modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AkshaySg/GrammarCorrection
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: tl tags: - distilbert - bert - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # DistilBERT Tagalog Base Cased Tagalog version of DistilBERT, distilled from [`bert-tagalog-base-cased`](https://huggingface.co/jcblaise/bert-tagalog-base-cased). This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased') tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
AkshaySg/LanguageIdentification
[ "multilingual", "dataset:VoxLingua107", "LID", "spoken language recognition", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # ELECTRA Tagalog Base Cased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
AkshaySg/gramCorrection
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Cased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
AkshaySg/langid
[ "multilingual", "dataset:VoxLingua107", "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "license:apache-2.0" ]
audio-classification
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # ELECTRA Tagalog Base Uncased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
Akuva2001/SocialGraph
[ "has_space" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Uncased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
Al/mymodel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # ELECTRA Tagalog Small Cased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
AlErysvi/Erys
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Cased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
Ale/Alen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: speechbrain tags: - audio - intent classification datasets: - fluent_speech_commands_dataset metrics: - wer model-index: - name: Direct SLU results: - task: type: automatic-speech-recognition name: Intent Classification metrics: - type: wer # Required. Example: wer value: 7.0 # Required. Example: 20.90 name: Test Wer --- Speechbrain SLU fine-tuned for Intent Classification --- Model: Direct SLU Encoder: Pre-trained ASR encoder -> LSTM Decoder: GRU + beamsearch Tokens: BPE with unigram Data: fluent_speech_commands_dataset (http://140.112.21.28:9000/fluent.tar.gz) Test wer: 0.07
Aleksandar/bert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.9810 - Wer: 0.4761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2427 | 15.15 | 500 | 1.4632 | 0.9481 | | 1.3128 | 30.3 | 1000 | 0.8662 | 0.6195 | | 0.9403 | 45.45 | 1500 | 0.8163 | 0.5169 | | 0.6868 | 60.61 | 2000 | 0.8661 | 0.4858 | | 0.563 | 75.76 | 2500 | 0.9447 | 0.4867 | | 0.4887 | 90.91 | 3000 | 0.9650 | 0.4823 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Aleksandar/bert-srb-ner-setimes
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ga-IE - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec-1b-cv8-ir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ga-IE metrics: - name: Test WER type: wer value: 43.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.8445 - Wer: 0.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7135 | 31.24 | 500 | 0.9609 | 0.6926 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ga-IE - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec-cv7-1b-ir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ga-IE metrics: - name: Test WER type: wer value: 39.1 - name: Test CER type: cer value: 16.4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.9562 - Wer: 0.4801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3731 | 15.62 | 500 | 1.5517 | 0.9499 | | 1.3312 | 31.25 | 1000 | 0.8717 | 0.6189 | | 0.9135 | 46.86 | 1500 | 0.8299 | 0.5310 | | 0.6719 | 62.49 | 2000 | 0.8842 | 0.5044 | | 0.5583 | 78.12 | 2500 | 0.9093 | 0.4801 | | 0.4728 | 93.74 | 3000 | 0.9488 | 0.4813 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Aleksandar/distilbert-srb-ner-setimes
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 1.0835 - Wer: 0.7490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1483 | 15.62 | 500 | 3.0498 | 1.0 | | 2.8449 | 31.25 | 1000 | 2.7790 | 0.9493 | | 1.8683 | 46.86 | 1500 | 1.2339 | 0.8161 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Aleksandar1932/gpt2-pop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
# Model description A Pretrained model on the Kinyarwanda language dataset using a masked language modeling (MLM) objective. The BERT model was first introduced in [this paper](https://arxiv.org/abs/1810.04805). This KinyaBERT model was pretrained with uncased tokens which means that no difference between for example ikinyarwanda and Ikinyarwanda. # Training parameters #### Dataset The data set used has both sources from the new articles in Rwanda extracted from different new web pages, dumped Wikipedia files, and the books in Kinyarwanda. The sizes of the sources of data are 72 thousand new articles, three thousand dumped Wikipedia articles, and six books with more than a thousand pages. #### Hyperparameters The model was trained with the default configuration of BERT and Trainer from the Huggingface. However, due to some resource computation issues, we kept the number of transformer layers to 12. # How to use: 1) The model can be used directly with the pipeline for masked language modeling as follows: ``` from transformers import pipeline the_mask_pipe = pipeline( "fill-mask", model='jean-paul/KinyaBERT-large', tokenizer='jean-paul/KinyaBERT-large', ) the_mask_pipe("Ejo ndikwiga nagize [MASK] baje kunsura.") [{'sequence': 'ejo ndikwiga nagize amahirwe baje kunsura.', 'score': 0.3704017996788025, 'token': 1501, 'token_str': 'amahirwe'}, {'sequence': 'ejo ndikwiga nagize ngo baje kunsura.', 'score': 0.30745452642440796, 'token': 196, 'token_str': 'ngo'}, {'sequence': 'ejo ndikwiga nagize agahinda baje kunsura.', 'score': 0.0638100653886795, 'token': 3917, 'token_str': 'agahinda'}, {'sequence': 'ejo ndikwiga nagize ubwoba baje kunsura.', 'score': 0.04934622719883919, 'token': 2387, 'token_str': 'ubwoba'}, {'sequence': 'ejo ndikwiga nagizengo baje kunsura.', 'score': 0.02243402972817421, 'token': 455, 'token_str': '##ngo'}] ``` 2) Direct use from the transformer library to get features using AutoModel ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("jean-paul/KinyaBERT-large") model = AutoModelForMaskedLM.from_pretrained("jean-paul/KinyaBERT-large") input_text = "Ejo ndikwiga nagize abashyitsi baje kunsura." encoded_input = tokenizer(input_text, return_tensors='pt') output = model(**encoded_input) ``` __Note__: We used the huggingface implementations for pretraining BERT from scratch, both the BERT model and the classes needed to do it.
Altidore/DuggFace
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Anamika/autonlp-fa-473312409
[ "pytorch", "roberta", "text-classification", "en", "dataset:Anamika/autonlp-data-fa", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Andranik/TestPytorchClassification
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Andres2015/HiggingFaceTest
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jfhr1999/CharacterTest") model = AutoModelWithLMHead.from_pretrained("jfhr1999/CharacterTest") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Andrey1989/mbert-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SAE-distilbert-base-uncased results: [] widget: - text: "Wind noise was detected coming from the car [MASK] closure system." example_title: "Closure system" --- # SAE-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [jgammack/SAE-door-abstracts](https://huggingface.co/datasets/jgammack/SAE-door-abstracts) dataset. It achieves the following results on the evaluation set: - Loss: 2.2970 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5323 | 1.0 | 37 | 2.4503 | | 2.4968 | 2.0 | 74 | 2.4571 | | 2.4688 | 3.0 | 111 | 2.4099 | | 2.419 | 4.0 | 148 | 2.3343 | | 2.4229 | 5.0 | 185 | 2.3072 | | 2.4067 | 6.0 | 222 | 2.2927 | | 2.3877 | 7.0 | 259 | 2.2836 | | 2.374 | 8.0 | 296 | 2.3767 | | 2.3582 | 9.0 | 333 | 2.2493 | | 2.356 | 10.0 | 370 | 2.2847 | | 2.3294 | 11.0 | 407 | 2.3234 | | 2.3358 | 12.0 | 444 | 2.2660 | | 2.3414 | 13.0 | 481 | 2.2887 | | 2.3154 | 14.0 | 518 | 2.3737 | | 2.311 | 15.0 | 555 | 2.2686 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Ankit-11/distilbert-base-uncased-finetuned-toxic
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer - "es" - "robust-speech-event" datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-large This model is a fine-tuned version of [tomascufaro/xls-r-es-test](https://huggingface.co/tomascufaro/xls-r-es-test) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - Wer: 0.1197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1769 | 0.15 | 400 | 0.1795 | 0.1698 | | 0.217 | 0.3 | 800 | 0.2000 | 0.1945 | | 0.2372 | 0.45 | 1200 | 0.1985 | 0.1859 | | 0.2351 | 0.6 | 1600 | 0.1901 | 0.1772 | | 0.2269 | 0.75 | 2000 | 0.1968 | 0.1783 | | 0.2284 | 0.9 | 2400 | 0.1873 | 0.1771 | | 0.2014 | 1.06 | 2800 | 0.1840 | 0.1696 | | 0.1988 | 1.21 | 3200 | 0.1904 | 0.1730 | | 0.1919 | 1.36 | 3600 | 0.1827 | 0.1630 | | 0.1919 | 1.51 | 4000 | 0.1788 | 0.1629 | | 0.1817 | 1.66 | 4400 | 0.1755 | 0.1558 | | 0.1812 | 1.81 | 4800 | 0.1795 | 0.1638 | | 0.1808 | 1.96 | 5200 | 0.1762 | 0.1603 | | 0.1625 | 2.11 | 5600 | 0.1721 | 0.1557 | | 0.1477 | 2.26 | 6000 | 0.1735 | 0.1504 | | 0.1508 | 2.41 | 6400 | 0.1708 | 0.1478 | | 0.157 | 2.56 | 6800 | 0.1644 | 0.1466 | | 0.1491 | 2.71 | 7200 | 0.1638 | 0.1445 | | 0.1458 | 2.86 | 7600 | 0.1582 | 0.1426 | | 0.1387 | 3.02 | 8000 | 0.1607 | 0.1376 | | 0.1269 | 3.17 | 8400 | 0.1559 | 0.1364 | | 0.1172 | 3.32 | 8800 | 0.1521 | 0.1335 | | 0.1203 | 3.47 | 9200 | 0.1534 | 0.1330 | | 0.1177 | 3.62 | 9600 | 0.1485 | 0.1304 | | 0.1167 | 3.77 | 10000 | 0.1498 | 0.1302 | | 0.1194 | 3.92 | 10400 | 0.1463 | 0.1287 | | 0.1053 | 4.07 | 10800 | 0.1483 | 0.1282 | | 0.098 | 4.22 | 11200 | 0.1498 | 0.1267 | | 0.0958 | 4.37 | 11600 | 0.1461 | 0.1233 | | 0.0946 | 4.52 | 12000 | 0.1444 | 0.1218 | | 0.094 | 4.67 | 12400 | 0.1434 | 0.1206 | | 0.0932 | 4.82 | 12800 | 0.1424 | 0.1206 | | 0.0912 | 4.98 | 13200 | 0.1431 | 0.1197 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
KcELECTRA([https://github.com/Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA))의 Tokenizer에서 [UNK]로 대체되는 토큰들을 추가했습니다.
AnonymousSub/SR_cline
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: hsb datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Upper Sorbian mixed by Jim O'Regan results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hsb type: common_voice args: hsb metrics: - name: Test WER type: wer value: 43.48 --- # Wav2Vec2-Large-XLSR-Upper-Sorbian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Upper Sorbian Common Voice dataset](https://huggingface.co/datasets/common_voice), with an extra 28 minutes of audio from an online [Sorbian course](https://sprachkurs.sorbischlernen.de/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Upper Sorbian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�„«»–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = remove_special_characters(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.2 % ## Training The Common Voice `train` and `validation` datasets were used for training, with the vocabulary from the English A1 lesson from an online [Sorbian course](https://sprachkurs.sorbischlernen.de/) The script used for training can be found [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/upper_sorbian/fine-tune-xlsr-wav2vec2-on-upper-sorbian-asr-with-transformers.ipynb) The script used for cleaning the transcripts of the vocabulary data is [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/upper_sorbian/sprachkurs.ipynb)
AnonymousSub/SR_consert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 --- # BERT-Base Uncased SQuADv1 `bert-base-uncased` trained on question answering with `squad`. Evalulation scores: ``` ***** eval metrics ***** epoch = 3.0 eval_exact_match = 80.6906 eval_f1 = 88.1129 eval_samples = 10784 ```
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large-multiwoz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-multiwoz This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0064 - Acc: 1.0 - True Num: 56671 - Num: 56776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | True Num | Num | |:-------------:|:-----:|:----:|:---------------:|:----:|:--------:|:-----:| | 0.1261 | 1.13 | 1000 | 0.0933 | 0.98 | 55574 | 56776 | | 0.0951 | 2.25 | 2000 | 0.0655 | 0.98 | 55867 | 56776 | | 0.0774 | 3.38 | 3000 | 0.0480 | 0.99 | 56047 | 56776 | | 0.0584 | 4.51 | 4000 | 0.0334 | 0.99 | 56252 | 56776 | | 0.042 | 5.64 | 5000 | 0.0222 | 0.99 | 56411 | 56776 | | 0.0329 | 6.76 | 6000 | 0.0139 | 1.0 | 56502 | 56776 | | 0.0254 | 7.89 | 7000 | 0.0094 | 1.0 | 56626 | 56776 | | 0.0214 | 9.02 | 8000 | 0.0070 | 1.0 | 56659 | 56776 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-TPU-cv-fine-tune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-TPU-cv-fine-tune This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6987 - Wer: 0.6019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1017 | 8.88 | 400 | 1.4635 | 0.7084 | | 0.436 | 17.77 | 800 | 1.4765 | 0.6231 | | 0.1339 | 26.66 | 1200 | 1.6987 | 0.6019 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AnonymousSub/bert_mean_diff_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-10 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-9](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-9) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9567 - Wer: 0.3292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2892 | 1.62 | 1000 | 0.5745 | 0.3467 | | 0.235 | 3.23 | 2000 | 0.6156 | 0.3423 | | 0.1782 | 4.85 | 3000 | 0.6299 | 0.3484 | | 0.1504 | 6.46 | 4000 | 0.6475 | 0.3446 | | 0.133 | 8.08 | 5000 | 0.6753 | 0.3381 | | 0.115 | 9.69 | 6000 | 0.7834 | 0.3529 | | 0.101 | 11.31 | 7000 | 0.7924 | 0.3426 | | 0.0926 | 12.92 | 8000 | 0.7887 | 0.3465 | | 0.0863 | 14.54 | 9000 | 0.7674 | 0.3439 | | 0.0788 | 16.16 | 10000 | 0.8648 | 0.3435 | | 0.0728 | 17.77 | 11000 | 0.8460 | 0.3395 | | 0.0693 | 19.39 | 12000 | 0.8941 | 0.3451 | | 0.0637 | 21.0 | 13000 | 0.9079 | 0.3356 | | 0.0584 | 22.62 | 14000 | 0.8851 | 0.3336 | | 0.055 | 24.23 | 15000 | 0.9400 | 0.3338 | | 0.0536 | 25.85 | 16000 | 0.9387 | 0.3335 | | 0.0481 | 27.46 | 17000 | 0.9664 | 0.3337 | | 0.0485 | 29.08 | 18000 | 0.9567 | 0.3292 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AnonymousSub/bert_mean_diff_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-02-07T04:22:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-11.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-11.1 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-10](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-10) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0173 - Wer: 0.3350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2788 | 1.52 | 1000 | 0.5776 | 0.3410 | | 0.2277 | 3.04 | 2000 | 0.6148 | 0.3465 | | 0.1772 | 4.56 | 3000 | 0.6497 | 0.3497 | | 0.1528 | 6.08 | 4000 | 0.6786 | 0.3430 | | 0.1285 | 7.6 | 5000 | 0.6779 | 0.3489 | | 0.1104 | 9.12 | 6000 | 0.7417 | 0.3528 | | 0.0965 | 10.64 | 7000 | 0.7956 | 0.3477 | | 0.0914 | 12.16 | 8000 | 0.7994 | 0.3570 | | 0.082 | 13.68 | 9000 | 0.8690 | 0.3510 | | 0.0788 | 15.2 | 10000 | 0.8569 | 0.3526 | | 0.0727 | 16.72 | 11000 | 0.8885 | 0.3440 | | 0.0656 | 18.24 | 12000 | 0.9586 | 0.3476 | | 0.0608 | 19.76 | 13000 | 0.9317 | 0.3495 | | 0.0588 | 21.28 | 14000 | 0.9809 | 0.3449 | | 0.0547 | 22.8 | 15000 | 0.9552 | 0.3421 | | 0.0519 | 24.32 | 16000 | 0.9782 | 0.3380 | | 0.0474 | 25.84 | 17000 | 0.9923 | 0.3386 | | 0.046 | 27.36 | 18000 | 0.9984 | 0.3347 | | 0.045 | 28.88 | 19000 | 1.0173 | 0.3350 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AnonymousSub/bert_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-12 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-11.1](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-11.1) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0795 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2793 | 1.64 | 1000 | 0.5692 | 0.3518 | | 0.2206 | 3.28 | 2000 | 0.6127 | 0.3460 | | 0.1733 | 4.93 | 3000 | 0.6622 | 0.3580 | | 0.1391 | 6.57 | 4000 | 0.6768 | 0.3519 | | 0.1193 | 8.21 | 5000 | 0.7559 | 0.3540 | | 0.1053 | 9.85 | 6000 | 0.7873 | 0.3562 | | 0.093 | 11.49 | 7000 | 0.8170 | 0.3612 | | 0.0833 | 13.14 | 8000 | 0.8682 | 0.3579 | | 0.0753 | 14.78 | 9000 | 0.8317 | 0.3573 | | 0.0698 | 16.42 | 10000 | 0.9213 | 0.3525 | | 0.0623 | 18.06 | 11000 | 0.9746 | 0.3531 | | 0.0594 | 19.7 | 12000 | 1.0027 | 0.3502 | | 0.0538 | 21.35 | 13000 | 1.0045 | 0.3545 | | 0.0504 | 22.99 | 14000 | 0.9821 | 0.3523 | | 0.0461 | 24.63 | 15000 | 1.0818 | 0.3462 | | 0.0439 | 26.27 | 16000 | 1.0995 | 0.3495 | | 0.0421 | 27.91 | 17000 | 1.0533 | 0.3430 | | 0.0415 | 29.56 | 18000 | 1.0795 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AnonymousSub/cline_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- language: "nl" thumbnail: "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png" tags: - Dutch - Flemish - RoBERTa - RobBERT license: mit datasets: - oscar - oscar (NL) - dbrd - lassy-ud - europarl-mono - conll2002 widget: - text: "Hallo, ik ben RobBERT, een <mask> taalmodel van de KU Leuven." --- <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo_with_name.png" alt="RobBERT: A Dutch RoBERTa-based Language Model" width="75%"> </p> # RobBERT: Dutch RoBERTa-based Language Model. [RobBERT](https://github.com/iPieter/RobBERT) is the state-of-the-art Dutch BERT model. It is a large pre-trained general Dutch language model that can be fine-tuned on a given dataset to perform any text classification, regression or token-tagging task. As such, it has been successfully used by many [researchers](https://scholar.google.com/scholar?oi=bibs&hl=en&cites=7180110604335112086) and [practitioners](https://huggingface.co/models?search=robbert) for achieving state-of-the-art performance for a wide range of Dutch natural language processing tasks, including: - [Emotion detection](https://www.aclweb.org/anthology/2021.wassa-1.27/) - Sentiment analysis ([book reviews](https://arxiv.org/pdf/2001.06286.pdf), [news articles](https://biblio.ugent.be/publication/8704637/file/8704638.pdf)*) - [Coreference resolution](https://arxiv.org/pdf/2001.06286.pdf) - Named entity recognition ([CoNLL](https://arxiv.org/pdf/2001.06286.pdf), [job titles](https://arxiv.org/pdf/2004.02814.pdf)*, [SoNaR](https://github.com/proycon/deepfrog)) - Part-of-speech tagging ([Small UD Lassy](https://arxiv.org/pdf/2001.06286.pdf), [CGN](https://github.com/proycon/deepfrog)) - [Zero-shot word prediction](https://arxiv.org/pdf/2001.06286.pdf) - [Humor detection](https://arxiv.org/pdf/2010.13652.pdf) - [Cyberbulling detection](https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/automatic-classification-of-participant-roles-in-cyberbullying-can-we-detect-victims-bullies-and-bystanders-in-social-media-text/A2079C2C738C29428E666810B8903342) - [Correcting dt-spelling mistakes](https://gitlab.com/spelfouten/dutch-simpletransformers/)* and also achieved outstanding, near-sota results for: - [Natural language inference](https://arxiv.org/pdf/2101.05716.pdf)* - [Review classification](https://medium.com/broadhorizon-cmotions/nlp-with-r-part-5-state-of-the-art-in-nlp-transformers-bert-3449e3cd7494)* \\* *Note that several evaluations use RobBERT-v1, and that the second and improved RobBERT-v2 outperforms this first model on everything we tested* *(Also note that this list is not exhaustive. If you used RobBERT for your application, we are happy to know about it! Send us a mail, or add it yourself to this list by sending a pull request with the edit!)* More in-depth information about RobBERT can be found in our [blog post](https://people.cs.kuleuven.be/~pieter.delobelle/robbert/), [our paper](https://arxiv.org/abs/2001.06286) and [the RobBERT Github repository](https://github.com/iPieter/RobBERT) ## How to use RobBERT uses the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and pre-training but with a Dutch tokenizer and training data. RoBERTa is the robustly optimized English BERT model, making it even more powerful than the original BERT model. Given this same architecture, RobBERT can easily be finetuned and inferenced using [code to finetune RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html) models and most code used for BERT models, e.g. as provided by [HuggingFace Transformers](https://huggingface.co/transformers/) library. By default, RobBERT has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `pdelobelle/robbert-v2-dutch-base`, or use the original fairseq [RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta) training regimes. Use the following code to download the base model and finetune it yourself, or use one of our finetuned models (documented on [our project site](https://people.cs.kuleuven.be/~pieter.delobelle/robbert/)). ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification tokenizer = RobertaTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base") model = RobertaForSequenceClassification.from_pretrained("pdelobelle/robbert-v2-dutch-base") ``` Starting with `transformers v2.4.0` (or installing from source), you can use AutoTokenizer and AutoModel. You can then use most of [HuggingFace's BERT-based notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) for finetuning RobBERT on your type of Dutch language dataset. ## Technical Details From The Paper ### Our Performance Evaluation Results All experiments are described in more detail in our [paper](https://arxiv.org/abs/2001.06286), with the code in [our GitHub repository](https://github.com/iPieter/RobBERT). ### Sentiment analysis Predicting whether a review is positive or negative using the [Dutch Book Reviews Dataset](https://github.com/benjaminvdb/110kDBRD). | Model | Accuracy [%] | |-------------------|--------------------------| | ULMFiT | 93.8 | | BERTje | 93.0 | | RobBERT v2 | **95.1** | ### Die/Dat (coreference resolution) We measured how well the models are able to do coreference resolution by predicting whether "die" or "dat" should be filled into a sentence. For this, we used the [EuroParl corpus](https://www.statmt.org/europarl/). #### Finetuning on whole dataset | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | [Baseline](https://arxiv.org/abs/2001.02943) (LSTM) | | 75.03 | | mBERT | 98.285 | 98.033 | | BERTje | 98.268 | 98.014 | | RobBERT v2 | **99.232** | **99.121** | #### Finetuning on 10K examples We also measured the performance using only 10K training examples. This experiment clearly illustrates that RobBERT outperforms other models when there is little data available. | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | mBERT | 92.157 | 90.898 | | BERTje | 93.096 | 91.279 | | RobBERT v2 | **97.816** | **97.514** | #### Using zero-shot word masking task Since BERT models are pre-trained using the word masking task, we can use this to predict whether "die" or "dat" is more likely. This experiment shows that RobBERT has internalised more information about Dutch than other models. | Model | Accuracy [%] | |-------------------|--------------------------| | ZeroR | 66.70 | | mBERT | 90.21 | | BERTje | 94.94 | | RobBERT v2 | **98.75** | ### Part-of-Speech Tagging. Using the [Lassy UD dataset](https://universaldependencies.org/treebanks/nl_lassysmall/index.html). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 91.7 | | mBERT | **96.5** | | BERTje | 96.3 | | RobBERT v2 | 96.4 | Interestingly, we found that when dealing with **small data sets**, RobBERT v2 **significantly outperforms** other models. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_pos_accuracy.png" alt="RobBERT's performance on smaller datasets"> </p> ### Named Entity Recognition Using the [CoNLL 2002 evaluation script](https://www.clips.uantwerpen.be/conll2002/ner/). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 57.31 | | mBERT | **90.94** | | BERT-NL | 89.7 | | BERTje | 88.3 | | RobBERT v2 | 89.08 | ## Pre-Training Procedure Details We pre-trained RobBERT using the RoBERTa training regime. We pre-trained our model on the Dutch section of the [OSCAR corpus](https://oscar-corpus.com/), a large multilingual corpus which was obtained by language classification in the Common Crawl corpus. This Dutch corpus is 39GB large, with 6.6 billion words spread over 126 million lines of text, where each line could contain multiple sentences, thus using more data than concurrently developed Dutch BERT models. RobBERT shares its architecture with [RoBERTa's base model](https://github.com/pytorch/fairseq/tree/master/examples/roberta), which itself is a replication and improvement over BERT. Like BERT, it's architecture consists of 12 self-attention layers with 12 heads with 117M trainable parameters. One difference with the original BERT model is due to the different pre-training task specified by RoBERTa, using only the MLM task and not the NSP task. During pre-training, it thus only predicts which words are masked in certain positions of given sentences. The training process uses the Adam optimizer with polynomial decay of the learning rate l_r=10^-6 and a ramp-up period of 1000 iterations, with hyperparameters beta_1=0.9 and RoBERTa's default beta_2=0.98. Additionally, a weight decay of 0.1 and a small dropout of 0.1 helps prevent the model from overfitting. RobBERT was trained on a computing cluster with 4 Nvidia P100 GPUs per node, where the number of nodes was dynamically adjusted while keeping a fixed batch size of 8192 sentences. At most 20 nodes were used (i.e. 80 GPUs), and the median was 5 nodes. By using gradient accumulation, the batch size could be set independently of the number of GPUs available, in order to maximally utilize the cluster. Using the [Fairseq library](https://github.com/pytorch/fairseq/tree/master/examples/roberta), the model trained for two epochs, which equals over 16k batches in total, which took about three days on the computing cluster. In between training jobs on the computing cluster, 2 Nvidia 1080 Ti's also covered some parameter updates for RobBERT v2. ## Investigating Limitations and Bias In the [RobBERT paper](https://arxiv.org/abs/2001.06286), we also investigated potential sources of bias in RobBERT. We found that the zeroshot model estimates the probability of *hij* (he) to be higher than *zij* (she) for most occupations in bleached template sentences, regardless of their actual job gender ratio in reality. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/gender_diff.png" alt="RobBERT's performance on smaller datasets"> </p> By augmenting the DBRB Dutch Book sentiment analysis dataset with the stated gender of the author of the review, we found that highly positive reviews written by women were generally more accurately detected by RobBERT as being positive than those written by men. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/dbrd.png" alt="RobBERT's performance on smaller datasets"> </p> ## How to Replicate Our Paper Experiments Replicating our paper experiments is [described in detail on teh RobBERT repository README](https://github.com/iPieter/RobBERT#how-to-replicate-our-paper-experiments). ## Name Origin of RobBERT Most BERT-like models have the word *BERT* in their name (e.g. [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html), [ALBERT](https://arxiv.org/abs/1909.11942), [CamemBERT](https://camembert-model.fr/), and [many, many others](https://huggingface.co/models?search=bert)). As such, we queried our newly trained model using its masked language model to name itself *\\<mask\\>bert* using [all](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Mijn+naam+is+%3Cmask%3Ebert.) [kinds](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Hallo%2C+ik+ben+%3Cmask%3Ebert.) [of](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Leuk+je+te+ontmoeten%2C+ik+heet+%3Cmask%3Ebert.) [prompts](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Niemand+weet%2C+niemand+weet%2C+dat+ik+%3Cmask%3Ebert+heet.), and it consistently called itself RobBERT. We thought it was really quite fitting, given that RobBERT is a [*very* Dutch name](https://en.wikipedia.org/wiki/Robbert) *(and thus clearly a Dutch language model)*, and additionally has a high similarity to its root architecture, namely [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html). Since *"rob"* is a Dutch words to denote a seal, we decided to draw a seal and dress it up like [Bert from Sesame Street](https://muppet.fandom.com/wiki/Bert) for the [RobBERT logo](https://github.com/iPieter/RobBERT/blob/master/res/robbert_logo.png). ## Credits and citation This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/). If you would like to cite our paper or model, you can use the following BibTeX: ``` @inproceedings{delobelle2020robbert, title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel", author = "Delobelle, Pieter and Winters, Thomas and Berendt, Bettina", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292", doi = "10.18653/v1/2020.findings-emnlp.292", pages = "3255--3265" } ```
AnonymousSub/declutr-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: en license: mit datasets: - web crawled (coming soon) --- # Simple CNN-based Artist Classifier This repo contains a simple CNN-based Keras model which classifies images into one of 10 selected artists/painters. - The purpose of this model was for a quick prototyping - Data has been web-crawled using `https://github.com/YoongiKim/AutoCrawler` - 10 popular artists/painters were chosen: - \[ARTIST\]: \[ID\] - claude_monet: 0, - henri_matisse: 1, - jean_michel_basquiat: 2, - keith_haring: 3, - pablo_picasso: 4, - pierre_augste_renoir: 5, - rene_magritte: 6, - roy_richtenstein: 7, - vincent_van_gogh: 8, - wassily_kandinsky: 9 - About 100 representative paintings per artist were crawled and manually checked - Dataset will be shared later # How to use ```python import tensorflow as tf from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("jkang/drawing-artist-classifier") image_file = 'monet.jpg' img = tf.io.read_file(image_file) img = tf.io.decode_jpeg(img, channels=3) last_layer_activation, predictions = model(img[tf.newaxis,...]) ``` # Intended uses & limitations You can use this model freely for predicting artists or trends of a given image. Please keep in mind that this model is not intended for production, but for research and quick prototyping. Web-crawled image data might not have a balanced amount of drawings that sufficiently represent the artists. --- - 2022-01-18 first created by jaekoo kang
AnonymousSub/declutr-s10-SR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- language: en license: mit datasets: - web crawled (coming soon) --- # Simple CNN-based Artist Classifier This repo contains a simple CNN-based Keras model which classifies images into one of 8 artistic trends. See also: `https://huggingface.co/jkang/drawing-artist-classifier` - The purpose of this model was for a quick prototyping - Data has been web-crawled using `https://github.com/YoongiKim/AutoCrawler` - 8 popular artists/painters were chosen: - \[TREND\]: \[ID\] - cubism: 0, - expressionism: 1, - fauvisme: 2, - graffitiar: 3, - impressionism: 4, - popart: 5, - post_impressionism: 6, - surrealism: 7} - About 100 representative paintings per artist considering 8 trends were crawled and manually checked - Dataset will be shared later # How to use ```python import tensorflow as tf from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier") image_file = 'monet.jpg' img = tf.io.read_file(image_file) img = tf.io.decode_jpeg(img, channels=3) last_layer_activation, predictions = model(img[tf.newaxis,...]) ``` # Intended uses & limitations You can use this model freely for predicting artists or trends of a given image. Please keep in mind that this model is not intended for production, but for research and quick prototyping. Web-crawled image data might not have a balanced amount of drawings that sufficiently represent the artists. --- - 2022-01-18 first created by jaekoo kang
AnonymousSub/declutr-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - an4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `jkang/espnet2_an4_asr` This model was trained by jaekookang using an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 48422215e272812feb9bbac9d7cf4aae6a316bca pip install -e . cd egs2/an4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model jkang/espnet2_an4_asr ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Feb 1 13:22:35 KST 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1` - Git hash: `48422215e272812feb9bbac9d7cf4aae6a316bca` - Commit date: `Fri Jan 28 17:25:31 2022 +0000` ## asr_train_asr_transformer_raw_en_bpe30_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|773|91.5|6.5|2.1|0.6|9.2|38.5| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|591|88.8|7.4|3.7|0.7|11.8|41.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|2565|96.6|1.2|2.2|1.0|4.4|38.5| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|1915|94.0|1.7|4.3|0.4|6.4|41.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/test|130|2695|96.8|1.1|2.1|0.9|4.2|38.5| |decode_asr_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.ave/train_dev|100|2015|94.3|1.6|4.1|0.4|6.1|41.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_en_bpe30_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe30_sp/train/speech_shape - exp/asr_stats_raw_en_bpe30_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe30_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe30_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev_sp/wav.scp - speech - sound - - dump/raw/train_nodev_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/wav.scp - speech - sound - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: warmuplr scheduler_conf: warmup_steps: 2500 token_list: - <blank> - <unk> - ▁ - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe30_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
AnonymousSub/hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: lt tags: - exbert license: mit --- # LitBERTa uncased model Not the best model because of limited resources (Trained on ~4.7 GB of data on RTX2070 8GB for ~10 days) but it covers special lithuanian symbols `ąčęėįšųūž`. 128K vocabulary chosen because language has a lot of word forms. ## How to use ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='jkeruotis/LitBERTa-uncased') unmasker('lietuvių kalba yra viena iš <mask> kalbų pasaulyje.') [{'sequence': 'lietuvių kalba yra viena iš populiariausių kalbų pasaulyje.', 'score': 0.13887910544872284, 'token': 9404, 'token_str': ' populiariausių'}, {'sequence': 'lietuvių kalba yra viena iš pirmaujančių kalbų pasaulyje.', 'score': 0.13532795011997223, 'token': 27431, 'token_str': ' pirmaujančių'}, {'sequence': 'lietuvių kalba yra viena iš seniausių kalbų pasaulyje.', 'score': 0.1184583529829979, 'token': 14775, 'token_str': ' seniausių'}, {'sequence': 'lietuvių kalba yra viena iš geriausių kalbų pasaulyje.', 'score': 0.09306756407022476, 'token': 5617, 'token_str': ' geriausių'}, {'sequence': 'lietuvių kalba yra viena iš nedaugelio kalbų pasaulyje.', 'score': 0.08187634497880936, 'token': 28150, 'token_str': ' nedaugelio'}]```
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
### electra-ka is first of its kind, Transformer based, open source Georgian language model. The model is trained on 33GB of Georgian text collected from 4854621 pages in commoncrowl archive.
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - summarization metrics: - rouge model-index: - name: POCTS results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 26.1391 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # POCTS This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0970 - Rouge1: 26.1391 - Rouge2: 7.3101 - Rougel: 19.1217 - Rougelsum: 21.9706 - Gen Len: 46.2245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3259 | 1.0 | 33875 | 3.2535 | 17.942 | 4.5143 | 14.2766 | 15.582 | 19.3901 | | 2.9764 | 2.0 | 67750 | 3.1278 | 18.6558 | 5.1844 | 15.0939 | 16.3367 | 19.9174 | | 2.5889 | 3.0 | 101625 | 3.0970 | 19.1763 | 5.4517 | 15.5342 | 16.7186 | 19.8855 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-JES-cnn_dailymail results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 43.9753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-JES-cnn_dailymail This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1452 - Rouge1: 43.9753 - Rouge2: 19.7191 - Rougel: 33.6236 - Rougelsum: 41.1683 - Gen Len: 80.1767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.2949 | 1.0 | 71779 | 1.2080 | 11.7171 | 3.3284 | 11.3209 | 11.4022 | 20.0 | | 1.191 | 2.0 | 143558 | 1.1615 | 11.8484 | 3.363 | 11.4175 | 11.5037 | 20.0 | | 1.0907 | 3.0 | 215337 | 1.1452 | 12.6221 | 3.773 | 12.1226 | 12.2359 | 20.0 | | 0.9798 | 4.0 | 287116 | 1.1670 | 12.4306 | 3.7329 | 11.9497 | 12.0617 | 20.0 | | 0.9112 | 5.0 | 358895 | 1.1667 | 12.5404 | 3.7842 | 12.0541 | 12.1643 | 20.0 | | 0.8358 | 6.0 | 430674 | 1.1997 | 12.5153 | 3.778 | 12.0382 | 12.1332 | 20.0 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
2021-11-24T23:18:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: barthez-deft-sciences_de_l_information results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 34.5672 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # barthez-deft-sciences_de_l_information This model is a fine-tuned version of [moussaKam/barthez](https://huggingface.co/moussaKam/barthez) on an unknown dataset. **Note**: this model is one of the preliminary experiments and it underperforms the models published in the paper (using [MBartHez](https://huggingface.co/moussaKam/mbarthez) and HAL/Wiki pre-training + copy mechanisms) It achieves the following results on the evaluation set: - Loss: 2.0258 - Rouge1: 34.5672 - Rouge2: 16.7861 - Rougel: 27.5573 - Rougelsum: 27.6099 - Gen Len: 17.8857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.3405 | 1.0 | 106 | 2.3682 | 31.3511 | 12.1973 | 25.6977 | 25.6851 | 14.9714 | | 2.4219 | 2.0 | 212 | 2.1891 | 30.1154 | 13.3459 | 25.4854 | 25.5403 | 14.0429 | | 2.0789 | 3.0 | 318 | 2.0994 | 32.153 | 15.3865 | 26.1859 | 26.1672 | 15.2 | | 1.869 | 4.0 | 424 | 2.0258 | 34.5797 | 16.4194 | 27.6909 | 27.7201 | 16.9857 | | 1.6569 | 5.0 | 530 | 2.0417 | 34.3854 | 16.5237 | 28.7036 | 28.8258 | 15.2429 | | 1.5414 | 6.0 | 636 | 2.0503 | 33.1768 | 15.4851 | 27.2818 | 27.2884 | 16.0143 | | 1.4461 | 7.0 | 742 | 2.0293 | 35.4273 | 16.118 | 27.3622 | 27.393 | 16.6857 | | 1.3435 | 8.0 | 848 | 2.0336 | 35.3471 | 15.9695 | 27.668 | 27.6749 | 17.2 | | 1.2624 | 9.0 | 954 | 2.0779 | 35.9201 | 17.2547 | 27.409 | 27.3293 | 17.1857 | | 1.1807 | 10.0 | 1060 | 2.1301 | 35.7061 | 15.9138 | 27.3968 | 27.4716 | 17.1286 | | 1.0972 | 11.0 | 1166 | 2.1726 | 34.3194 | 16.1313 | 27.0367 | 27.0737 | 17.1429 | | 1.0224 | 12.0 | 1272 | 2.1704 | 34.9278 | 16.7958 | 27.8754 | 27.932 | 16.6571 | | 1.0181 | 13.0 | 1378 | 2.2458 | 34.472 | 15.9111 | 28.2938 | 28.2946 | 16.7571 | | 0.9769 | 14.0 | 1484 | 2.3405 | 35.1592 | 16.3135 | 29.0956 | 29.0858 | 16.5429 | | 0.8866 | 15.0 | 1590 | 2.3303 | 34.8732 | 15.6709 | 27.5858 | 27.6169 | 16.2429 | | 0.8888 | 16.0 | 1696 | 2.2976 | 35.3034 | 16.8011 | 27.7988 | 27.7569 | 17.5143 | | 0.8358 | 17.0 | 1802 | 2.3349 | 35.505 | 16.8851 | 28.3651 | 28.413 | 16.8143 | | 0.8026 | 18.0 | 1908 | 2.3738 | 35.2328 | 17.0358 | 28.544 | 28.6211 | 16.6143 | | 0.7487 | 19.0 | 2014 | 2.4103 | 34.0793 | 15.4468 | 27.8057 | 27.8586 | 16.7286 | | 0.7722 | 20.0 | 2120 | 2.3991 | 34.8116 | 15.8706 | 27.9173 | 27.983 | 16.9286 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2021-12-16T01:13:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mbarthez-copy_mechanism-hal_articles results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 36.548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbarthez-davide_articles-copy_enhanced This model is a fine-tuned version of [moussaKam/mbarthez](https://huggingface.co/moussaKam/mbarthez) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4905 - Rouge1: 36.548 - Rouge2: 19.6282 - Rougel: 30.2513 - Rougelsum: 30.2765 - Gen Len: 25.7238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6706 | 1.0 | 33552 | 1.5690 | 31.2477 | 16.5455 | 26.9855 | 26.9754 | 18.6217 | | 1.3446 | 2.0 | 67104 | 1.5060 | 32.1108 | 17.1408 | 27.7833 | 27.7703 | 18.9115 | | 1.3245 | 3.0 | 100656 | 1.4905 | 32.9084 | 17.7027 | 28.2912 | 28.2975 | 18.9801 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - s2orc --- # DeCLUTR-sci-base ## Model description This is the [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) model, with extended pretraining on over 2 million scientific papers from [S2ORC](https://github.com/allenai/s2orc/) using the self-supervised training strategy presented in [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). It is particularly suitable for scientific text. #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-sci-base") model = AutoModel.from_pretrained("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{giorgi-etal-2021-declutr, title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations}, author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary}, year = 2021, month = aug, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Online}, pages = {879--895}, doi = {10.18653/v1/2021.acl-long.72}, url = {https://aclanthology.org/2021.acl-long.72} } ```
AnonymousSub/specter-bert-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2020-07-10T17:34:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - openwebtext --- # DeCLUTR-small ## Model description The "DeCLUTR-small" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-small") # Prepare some text to embed texts = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-small") model = AutoModel.from_pretrained("johngiorgi/declutr-small") # Prepare some text to embed text = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{giorgi-etal-2021-declutr, title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations}, author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary}, year = 2021, month = aug, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Online}, pages = {879--895}, doi = {10.18653/v1/2021.acl-long.72}, url = {https://aclanthology.org/2021.acl-long.72} } ```
AnonymousSub/specter-emanuals-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
## GPT-2 for Skript ## Complete your Skript automatically via a finetuned GPT-2 model `0.57` Training loss on about 2 epochs (in total) 1.2 million lines of Skript is inside the dataset. Inference Colab: https://colab.research.google.com/drive/1ujtLt7MOk7Nsag3q-BYK62Kpoe4Lr4PE
AnonymousSub/unsup-consert-base
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
GPT-2 Skript 80k lines. v3 Training loss: `0.594200` 1.5 GB Inferencing colab: https://colab.research.google.com/drive/1uTAPLa1tuNXFpG0qVLSseMro6iU9-xNc
AnonymousSub/unsup-consert-base_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
GPT-2 for the Minecraft Plugin: Skript (80,000 Lines, 3< GB: GPT-2 Large model finetune) Inferencing Colab: https://colab.research.google.com/drive/1uTAPLa1tuNXFpG0qVLSseMro6iU9-xNc
AnonymousSub/unsup-consert-base_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
Trained on ~400 youtube titles of meme compilations on youtube. WARNING: may produce offensive content.
Anthos23/sentiment-roberta-large-english-finetuned-sentiment-analysis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 English by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 21.53 - name: Test CER type: cer value: 9.66 --- # Fine-tuned wav2vec2 large model for speech recognition in English Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL | | DO YOU MEAN IT? | W MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation The model can be evaluated as follows on the English (en) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-06-17). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** | | jonatasgrosman/wav2vec2-large-english | 21.53% | 9.66% | | facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% | | facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% | | boris/xlsr-en-punctuation | 29.10% | 10.75% | | facebook/wav2vec2-large-960h | 32.79% | 16.03% | | facebook/wav2vec2-base-960h | 39.86% | 19.89% | | facebook/wav2vec2-base-100h | 51.06% | 25.06% | | elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% | | facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% | | elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-english, title={Fine-tuned wav2vec2 large model for speech recognition in {E}nglish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-english}}, year={2021} } ```
Antony/mint_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-04-01T14:16:01Z
--- language: nl license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - nl - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Dutch by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 15.72 - name: Test CER type: cer value: 5.35 - name: Test WER (+LM) type: wer value: 12.84 - name: Test CER (+LM) type: cer value: 4.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Dev WER type: wer value: 35.79 - name: Dev CER type: cer value: 17.67 - name: Dev WER (+LM) type: wer value: 31.54 - name: Dev CER (+LM) type: cer value: 16.37 --- # Fine-tuned XLSR-53 large model for speech recognition in Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-dutch") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "nl" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | DE ABORIGINALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË. | DE ABBORIGENALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË | | MIJN TOETSENBORD ZIT VOL STOF. | MIJN TOETSENBORD ZIT VOL STOF | | ZE HAD DE BANK BESCHADIGD MET HAAR SKATEBOARD. | ZE HAD DE BANK BESCHADIGD MET HAAR SCHEETBOORD | | WAAR LAAT JIJ JE ONDERHOUD DOEN? | WAAR LAAT JIJ HET ONDERHOUD DOEN | | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QWERTY TOETSENBORD. | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QUERTITOETSEMBORD | | DE TAMPONS ZIJN OP. | DE TAPONT ZIJN OP | | MARIJKE KENT OLIVIER NU AL MEER DAN TWEE JAAR. | MAARRIJKEN KENT OLIEVIER NU AL MEER DAN TWEE JAAR | | HET VOEREN VAN BROOD AAN EENDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN. | HET VOEREN VAN BEUROT AAN EINDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN | | PARKET MOET JE STOFZUIGEN, TEGELS MOET JE DWEILEN. | PARKET MOET JE STOF ZUIGEN MAAR TEGELS MOET JE DWEILEN | | IN ONZE BUURT KENT IEDEREEN ELKAAR. | IN ONZE BUURT KENT IEDEREEN ELKAAR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset mozilla-foundation/common_voice_6_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-dutch, title={Fine-tuned {XLSR}-53 large model for speech recognition in {D}utch}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch}}, year={2021} } ```
Anubhav23/IndianlegalBert
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 19.06 - name: Test CER type: cer value: 7.69 - name: Test WER (+LM) type: wer value: 14.81 - name: Test CER (+LM) type: cer value: 6.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 27.72 - name: Dev CER type: cer value: 11.65 - name: Dev WER (+LM) type: wer value: 20.85 - name: Dev CER (+LM) type: cer value: 11.01 --- # Fine-tuned XLSR-53 large model for speech recognition in English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | | DO YOU MEAN IT? | DO YOU MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-english, title={Fine-tuned {XLSR}-53 large model for speech recognition in {E}nglish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, year={2021} } ```
Anubhav23/indianlegal
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: fi datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 41.60 - name: Test CER type: cer value: 8.23 --- # Fine-tuned XLSR-53 large model for speech recognition in Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-finnish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | MYSTEERIMIES OLI OPPINUT MORAALINSA TARUISTA, ELOKUVISTA JA PELEISTÄ. | MYSTEERIMIES OLI OPPINUT MORALINSA TARUISTA ELOKUVISTA JA PELEISTÄ | | ÄÄNESTIN MIETINNÖN PUOLESTA! | ÄÄNESTIN MIETINNÖN PUOLESTA | | VAIN TUNTIA AIKAISEMMIN OLIMME MIEHENI KANSSA TUNTENEET SUURINTA ILOA. | PAIN TUNTIA AIKAISEMMIN OLIN MIEHENI KANSSA TUNTENEET SUURINTA ILAA | | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA. | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA | | ÄÄNESTIN MIETINNÖN PUOLESTA, SILLÄ POHJIMMILTAAN SIINÄ VASTUSTETAAN TÄTÄ SUUNTAUSTA. | ÄÄNESTIN MIETINNÖN PUOLESTA SILLÄ POHJIMMILTAAN SIINÄ VASTOTTETAAN TÄTÄ SUUNTAUSTA | | TÄHDENLENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT? | TÄHDEN LENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT | | SIITÄ SE TULEE. | SIITA SE TULEE | | NIIN, KUULUU KIROUS, JA KAUHEA KARJAISU. | NIIN KUULUU KIROUS JA KAUHEA KARJAISU | | ARKIT KUN OVAT NÄES ELEMENTTIRAKENTEISIA. | ARKIT KUN OVAT MÄISS' ELÄMÄTTEROKENTEISIÄ | | JÄIN ALUKSEN SISÄÄN, MUTTA KUULIN OVEN LÄPI, ETTÄ ULKOPUOLELLA ALKOI TAPAHTUA. | JAKALOKSEHÄN SISÄL MUTTA KUULIN OVENLAPI ETTÄ ULKA KUOLLALLA ALKOI TAPAHTUA | ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-21). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | aapot/wav2vec2-large-xlsr-53-finnish | **32.51%** | **5.34%** | | Tommi/wav2vec2-large-xlsr-53-finnish | 35.22% | 5.81% | | vasilis/wav2vec2-large-xlsr-53-finnish | 38.24% | 6.49% | | jonatasgrosman/wav2vec2-large-xlsr-53-finnish | 41.60% | 8.23% | | birgermoell/wav2vec2-large-xlsr-finnish | 53.51% | 9.18% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-finnish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}innish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-finnish}}, year={2021} } ```
Anubhav23/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-04-15T18:03:30Z
--- language: fr license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - fr - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 French by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 17.65 - name: Test CER type: cer value: 4.89 - name: Test WER (+LM) type: wer value: 13.59 - name: Test CER (+LM) type: cer value: 3.91 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Dev WER type: wer value: 34.35 - name: Dev CER type: cer value: 14.09 - name: Dev WER (+LM) type: wer value: 24.72 - name: Dev CER (+LM) type: cer value: 12.33 --- # Fine-tuned XLSR-53 large model for speech recognition in French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on French using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-french" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." | CE DERNIER ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE | | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ASHEMÉNID ET SEPT DES SASANDNIDES | | "J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." | JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGES SUR LES AUTRES | | LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. | LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS | | IL Y A MAINTENANT UNE GARE ROUTIÈRE. | IL AMNARDIGAD LE TIRAN | | HUIT | HUIT | | DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION | DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION | | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES | | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES | | ZÉRO | ZEGO | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset mozilla-foundation/common_voice_6_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-french, title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}rench}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french}}, year={2021} } ```
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 config: en split: test args: language: en metrics: - name: Test WER type: wer value: 21.05 - name: Test CER type: cer value: 8.44 - name: Test WER (+LM) type: wer value: 17.31 - name: Test CER (+LM) type: cer value: 7.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 20.53 - name: Dev CER type: cer value: 9.31 - name: Dev WER (+LM) type: wer value: 17.7 - name: Dev CER (+LM) type: cer value: 8.93 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: en metrics: - name: Test WER type: wer value: 17.88 --- # Fine-tuned XLS-R 1B model for speech recognition in English Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on English using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual LibriSpeech](https://www.openslr.org/94/), [TED-LIUMv3](https://www.openslr.org/51/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-english --dataset mozilla-foundation/common_voice_8_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-english, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {E}nglish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-english}}, year={2022} } ```
ArBert/albert-base-v2-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 French by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 16.85 - name: Test CER type: cer value: 4.66 - name: Test WER (+LM) type: wer value: 16.32 - name: Test CER (+LM) type: cer value: 4.21 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Dev WER type: wer value: 22.34 - name: Dev CER type: cer value: 9.88 - name: Dev WER (+LM) type: wer value: 17.16 - name: Dev CER (+LM) type: cer value: 9.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 19.15 --- # Fine-tuned XLS-R 1B model for speech recognition in French Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on French using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [MediaSpeech](https://www.openslr.org/108/), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-french") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-french" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-french, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {F}rench}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-french}}, year={2022} } ```
ArBert/albert-base-v2-finetuned-ner
[ "pytorch", "tensorboard", "albert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 German by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 10.95 - name: Test CER type: cer value: 2.72 - name: Test WER (+LM) type: wer value: 8.13 - name: Test CER (+LM) type: cer value: 2.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Dev WER type: wer value: 22.68 - name: Dev CER type: cer value: 9.17 - name: Dev WER (+LM) type: wer value: 17.07 - name: Dev CER (+LM) type: cer value: 8.45 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 19.67 --- # Fine-tuned XLS-R 1B model for speech recognition in German Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on German using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-german") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "de" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-german" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-german, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {G}erman}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german}}, year={2022} } ```
ArBert/bert-base-uncased-finetuned-ner-agglo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - it - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Italian by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 9.04 - name: Test CER type: cer value: 2.2 - name: Test WER (+LM) type: wer value: 6.75 - name: Test CER (+LM) type: cer value: 1.76 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Dev WER type: wer value: 23.38 - name: Dev CER type: cer value: 9.41 - name: Dev WER (+LM) type: wer value: 15.84 - name: Dev CER (+LM) type: cer value: 8.93 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 18.34 --- # Fine-tuned XLS-R 1B model for speech recognition in Italian Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Italian using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-italian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "it" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-italian" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset mozilla-foundation/common_voice_8_0 --config it --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-italian, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {I}talian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-italian}}, year={2022} } ```
ArBert/bert-base-uncased-finetuned-ner-gmm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - pl license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - pl - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Polish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pl metrics: - name: Test WER type: wer value: 11.01 - name: Test CER type: cer value: 2.55 - name: Test WER (+LM) type: wer value: 7.32 - name: Test CER (+LM) type: cer value: 1.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pl metrics: - name: Dev WER type: wer value: 26.31 - name: Dev CER type: cer value: 13.85 - name: Dev WER (+LM) type: wer value: 20.33 - name: Dev CER (+LM) type: cer value: 13.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pl metrics: - name: Test WER type: wer value: 22.77 --- # Fine-tuned XLS-R 1B model for speech recognition in Polish Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Polish using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-polish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "pl" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-polish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-polish --dataset mozilla-foundation/common_voice_8_0 --config pl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-polish, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}olish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-polish}}, year={2022} } ```
ArBert/bert-base-uncased-finetuned-ner-kmeans-twitter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Portuguese by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 8.7 - name: Test CER type: cer value: 2.55 - name: Test WER (+LM) type: wer value: 6.04 - name: Test CER (+LM) type: cer value: 1.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Dev WER type: wer value: 24.23 - name: Dev CER type: cer value: 11.3 - name: Dev WER (+LM) type: wer value: 19.41 - name: Dev CER (+LM) type: cer value: 10.19 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 18.8 --- # Fine-tuned XLS-R 1B model for speech recognition in Portuguese Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Portuguese using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [CORAA](https://github.com/nilc-nlp/CORAA), [Multilingual TEDx](http://www.openslr.org/100), and [Multilingual LibriSpeech](https://www.openslr.org/94/). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "pt" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-portuguese, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}}, year={2022} } ```
ArBert/roberta-base-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ConvBERT-Small This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a Unigram tokenizer with a vocabulary size of 96,000. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
ArBert/roberta-base-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Base This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
ArBert/roberta-base-finetuned-ner
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Small This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
ArJakusz/DialoGPT-small-stark
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - is - no license: cc-by-4.0 datasets: - igc - ic3 - jonfd/ICC - mc4 --- # Icelandic-Norwegian ELECTRA-Small This model was pretrained on the following corpora: * The [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/) (IGC) * The Icelandic Common Crawl Corpus (IC3) * The [Icelandic Crawled Corpus](https://huggingface.co/datasets/jonfd/ICC) (ICC) * The [Multilingual Colossal Clean Crawled Corpus](https://huggingface.co/datasets/mc4) (mC4) - Icelandic and Norwegian text obtained from .is and .no domains, respectively The total size of the corpus after document-level deduplication and filtering was 7.41B tokens, split equally between the two languages. The model was trained using a WordPiece tokenizer with a vocabulary size of 64,105 for 1.1 million steps, and otherwise with default settings. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
AragornII/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-06-23T14:56:11Z
The following model is trained on the SUM partition of 20% overlapping mixtures
Arcktosh/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2021-03-08T11:40:07Z
# Summary The app was conceived with the idea of recreating and generate new dialogs for existing games. In order to generate a dataset for training the steps followed were: 1. Download from [Assassins Creed Fandom Wiki](https://assassinscreed.fandom.com/wiki/Special:Export) from the category "Memories relived using the Animus HR-8.5". 2. Keep only text elements from XML. 3. Keep only the dialog section. 4. Parse wikimarkup with [wikitextparser](https://pypi.org/project/wikitextparser/). 5. Clean description of dialog's context. Due to the small size of the dataset obtained, a transfer learning approach was considered based on a pretrained ["Dialog GPT" model](https://huggingface.co/microsoft/DialoGPT-small).
ArenaGrenade/char-cnn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
* Fine-tunning "KLUE/roberta-large" model For CER(Company Entity Recognition) With Custom Dataset * Custom Datasets are composed of news data ```python label_list = ['O',"B-PER","I-PER","B-ORG","I-ORG","B-COM","I-COM","B-LOC","I-LOC","B-DAT","I-DAT","B-TIM","I-TIM","B-QNT","I-QNT"] refer_list = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14'] ``` - EX: "B-PER" : 1 , "B-COM" : 5
Aron/distilbert-base-uncased-finetuned-emotion
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2021-12-13T20:49:54Z
--- language: - en # Example: fr tags: - conversational # Example: audio - gpt2 # Example: automatic-speech-recognition datasets: - Discord transcripts --- ### About NegaNetizen Trained on conversations from a friend for use within their discord server. ### How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained('jordanhagan/DialoGPT-medium-NegaNetizen') # Let's chat for 5 lines for step in range(5): new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NNR: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
ArpanZS/debug_squad
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-02-20T13:21:10Z
--- language: - en tags: - gec library_name: opennmt license: mit metrics: - bleu inference: false --- ### Introduction This repository contains a description on how to use OpenNMT on the Grammar Error Correction (GEC) task. The idea is to approch GEC as a translation task ### Usage Install the necessary dependencies: ```bash pip3 install ctranslate2 pyonmttok ``` Simple tokenization & translation using Python: ```python import ctranslate2 import pyonmttok from huggingface_hub import snapshot_download model_dir = snapshot_download(repo_id="jordimas/gec-opennmt-english", revision="main") tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/sp_m.model") tokenized=tokenizer.tokenize("The water are hot. My friends are going to be late. Today mine mother is in Barcelona.") translator = ctranslate2.Translator(model_dir) translated = translator.translate_batch([tokenized[0]]) print(tokenizer.detokenize(translated[0][0]['tokens'])) ``` # Model The model has been training using the [clang8](https://github.com/google-research-datasets/clang8) corpus for English language. Details: * Model: TransformerBase * Tokenizer: SentencePiece * BLEU = 85.50 # Papers Relevant papers: * [Approaching Neural Grammatical Error Correction as a Low-Resource Machine Translation Task](https://aclanthology.org/N18-1055.pdf) * [A Simple Recipe for Multilingual Grammatical Error Correction](https://arxiv.org/pdf/2106.03830.pdf) # Contact Email address: Jordi Mas: [email protected]
AshiNLP/Bert_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-11-01T23:11:31Z
This model is a bert for sequence classification model fine-tuned on the MedDialogue dataset. Basically, the task is just to predict if a given sentence in the corpus was spoken by the patient or doctor.
AshtonBenson/DialoGPT-small-quentin
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-01-27T11:42:13Z
--- tags: - conversational --- # Josh DialoGPT Model
At3ee/wav2vec2-base-timit-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - es thumbnail: tags: - summarization - mt5 - spanish license: apache-2.0 datasets: - larazonpublico - es metrics: - rouge widget: - text: "La Guardia Civil ha desarticulado un grupo organizado dedicado a copiar en los examenes teoricos para la obtencion del permiso de conducir. Para ello, empleaban receptores y camaras de alta tecnologia y operaban desde la misma sede del Centro de examenes de la Direccion General de Trafico (DGT) en Mostoles. Es lo que han llamado la Operacion pinga. El grupo desarticulado ofrecia el servicio de transporte y tecnologia para copiar y poder aprobar. Por dicho servicio cobraban 1.000 euros. Los investigadores sorprendieron in fraganti a una mujer intentando copiar en el examen. Portaba una chaqueta con dispositivos electronicos ocultos, concretamente un telefono movil al que estaba conectada una camara que habia sido insertada en la parte frontal de la chaqueta para transmitir online el examen y que orientada al ordenador del Centro de Examenes en el que aparecen las preguntas, permitia visualizar las imagenes en otro ordenador alojado en el interior de un vehiculo estacionado en las inmediaciones del centro. En este vehiculo, se encontraban el resto del grupo desarticulado con varios ordenadores portatiles y tablets abiertos y conectados a paginas de test de la DGT para consultar las respuestas. Estos, comunicaban con la mujer que estaba en el aula haciendo el examen a traves de un diminuto receptor bluetooth que portaba en el interior de su oido. Luis de Lama, portavoz de la Guardia Civil de Trafico destaca que los ciudadanos, eran de origen chino, y copiaban en el examen utilizando la tecnologia facilitada por una organizacion. Destaca que, ademas de parte del fraude que supone copiar en un examen muchos de estos ciudadanos desconocian el idioma, no hablan ni entienden el español lo que supone un grave riesgo para la seguridad vial por desconocer las señales y letreros que avisan en carretera de muchas incidencias. " --- # mt5-small-spanish-summarization ## Model description This is a mt5-small model finetuned for generating headlines from the body of the news in Spanish. ## Training data The model was trained with 58425 news extracted from the La Razón (31477) and Público (26948) newspapers. These news belong to the following categories: "España", "Cultura", "Economía", "Igualdad" and "Política". ## Training procedure It was trained with Google Colab's GPU Tesla P100-PCIE-16GB for 2 epochs. ### Hyperparameters {evaluation_strategy = "epoch", learning_rate = 2e-4, per_device_train_batch_size = 6, per_device_eval_batch_size = 6, weight_decay = 0.01, save_total_limi t= 3, num_train_epochs = 2, predict_with_generate = True, fp16 = False} ## Eval results | metric | score | | --- | ----- | | rouge1 | 44.03 | | rouge2 | 28.2900 | | rougeL | 40.54 | | rougeLsum | 40.5587 | ### BibTeX entry and citation info ```bibtex @inproceedings{ mt5lrpjosmunpen, year={2020}, } ```
Atampy26/GPT-Glacier
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2021-12-12T14:07:42Z
--- language: pt tags: - portuguese - brazil - pt_BR widget: - text: Brasilia é a capital do <mask> --- ``` python from transformers import pipeline unmasker = pipeline('fill-mask', model='josu/roberta-pt-br') text = 'Brasilia é a capital do <mask>' [{'sequence': 'Brasilia é a capital do Brasil', 'score': 0.24386335909366608, 'token': 707, 'token_str': ' Brasil'}, {'sequence': 'Brasilia é a capital do estado', 'score': 0.2320091277360916, 'token': 1031, 'token_str': ' estado'}, {'sequence': 'Brasilia é a capital do país', 'score': 0.0665697380900383, 'token': 998, 'token_str': ' país'}, {'sequence': 'Brasilia é a capital do Rio', 'score': 0.05980581417679787, 'token': 993, 'token_str': ' Rio'}, {'sequence': 'Brasilia é a capital do capital', 'score': 0.058453518897295, 'token': 2027, 'token_str': ' capital'}] ```
Augustvember/WokkaBot3
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.929 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1446 - Accuracy: 0.929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9345 | 1.0 | 500 | 0.2509 | 0.918 | | 0.1855 | 2.0 | 1000 | 0.1626 | 0.928 | | 0.1036 | 3.0 | 1500 | 0.1446 | 0.929 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
Augustvember/WokkaBot5
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en thumbnail: tags: - pytorch - google/pegasus-reddit_tifu - summarization - samsum license: datasets: - samsum metrics: - rouge --- # Samsum Pegasus (Reddit/TIFU) for conversational summaries ## Model description Pegasus (Reddit/TIFU) for conversational summaries trained on the samsum dataset! ## Training data The data is the [samsum](https://huggingface.co/datasets/samsum) dataset for conversional summaries. The initial weigths were from the [google/pegasus-reddit_tifu](https://huggingface.co/google/pegasus-reddit_tifu). The hypothesis being that it would help the convergence on the samsum dataset to have weights trained on a larger summarization dataset first like the Reddit TIFU using casual language. ## Training procedure Used the _example/seq2seq/run_summarization.py_ script from the transformers source _4.5.0dev0_. n_epochs: 3,\ batch_size: 8, \ max_source_length: 256,\ max_target_length: 128 ## Eval results eval_gen_len: 35.9939,\ eval_loss: 1.4284523725509644,\ eval_rouge1: 46.5613,\ eval_rouge2: 23.6137,\ eval_rougeL: 37.2397,\ eval_rougeLsum: 42.7126,\ eval_samples_per_second: 4.302 ## Example from transformers import PegasusForConditionalGeneration, PegasusTokenizer model_name = "jpcorb20/pegasus-large-reddit_tifu-samsum-256" tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name) src_text = """Carter: Hey Alexis, I just wanted to let you know that I had a really nice time with you tonight.\r\nAlexis: Thanks Carter. Yeah, I really enjoyed myself as well.\r\nCarter: If you are up for it, I would really like to see you again soon.\r\nAlexis: Thanks Carter, I'm flattered. But I have a really busy week coming up.\r\nCarter: Yeah, no worries. I totally understand. But if you ever want to go grab dinner again, just let me know.\r\nAlexis: Yeah of course. Thanks again for tonight. Carter: Sure. Have a great night.\r\n""" token_params = dict(max_length=256, truncation=True, padding='longest', return_tensors="pt") batch = tokenizer(src_text, **token_params) translated = model.generate(**batch) decode_params = dict(num_beams=5, min_length=16, max_length=128, length_penalty=2) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True, **decode_params) print(tgt_text)
Augustvember/WokkaBot6
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-03-19T17:38:04Z
--- language: - en thumbnail: tags: - pytorch - google/pegasus-reddit_tifu - summarization - samsum license: datasets: - samsum metrics: - rouge --- # Samsum Pegasus (Reddit/TIFU) for conversational summaries ## Model description Pegasus (Reddit/TIFU) for conversational summaries trained on the samsum dataset! ## Training data The data is the [samsum](https://huggingface.co/datasets/samsum) dataset for conversional summaries. The initial weigths were from the [google/pegasus-reddit_tifu](https://huggingface.co/google/pegasus-reddit_tifu). The hypothesis being that it would help the convergence on the samsum dataset to have weights trained on a larger summarization dataset first like the Reddit TIFU using casual language. ## Training procedure Used the example/seq2seq/run_summarization.py script from the transformers source 4.5.0dev0. n_epochs: 3,\ batch_size: 4, \ max_source_length: 512,\ max_target_length: 128 ## Eval results eval_gen_len: 35.89,\ eval_loss: 1.3807392120361328,\ eval_rouge1: 47.3372,\ eval_rouge2: 24.4728,\ eval_rougeL: 37.9078,\ eval_rougeLsum: 43.5744,\ eval_samples_per_second: 2.814 ## Example from transformers import PegasusForConditionalGeneration, PegasusTokenizer model_name = "jpcorb20/pegasus-large-reddit_tifu-samsum-256" tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name) src_text = """Carter: Hey Alexis, I just wanted to let you know that I had a really nice time with you tonight.\\r\ Alexis: Thanks Carter. Yeah, I really enjoyed myself as well.\\r\ Carter: If you are up for it, I would really like to see you again soon.\\r\ Alexis: Thanks Carter, I'm flattered. But I have a really busy week coming up.\\r\ Carter: Yeah, no worries. I totally understand. But if you ever want to go grab dinner again, just let me know.\\r\ Alexis: Yeah of course. Thanks again for tonight. Carter: Sure. Have a great night.\\r\ """ token_params = dict(max_length=512, truncation=True, padding='longest', return_tensors="pt") batch = tokenizer(src_text, **token_params) translated = model.generate(**batch) decode_params = dict(num_beams=5, min_length=16, max_length=128, length_penalty=2) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True, **decode_params) print(tgt_text)
Augustvember/WokkaBot7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# Distilroberta for toxic comment detection See my GitHub repo [toxic-comment-server](https://github.com/jpcorb20/toxic-comment-server) The model was trained from [DistilRoberta](https://huggingface.co/distilroberta-base) on [Kaggle Toxic Comments](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) with the BCEWithLogits loss for Multi-Label prediction. Thus, please use the sigmoid activation on the logits (not made to use the softmax output, e.g. like the HF widget). ## Evaluation F1 scores: toxic: 0.72 severe_toxic: 0.38 obscene: 0.72 threat: 0.52 insult: 0.69 identity_hate: 0.60 Macro-F1: 0.61
Augustvember/WokkaBot8
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-02-10T15:13:04Z
--- language: en thumbnail: url to a thumbnail used in social sharing tags: - array - of - tags datasets: - jpwahle/machine-paraphrase-dataset widget: - text: Plagiarism is the representation of another author's writing, thoughts, ideas, or expressions as one's own work. --- # Longformer-base for Machine-Paraphrase Detection If you are using this model in your research work, please cite ``` @InProceedings{10.1007/978-3-030-96957-8_34, author="Wahle, Jan Philip and Ruas, Terry and Folt{\'y}nek, Tom{\'a}{\v{s}} and Meuschke, Norman and Gipp, Bela", title="Identifying Machine-Paraphrased Plagiarism", booktitle="Information for a Better World: Shaping the Global Future", year="2022", publisher="Springer International Publishing", address="Cham", pages="393--413", abstract="Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine learning classifiers and state-of-the-art neural language models. We analyze preprints of research papers, graduation theses, and Wikipedia articles, which we paraphrased using different configurations of the tools SpinBot and SpinnerChief. The best performing technique, Longformer, achieved an average F1 score of 80.99{\%} (F1=99.68{\%} for SpinBot and F1=71.64{\%} for SpinnerChief cases), while human evaluators achieved F1=78.4{\%} for SpinBot and F1=65.6{\%} for SpinnerChief cases. We show that the automated classification alleviates shortcomings of widely-used text-matching systems, such as Turnitin and PlagScan.", isbn="978-3-030-96957-8" } ``` This is the checkpoint for Longformer-base after being trained on the [Machine-Paraphrased Plagiarism Dataset](https://doi.org/10.5281/zenodo.3608000) Additional information about this model: * [The longformer-base-4096 model page](https://huggingface.co/allenai/longformer-base-4096) * [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) * [Official implementation by AllenAI](https://github.com/allenai/longformer) The model can be loaded to perform Plagiarism like so: ```py from transformers import AutoModelForSequenceClassification, AutoTokenizer AutoModelForSequenceClassification("jpelhaw/longformer-base-plagiarism-detection") AutoTokenizer.from_pretrained("jpelhaw/longformer-base-plagiarism-detection") input = "Plagiarism is the representation of another author's writing, \ thoughts, ideas, or expressions as one's own work." example = tokenizer.tokenize(input, add_special_tokens=True) answer = model(**example) # "plagiarised" ```
Augustvember/WokkaBot9
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: url to a thumbnail used in social sharing tags: - array - of - tags widget: - text: "question: which description describes the word \" java \" best in the following\ \ context? descriptions: [ \" A drink consisting of an infusion of ground coffee\ \ beans \" , \" a platform-independent programming lanugage \" , or \" an island\ \ in Indonesia to the south of Borneo \" ] context: I like to drink ' java '\ \ in the morning ." --- # T5-large for Word Sense Disambiguation If you are using this model in your research work, please cite ```bib @article{wahle2021incorporating, title={Incorporating Word Sense Disambiguation in Neural Language Models}, author={Wahle, Jan Philip and Ruas, Terry and Meuschke, Norman and Gipp, Bela}, journal={arXiv preprint arXiv:2106.07967}, year={2021} } ``` This is the checkpoint for T5-large after being trained on the [SemCor 3.0 dataset](http://lcl.uniroma1.it/wsdeval/). Additional information about this model: * [The t5-large model page](https://huggingface.co/t5-large) * [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) * [Official implementation by Google](https://github.com/google-research/text-to-text-transfer-transformer) The model can be loaded to perform a few-shot classification like so: ```py from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("jpelhaw/t5-word-sense-disambiguation") tokenizer = AutoTokenizer.from_pretrained("jpelhaw/t5-word-sense-disambiguation") input = '''question: which description describes the word " java "\ best in the following context? \ descriptions:[ " A drink consisting of an infusion of ground coffee beans ", " a platform-independent programming language ", or " an island in Indonesia to the south of Borneo " ] context: I like to drink " java " in the morning .''' example = tokenizer.tokenize(input, add_special_tokens=True) answer = model.generate(input_ids=example['input_ids'], attention_mask=example['attention_mask'], max_length=135) # "a drink consisting of an infusion of ground coffee beans" ```
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - multilingual - af - ar - bg - bn - de - el - en - es - et - eu - fa - fi - fr - he - hi - hu - id - it - ja - jv - ka - kk - ko - ml - mr - ms - my - nl - pt - ru - sw - ta - te - th - tl - tr - ur - vi - yo - zh language_bcp47: - fa-IR --- # XLM-R + NER This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME](https://github.com/google-research/xtreme) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached. The covered labels are: ``` LOC ORG PER O ``` ## Metrics on evaluation set: ### Average over the 40 languages Number of documents: 262300 ``` precision recall f1-score support ORG 0.81 0.81 0.81 102452 PER 0.90 0.91 0.91 108978 LOC 0.86 0.89 0.87 121868 micro avg 0.86 0.87 0.87 333298 macro avg 0.86 0.87 0.87 333298 ``` ### Afrikaans Number of documents: 1000 ``` precision recall f1-score support ORG 0.89 0.88 0.88 582 PER 0.89 0.97 0.93 369 LOC 0.84 0.90 0.86 518 micro avg 0.87 0.91 0.89 1469 macro avg 0.87 0.91 0.89 1469 ``` ### Arabic Number of documents: 10000 ``` precision recall f1-score support ORG 0.83 0.84 0.84 3507 PER 0.90 0.91 0.91 3643 LOC 0.88 0.89 0.88 3604 micro avg 0.87 0.88 0.88 10754 macro avg 0.87 0.88 0.88 10754 ``` ### Basque Number of documents: 10000 ``` precision recall f1-score support LOC 0.88 0.93 0.91 5228 ORG 0.86 0.81 0.83 3654 PER 0.91 0.91 0.91 4072 micro avg 0.89 0.89 0.89 12954 macro avg 0.89 0.89 0.89 12954 ``` ### Bengali Number of documents: 1000 ``` precision recall f1-score support ORG 0.86 0.89 0.87 325 LOC 0.91 0.91 0.91 406 PER 0.96 0.95 0.95 364 micro avg 0.91 0.92 0.91 1095 macro avg 0.91 0.92 0.91 1095 ``` ### Bulgarian Number of documents: 1000 ``` precision recall f1-score support ORG 0.86 0.83 0.84 3661 PER 0.92 0.95 0.94 4006 LOC 0.92 0.95 0.94 6449 micro avg 0.91 0.92 0.91 14116 macro avg 0.91 0.92 0.91 14116 ``` ### Burmese Number of documents: 100 ``` precision recall f1-score support LOC 0.60 0.86 0.71 37 ORG 0.68 0.63 0.66 30 PER 0.44 0.44 0.44 36 micro avg 0.57 0.65 0.61 103 macro avg 0.57 0.65 0.60 103 ``` ### Chinese Number of documents: 10000 ``` precision recall f1-score support ORG 0.70 0.69 0.70 4022 LOC 0.76 0.81 0.78 3830 PER 0.84 0.84 0.84 3706 micro avg 0.76 0.78 0.77 11558 macro avg 0.76 0.78 0.77 11558 ``` ### Dutch Number of documents: 10000 ``` precision recall f1-score support ORG 0.87 0.87 0.87 3930 PER 0.95 0.95 0.95 4377 LOC 0.91 0.92 0.91 4813 micro avg 0.91 0.92 0.91 13120 macro avg 0.91 0.92 0.91 13120 ``` ### English Number of documents: 10000 ``` precision recall f1-score support LOC 0.83 0.84 0.84 4781 PER 0.89 0.90 0.89 4559 ORG 0.75 0.75 0.75 4633 micro avg 0.82 0.83 0.83 13973 macro avg 0.82 0.83 0.83 13973 ``` ### Estonian Number of documents: 10000 ``` precision recall f1-score support LOC 0.89 0.92 0.91 5654 ORG 0.85 0.85 0.85 3878 PER 0.94 0.94 0.94 4026 micro avg 0.90 0.91 0.90 13558 macro avg 0.90 0.91 0.90 13558 ``` ### Finnish Number of documents: 10000 ``` precision recall f1-score support ORG 0.84 0.83 0.84 4104 LOC 0.88 0.90 0.89 5307 PER 0.95 0.94 0.94 4519 micro avg 0.89 0.89 0.89 13930 macro avg 0.89 0.89 0.89 13930 ``` ### French Number of documents: 10000 ``` precision recall f1-score support LOC 0.90 0.89 0.89 4808 ORG 0.84 0.87 0.85 3876 PER 0.94 0.93 0.94 4249 micro avg 0.89 0.90 0.90 12933 macro avg 0.89 0.90 0.90 12933 ``` ### Georgian Number of documents: 10000 ``` precision recall f1-score support PER 0.90 0.91 0.90 3964 ORG 0.83 0.77 0.80 3757 LOC 0.82 0.88 0.85 4894 micro avg 0.84 0.86 0.85 12615 macro avg 0.84 0.86 0.85 12615 ``` ### German Number of documents: 10000 ``` precision recall f1-score support LOC 0.85 0.90 0.87 4939 PER 0.94 0.91 0.92 4452 ORG 0.79 0.78 0.79 4247 micro avg 0.86 0.86 0.86 13638 macro avg 0.86 0.86 0.86 13638 ``` ### Greek Number of documents: 10000 ``` precision recall f1-score support ORG 0.86 0.85 0.85 3771 LOC 0.88 0.91 0.90 4436 PER 0.91 0.93 0.92 3894 micro avg 0.88 0.90 0.89 12101 macro avg 0.88 0.90 0.89 12101 ``` ### Hebrew Number of documents: 10000 ``` precision recall f1-score support PER 0.87 0.88 0.87 4206 ORG 0.76 0.75 0.76 4190 LOC 0.85 0.85 0.85 4538 micro avg 0.83 0.83 0.83 12934 macro avg 0.82 0.83 0.83 12934 ``` ### Hindi Number of documents: 1000 ``` precision recall f1-score support ORG 0.78 0.81 0.79 362 LOC 0.83 0.85 0.84 422 PER 0.90 0.95 0.92 427 micro avg 0.84 0.87 0.85 1211 macro avg 0.84 0.87 0.85 1211 ``` ### Hungarian Number of documents: 10000 ``` precision recall f1-score support PER 0.95 0.95 0.95 4347 ORG 0.87 0.88 0.87 3988 LOC 0.90 0.92 0.91 5544 micro avg 0.91 0.92 0.91 13879 macro avg 0.91 0.92 0.91 13879 ``` ### Indonesian Number of documents: 10000 ``` precision recall f1-score support ORG 0.88 0.89 0.88 3735 LOC 0.93 0.95 0.94 3694 PER 0.93 0.93 0.93 3947 micro avg 0.91 0.92 0.92 11376 macro avg 0.91 0.92 0.92 11376 ``` ### Italian Number of documents: 10000 ``` precision recall f1-score support LOC 0.88 0.88 0.88 4592 ORG 0.86 0.86 0.86 4088 PER 0.96 0.96 0.96 4732 micro avg 0.90 0.90 0.90 13412 macro avg 0.90 0.90 0.90 13412 ``` ### Japanese Number of documents: 10000 ``` precision recall f1-score support ORG 0.62 0.61 0.62 4184 PER 0.76 0.81 0.78 3812 LOC 0.68 0.74 0.71 4281 micro avg 0.69 0.72 0.70 12277 macro avg 0.69 0.72 0.70 12277 ``` ### Javanese Number of documents: 100 ``` precision recall f1-score support ORG 0.79 0.80 0.80 46 PER 0.81 0.96 0.88 26 LOC 0.75 0.75 0.75 40 micro avg 0.78 0.82 0.80 112 macro avg 0.78 0.82 0.80 112 ``` ### Kazakh Number of documents: 1000 ``` precision recall f1-score support ORG 0.76 0.61 0.68 307 LOC 0.78 0.90 0.84 461 PER 0.87 0.91 0.89 367 micro avg 0.81 0.83 0.82 1135 macro avg 0.81 0.83 0.81 1135 ``` ### Korean Number of documents: 10000 ``` precision recall f1-score support LOC 0.86 0.89 0.88 5097 ORG 0.79 0.74 0.77 4218 PER 0.83 0.86 0.84 4014 micro avg 0.83 0.83 0.83 13329 macro avg 0.83 0.83 0.83 13329 ``` ### Malay Number of documents: 1000 ``` precision recall f1-score support ORG 0.87 0.89 0.88 368 PER 0.92 0.91 0.91 366 LOC 0.94 0.95 0.95 354 micro avg 0.91 0.92 0.91 1088 macro avg 0.91 0.92 0.91 1088 ``` ### Malayalam Number of documents: 1000 ``` precision recall f1-score support ORG 0.75 0.74 0.75 347 PER 0.84 0.89 0.86 417 LOC 0.74 0.75 0.75 391 micro avg 0.78 0.80 0.79 1155 macro avg 0.78 0.80 0.79 1155 ``` ### Marathi Number of documents: 1000 ``` precision recall f1-score support PER 0.89 0.94 0.92 394 LOC 0.82 0.84 0.83 457 ORG 0.84 0.78 0.81 339 micro avg 0.85 0.86 0.85 1190 macro avg 0.85 0.86 0.85 1190 ``` ### Persian Number of documents: 10000 ``` precision recall f1-score support PER 0.93 0.92 0.93 3540 LOC 0.93 0.93 0.93 3584 ORG 0.89 0.92 0.90 3370 micro avg 0.92 0.92 0.92 10494 macro avg 0.92 0.92 0.92 10494 ``` ### Portuguese Number of documents: 10000 ``` precision recall f1-score support LOC 0.90 0.91 0.91 4819 PER 0.94 0.92 0.93 4184 ORG 0.84 0.88 0.86 3670 micro avg 0.89 0.91 0.90 12673 macro avg 0.90 0.91 0.90 12673 ``` ### Russian Number of documents: 10000 ``` precision recall f1-score support PER 0.93 0.96 0.95 3574 LOC 0.87 0.89 0.88 4619 ORG 0.82 0.80 0.81 3858 micro avg 0.87 0.88 0.88 12051 macro avg 0.87 0.88 0.88 12051 ``` ### Spanish Number of documents: 10000 ``` precision recall f1-score support PER 0.95 0.93 0.94 3891 ORG 0.86 0.88 0.87 3709 LOC 0.89 0.91 0.90 4553 micro avg 0.90 0.91 0.90 12153 macro avg 0.90 0.91 0.90 12153 ``` ### Swahili Number of documents: 1000 ``` precision recall f1-score support ORG 0.82 0.85 0.83 349 PER 0.95 0.92 0.94 403 LOC 0.86 0.89 0.88 450 micro avg 0.88 0.89 0.88 1202 macro avg 0.88 0.89 0.88 1202 ``` ### Tagalog Number of documents: 1000 ``` precision recall f1-score support LOC 0.90 0.91 0.90 338 ORG 0.83 0.91 0.87 339 PER 0.96 0.93 0.95 350 micro avg 0.90 0.92 0.91 1027 macro avg 0.90 0.92 0.91 1027 ``` ### Tamil Number of documents: 1000 ``` precision recall f1-score support PER 0.90 0.92 0.91 392 ORG 0.77 0.76 0.76 370 LOC 0.78 0.81 0.79 421 micro avg 0.82 0.83 0.82 1183 macro avg 0.82 0.83 0.82 1183 ``` ### Telugu Number of documents: 1000 ``` precision recall f1-score support ORG 0.67 0.55 0.61 347 LOC 0.78 0.87 0.82 453 PER 0.73 0.86 0.79 393 micro avg 0.74 0.77 0.76 1193 macro avg 0.73 0.77 0.75 1193 ``` ### Thai Number of documents: 10000 ``` precision recall f1-score support LOC 0.63 0.76 0.69 3928 PER 0.78 0.83 0.80 6537 ORG 0.59 0.59 0.59 4257 micro avg 0.68 0.74 0.71 14722 macro avg 0.68 0.74 0.71 14722 ``` ### Turkish Number of documents: 10000 ``` precision recall f1-score support PER 0.94 0.94 0.94 4337 ORG 0.88 0.89 0.88 4094 LOC 0.90 0.92 0.91 4929 micro avg 0.90 0.92 0.91 13360 macro avg 0.91 0.92 0.91 13360 ``` ### Urdu Number of documents: 1000 ``` precision recall f1-score support LOC 0.90 0.95 0.93 352 PER 0.96 0.96 0.96 333 ORG 0.91 0.90 0.90 326 micro avg 0.92 0.94 0.93 1011 macro avg 0.92 0.94 0.93 1011 ``` ### Vietnamese Number of documents: 10000 ``` precision recall f1-score support ORG 0.86 0.87 0.86 3579 LOC 0.88 0.91 0.90 3811 PER 0.92 0.93 0.93 3717 micro avg 0.89 0.90 0.90 11107 macro avg 0.89 0.90 0.90 11107 ``` ### Yoruba Number of documents: 100 ``` precision recall f1-score support LOC 0.54 0.72 0.62 36 ORG 0.58 0.31 0.41 35 PER 0.77 1.00 0.87 36 micro avg 0.64 0.68 0.66 107 macro avg 0.63 0.68 0.63 107 ``` ## Reproduce the results Download and prepare the dataset from the [XTREME repo](https://github.com/google-research/xtreme#download-the-data). Next, from the root of the transformers repo run: ``` cd examples/ner python run_tf_ner.py \ --data_dir . \ --labels ./labels.txt \ --model_name_or_path jplu/tf-xlm-roberta-base \ --output_dir model \ --max-seq-length 128 \ --num_train_epochs 2 \ --per_gpu_train_batch_size 16 \ --per_gpu_eval_batch_size 32 \ --do_train \ --do_eval \ --logging_dir logs \ --mode token-classification \ --evaluate_during_training \ --optimizer_name adamw ``` ## Usage with pipelines ```python from transformers import pipeline nlp_ner = pipeline( "ner", model="jplu/tf-xlm-r-ner-40-lang", tokenizer=( 'jplu/tf-xlm-r-ner-40-lang', {"use_fast": True}), framework="tf" ) text_fr = "Barack Obama est né à Hawaï." text_en = "Barack Obama was born in Hawaii." text_es = "Barack Obama nació en Hawai." text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。" text_ar = "ولد باراك أوباما في هاواي." nlp_ner(text_fr) #Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}] nlp_ner(text_en) #Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}] nlp_ner(test_es) #Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}] nlp_ner(test_zh) #Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}] nlp_ner(test_ar) #Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}] ```
Augustvember/wokkabottest2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
# Tensorflow XLM-RoBERTa In this repository you will find different versions of the XLM-RoBERTa model for Tensorflow. ## XLM-RoBERTa [XLM-RoBERTa](https://ai.facebook.com/blog/-xlm-r-state-of-the-art-cross-lingual-understanding-through-self-supervision/) is a scaled cross lingual sentence encoder. It is trained on 2.5T of data across 100 languages data filtered from Common Crawl. XLM-R achieves state-of-the-arts results on multiple cross lingual benchmarks. ## Model Weights | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `jplu/tf-xlm-roberta-base` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/tf_model.h5) | `jplu/tf-xlm-roberta-large` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/tf_model.h5) ## Usage With Transformers >= 2.4 the Tensorflow models of XLM-RoBERTa can be loaded like: ```python from transformers import TFXLMRobertaModel model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base") ``` Or ``` model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-large") ``` ## Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/jplu). ## Acknowledgments Thanks to all the Huggingface team for the support and their amazing library!
Axcel/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - conversational --- # Harry Potter DialoGPT Model
Axon/resnet50-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: urdu-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # urdu-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Ayham/albert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: en license: MIT datasets: - eli5_category --- Document Retriever model of [ELI5-Category Dataset](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/), need additional projection layer (see GitHub [repo](https://github.com/rexarski/ANLY580-final-project/blob/main/model_deploy/models/eli5c_qa_model.py))
Ayham/albert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2-Large-XLSR-53-German-GPT2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 10.02 - name: Test CER type: cer value: 4.7 --- # Wav2Vec2-Large-XLSR-53-German-GPT2 This is an encoder-decoder model for automatic speech recognition trained on on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. The encoder was initialized from [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) and the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). It was trained using a two step process: * fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell * relatively fast training * also works on small GPU (eg. 8 GB) * but may take a lot of disk space * should already yield decent results * fine-tuning the model end-to-end * much slower * needs a bigger GPU There is also one trick, which seemed to improve performance significantly: adding position embeddings to the encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`). The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning rate schedule.
Ayham/bert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 11.37 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Dev WER type: wer value: 31.16 - name: Dev CER type: cer value: 13.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.79 --- # XLS-R-1b-DE This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. (See `run.sh` for training parameters).
Ayham/bert_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - en tags: - Named Entity Recognition - SciBERT - Adverse Effect - Drug - Medical datasets: - ade_corpus_v2 widget: - text: "Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug." example_title: "Abortion, miscarriage, ..." - text: "Addiction to many sedatives and analgesics, such as diazepam, morphine, etc." example_title: "Addiction to many..." - text: "Birth defects associated with thalidomide" example_title: "Birth defects associated..." - text: "Bleeding of the intestine associated with aspirin therapy" example_title: "Bleeding of the intestine..." - text: "Cardiovascular disease associated with COX-2 inhibitors (i.e. Vioxx)" example_title: "Cardiovascular disease..." --- This is a SciBERT-based model fine-tuned to perform Named Entity Recognition for drug names and adverse drug effects. ![model image](https://raw.githubusercontent.com/jsylee/personal-projects/master/Hugging%20Face%20ADR%20Fine-Tuning/hf_adr.png) This model classifies input tokens into one of five classes: - `B-DRUG`: beginning of a drug entity - `I-DRUG`: within a drug entity - `B-EFFECT`: beginning of an AE entity - `I-EFFECT`: within an AE entity - `O`: outside either of the above entities To get started using this model for inference, simply set up an NER `pipeline` like below: ```python from transformers import (AutoModelForTokenClassification, AutoTokenizer, pipeline, ) model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner" model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=5, id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-EFFECT', 4: 'I-EFFECT'} ) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer) print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug.")) ``` SciBERT: https://huggingface.co/allenai/scibert_scivocab_uncased Dataset: https://huggingface.co/datasets/ade_corpus_v2
Ayham/distilbert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit tags: - generated_from_trainer datasets: - ju-bezdek/conll2003-SK-NER metrics: - precision - recall - f1 - accuracy model-index: - name: outputs results: - task: name: Token Classification type: token-classification dataset: name: ju-bezdek/conll2003-SK-NER type: ju-bezdek/conll2003-SK-NER args: conll2003-SK-NER metrics: - name: Precision type: precision value: 0.8189727994593682 - name: Recall type: recall value: 0.8389581169955002 - name: F1 type: f1 value: 0.8288450029922203 - name: Accuracy type: accuracy value: 0.9526157920337243 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the [ju-bezdek/conll2003-SK-NER](https://huggingface.co/datasets/ju-bezdek/conll2003-SK-NER) dataset. It achieves the following results on the evaluation (validation) set: - Loss: 0.1752 - Precision: 0.8190 - Recall: 0.8390 - F1: 0.8288 - Accuracy: 0.9526 ## Model description More information needed ## Code example ```python: from transformers import pipeline, AutoModel, AutoTokenizer from spacy import displacy import os model_path="ju-bezdek/slovakbert-conll2003-sk-ner" aggregation_strategy="max" ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy) input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax" ner_ents = ner_pipeline(input_sentence) print(ner_ents) ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0] options = {"ents":ent_group_labels} dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents] displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True) ``` ### Result: <div> <span class="tex2jax_ignore"><div class="entities" style="line-height: 2.5; direction: ltr"> <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Ruský <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">MISC</span> </mark> premiér <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Viktor Černomyrdin <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> v piatok povedal, že prezident <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Boris Jeľcin, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> , ktorý je na dovolenke mimo <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Moskvy <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> , podporil mierový plán šéfa bezpečnosti <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Alexandra Lebedu <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> pre <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Čečensko, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> uviedla tlačová agentúra <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Interfax <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span> </mark> </div></span> </div> ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3237 | 1.0 | 878 | 0.2541 | 0.7125 | 0.8059 | 0.7563 | 0.9283 | | 0.1663 | 2.0 | 1756 | 0.2370 | 0.7775 | 0.8090 | 0.7929 | 0.9394 | | 0.1251 | 3.0 | 2634 | 0.2289 | 0.7732 | 0.8029 | 0.7878 | 0.9385 | | 0.0984 | 4.0 | 3512 | 0.2818 | 0.7294 | 0.8189 | 0.7715 | 0.9294 | | 0.0808 | 5.0 | 4390 | 0.3138 | 0.7615 | 0.7900 | 0.7755 | 0.9326 | | 0.0578 | 6.0 | 5268 | 0.3072 | 0.7548 | 0.8222 | 0.7871 | 0.9370 | | 0.0481 | 7.0 | 6146 | 0.2778 | 0.7897 | 0.8156 | 0.8025 | 0.9408 | | 0.0414 | 8.0 | 7024 | 0.3336 | 0.7695 | 0.8201 | 0.7940 | 0.9389 | | 0.0268 | 9.0 | 7902 | 0.3294 | 0.7868 | 0.8140 | 0.8002 | 0.9409 | | 0.0204 | 10.0 | 8780 | 0.3693 | 0.7657 | 0.8239 | 0.7938 | 0.9376 | | 0.016 | 11.0 | 9658 | 0.3816 | 0.7932 | 0.8242 | 0.8084 | 0.9425 | | 0.0108 | 12.0 | 10536 | 0.3607 | 0.7929 | 0.8256 | 0.8089 | 0.9431 | | 0.0078 | 13.0 | 11414 | 0.3980 | 0.7915 | 0.8240 | 0.8074 | 0.9423 | | 0.0062 | 14.0 | 12292 | 0.4096 | 0.7995 | 0.8247 | 0.8119 | 0.9436 | | 0.0035 | 15.0 | 13170 | 0.4177 | 0.8006 | 0.8251 | 0.8127 | 0.9438 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Ayham/ernie_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ice_cream results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5166666507720947 --- # ice_cream Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chocolate ice cream ![chocolate ice cream](images/chocolate_ice_cream.jpg) #### vanilla ice cream ![vanilla ice cream](images/vanilla_ice_cream.jpg)
Ayham/roberta_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-indonesia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-indonesia This model is a fine-tuned version of [juanhebert/wav2vec2-indonesia](https://huggingface.co/juanhebert/wav2vec2-indonesia) on the commonvoice "id" dataset. It achieves the following results on the evaluation set: - Loss: 3.0727 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.8744 | 0.68 | 200 | 3.0301 | 1.0 | | 2.868 | 1.36 | 400 | 3.0727 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Ayham/robertagpt2_xsum2
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - conversational --- # Harry Potter DialogGPT Model
Ayham/xlmroberta_large_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - audio-to-audio - asteroid - audio - audio-source-separation datasets: - wham - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean` ♻️ Imported from https://zenodo.org/record/3903795#.X8pMBRNKjUI This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the sep_clean task of the WHAM! dataset. ### Demo: How to use in Asteroid ```python # coming soon ``` ### Training config - data: - mode: min - nondefault_nsrc: None - sample_rate: 8000 - segment: 2.0 - task: sep_clean - train_dir: data/wav8k/min/tr - valid_dir: data/wav8k/min/cv - filterbank: - kernel_size: 16 - n_filters: 64 - stride: 8 - main_args: - exp_dir: exp/train_dprnn_ks16/ - help: None - masknet: - bidirectional: True - bn_chan: 128 - chunk_size: 100 - dropout: 0 - hid_size: 128 - hop_size: 50 - in_chan: 64 - mask_act: sigmoid - n_repeats: 6 - n_src: 2 - out_chan: 64 - optim: - lr: 0.001 - optimizer: adam - weight_decay: 1e-05 - positional arguments: - training: - batch_size: 6 - early_stop: True - epochs: 200 - gradient_clipping: 5 - half_lr: True - num_workers: 6 #### Results - `si_sdr`: 18.227683982688003 - `si_sdr_imp`: 18.22883576588251 - `sdr`: 18.617789605060587 - `sdr_imp`: 18.466745426438173 - `sir`: 29.22773720052717 - `sir_imp`: 29.07669302190474 - `sar`: 19.116352171914485 - `sar_imp`: -130.06009796503054 - `stoi`: 0.9722025377865715 - `stoi_imp`: 0.23415680987800583 ### Citing Asteroid ```BibTex @inproceedings{Pariente2020Asteroid, title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, booktitle={Proc. Interspeech}, } ``` Or on arXiv: ```bibtex @misc{pariente2020asteroid, title={Asteroid: the PyTorch-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, eprint={2005.04132}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
Ayham/xlnet_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- language: eo thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png widget: - text: "Jen la komenco de bela <mask>." - text: "Uno du <mask>" - text: "Jen finiĝas bela <mask>." --- # EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ## Training Details - current checkpoint: 566000 - machine name: `galinette` ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png) ## Example pipeline ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="julien-c/EsperBERTo-small", tokenizer="julien-c/EsperBERTo-small" ) fill_mask("Jen la komenco de bela <mask>.") # This is the beginning of a beautiful <mask>. # => # { # 'score':0.06502299010753632 # 'sequence':'<s> Jen la komenco de bela vivo.</s>' # 'token':1099 # } # { # 'score':0.0421181358397007 # 'sequence':'<s> Jen la komenco de bela vespero.</s>' # 'token':5100 # } # { # 'score':0.024884626269340515 # 'sequence':'<s> Jen la komenco de bela laboro.</s>' # 'token':1570 # } # { # 'score':0.02324388362467289 # 'sequence':'<s> Jen la komenco de bela tago.</s>' # 'token':1688 # } # { # 'score':0.020378097891807556 # 'sequence':'<s> Jen la komenco de bela festo.</s>' # 'token':4580 # } ```
Ayham/xlnet_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - feature-extraction widget: - text: "Hello world" --- # Distilbert, used as a Feature Extractor
Ayham/xlnetgpt2_xsum7
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - sagemaker datasets: - imdb --- ## distilbert-sagemaker-1609802168 Trained from SageMaker HuggingFace extension. Fine-tuned from [distilbert-base-uncased](/distilbert-base-uncased) on [imdb](/datasets/imdb) 🔥 #### Eval | key | value | | --- | ----- | | eval_loss | 0.19187863171100616 | | eval_accuracy | 0.9259 | | eval_f1 | 0.9272173656811707 | | eval_precision | 0.9147286821705426 | | eval_recall | 0.9400517825134436 | | epoch | 1.0 |
Aymene/opus-mt-en-ro-finetuned-en-to-ro
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
in the editor i only change this line Example of a hf.co repo containing signed commits. hello tabs
Ayoola/pytorch_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - ci --- ## Dummy model used for unit testing and CI ```python import json import os from transformers import RobertaConfig, RobertaForMaskedLM, TFRobertaForMaskedLM DIRNAME = "./dummy-unknown" config = RobertaConfig(10, 20, 1, 1, 40) model = RobertaForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFRobertaForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Tokenizer: vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] vocab_file = os.path.join(DIRNAME, "vocab.json") merges_file = os.path.join(DIRNAME, "merges.txt") with open(vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) ```
Ayou/chinese_mobile_bert
[ "pytorch", "mobilebert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "MobileBertForMaskedLM" ], "model_type": "mobilebert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 inference: false --- ## Flair NER model `de-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-de-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
Ayran/DialoGPT-medium-harry-1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 inference: false --- ## Flair NER model `en-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "My name is Julien, I currently live in Paris, I work at Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
Ayran/DialoGPT-medium-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - image-classification - huggingpics metrics: - accuracy model-index: - name: hotdog-not-hotdog results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.824999988079071 --- # hotdog-not-hotdog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hot dog ![hot dog](images/hot_dog.jpg) #### not hot dog ![miscellaneous](images/miscellaneous.jpg)
Ayran/DialoGPT-medium-harry-potter-1-through-4-plus-6
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 inference: false --- ## Example ESPnet2 TTS model ♻️ Imported from https://zenodo.org/record/3963886/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). Model id: `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.loss.best` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Ayran/DialoGPT-small-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 widget: - text: "Hello, how are you doing?" --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3989498#.X90RlOlKjkM This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_tacotron2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_tacotron2_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
Babelscape/wikineural-multilingual-ner
[ "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "sequence-tagger-model", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41,608
null
--- language: zh tags: - roformer - pytorch - tf2.0 - paddlepaddle widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了`Whole Mask LM` 和 `SOP` 任务 训练逻辑参考了这里。https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/ernie-1.0 ## 训练细节: - paddlepaddle+paddlenlp - V100 x 4 - batch size 256 - max_seq_len 512 - max_lr 0.0001 - min_lr 0.00001 - weight_decay 0.01 - grad_clip 1.0 - 总共训练的句子```128*30w + 256*15w + 256*14.5w + 256*46.5w + 256*17w = 27648w``` - 约等于512 batch size, 100w步条件下的54% 最终loss: ```python [2022-02-05 16:05:59,067] [ INFO] - global step 170100, loss: 2.651634932, lm_loss: 2.603405, sop_loss: 0.048229, speed: 1.06 steps/s, ips: 271.68 seqs/s, learning rate: 6.66465e-05, loss_scaling: 137438.96875, num_good_steps: 356, num_bad_steps: 0 [2022-02-05 16:07:28,227] [ INFO] - global step 170200, loss: 2.822231531, lm_loss: 2.662831, sop_loss: 0.159401, speed: 1.12 steps/s, ips: 287.13 seqs/s, learning rate: 6.66263e-05, loss_scaling: 137438.96875, num_good_steps: 59, num_bad_steps: 0 [2022-02-05 16:08:57,346] [ INFO] - global step 170300, loss: 2.710968971, lm_loss: 2.673646, sop_loss: 0.037323, speed: 1.12 steps/s, ips: 287.26 seqs/s, learning rate: 6.66061e-05, loss_scaling: 137438.96875, num_good_steps: 159, num_bad_steps: 0 [2022-02-05 16:10:26,698] [ INFO] - global step 170400, loss: 2.867662907, lm_loss: 2.619032, sop_loss: 0.248631, speed: 1.12 steps/s, ips: 286.51 seqs/s, learning rate: 6.65859e-05, loss_scaling: 137438.96875, num_good_steps: 259, num_bad_steps: 0 [2022-02-05 16:11:55,714] [ INFO] - global step 170500, loss: 3.158756495, lm_loss: 2.953678, sop_loss: 0.205079, speed: 1.12 steps/s, ips: 287.59 seqs/s, learning rate: 6.65657e-05, loss_scaling: 137438.96875, num_good_steps: 359, num_bad_steps: 0 [2022-02-05 16:13:24,869] [ INFO] - global step 170600, loss: 2.860815048, lm_loss: 2.754750, sop_loss: 0.106064, speed: 1.12 steps/s, ips: 287.14 seqs/s, learning rate: 6.65455e-05, loss_scaling: 137438.96875, num_good_steps: 33, num_bad_steps: 0 ``` ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, BertTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||人||气||阳||雨]很好,我[想||就||要||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice_id_6.1", "transformers", "audio", "speech", "bahasa-indonesia", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: zh tags: - roformer - pytorch - tf2.0 inference: False --- # 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
[ "pytorch", "tensorboard", "wav2vec2", "el", "dataset:aesdd", "transformers", "audio", "audio-classification", "speech", "license:apache-2.0" ]
audio-classification
{ "architectures": [ "Wav2Vec2ForSpeechClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- language: zh tags: - roformer - pytorch - tf2.0 inference: False --- # 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```