bnodes, and literals from an input curie """ curie_map = curie_map_class.get() curie_util = CurieUtil(curie_map) # make global translation table available outside the ingest with open( os.path.join( os.path.dirname(__file__), '../../translationtable/GLOBAL_TERMS.yaml')) as fhandle: globaltt = yaml.safe_load(fhandle) globaltcid = {v: k for k, v in globaltt.items()} def __init__(self, are_bnodes_skized=True, identifier=None): # print("in RDFGraph with id: ", identifier) super().__init__('IOMemory', identifier) self.are_bnodes_skized = are_bnodes_skized self.prefixes = set() # Can be removed when this is resolved # https://github.com/RDFLib/rdflib/issues/632 # 2020 oct. possibly fixed # for pfx in ('OBO',): # , 'ORPHA'): # self.bind(pfx, Namespace(self.curie_map[pfx])) def _make_category_triple( self, subject, category, predicate=blv.terms['category'] ): """ add a triple to capture subject or object category (in CURIE form) that was passed to addTriple() """ try: self.add(( self._getnode(subject), self._getnode(predicate), self._getnode(category))) except: LOG.warning( "Problem adding triple in _makeCategoryTriple for " + \ "subj: %s pred: %s obj(category): %s", subject, predicate, category) def _is_literal(self, thing): """ make inference on type (literal or CURIE) return: logical """ if self.curie_regexp.match(thing) is not None or\ thing.split(':')[0].lower() in ('http', 'https', 'ftp'): object_is_literal = False else: object_is_literal = True return object_is_literal def addTriple( self, subject_id, predicate_id, obj, object_is_literal=None, literal_type=None, subject_category=None, object_category=None ): if object_is_literal is None: object_is_literal = self._is_literal(obj) # add triples for subject category info if subject_category is not None: self._make_category_triple(subject_id, subject_category) # add triples for obj category info, if obj is not a literal if not object_is_literal: if object_category is not None: self._make_category_triple(obj, object_category) else: # emit warning if object category is given for a literal if object_category is not None: LOG.warning("I was given a category %s for obj: %s, " + "which seems to be a literal!", object_category, obj) if object_is_literal is True: if isinstance(obj, str): re.sub(r'[\t\n\r\f\v]+', ' ', obj) # reduce any ws to a space if literal_type is not None and obj is not None and obj not in ("", " "): literal_type_iri = self._getnode(literal_type) self.add( (self._getnode(subject_id), self._getnode(predicate_id), Literal(obj, datatype=literal_type_iri))) elif obj is not None: # could attempt to infer a type here but there is no use case self.add(( self._getnode(subject_id), self._getnode(predicate_id), Literal(obj))) else: LOG.warning( "None as literal object for subj: %s and pred: %s", subject_id, predicate_id) # get a sense of where the None is comming from # magic number here is "steps up the call stack" # TODO there may be easier/ideomatic ways to do this now for call in range(2, 0, -1): LOG.warning( '\t%sfrom: %s', '\t' * call, sys._getframe(call).f_code.co_name) elif obj is not None and obj != '': # object is a resource self.add(( self._getnode(subject_id), self._getnode(predicate_id), self._getnode(obj))) else: LOG.warning( "None/empty object IRI for subj: %s and pred: %s", subject_id, predicate_id) def skolemizeBlankNode(self, curie): stripped_id = re.sub(r'^_:|^_', '', curie, 1) return URIRef(self.curie_map['BNODE'] + stripped_id) def _getnode(self, curie): """ This is a wrapper for creating a URIRef or Bnode object with a given a curie or iri as a string. If an id starts with an underscore, it assigns it to a BNode, otherwise it creates it with a standard URIRef. Alternatively, self.skolemize_blank_node is True, it will skolemize the blank node :param curie: str identifier formatted as curie or iri :return: node: RDFLib URIRef or BNode object """ node = None if curie[0] == '_': if self.are_bnodes_skized: node = self.skolemizeBlankNode(curie) else: # delete the leading underscore to make it cleaner node = BNode(re.sub(r'^_:|^_', '', curie, 1)) # Check if curie string is actually an IRI elif curie[:4] == 'http' or curie[:3] == 'ftp' or curie[:4] == 'jdbc': node = URIRef(curie) else: iri = RDFGraph.curie_util.get_uri(curie) if iri is not None: node = URIRef(iri) # Bind prefix map to graph prefix = curie.split(':')[0] self.prefixes.add(prefix) else: LOG.error("couldn't make URI for %s", curie) # get a sense of where the CURIE-ish? thing is comming from # magic number here is "steps up the call stack" for call in range(3, 0, -1): LOG.warning( '\t%sfrom: %s', '\t' * call, sys._getframe(call).f_code.co_name) return node def bind_all_namespaces(self): """ Results in the RDF @prefix directives for every ingest being added to this ingest. """ for prefix in self.curie_map.keys(): iri = self.curie_map[prefix] self.bind(prefix, Namespace(iri)) # serialize() conflicts between rdflib & Graph.serialize abstractmethod # GraphUtils expects the former. (too bad there is no multiple dispatch) # rdflib version def serialize( self, destination=None, format='turtle', base=None, encoding=None ): for prefix in self.prefixes: mapped_iri = self.curie_map[prefix] self.bind(prefix, Namespace(mapped_iri)) return ConjunctiveGraph.serialize(self, destination, format)
monarch-initiative/dipper
dipper/graph/RDFGraph.py
RDFGraph.py
py
7,720
python
en
code
53
github-code
6
2535030622
from pathlib import Path from shutil import move from threading import Thread import logging folders = [] extensions = [] def grabs_folder(path: Path): for el in path.iterdir(): if el.is_dir(): folders.append(el) grabs_folder(el) def sort_file(path: Path): for el in path.iterdir(): if el.is_file(): ext = el.suffix new_path = base_folder / ext try: new_path.mkdir(exist_ok=True, parents=True) move(el, new_path / el.name) except OSError as e: logging.error(e) def del_empty_folders(path: Path): for el in path.iterdir(): if el.is_dir(): try: el.rmdir() except OSError: pass if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format="%(threadName)s %(message)s") base_folder = Path(input('Type path to folder:')) folders.append(base_folder) grabs_folder(base_folder) threads = [] for folder in folders: th = Thread(target=sort_file, args=(folder,)) th.start() threads.append(th) [th.join() for th in threads] del_empty_folders(base_folder) print('The process has been finished successfully')
PetroChulkov/web_homework3
file_sorter.py
file_sorter.py
py
1,354
python
en
code
1
github-code
6