Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-07-20 15:51:01
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-07-20 15:38:59
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
AmanHugginfaces/FastVton
AmanHugginfaces
2025-05-29T23:12:55Z
126
0
[ "license:cc-by-nc-nd-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-29T20:21:41Z
0
--- license: cc-by-nc-nd-4.0 ---
IaraMed/Query_results
IaraMed
2025-03-05T17:04:51Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T18:22:45Z
0
--- dataset_info: features: - name: ID dtype: int64 - name: query dtype: string - name: pergunta dtype: string - name: resposta dtype: string - name: Query_docs_v0 dtype: string - name: Query_docs_v1 dtype: string - name: Query_docs_v2 dtype: string - name: Query_docs_v3 dtype: string - name: Query_docs_v4 dtype: string - name: Query_docs_v5 dtype: string - name: Query_docs_v6 dtype: string - name: Query_docs_v0_large dtype: string - name: Query_docs_v1_large dtype: string - name: Query_docs_v2_large dtype: string - name: Query_docs_v3_large dtype: string - name: Query_docs_v4_large dtype: string - name: Query_docs_v5_large dtype: string - name: Query_docs_v6_large dtype: string splits: - name: train num_bytes: 35240801 num_examples: 500 download_size: 19899762 dataset_size: 35240801 configs: - config_name: default data_files: - split: train path: data/train-* ---
rohanc007/record-pick-lid-single
rohanc007
2025-06-15T18:54:08Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-15T18:52:45Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 16, "total_frames": 10591, "total_tasks": 1, "total_videos": 32, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:16" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.top": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 360, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.front": { "dtype": "video", "shape": [ 360, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 360, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
DKYoon/qwen25-nonambigqa-slope
DKYoon
2025-04-24T13:02:22Z
12
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-24T13:02:19Z
0
--- dataset_info: features: - name: question dtype: string - name: answers dtype: string - name: index dtype: string - name: prompt dtype: string - name: prompt_length dtype: int64 - name: prompt_pct dtype: int64 splits: - name: validation num_bytes: 5665613 num_examples: 11000 download_size: 874836 dataset_size: 5665613 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
gghfez/wizard_general
gghfez
2024-12-13T06:34:44Z
35
0
[ "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-05T04:59:27Z
0
--- license: apache-2.0 language: - en ---
infinite-dataset-hub/HealthCareEfficiency
infinite-dataset-hub
2025-03-22T05:05:08Z
17
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-03-22T05:04:59Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # HealthCareEfficiency tags: healthcare management, cost analysis, predictive modeling _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'HealthCareEfficiency' dataset aims to facilitate research in healthcare management by providing structured data on various healthcare facilities. It encompasses information such as patient outcomes, operational costs, and predictive modeling indicators to aid in analyzing healthcare efficiency and cost-effectiveness. Each entry represents a specific healthcare provider, detailing their performance metrics, service quality, and financial data. **CSV Content Preview:** ```csv Provider ID,Provider Name,Location,Patient Satisfaction Score,Average Length of Stay,Total Annual Costs,Readmission Rate,Predictive Model Accuracy 001,Sunrise Medical Center,Springfield,4.5,4.8,2.3 million,0.09,88% 002,HealthBridge Clinic,Springfield,4.7,3.9,1.7 million,0.12,92% 003,PrimeCare Hospital,Shelbyville,4.3,5.1,3.0 million,0.15,85% 004,Vitality Health Systems,Springfield,4.8,3.7,2.0 million,0.10,90% 005,CareFirst Medical Center,Shelbyville,4.6,4.5,2.5 million,0.11,87% ``` Each row in the dataset represents a healthcare provider with relevant data points for assessing their efficiency and cost management. The labels for each provider are their respective 'Provider ID' and 'Provider Name'. The 'Location' provides the geographical context of the facility. The 'Patient Satisfaction Score' is an indicator of patient experience, 'Average Length of Stay' shows operational efficiency, 'Total Annual Costs' reflect financial performance, 'Readmission Rate' measures quality of care, and 'Predictive Model Accuracy' signifies the effectiveness of predictive models used in healthcare management. **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query '': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=&dataset=HealthCareEfficiency&tags=healthcare+management,+cost+analysis,+predictive+modeling - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
youliangtan/tictac-bot
youliangtan
2025-03-27T20:47:16Z
232
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-03-26T23:12:00Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 8, "total_frames": 8464, "total_tasks": 2, "total_videos": 8, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:8" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.webcam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
AdnanElAssadi/esc-50-audio-reranking
AdnanElAssadi
2025-06-24T19:06:34Z
5
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T06:31:43Z
0
--- dataset_info: features: - name: query dtype: audio: sampling_rate: 16000 - name: positive sequence: audio: sampling_rate: 16000 - name: negative sequence: audio: sampling_rate: 16000 splits: - name: test num_bytes: 1940612800.0 num_examples: 200 download_size: 1435826508 dataset_size: 1940612800.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
timcryt/vscf_mlff_data
timcryt
2025-06-03T17:26:33Z
0
0
[ "size_categories:10K<n<100K", "region:us", "chemistry" ]
[]
2025-06-03T17:19:44Z
0
--- tags: - chemistry size_categories: - 10K<n<100K pretty_name: l --- Datasets used in the paper "Интерполяция ППЭ с помощью машинного обучения для ускорения расчётов негармонических частот колебаний молекул". ### Description - `vscf_dataset_2_5.xyz` is the main dataset used from pretraining and finetuning models, 19 molecules, 65168 points - `compare_dataset_OCCO.xyz` is the auxillary datased used to select the model architecture from DimeNet and SchNet, 1 molecule, 1042 points
nhagar/CC-MAIN-2019-39_urls
nhagar
2025-05-15T04:25:00Z
33
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "doi:10.57967/hf/4142", "region:us" ]
[]
2025-01-09T00:11:36Z
0
--- dataset_info: features: - name: crawl dtype: string - name: url_host_name dtype: string - name: url_count dtype: int64 splits: - name: train num_bytes: 2844632861 num_examples: 56764197 download_size: 1015654379 dataset_size: 2844632861 configs: - config_name: default data_files: - split: train path: data/train-* --- This dataset contains domain names and counts of (non-deduplicated) URLs for every record in the CC-MAIN-2019-39 snapshot of the Common Crawl. It was collected from the [AWS S3 version](https://aws.amazon.com/marketplace/pp/prodview-zxtb4t54iqjmy?sr=0-1&ref_=beagle&applicationId=AWSMPContessa) of Common Crawl via Amazon Athena. This dataset is derived from Common Crawl data and is subject to Common Crawl's Terms of Use: [https://commoncrawl.org/terms-of-use](https://commoncrawl.org/terms-of-use).
Asap7772/metamath-hint-sft-rand-2
Asap7772
2025-03-20T17:37:58Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T18:27:38Z
0
--- dataset_info: features: - name: problem dtype: string - name: hint dtype: string - name: response dtype: string splits: - name: test num_bytes: 2332332 num_examples: 528 - name: train num_bytes: 34429545 num_examples: 17930 download_size: 14237735 dataset_size: 36761877 configs: - config_name: default data_files: - split: test path: data/test-* - split: train path: data/train-* ---
Nexdata/100000_hours_Korean_Unsupervised_speech_dataset
Nexdata
2025-04-25T03:09:47Z
60
0
[ "language:ko", "license:cc-by-nd-4.0", "region:us" ]
[]
2025-02-10T09:44:05Z
0
--- license: cc-by-nd-4.0 language: - ko --- ## Description This dataset is just a sample of 100000 Hours Korean Unsupervised speech dataset (paid dataset), covers dialogues or monologues in 28 common domains, such as daily vlogs, travel, podcast, technology, beauty, etc., mirrors real-world interactions, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied. For more details & to download the rest of the dataset(paid),please refer to the link: https://www.nexdata.ai/datasets/speechrecog?source=Huggingface ## Specifications # Format 16k Hz, 16 bit, wav, mono channel # Data source public resources # Content category Dialogue or monologue in several common domains, such as daily vlogs, travel, podcast, technology, beauty, etc # Language Korean # Country Korea # Recording condition Mixed(indoor, public place, entertainment,etc.) # Language(Region) Code ko-KR # Licensing Information Commercial License
sxj1215/vqa_val
sxj1215
2025-02-11T22:32:51Z
27
0
[ "size_categories:1K<n<10K", "modality:image", "modality:text", "region:us" ]
[]
2025-02-11T22:32:45Z
0
--- dataset_info: features: - name: messages list: - name: role dtype: string - name: content dtype: string - name: images list: image splits: - name: val num_bytes: 314064573.0 num_examples: 2000 download_size: 53778574 dataset_size: 314064573.0 configs: - config_name: default data_files: - split: val path: data/val-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b35038be-8c02-4044-bd5a-8d5eeb164b9a
argilla-internal-testing
2024-10-08T09:08:45Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-08T09:08:44Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
jackkuo/LLM-Ribozyme-Kinetics-Golden-Benchmark
jackkuo
2025-03-12T05:52:05Z
44
0
[ "license:cc", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-24T02:07:43Z
0
--- license: cc --- ### 🚩Citation Please cite the following paper if you use jackkuo/LLM-Ribozyme-Kinetics-Golden-Benchmark in your work. ```bibtex @article {Jiang2025.03.03.641178, author = {Jiang, Jinling and Hu, Jie and Xie, Siwei and Guo, Menghao and Dong, Yuhang and Fu, Shuai and Jiang, Xianyue and Yue, Zhenlei and Shi, Junchao and Zhang, Xiaoyu and Song, Minghui and Chen, Guangyong and Lu, Hua and Wu, Xindong and Guo, Pei and Han, Da and Sun, Zeyi and Qiu, Jiezhong}, title = {Enzyme Co-Scientist: Harnessing Large Language Models for Enzyme Kinetic Data Extraction from Literature}, elocation-id = {2025.03.03.641178}, year = {2025}, doi = {10.1101/2025.03.03.641178}, publisher = {Cold Spring Harbor Laboratory}, abstract = {The extraction of molecular annotations from scientific literature is critical for advancing data-driven research. However, traditional methods, which primarily rely on human curation, are labor-intensive and error-prone. Here, we present an LLM-based agentic workflow that enables automatic and efficient data extraction from literature with high accuracy. As a demonstration, our workflow successfully delivers a dataset containing over 91,000 enzyme kinetics entries from around 3,500 papers. It achieves an average F1 score above 0.9 on expert-annotated subsets of protein enzymes and can be extended to the ribozyme domain in fewer than 3 days at less than $90. This method opens up new avenues for accelerating the pace of scientific research.Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178}, eprint = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178.full.pdf}, journal = {bioRxiv} } ```
menheraorg/vericava-posts
menheraorg
2025-03-23T10:35:24Z
15
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-21T19:45:37Z
0
--- license: apache-2.0 ---
hanlincs/in1k_clip_qwen25vl_3b_224res_64tokens_new_pt
hanlincs
2025-04-11T16:02:53Z
325
0
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T07:21:17Z
0
--- license: apache-2.0 ---
yongdol/formde
yongdol
2025-02-10T05:02:03Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-02T07:56:52Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 194804 num_examples: 1433 download_size: 51096 dataset_size: 194804 configs: - config_name: default data_files: - split: train path: data/train-* ---
wentingzhao/code_mbpp_Qwen2.5-Coder-7B-Instruct_temp1.0_num16_tests_mbpp_Qwen2.5-Coder-3B-Instruct
wentingzhao
2025-04-28T07:21:16Z
21
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T07:21:15Z
0
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 7275023 num_examples: 500 download_size: 2501050 dataset_size: 7275023 configs: - config_name: default data_files: - split: test path: data/test-* ---
samoline/tulu-3-sft-mixture
samoline
2025-06-18T11:03:24Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-18T11:02:49Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 2055887452 num_examples: 896090 download_size: 1058834743 dataset_size: 2055887452 configs: - config_name: default data_files: - split: train path: data/train-* ---
GAYOEN/figma-train-expand
GAYOEN
2025-06-12T02:30:27Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-12T02:25:00Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 97224336.928 num_examples: 2024 download_size: 98101687 dataset_size: 97224336.928 configs: - config_name: default data_files: - split: train path: data/train-* ---
r1v3r/askama_axum_burn
r1v3r
2025-06-22T05:51:48Z
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-22T05:51:36Z
0
--- dataset_info: features: - name: repo dtype: string - name: pull_number dtype: int64 - name: instance_id dtype: string - name: issue_numbers sequence: string - name: base_commit dtype: string - name: patch dtype: string - name: test_patch dtype: string - name: problem_statement dtype: string - name: hints_text dtype: string - name: created_at dtype: string - name: version dtype: string - name: updated_at dtype: string - name: environment_setup_commit dtype: string - name: FAIL_TO_PASS sequence: string - name: PASS_TO_PASS sequence: string - name: FAIL_TO_FAIL sequence: string - name: PASS_TO_FAIL sequence: 'null' - name: source_dir dtype: string splits: - name: train num_bytes: 4212504 num_examples: 98 download_size: 1017104 dataset_size: 4212504 configs: - config_name: default data_files: - split: train path: data/train-* ---
anirudhb11/R1-1.5b-Par-Temp-0.7-Ans-40-32768-deg-64-path-3-n-16000-s-6800-e-6900
anirudhb11
2025-06-08T22:57:36Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-08T22:57:32Z
0
--- dataset_info: features: - name: prompt dtype: string - name: gold_answer dtype: string - name: raw_answer_0 dtype: string - name: extracted_answer_0 dtype: string - name: num_boxed_0 dtype: int64 - name: grade_0 dtype: bool - name: ans_token_len_0 dtype: int64 - name: finished_0 dtype: bool - name: raw_answer_1 dtype: string - name: extracted_answer_1 dtype: string - name: num_boxed_1 dtype: int64 - name: grade_1 dtype: bool - name: ans_token_len_1 dtype: int64 - name: finished_1 dtype: bool - name: raw_answer_2 dtype: string - name: extracted_answer_2 dtype: string - name: num_boxed_2 dtype: int64 - name: grade_2 dtype: bool - name: ans_token_len_2 dtype: int64 - name: finished_2 dtype: bool - name: raw_answer_3 dtype: string - name: extracted_answer_3 dtype: string - name: num_boxed_3 dtype: int64 - name: grade_3 dtype: bool - name: ans_token_len_3 dtype: int64 - name: finished_3 dtype: bool - name: raw_answer_4 dtype: string - name: extracted_answer_4 dtype: string - name: num_boxed_4 dtype: int64 - name: grade_4 dtype: bool - name: ans_token_len_4 dtype: int64 - name: finished_4 dtype: bool - name: raw_answer_5 dtype: string - name: extracted_answer_5 dtype: string - name: num_boxed_5 dtype: int64 - name: grade_5 dtype: bool - name: ans_token_len_5 dtype: int64 - name: finished_5 dtype: bool - name: raw_answer_6 dtype: string - name: extracted_answer_6 dtype: string - name: num_boxed_6 dtype: int64 - name: grade_6 dtype: bool - name: ans_token_len_6 dtype: int64 - name: finished_6 dtype: bool - name: raw_answer_7 dtype: string - name: extracted_answer_7 dtype: string - name: num_boxed_7 dtype: int64 - name: grade_7 dtype: bool - name: ans_token_len_7 dtype: int64 - name: finished_7 dtype: bool - name: raw_answer_8 dtype: string - name: extracted_answer_8 dtype: string - name: num_boxed_8 dtype: int64 - name: grade_8 dtype: bool - name: ans_token_len_8 dtype: int64 - name: finished_8 dtype: bool - name: raw_answer_9 dtype: string - name: extracted_answer_9 dtype: string - name: num_boxed_9 dtype: int64 - name: grade_9 dtype: bool - name: ans_token_len_9 dtype: int64 - name: finished_9 dtype: bool - name: raw_answer_10 dtype: string - name: extracted_answer_10 dtype: string - name: num_boxed_10 dtype: int64 - name: grade_10 dtype: bool - name: ans_token_len_10 dtype: int64 - name: finished_10 dtype: bool - name: raw_answer_11 dtype: string - name: extracted_answer_11 dtype: string - name: num_boxed_11 dtype: int64 - name: grade_11 dtype: bool - name: ans_token_len_11 dtype: int64 - name: finished_11 dtype: bool - name: raw_answer_12 dtype: string - name: extracted_answer_12 dtype: string - name: num_boxed_12 dtype: int64 - name: grade_12 dtype: bool - name: ans_token_len_12 dtype: int64 - name: finished_12 dtype: bool - name: raw_answer_13 dtype: string - name: extracted_answer_13 dtype: string - name: num_boxed_13 dtype: int64 - name: grade_13 dtype: bool - name: ans_token_len_13 dtype: int64 - name: finished_13 dtype: bool - name: raw_answer_14 dtype: string - name: extracted_answer_14 dtype: string - name: num_boxed_14 dtype: int64 - name: grade_14 dtype: bool - name: ans_token_len_14 dtype: int64 - name: finished_14 dtype: bool - name: raw_answer_15 dtype: string - name: extracted_answer_15 dtype: string - name: num_boxed_15 dtype: int64 - name: grade_15 dtype: bool - name: ans_token_len_15 dtype: int64 - name: finished_15 dtype: bool - name: raw_answer_16 dtype: string - name: extracted_answer_16 dtype: string - name: num_boxed_16 dtype: int64 - name: grade_16 dtype: bool - name: ans_token_len_16 dtype: int64 - name: finished_16 dtype: bool - name: raw_answer_17 dtype: string - name: extracted_answer_17 dtype: string - name: num_boxed_17 dtype: int64 - name: grade_17 dtype: bool - name: ans_token_len_17 dtype: int64 - name: finished_17 dtype: bool - name: raw_answer_18 dtype: string - name: extracted_answer_18 dtype: string - name: num_boxed_18 dtype: int64 - name: grade_18 dtype: bool - name: ans_token_len_18 dtype: int64 - name: finished_18 dtype: bool - name: raw_answer_19 dtype: string - name: extracted_answer_19 dtype: string - name: num_boxed_19 dtype: int64 - name: grade_19 dtype: bool - name: ans_token_len_19 dtype: int64 - name: finished_19 dtype: bool - name: raw_answer_20 dtype: string - name: extracted_answer_20 dtype: string - name: num_boxed_20 dtype: int64 - name: grade_20 dtype: bool - name: ans_token_len_20 dtype: int64 - name: finished_20 dtype: bool - name: raw_answer_21 dtype: string - name: extracted_answer_21 dtype: string - name: num_boxed_21 dtype: int64 - name: grade_21 dtype: bool - name: ans_token_len_21 dtype: int64 - name: finished_21 dtype: bool - name: raw_answer_22 dtype: string - name: extracted_answer_22 dtype: string - name: num_boxed_22 dtype: int64 - name: grade_22 dtype: bool - name: ans_token_len_22 dtype: int64 - name: finished_22 dtype: bool - name: raw_answer_23 dtype: string - name: extracted_answer_23 dtype: string - name: num_boxed_23 dtype: int64 - name: grade_23 dtype: bool - name: ans_token_len_23 dtype: int64 - name: finished_23 dtype: bool - name: raw_answer_24 dtype: string - name: extracted_answer_24 dtype: string - name: num_boxed_24 dtype: int64 - name: grade_24 dtype: bool - name: ans_token_len_24 dtype: int64 - name: finished_24 dtype: bool - name: raw_answer_25 dtype: string - name: extracted_answer_25 dtype: string - name: num_boxed_25 dtype: int64 - name: grade_25 dtype: bool - name: ans_token_len_25 dtype: int64 - name: finished_25 dtype: bool - name: raw_answer_26 dtype: string - name: extracted_answer_26 dtype: string - name: num_boxed_26 dtype: int64 - name: grade_26 dtype: bool - name: ans_token_len_26 dtype: int64 - name: finished_26 dtype: bool - name: raw_answer_27 dtype: string - name: extracted_answer_27 dtype: string - name: num_boxed_27 dtype: int64 - name: grade_27 dtype: bool - name: ans_token_len_27 dtype: int64 - name: finished_27 dtype: bool - name: raw_answer_28 dtype: string - name: extracted_answer_28 dtype: string - name: num_boxed_28 dtype: int64 - name: grade_28 dtype: bool - name: ans_token_len_28 dtype: int64 - name: finished_28 dtype: bool - name: raw_answer_29 dtype: string - name: extracted_answer_29 dtype: string - name: num_boxed_29 dtype: int64 - name: grade_29 dtype: bool - name: ans_token_len_29 dtype: int64 - name: finished_29 dtype: bool - name: raw_answer_30 dtype: string - name: extracted_answer_30 dtype: string - name: num_boxed_30 dtype: int64 - name: grade_30 dtype: bool - name: ans_token_len_30 dtype: int64 - name: finished_30 dtype: bool - name: raw_answer_31 dtype: string - name: extracted_answer_31 dtype: string - name: num_boxed_31 dtype: int64 - name: grade_31 dtype: bool - name: ans_token_len_31 dtype: int64 - name: finished_31 dtype: bool - name: raw_answer_32 dtype: string - name: extracted_answer_32 dtype: string - name: num_boxed_32 dtype: int64 - name: grade_32 dtype: bool - name: ans_token_len_32 dtype: int64 - name: finished_32 dtype: bool - name: raw_answer_33 dtype: string - name: extracted_answer_33 dtype: string - name: num_boxed_33 dtype: int64 - name: grade_33 dtype: bool - name: ans_token_len_33 dtype: int64 - name: finished_33 dtype: bool - name: raw_answer_34 dtype: string - name: extracted_answer_34 dtype: string - name: num_boxed_34 dtype: int64 - name: grade_34 dtype: bool - name: ans_token_len_34 dtype: int64 - name: finished_34 dtype: bool - name: raw_answer_35 dtype: string - name: extracted_answer_35 dtype: string - name: num_boxed_35 dtype: int64 - name: grade_35 dtype: bool - name: ans_token_len_35 dtype: int64 - name: finished_35 dtype: bool - name: raw_answer_36 dtype: string - name: extracted_answer_36 dtype: string - name: num_boxed_36 dtype: int64 - name: grade_36 dtype: bool - name: ans_token_len_36 dtype: int64 - name: finished_36 dtype: bool - name: raw_answer_37 dtype: string - name: extracted_answer_37 dtype: string - name: num_boxed_37 dtype: int64 - name: grade_37 dtype: bool - name: ans_token_len_37 dtype: int64 - name: finished_37 dtype: bool - name: raw_answer_38 dtype: string - name: extracted_answer_38 dtype: string - name: num_boxed_38 dtype: int64 - name: grade_38 dtype: bool - name: ans_token_len_38 dtype: int64 - name: finished_38 dtype: bool - name: raw_answer_39 dtype: string - name: extracted_answer_39 dtype: string - name: num_boxed_39 dtype: int64 - name: grade_39 dtype: bool - name: ans_token_len_39 dtype: int64 - name: finished_39 dtype: bool splits: - name: train num_bytes: 138313683 num_examples: 100 download_size: 23935415 dataset_size: 138313683 configs: - config_name: default data_files: - split: train path: data/train-* ---
avinash18/codeblox
avinash18
2025-03-28T11:54:19Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-28T11:53:58Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 34818 num_examples: 88 - name: test num_bytes: 3854 num_examples: 10 download_size: 12598 dataset_size: 38672 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
SPRINGLab/IndicTTS_Bengali
SPRINGLab
2024-12-30T09:31:48Z
69
1
[ "task_categories:text-to-speech", "language:bn", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-to-speech" ]
2024-11-18T14:11:20Z
0
--- dataset_info: features: - name: utterance_id dtype: string - name: text dtype: string - name: audio dtype: audio - name: gender dtype: string splits: - name: train num_bytes: 7694726487.52 num_examples: 12852 download_size: 6654425645 dataset_size: 7694726487.52 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - text-to-speech language: - bn --- # Bengali Indic TTS Dataset This dataset is derived from the Indic TTS Database project, specifically using the Bengali monolingual recordings from both male and female speakers. The dataset contains high-quality speech recordings with corresponding text transcriptions, making it suitable for text-to-speech (TTS) research and development. ## Dataset Details - **Language**: Bengali - **Total Duration**: ~15.06 hours (Male: 10.05 hours, Female: 5.01 hours) - **Audio Format**: WAV - **Sampling Rate**: 48000Hz - **Speakers**: 2 (1 male, 1 female native Bengali speakers) - **Content Type**: Monolingual Bengali utterances - **Recording Quality**: Studio-quality recordings - **Transcription**: Available for all audio files ## Dataset Source This dataset is derived from the Indic TTS Database, a special corpus of Indian languages developed by the Speech Technology Consortium at IIT Madras. The original database covers 13 major languages of India and contains 10,000+ spoken sentences/utterances for both monolingual and English recordings. ## License & Usage This dataset is subject to the original Indic TTS license terms. Before using this dataset, please ensure you have read and agreed to the [License For Use of Indic TTS](https://www.iitm.ac.in/donlab/indictts/downloads/license.pdf). ## Acknowledgments This dataset would not be possible without the work of the Speech Technology Consortium at IIT Madras. Special acknowledgment goes to: - Speech Technology Consortium - Department of Computer Science & Engineering and Electrical Engineering, IIT Madras - Bhashini, MeitY - Prof. Hema A Murthy & Prof. S Umesh ## Citation If you use this dataset in your research or applications, please cite the original Indic TTS project: ```bibtex @misc{indictts2023, title = {Indic {TTS}: A Text-to-Speech Database for Indian Languages}, author = {Speech Technology Consortium and {Hema A Murthy} and {S Umesh}}, year = {2023}, publisher = {Indian Institute of Technology Madras}, url = {https://www.iitm.ac.in/donlab/indictts/}, institution = {Department of Computer Science and Engineering and Electrical Engineering, IIT MADRAS} } ``` ## Contact For any issues or queries related to this HuggingFace dataset version, feel free to comment in the Community tab. For queries related to the original Indic TTS database, please contact: [email protected] ## Original Database Access The original complete database can be accessed at: https://www.iitm.ac.in/donlab/indictts/database Note: The original database provides access to data in multiple Indian languages and variants. This HuggingFace dataset specifically contains the Bengali monolingual portion of that database.
qfq/eidata_remove_solution_20241026_201944_iter1
qfq
2024-10-27T03:23:59Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-27T03:23:54Z
0
--- dataset_info: features: - name: id dtype: string - name: sample_id dtype: int64 - name: question_statement dtype: string - name: thinking_trajectory sequence: string - name: golden_answer dtype: string - name: answer dtype: string - name: problem dtype: string - name: orig_problem dtype: string - name: orig_solution dtype: string - name: orig_answer dtype: string - name: orig_subject dtype: string - name: orig_level dtype: int64 - name: orig_unique_id dtype: string - name: text dtype: string splits: - name: train num_bytes: 60845546 num_examples: 11396 - name: test num_bytes: 3208760 num_examples: 600 download_size: 30091879 dataset_size: 64054306 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Luffytaro-1/asr_en_ar_switch_split_91_final
Luffytaro-1
2025-02-23T20:23:22Z
54
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-15T17:14:43Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 4184248.0 num_examples: 40 download_size: 3687546 dataset_size: 4184248.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
alecocc/ontonotes5-pii-med
alecocc
2025-06-20T15:39:16Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-20T15:39:13Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: string - name: source_text dtype: string splits: - name: train num_bytes: 511416 num_examples: 1158 download_size: 185076 dataset_size: 511416 configs: - config_name: default data_files: - split: train path: data/train-* ---
xzhong/ChemRAG
xzhong
2025-02-06T21:50:25Z
66
0
[ "task_categories:question-answering", "language:en", "size_categories:10M<n<100M", "arxiv:2402.13178", "region:us", "medical", "question answering", "large language model", "retrieval-augmented generation" ]
[ "question-answering" ]
2025-02-06T19:09:52Z
0
--- task_categories: - question-answering language: - en tags: - medical - question answering - large language model - retrieval-augmented generation size_categories: - 10M<n<100M --- # The PubMed Corpus in MedRAG This HF dataset contains the snippets from the PubMed corpus used in [MedRAG](https://arxiv.org/abs/2402.13178). It can be used for medical Retrieval-Augmented Generation (RAG). ## News - (02/26/2024) The "id" column has been reformatted. A new "PMID" column is added. ## Dataset Details ### Dataset Descriptions [PubMed](https://pubmed.ncbi.nlm.nih.gov/) is the most widely used literature resource, containing over 36 million biomedical articles. For MedRAG, we use a PubMed subset of 23.9 million articles with valid titles and abstracts. This HF dataset contains our ready-to-use snippets for the PubMed corpus, including 23,898,701 snippets with an average of 296 tokens. ### Dataset Structure Each row is a snippet of PubMed, which includes the following features: - id: a unique identifier of the snippet - title: the title of the PubMed article from which the snippet is collected - content: the abstract of the PubMed article from which the snippet is collected - contents: a concatenation of 'title' and 'content', which will be used by the [BM25](https://github.com/castorini/pyserini) retriever ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> ```shell git clone https://huggingface.co/datasets/MedRAG/pubmed ``` ### Use in MedRAG ```python >> from src.medrag import MedRAG >> question = "A lesion causing compression of the facial nerve at the stylomastoid foramen will cause ipsilateral" >> options = { "A": "paralysis of the facial muscles.", "B": "paralysis of the facial muscles and loss of taste.", "C": "paralysis of the facial muscles, loss of taste and lacrimation.", "D": "paralysis of the facial muscles, loss of taste, lacrimation and decreased salivation." } >> medrag = MedRAG(llm_name="OpenAI/gpt-3.5-turbo-16k", rag=True, retriever_name="MedCPT", corpus_name="PubMed") >> answer, snippets, scores = medrag.answer(question=question, options=options, k=32) # scores are given by the retrieval system ``` ## Citation ```shell @article{xiong2024benchmarking, title={Benchmarking Retrieval-Augmented Generation for Medicine}, author={Guangzhi Xiong and Qiao Jin and Zhiyong Lu and Aidong Zhang}, journal={arXiv preprint arXiv:2402.13178}, year={2024} } ```
mlfoundations-dev/d1_science_longest_1k
mlfoundations-dev
2025-04-27T15:11:41Z
73
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-27T15:11:29Z
0
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: reasoning sequence: string - name: deepseek_solution sequence: string - name: final_reasoning_trace sequence: string - name: _majority_responses sequence: string - name: verified_final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 824412583.892405 num_examples: 1000 download_size: 324533937 dataset_size: 824412583.892405 configs: - config_name: default data_files: - split: train path: data/train-* ---
batharun2/train
batharun2
2025-02-05T20:51:12Z
20
0
[ "license:apache-2.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T20:48:53Z
0
--- license: apache-2.0 ---
HungVu2003/opt-350m_beta_0.5_alpha_0.2_num-company_3_dataset_1_for_gen_3_v2
HungVu2003
2025-05-06T03:07:27Z
0
0
[ "region:us" ]
[]
2025-05-06T03:07:25Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 4066563 num_examples: 14998 download_size: 2167612 dataset_size: 4066563 configs: - config_name: default data_files: - split: train path: data/train-* ---
asafd60/heb-synth-law
asafd60
2025-02-27T10:03:37Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-27T10:01:48Z
0
--- dataset_info: features: - name: text dtype: string - name: image dtype: image splits: - name: train num_bytes: 3142434964.0 num_examples: 5000 - name: test num_bytes: 286872164.0 num_examples: 452 download_size: 3498820121 dataset_size: 3429307128.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Iliamitin/finetuning_s1_eng_de
Iliamitin
2025-03-06T15:22:41Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-06T15:22:38Z
0
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 47447 num_examples: 121 download_size: 17361 dataset_size: 47447 configs: - config_name: default data_files: - split: train path: data/train-* ---
JakeOh/rft-finetune-llama-3.2-1b-math-k10
JakeOh
2025-01-29T20:27:04Z
24
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-29T20:26:58Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: with_hint dtype: bool - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 422537832 num_examples: 331408 - name: test num_bytes: 24280918 num_examples: 19158 download_size: 105491811 dataset_size: 446818750 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
kothasuhas/anatomy-textbooks-16
kothasuhas
2024-11-29T22:23:40Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T09:43:07Z
0
--- dataset_info: features: - name: text dtype: string - name: textbook_name dtype: string splits: - name: train num_bytes: 44368206 num_examples: 10437 download_size: 22618503 dataset_size: 44368206 configs: - config_name: default data_files: - split: train path: data/train-* ---
mrlyle/img-nov-20
mrlyle
2024-11-20T18:14:29Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-20T18:14:28Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': test '1': train splits: - name: train num_bytes: 20637.0 num_examples: 4 - name: test num_bytes: 22886.0 num_examples: 3 download_size: 51062 dataset_size: 43523.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
MikeGreen2710/smoothed_all_df_1600_1700
MikeGreen2710
2024-12-06T17:30:36Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-06T17:30:35Z
0
--- dataset_info: features: - name: week_period dtype: int64 - name: weighted_mean_price dtype: float64 - name: variance_street_index dtype: float64 - name: count_example dtype: float64 - name: posterior_price dtype: float64 - name: observation_weight dtype: float64 - name: smoothed_price dtype: float64 - name: posterior_weight dtype: float64 - name: observation_reliable dtype: float64 - name: smoothed_price_lower dtype: float64 - name: smoothed_price_upper dtype: float64 - name: city dtype: string - name: district dtype: string - name: ward dtype: string - name: street dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 958235 num_examples: 5519 download_size: 223601 dataset_size: 958235 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyentranai07/FullData_TechniqueAG
nguyentranai07
2025-05-16T02:22:36Z
80
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-13T15:39:22Z
0
--- dataset_info: features: - name: instructions dtype: string - name: Context dtype: string - name: Response dtype: string splits: - name: train num_bytes: 873541382 num_examples: 180000 download_size: 200117931 dataset_size: 873541382 configs: - config_name: default data_files: - split: train path: data/train-* ---
kings-crown/FVELer_PISA_Proven
kings-crown
2025-02-26T21:59:24Z
14
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-26T04:33:07Z
0
--- license: mit dataset_info: features: - name: natural_language_statement dtype: string - name: formal_proof dtype: string splits: - name: train num_bytes: 2550366 num_examples: 1138 download_size: 943224 dataset_size: 2550366 configs: - config_name: default data_files: - split: train path: data/train-* ---
Stratsyn/llama2-1b-resume-classification-test
Stratsyn
2024-10-21T06:17:51Z
52
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-21T06:14:03Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 23060 num_examples: 210 download_size: 1788 dataset_size: 23060 configs: - config_name: default data_files: - split: train path: data/train-* ---
kevin017/bioS_inverse_QA_birth_large_all_answer
kevin017
2025-04-10T11:37:57Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T11:36:12Z
0
--- dataset_info: features: - name: question dtype: string - name: all_answers sequence: string splits: - name: train num_bytes: 4071364 num_examples: 34961 - name: test num_bytes: 4071364 num_examples: 34961 download_size: 2128510 dataset_size: 8142728 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
dgambettaphd/D_gen9_run1_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
2024-12-02T07:40:47Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-02T07:40:45Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 584241 num_examples: 1000 download_size: 352050 dataset_size: 584241 configs: - config_name: default data_files: - split: train path: data/train-* ---
fancyzhx/amazon_polarity
fancyzhx
2024-01-09T12:23:33Z
4,531
46
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1509.01626", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - apache-2.0 multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification pretty_name: Amazon Review Polarity dataset_info: config_name: amazon_polarity features: - name: label dtype: class_label: names: '0': negative '1': positive - name: title dtype: string - name: content dtype: string splits: - name: train num_bytes: 1604364432 num_examples: 3600000 - name: test num_bytes: 178176193 num_examples: 400000 download_size: 1145430497 dataset_size: 1782540625 configs: - config_name: amazon_polarity data_files: - split: train path: amazon_polarity/train-* - split: test path: amazon_polarity/test-* default: true train-eval-index: - config: amazon_polarity task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: content: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for Amazon Review Polarity ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://registry.opendata.aws/ - **Repository:** https://github.com/zhangxiangxiao/Crepe - **Paper:** https://arxiv.org/abs/1509.01626 - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Xiang Zhang](mailto:[email protected]) ### Dataset Summary The Amazon reviews dataset consists of reviews from amazon. The data span a period of 18 years, including ~35 million reviews up to March 2013. Reviews include product and user information, ratings, and a plaintext review. ### Supported Tasks and Leaderboards - `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the content and the title, predict the correct star rating. ### Languages Mainly English. ## Dataset Structure ### Data Instances A typical data point, comprises of a title, a content and the corresponding label. An example from the AmazonPolarity test set looks as follows: ``` { 'title':'Great CD', 'content':"My lovely Pat has one of the GREAT voices of her generation. I have listened to this CD for YEARS and I still LOVE IT. When I'm in a good mood it makes me feel better. A bad mood just evaporates like sugar in the rain. This CD just oozes LIFE. Vocals are jusat STUUNNING and lyrics just kill. One of life's hidden gems. This is a desert isle CD in my book. Why she never made it big is just beyond me. Everytime I play this, no matter black, white, young, old, male, female EVERYBODY says one thing ""Who was that singing ?""", 'label':1 } ``` ### Data Fields - 'title': a string containing the title of the review - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'content': a string containing the body of the document - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'label': either 1 (positive) or 0 (negative) rating. ### Data Splits The Amazon reviews polarity dataset is constructed by taking review score 1 and 2 as negative, and 4 and 5 as positive. Samples of score 3 is ignored. Each class has 1,800,000 training samples and 200,000 testing samples. ## Dataset Creation ### Curation Rationale The Amazon reviews polarity dataset is constructed by Xiang Zhang ([email protected]). It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Apache License 2.0 ### Citation Information McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics: understanding rating dimensions with review text." In Proceedings of the 7th ACM conference on Recommender systems, pp. 165-172. 2013. Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015) ### Contributions Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset.
jeffreygwang/pythia_dedupe_mia_0-97000_97000-98500
jeffreygwang
2025-01-06T22:49:55Z
63
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T03:31:17Z
0
--- dataset_info: features: - name: tokens sequence: int64 - name: text dtype: string splits: - name: member num_bytes: 368149519 num_examples: 15000 - name: nonmember num_bytes: 368412465 num_examples: 15000 download_size: 250016950 dataset_size: 736561984 configs: - config_name: default data_files: - split: member path: data/member-* - split: nonmember path: data/nonmember-* ---
fatihay/a
fatihay
2024-10-28T18:43:56Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-28T18:43:51Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 591756.0 num_examples: 663 download_size: 150658 dataset_size: 591756.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
FrankFu2027/yourbench_example
FrankFu2027
2025-04-27T01:17:19Z
68
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-15T03:06:28Z
0
--- dataset_info: - config_name: chunked features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string - name: chunks list: - name: chunk_id dtype: string - name: chunk_text dtype: string - name: multihop_chunks list: - name: chunk_ids sequence: string - name: chunks_text sequence: string - name: chunk_info_metrics list: - name: avg_token_length dtype: float64 - name: bigram_diversity dtype: float64 - name: flesch_reading_ease dtype: float64 - name: gunning_fog dtype: float64 - name: perplexity dtype: float64 - name: token_count dtype: float64 - name: unique_token_ratio dtype: float64 - name: chunking_model dtype: string splits: - name: train num_bytes: 83943 num_examples: 2 download_size: 61170 dataset_size: 83943 - config_name: ingested features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 splits: - name: train num_bytes: 21568 num_examples: 6 download_size: 15710 dataset_size: 21568 - config_name: lighteval features: - name: question dtype: string - name: additional_instructions dtype: string - name: ground_truth_answer dtype: string - name: question_category dtype: string - name: kind dtype: string - name: estimated_difficulty dtype: int64 - name: citations sequence: string - name: document_id dtype: string - name: chunk_ids sequence: string - name: question_generating_model dtype: string - name: chunks sequence: string - name: document dtype: string splits: - name: train num_bytes: 607609 num_examples: 55 download_size: 47767 dataset_size: 607609 - config_name: multi_hop_questions features: - name: document_id dtype: string - name: source_chunk_ids sequence: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: citations sequence: string - name: raw_response dtype: string splits: - name: train num_bytes: 107049 num_examples: 12 download_size: 26711 dataset_size: 107049 - config_name: single_shot_questions features: - name: chunk_id dtype: string - name: document_id dtype: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: raw_response dtype: string - name: citations sequence: string splits: - name: train num_bytes: 271212 num_examples: 43 download_size: 42377 dataset_size: 271212 - config_name: summarized features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string splits: - name: train num_bytes: 22479 num_examples: 2 download_size: 26371 dataset_size: 22479 configs: - config_name: chunked data_files: - split: train path: chunked/train-* - config_name: ingested data_files: - split: train path: ingested/train-* - config_name: lighteval data_files: - split: train path: lighteval/train-* - config_name: multi_hop_questions data_files: - split: train path: multi_hop_questions/train-* - config_name: single_shot_questions data_files: - split: train path: single_shot_questions/train-* - config_name: summarized data_files: - split: train path: summarized/train-* ---
danielshaps/nchlt_speech_nbl
danielshaps
2025-02-11T18:10:35Z
43
0
[ "task_categories:automatic-speech-recognition", "language:nr", "license:cc-by-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "automatic-speech-recognition" ]
2025-02-11T17:03:47Z
0
--- license: cc-by-3.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: audio dtype: audio - name: age dtype: string - name: gender dtype: string - name: speaker_id dtype: string - name: duration dtype: string - name: pdp_score dtype: string - name: utterance_id dtype: string - name: disfluency dtype: bool - name: text dtype: string - name: typos dtype: bool - name: split dtype: string splits: - name: train num_bytes: 3768382188.98 num_examples: 39415 - name: test num_bytes: 265680079.204 num_examples: 3108 download_size: 3257143817 dataset_size: 4034062268.184 task_categories: - automatic-speech-recognition language: - nr pretty_name: NCHLT Speech Corpus -- isiNdebele --- # NCHLT Speech Corpus -- isiNdebele This is the isiNdebele language part of the NCHLT Speech Corpus of the South African languages. Language code (ISO 639): `nbl` URI: <https://hdl.handle.net/20.500.12185/272> ## Licence: Creative Commons Attribution 3.0 Unported License (CC BY 3.0): <http://creativecommons.org/licenses/by/3.0/legalcode> ## Attribution: The Department of Arts and Culture of the government of the Republic of South Africa (DAC), Council for Scientific and Industrial Research (CSIR) and North-West University (NWU). ## Citation Information: ``` @inproceedings{barnard2014nchlt, title={{The NCHLT speech corpus of the South African languages}}, author={Barnard, Etienne and Davel, Marelie H and Van Heerden, Charl and De Wet, Febe and Badenhorst, Jaco}, booktitle={Workshop Spoken Language Technologies for Under-resourced Languages (SLTU)}, year={2014} } ```
timaeus/pubmed_central_max_loss_delta_ablation_l0h4
timaeus
2025-03-18T11:23:31Z
49
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-18T11:23:25Z
0
--- dataset_info: features: - name: text dtype: string - name: meta struct: - name: pile_set_name dtype: string splits: - name: train num_bytes: 88448432 num_examples: 10000 download_size: 42568236 dataset_size: 88448432 configs: - config_name: default data_files: - split: train path: data/train-* ---
1231czx/llama3_sft_balanced_rr60k_ep3tmp10
1231czx
2024-12-28T17:58:15Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-28T17:58:14Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 19935055 num_examples: 5000 download_size: 6581768 dataset_size: 19935055 configs: - config_name: default data_files: - split: train path: data/train-* ---
Minuskid/AndroidControl_300_samples_v2
Minuskid
2025-04-16T11:47:09Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-16T11:36:27Z
0
--- dataset_info: features: - name: id dtype: string - name: images sequence: image - name: problem dtype: string - name: answer dtype: string - name: pred_steps sequence: string - name: image_size sequence: int64 splits: - name: train num_bytes: 197541333.0 num_examples: 312 - name: validation num_bytes: 92426547.0 num_examples: 158 download_size: 289165293 dataset_size: 289967880.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
EunsuKim/temp_value
EunsuKim
2025-03-08T06:29:25Z
64
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T06:29:22Z
0
--- dataset_info: features: - name: 'Unnamed: 0' dtype: string - name: Prompt dtype: string - name: Context dtype: string - name: Label dtype: string - name: Valid_keys dtype: string - name: message_prompt dtype: string - name: message dtype: string - name: new_prompt dtype: string - name: output dtype: string - name: task_type dtype: string - name: target_type dtype: string - name: subject_type dtype: string - name: prompt dtype: string - name: context dtype: string - name: options dtype: string - name: answer dtype: string - name: reference dtype: string - name: problem_type dtype: string - name: benchmark_name dtype: string - name: original_category dtype: string - name: additional_info dtype: string splits: - name: ko num_bytes: 56903 num_examples: 8 - name: general num_bytes: 9571 num_examples: 1 download_size: 94714 dataset_size: 66474 configs: - config_name: default data_files: - split: ko path: data/ko-* - split: general path: data/general-* ---
french-datasets/bismarck91_enA-frA-tokenised-part13
french-datasets
2025-06-21T14:12:17Z
0
0
[ "task_categories:audio-to-audio", "language:fra", "language:eng", "region:us" ]
[ "audio-to-audio" ]
2025-06-21T14:12:04Z
0
--- language: - fra - eng viewer: false task_categories: - audio-to-audio --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [bismarck91/enA-frA-tokenised-part13](https://huggingface.co/datasets/bismarck91/enA-frA-tokenised-part13).
Han03430/CoCoPIF
Han03430
2025-05-16T01:37:25Z
133
1
[ "task_categories:question-answering", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "question-answering" ]
2025-05-15T07:48:32Z
0
--- license: cc-by-nc-sa-4.0 task_categories: - question-answering language: - en tags: - code pretty_name: CoCoPIF size_categories: - n<1K ---
ll4m4i/LLM4
ll4m4i
2024-12-29T11:28:39Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-29T11:28:00Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: response dtype: string splits: - name: train num_bytes: 124385.16363636364 num_examples: 49 - name: test num_bytes: 15230.836363636363 num_examples: 6 download_size: 108042 dataset_size: 139616.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
yulan-team/YuLan-Mini-Datasets
yulan-team
2025-04-11T14:15:50Z
438
9
[ "task_categories:text-generation", "language:en", "language:zh", "size_categories:10M<n<100M", "arxiv:2412.17743", "region:us", "code", "math", "science" ]
[ "text-generation" ]
2024-12-25T05:51:49Z
0
--- language: - en - zh arxiv: 2412.17743 configs: - config_name: code_instruction_opencoder-sft2-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/code/instruction/opencoder-sft2_qwen2.5_7B/* - config_name: code_instruction_the-stack-v2-oss-qwen2.5-7B_score3 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-oss_qwen2.5-7B/*/score3/* - config_name: code_instruction_the-stack-v2-oss-qwen2.5-7B_score4 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-oss_qwen2.5-7B/*/score4/* - config_name: code_instruction_the-stack-v2-oss-qwen2.5-7B_score5 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-oss_qwen2.5-7B/*/score5/* - config_name: code_instruction_the-stack-v2-seed_score0 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score0/* - config_name: code_instruction_the-stack-v2-seed_score1 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score1/* - config_name: code_instruction_the-stack-v2-seed_score2 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score2/* - config_name: code_instruction_the-stack-v2-seed_score3 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score3/* - config_name: code_instruction_the-stack-v2-seed_score4 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score4/* - config_name: code_instruction_the-stack-v2-seed_score5 data_files: - split: train path: yulan-mini-syn/code/instruction/the-stack-v2-seed/score5/* - config_name: code_pretrain_LeetCode_score0 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score0/* - config_name: code_pretrain_LeetCode_score1 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score1/* - config_name: code_pretrain_LeetCode_score2 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score2/* - config_name: code_pretrain_LeetCode_score3 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score3/* - config_name: code_pretrain_LeetCode_score4 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score4/* - config_name: code_pretrain_LeetCode_score5 data_files: - split: train path: yulan-mini-syn/code/pretrain/LeetCode/score5/* - config_name: cosmopedia_web_samples_v2_scored_score_3 data_files: - split: train path: cosmopedia/web_samples_v2_scored/score_3/train-* - config_name: cosmopedia_web_samples_v2_scored_score_4 data_files: - split: train path: cosmopedia/web_samples_v2_scored/score_4/train-* - config_name: cosmopedia_web_samples_v2_scored_score_5 data_files: - split: train path: cosmopedia/web_samples_v2_scored/score_5/train-* - config_name: infimm-webmath-dedup_score-0 data_files: - split: train path: infimm-webmath-dedup/score-0/train-* - config_name: infimm-webmath-dedup-score-2 data_files: - split: train path: infimm-webmath-dedup/score-2/train-* - config_name: infimm-webmath-dedup_score-3 data_files: - split: train path: infimm-webmath-dedup/score-3/train-* - config_name: infimm-webmath-dedup_score-4 data_files: - split: train path: infimm-webmath-dedup/score-4/train-* - config_name: infimm-webmath-dedup_score-5 data_files: - split: train path: infimm-webmath-dedup/score-5/train-* - config_name: math_instruction_AMPS-mathematica-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/AMPS_mathematica_qwen2.5-7B/* - config_name: math_instruction_automathetext-oss-qwen2.5-7B_score2 data_files: - split: train path: yulan-mini-syn/math/instruction/automathetext-oss_qwen2.5-7B/score2/* - config_name: math_instruction_automathetext-oss-qwen2.5-7B_score3 data_files: - split: train path: yulan-mini-syn/math/instruction/automathetext-oss_qwen2.5-7B/score3/* - config_name: math_instruction_automathetext-oss-qwen2.5-7B_score4 data_files: - split: train path: yulan-mini-syn/math/instruction/automathetext-oss_qwen2.5-7B/score4/* - config_name: math_instruction_automathetext-oss-qwen2.5-7B_score5 data_files: - split: train path: yulan-mini-syn/math/instruction/automathetext-oss_qwen2.5-7B/score5/* - config_name: math_instruction_deepmind-math-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/deepmind_math_qwen2.5-7B/* - config_name: math_instruction_dm-math-program-generated data_files: - split: train path: yulan-mini-syn/math/instruction/dm_math_program_generated/* - config_name: math_instruction_long-cot-qwq data_files: - split: train path: yulan-mini-syn/math/instruction/long_cot_qwq/* - config_name: math_instruction_math-others data_files: - split: train path: yulan-mini-syn/math/instruction/math_others/*/* - config_name: math_instruction_math-rethink data_files: - split: train path: yulan-mini-syn/math/instruction/math-rethink/*/* - config_name: math_instruction_mathinstruct-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/mathinstruct_qwen2.5_7B/* - config_name: math_instruction_metamathqa-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/metamathqa_qwen2.5-7B/* - config_name: math_instruction_numina data_files: - split: train path: yulan-mini-syn/math/instruction/numina/* - config_name: math_instruction_numina-qwen2.5-72B data_files: - split: train path: yulan-mini-syn/math/instruction/numina_qwen2.5_72B/* - config_name: math_instruction_orca-math-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/orca_math_qwen2.5-7B/* - config_name: math_instruction_revthink-metemath data_files: - split: train path: yulan-mini-syn/math/instruction/revthink_metemath/* - config_name: math_instruction_ruc-o1-mcts data_files: - split: train path: yulan-mini-syn/math/instruction/ruc-o1-mcts/* - config_name: math_instruction_syn-qa-qwen2.5-7B data_files: - split: train path: yulan-mini-syn/math/instruction/syn_qa_qwen2.5-7B/* - config_name: the-stack-v2_Jupyter_Notebook_md2_scored_classified_score_1 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md2_scored_classified/score_1/train-* - config_name: the-stack-v2_Jupyter_Notebook_md2_scored_classified_score_2 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md2_scored_classified/score_2/train-* - config_name: the-stack-v2_Jupyter_Notebook_md2_scored_classified_score_3 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md2_scored_classified/score_3/train-* - config_name: the-stack-v2_Jupyter_Notebook_md2_scored_classified_score_4 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md2_scored_classified/score_4/train-* - config_name: the-stack-v2_Jupyter_Notebook_md2_scored_classified_score_5 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md2_scored_classified/score_5/train-* - config_name: the-stack-v2_Jupyter_Notebook_md_scored_classified_score_2 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md_scored_classified/score_2/train-* - config_name: the-stack-v2_Jupyter_Notebook_md_scored_classified_score_3 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md_scored_classified/score_3/train-* - config_name: the-stack-v2_Jupyter_Notebook_md_scored_classified_score_4 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md_scored_classified/score_4/train-* - config_name: the-stack-v2_Jupyter_Notebook_md_scored_classified_score_5 data_files: - split: train path: the-stack-v2/Jupyter_Notebook/md_scored_classified/score_5/train-* - config_name: the_stack_v2_python_cleaned_scored_dedup_score_1 data_files: - split: train path: the_stack_v2_python_cleaned_scored_dedup/score_1/train-* - config_name: the_stack_v2_python_cleaned_scored_dedup_score_2 data_files: - split: train path: the_stack_v2_python_cleaned_scored_dedup/score_2/train-* - config_name: the_stack_v2_python_cleaned_scored_dedup_score_3 data_files: - split: train path: the_stack_v2_python_cleaned_scored_dedup/score_3/train-* - config_name: the_stack_v2_python_cleaned_scored_dedup_score_4 data_files: - split: train path: the_stack_v2_python_cleaned_scored_dedup/score_4/train-* - config_name: the_stack_v2_python_cleaned_scored_dedup_score_5 data_files: - split: train path: the_stack_v2_python_cleaned_scored_dedup/score_5/train-* tags: - code - math - science task_categories: - text-generation --- ## YuLan-Mini Datasets - **🔥 Updated (April 11, 2025): For a clearer presentation of the information, see the table at this link: [link](https://docs.google.com/spreadsheets/d/1YP8-loVUxgxo36UEpOwflR3GRHLieBnLlCy8g10g8RU/edit?gid=0#gid=0).** This datasets contains: 1. Classified data using [`python-edu-scorer`](https://huggingface.co/HuggingFaceTB/python-edu-scorer) and [`fineweb-edu-classifier`](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) 2. Synthesized data (math, code, instruction, ...) 3. Retrieved data using [`math`](https://huggingface.co/yulan-team/math-classifier), [`code`](https://huggingface.co/yulan-team/code-classifier), and [`reasoninig-classifier`](https://huggingface.co/yulan-team/reasoning-classifier) ## Notice Since we have used BPE-Dropout, in order to ensure accuracy, the data we uploaded is tokenized. 由于我们使用了BPE-Dropout,为了保证准确性,我们上传的是tokenized后的数据。 For text datasets, please refer to [YuLan-Mini-Text-Datasets](https://huggingface.co/datasets/yulan-team/YuLan-Mini-Text-Datasets). 你可以在[YuLan-Mini-Text-Datasets](https://huggingface.co/datasets/yulan-team/YuLan-Mini-Text-Datasets)找到文本格式的数据集。 You can find the link of seed data [here](https://github.com/RUC-GSAI/YuLan-Mini/tree/main/pretrain/datasets). 你可以在[这里](https://github.com/RUC-GSAI/YuLan-Mini/tree/main/pretrain/datasets)找到种子数据。 --- ## Contributing We welcome any form of contribution, including feedback on model bad cases, feature suggestions, and example contributions. You can do so by submitting an [issue](https://github.com/RUC-GSAI/YuLan-Mini/issues). ## The Team YuLan-Mini is developed and maintained by [AI Box, Renmin University of China](http://aibox.ruc.edu.cn/). ## License - The code in this repository, the model weights, and optimizer states are released under the [MIT License](./LICENSE). - Policies regarding the use of model weights, intermediate optimizer states, and training data will be announced in future updates. - Limitations: Despite our efforts to mitigate safety concerns and encourage the generation of ethical and lawful text, the probabilistic nature of language models may still lead to unexpected outputs. For instance, responses might contain bias, discrimination, or other harmful content. Please refrain from disseminating such content. We are not liable for any consequences arising from the spread of harmful information. ## Citation If you find YuLan-Mini helpful for your research or development, please cite [our technical report](https://arxiv.org/abs/2412.17743): ``` @article{hu2024yulan, title={YuLan-Mini: An Open Data-efficient Language Model}, author={Hu, Yiwen and Song, Huatong and Deng, Jia and Wang, Jiapeng and Chen, Jie and Zhou, Kun and Zhu, Yutao and Jiang, Jinhao and Dong, Zican and Zhao, Wayne Xin and others}, journal={arXiv preprint arXiv:2412.17743}, year={2024} } ```
Mike22g/tanarav2
Mike22g
2025-04-05T23:12:53Z
14
0
[ "license:apache-2.0", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-05T23:10:32Z
0
--- license: apache-2.0 ---
michsethowusu/dyula-tsonga_sentence-pairs
michsethowusu
2025-04-02T12:58:00Z
6
0
[ "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T12:57:56Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Dyula dtype: string - name: Tsonga dtype: string splits: - name: train num_bytes: 10700833 num_examples: 82077 download_size: 10700833 dataset_size: 10700833 configs: - config_name: default data_files: - split: train path: Dyula-Tsonga_Sentence-Pairs.csv --- # Dyula-Tsonga_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Dyula-Tsonga_Sentence-Pairs - **Number of Rows**: 82077 - **Number of Columns**: 3 - **Columns**: score, Dyula, Tsonga ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Dyula`: The first sentence in the pair (language 1). 3. `Tsonga`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
hieuhb2003/quora
hieuhb2003
2025-02-14T10:30:39Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-14T10:30:36Z
0
--- dataset_info: features: - name: dialogue list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 61566670 num_examples: 56402 download_size: 35530878 dataset_size: 61566670 configs: - config_name: default data_files: - split: train path: data/train-* ---
Samll/gsm8k_early_answering_data_v2
Samll
2025-01-20T11:21:53Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-20T11:21:51Z
0
--- dataset_info: features: - name: Original_Prompt dtype: string - name: Original_COT dtype: string - name: Original_CoT_answer dtype: string - name: Truncated_Input dtype: string - name: Truncated_Input_response dtype: string - name: Truncated_Input_extracted_answer dtype: string - name: Truncated_CoT_length dtype: int64 - name: Correct_Answer dtype: string splits: - name: train num_bytes: 22528435 num_examples: 8147 download_size: 1452620 dataset_size: 22528435 configs: - config_name: default data_files: - split: train path: data/train-* ---
Chojins/chess_game_002_white
Chojins
2025-05-22T04:45:09Z
31
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "chess", "game" ]
[ "robotics" ]
2025-01-06T23:52:37Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - chess - game configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 50, "total_frames": 23962, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
TAUR-dev/MEASURESrw_v3_4d_eval__test
TAUR-dev
2025-05-23T18:40:30Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-23T17:00:37Z
0
--- dataset_info: features: - name: question dtype: string - name: solution dtype: string - name: eval_prompt dtype: string - name: eval_internal_cot dtype: string - name: eval_solution dtype: string - name: raw_eval_prompt dtype: string - name: judge_correct dtype: bool - name: judge_reasoning dtype: string - name: model_name dtype: string - name: measurement_answer_verification_reasoning dtype: string - name: measurement_answer_verification_final_count dtype: int64 - name: measurement_answer_verification_metadata sequence: string - name: measurement_answer_verification_raw_response dtype: string - name: extracted_answer_values sequence: string - name: measurement_answer_verification_final_recount dtype: int64 splits: - name: train num_bytes: 19509 num_examples: 5 download_size: 23073 dataset_size: 19509 configs: - config_name: default data_files: - split: train path: data/train-* ---
haydn-jones/TxGemma_V0_200k
haydn-jones
2025-04-04T15:38:01Z
16
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-04T15:37:53Z
0
--- dataset_info: features: - name: input dtype: large_string - name: output dtype: large_string splits: - name: train num_bytes: 199280938 num_examples: 200000 download_size: 29278107 dataset_size: 199280938 configs: - config_name: default data_files: - split: train path: data/train-* ---
uzair921/CONLL2003_LLM_RAG_42_50_MiniLM
uzair921
2025-01-08T10:44:59Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-08T10:44:55Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-PER '2': I-PER '3': B-ORG '4': I-ORG '5': B-LOC '6': I-LOC '7': B-MISC '8': I-MISC splits: - name: train num_bytes: 2470469 num_examples: 9829 - name: validation num_bytes: 866541 num_examples: 3250 - name: test num_bytes: 784956 num_examples: 3453 download_size: 1002827 dataset_size: 4121966 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
MewtwoX23/ade20k
MewtwoX23
2024-11-10T15:34:27Z
40
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-10T09:11:55Z
0
--- dataset_info: features: - name: image dtype: image - name: seg dtype: image - name: text dtype: string splits: - name: train num_bytes: 31089648080.43 num_examples: 20210 download_size: 31282897836 dataset_size: 31089648080.43 configs: - config_name: default data_files: - split: train path: data/train-* ---
vlinhd11/viVoice-v1-p7
vlinhd11
2025-03-02T17:27:32Z
19
0
[ "region:us" ]
[]
2025-01-16T16:40:28Z
0
--- dataset_info: features: - name: channel dtype: string - name: text dtype: string - name: audio dtype: audio - name: id dtype: string - name: description dtype: string splits: - name: train num_bytes: 23797146613.0 num_examples: 120000 download_size: 22782359395 dataset_size: 23797146613.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
kh4dien/amazon_reviews
kh4dien
2025-02-17T06:33:48Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-17T06:29:15Z
0
--- dataset_info: features: - name: user dtype: string - name: assistant dtype: string - name: label dtype: int64 - name: category dtype: string splits: - name: train num_bytes: 2535310.587701613 num_examples: 3132 download_size: 1408404 dataset_size: 2535310.587701613 configs: - config_name: default data_files: - split: train path: data/train-* ---
jjeccles/venue-dataset02-08
jjeccles
2025-02-11T10:12:14Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-11T10:12:10Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 36451312 num_examples: 3634 download_size: 6022038 dataset_size: 36451312 configs: - config_name: default data_files: - split: train path: data/train-* ---
Port-Pilot/PortMIS-QA-Dataset
Port-Pilot
2024-10-13T06:02:18Z
22
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-13T05:25:01Z
0
--- dataset_info: features: - name: CONTEXT dtype: string - name: QUESTION dtype: string - name: ANSWER dtype: string splits: - name: train num_bytes: 893330 num_examples: 2500 download_size: 222275 dataset_size: 893330 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhinav302019/olympiad_data_417
abhinav302019
2025-03-07T04:15:44Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-07T04:15:42Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 33798 num_examples: 10 download_size: 35348 dataset_size: 33798 configs: - config_name: default data_files: - split: train path: data/train-* ---
kasianenko/samsum
kasianenko
2025-05-22T08:46:45Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-05-22T08:46:45Z
0
--- license: cc-by-nc-4.0 ---
MilaWang/math7k
MilaWang
2025-03-05T04:08:52Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T04:08:51Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: difficulty dtype: float64 - name: type dtype: string splits: - name: train num_bytes: 1860760 num_examples: 7474 download_size: 887944 dataset_size: 1860760 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_fffa87fb-0fd5-4faa-a3c3-66aeaf3d9eb7
argilla-internal-testing
2024-11-06T09:05:43Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-06T09:05:42Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
cedricclyburn/DoclingTests
cedricclyburn
2025-04-26T09:37:03Z
38
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-26T09:36:35Z
0
--- license: apache-2.0 ---
amraly1983/shadcn_chat_template
amraly1983
2025-05-05T21:52:37Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-05T21:45:53Z
0
--- license: apache-2.0 ---
higopires/RePro-categories-multilabel
higopires
2025-01-24T18:14:35Z
192
0
[ "task_categories:text-classification", "language:pt", "license:cc-by-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "multilabel" ]
[ "text-classification" ]
2025-01-24T17:47:21Z
0
--- dataset_info: features: - name: review_text dtype: string - name: ENTREGA dtype: int64 - name: OUTROS dtype: int64 - name: PRODUTO dtype: int64 - name: CONDICOESDERECEBIMENTO dtype: int64 - name: INADEQUADA dtype: int64 - name: ANUNCIO dtype: int64 splits: - name: train num_bytes: 1599889 num_examples: 8002 - name: validation num_bytes: 194266 num_examples: 994 - name: test num_bytes: 199787 num_examples: 1007 download_size: 987114 dataset_size: 1993942 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* license: cc-by-sa-4.0 language: - pt task_categories: - text-classification tags: - multilabel size_categories: - 1K<n<10K --- # RePro: A Benchmark Dataset for Opinion Mining in Brazilian Portuguese RePro, which stands for "REview of PROducts," is a benchmark dataset for opinion mining in Brazilian Portuguese. It consists of 10,000 humanly annotated e-commerce product reviews, each labeled with sentiment and topic information. The dataset was created based on data from one of the largest Brazilian e-commerce platforms, which produced the B2W-Reviews01 dataset (https://github.com/americanas-tech/b2w-reviews01). The RePro dataset aims to provide a valuable resource for tasks related to sentiment analysis and topic modeling in the context of Brazilian Portuguese e-commerce product reviews. It is designed to serve as a benchmark for future research in natural language processing and related fields. This dataset is a processed version of RePro, where only the columns with the opinions and their categories are kept. Three stratified splits (80%/10%/10%) were created during the processing, using the scikit-multilearn library. # Citation When utilizing or referencing this dataset, kindly cite the following publication: ``` latex @inproceedings{dos2024repro, title={RePro: a benchmark for Opinion Mining for Brazilian Portuguese}, author={dos Santos Silva, Lucas Nildaimon and Real, Livy and Zandavalle, Ana Claudia Bianchini and Rodrigues, Carolina Francisco Gadelha and da Silva Gama, Tatiana and Souza, Fernando Guedes and Zaidan, Phillipe Derwich Silva}, booktitle={Proceedings of the 16th International Conference on Computational Processing of Portuguese}, pages={432--440}, year={2024} } ``` # Contributions Thanks to [@lucasnil](https://github.com/lucasnil) for adding this dataset.
mlfoundations-dev/openmathreasoning_30k
mlfoundations-dev
2025-04-28T04:45:34Z
45
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T04:43:49Z
0
--- dataset_info: features: - name: expected_answer dtype: string - name: problem_type dtype: string - name: problem_source dtype: string - name: generation_model dtype: string - name: pass_rate_72b_tir dtype: string - name: problem dtype: string - name: generated_solution dtype: string - name: inference_mode dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 1411683041.7943301 num_examples: 31600 download_size: 632002281 dataset_size: 1411683041.7943301 configs: - config_name: default data_files: - split: train path: data/train-* ---
Fayeben/GetMesh
Fayeben
2025-06-14T03:42:48Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-14T03:42:48Z
0
--- license: apache-2.0 ---
ljding94/Ladder_Polymer
ljding94
2025-05-01T14:31:25Z
27
0
[ "task_categories:feature-extraction", "language:en", "license:mit", "size_categories:1K<n<10K", "doi:10.57967/hf/5316", "region:us", "physics", "chemistry" ]
[ "feature-extraction" ]
2025-03-25T05:20:08Z
0
--- license: mit task_categories: - feature-extraction language: - en tags: - physics - chemistry size_categories: - 1K<n<10K --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
konwoo/auto-rm-erall-k800000-lr1e-5-epochs1-er1-0
konwoo
2025-04-22T15:32:41Z
23
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-22T15:31:33Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 2677548118 num_examples: 800000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 1690050373 dataset_size: 2686123097 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
french-datasets/ekazuki-text_to_french_parliament_group_debates
french-datasets
2025-03-29T20:32:26Z
16
0
[ "language:fra", "region:us" ]
[]
2025-03-29T20:32:25Z
0
--- language: "fra" viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données huggingface.co/datasets/ekazuki/text_to_french_parliament_group_debates.
mlfoundations-dev/aops_forum_diagrams
mlfoundations-dev
2025-01-23T20:46:30Z
12
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T20:46:28Z
0
--- dataset_info: features: - name: source dtype: string - name: problem dtype: string - name: solution dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 418050.6568003965 num_examples: 144 download_size: 425997 dataset_size: 418050.6568003965 configs: - config_name: default data_files: - split: train path: data/train-* ---
netvu21/llama2_custom_code
netvu21
2024-11-28T07:48:32Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T07:48:29Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 7786 num_examples: 32 download_size: 4172 dataset_size: 7786 configs: - config_name: default data_files: - split: train path: data/train-* ---
zhexian17/blend-dataset
zhexian17
2025-04-20T06:10:15Z
21
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-20T06:09:20Z
0
--- dataset_info: features: - name: original_image dtype: image - name: edit_prompt dtype: string - name: blended_image dtype: image splits: - name: train num_bytes: 205649347.0 num_examples: 1000 download_size: 205622248 dataset_size: 205649347.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
infinite-dataset-hub/B2BConnect
infinite-dataset-hub
2025-02-08T16:19:58Z
10
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-02-08T16:19:57Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # B2BConnect tags: relationship mapping, B2B, Jacksonville _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The CSV file 'B2BConnect.csv' is designed to catalog and facilitate the identification of potential business-to-business (B2B) networking opportunities in Jacksonville, Florida. The dataset focuses on capturing the essence of local businesses and their networking preferences, aiming to aid ML practitioners in predicting successful B2B relationships. Each row represents a business entity with attributes related to its profile, networking history, and preferences. The 'labels' column indicates whether the business has been previously involved in successful networking events or partnerships. **CSV Content Preview:** ``` name,business_type,industry,years_in_business,participation_history,preferred_networking_events,labels "Florida Tech Enterprises", "Technology", "IT Services", 10, "Recent - 5 events", "Tech Meetups, Hackathons", "Positive" "Northbank Consulting", "Consulting", "Business Advisory", 15, "Recent - 3 events", "Seminars, Professional Associations", "Negative" "Jacksonville Health Solutions", "Healthcare", "Medical Devices", 8, "Occasional - 2 events", "Healthcare Expos, Innovation Conferences", "Neutral" "Beachfront Catering", "Food & Beverage", "Catering Services", 5, "Never", "Local Food Festivals, Corporate Events", "Positive" "Riverdale Constructions", "Construction", "Commercial Buildings", 12, "Recent - 4 events", "Industry Conferences, Networking Events", "Negative" ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'Jacksonville florida b2b networking': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=Jacksonville+florida+b2b+networking&dataset=B2BConnect&tags=relationship+mapping,+B2B,+Jacksonville - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
CharlesPing/climate-cross-encoder-mixed-neg-v2
CharlesPing
2025-05-17T06:24:20Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T06:24:14Z
0
--- dataset_info: features: - name: query dtype: string - name: doc dtype: string - name: label dtype: float64 splits: - name: train num_bytes: 5218831 num_examples: 18660 - name: validation num_bytes: 534073 num_examples: 1950 download_size: 2092645 dataset_size: 5752904 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
Lingalingeswaran/combined_english_sinhala
Lingalingeswaran
2025-05-14T18:40:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T18:40:23Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 48000 - name: text dtype: string - name: language dtype: string splits: - name: train num_bytes: 116505746.66666667 num_examples: 1600 - name: test num_bytes: 29126648.266666666 num_examples: 400 download_size: 166667739 dataset_size: 145632394.93333334 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
b6Amine/MNLP_M2_quantized_dataset
b6Amine
2025-05-27T21:04:57Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T21:02:22Z
0
--- license: apache-2.0 ---
YRC10/MASH
YRC10
2025-05-14T07:39:09Z
0
0
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:video-classification", "annotations_creators:expert-annotated", "annotations_creators:LLM", "annotations_creators:mix", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "climate", "social-media", "hurricane", "TikTok", "Twitter", "YouTube", "Reddit", "multimodal", "information-integrity", "humanitarian", "bias" ]
[ "text-classification", "image-classification", "video-classification" ]
2025-05-14T04:48:10Z
0
--- MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane license: cc-by-4.0 tags: - climate - social-media - hurricane - TikTok - Twitter - YouTube - Reddit - multimodal - information-integrity - humanitarian - bias size_categories: - 10K<n<100K pretty_name: Multiplatform Annotated Dataset for Societal Impact of Hurricane language: en description: > We present a Multiplatform Annotated Dataset for Societal Impact of Hurricane (MASH) that includes 98,662 relevant social media data posts from Reddit, X, TikTok, and YouTube. In addition, all relevant posts are annotated on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes in a multi-modal approach that considers both textual and visual content, providing a rich labeled dataset for in-depth analysis. The dataset is also complemented by an Online Analytics Platform that not only allows users to view hurricane-related posts and articles, but also explores high-frequency keywords, user sentiment, and the locations where posts were made. To our best knowledge, MASH is the first large-scale, multi-platform, multimodal, and multi-dimensionally annotated hurricane dataset. We envision that MASH can contribute to the study of hurricanes' impact on society, such as disaster severity classification, event detections, public sentiment analysis, and bias identification. dataset_type: - multimodal - text - image - video annotations_creators: - expert-annotated - LLM - mix task_categories: - text-classification - image-classification - video-classification date_published: 2025-05-14 version: 1.0 modalities: - text - image - video --- # MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane We present a Multiplatform Annotated Dataset for Societal Impact of Hurricane (MASH) that includes **98,662** relevant social media data posts from **Reddit**, **X**, **TikTok**, and **YouTube**. In addition, all relevant posts are annotated on three dimensions: **Humanitarian Classes**, **Bias Classes**, and **Information Integrity Classes** in a multi-modal approach that considers both textual and visual content (text, images, and videos), providing a rich labeled dataset for in-depth analysis. The dataset is also complemented by an [Online Analytics Platform](https://hurricane.web.illinois.edu/) that not only allows users to view hurricane-related posts and articles, but also explores high-frequency keywords, user sentiment, and the locations where posts were made. To our best knowledge, MASH is the first large-scale, multi-platform, multimodal, and multi-dimensionally annotated hurricane dataset. We envision that MASH can contribute to the study of hurricanes' impact on society, such as disaster severity classification, event detections, public sentiment analysis, and bias identification. ## 📘 Usage Notice This dataset includes four annotation files: • reddit_anno_publish.csv • tiktok_anno_publish.csv • twitter_anno_publish.csv • youtube_anno_publish.csv Each file contains post IDs and corresponding annotations on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes. To protect user privacy, only post IDs are released. We recommend retrieving the full post content via the official APIs of each platform, in accordance with their respective terms of service. - [Reddit API](https://www.reddit.com/dev/api) - [TikTok API](https://developers.tiktok.com/products/research-api) - [X/Twitter API](https://developer.x.com/en/docs/x-api) - [YouTube API](https://developers.google.com/youtube/v3) ## Humanitarian Classes Each post is annotated with seven binary humanitarian classes. For each class, the label is either: • True – the post contains this humanitarian information • False – the post does not contain this information These seven humanitarian classes include: • Casualty: The post reports people or animals who are killed, injured, or missing during the hurricane. • Evacuation: The post describes the evacuation, relocation, rescue, or displacement of individuals or animals due to the hurricane. • Damage: The post reports damage to infrastructure or public utilities caused by the hurricane. • Advice: The post provides advice, guidance, or suggestions related to hurricanes, including how to stay safe, protect property, or prepare for the disaster. • Request: Request for help, support, or resources due to the hurricane • Assistance: This includes both physical aid and emotional or psychological support provided by individuals, communities, or organizations. • Recovery: The post describes efforts or activities related to the recovery and rebuilding process after the hurricane. Note: A single post may be labeled as True for multiple humanitarian categories. ## Bias Classes Each post is annotated with five binary bias classes. For each class, the label is either: • True – the post contains this bias information • False – the post does not contain this information These five bias classes include: • Linguistic Bias: The post contains biased, inappropriate, or offensive language, with a focus on word choice, tone, or expression. • Political Bias: The post expresses political ideology, showing favor or disapproval toward specific political actors, parties, or policies. • Gender Bias: The post contains biased, stereotypical, or discriminatory language or viewpoints related to gender. • Hate Speech: The post contains language that expresses hatred, hostility, or dehumanization toward a specific group or individual, especially those belonging to minority or marginalized communities. • Racial Bias: The post contains biased, discriminatory, or stereotypical statements directed toward one or more racial or ethnic groups. Note: A single post may be labeled as True for multiple bias categories. ## Information Integrity Classes Each post is also annotated with a single information integrity class, represented by an integer: • -1 → False information (i.e., misinformation or disinformation) • 0 → Unverifiable information (unclear or lacking sufficient evidence) • 1 → True information (verifiable and accurate) ## Citation ZENODO DOI: [10.5281/zenodo.15401479](https://zenodo.org/records/15401479)
appletea2333/activity_tvg
appletea2333
2025-03-19T15:35:34Z
103
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-19T15:35:28Z
0
--- dataset_info: features: - name: video dtype: string - name: caption dtype: string - name: timestamp sequence: float16 splits: - name: test num_bytes: 1612225 num_examples: 17031 download_size: 820906 dataset_size: 1612225 configs: - config_name: default data_files: - split: test path: data/test-* ---
svjack/Sebastian_Michaelis_Videos_Captioned
svjack
2025-04-22T00:21:17Z
144
0
[ "size_categories:n<1K", "modality:text", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-22T00:06:15Z
0
--- configs: - config_name: default data_files: - split: train path: - "*.mp4" - "metadata.csv" --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/XJRFixVha9A-gkj5NJD3j.jpeg) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/otHNswVn67GC_GJn21UYs.webp) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/a8AJ-p39kwgyhEexMOHoa.webp)
gtsaidata/SelfCompoundedDevanagariCharacters
gtsaidata
2025-02-22T04:22:17Z
11
0
[ "task_categories:text-classification", "language:en", "region:us", "Self Compounded Devanagari Characters", "Optical Character Recognition", "OCR technology for Devanagari" ]
[ "text-classification" ]
2025-02-22T04:16:51Z
0
--- language: - en task_categories: - text-classification tags: - Self Compounded Devanagari Characters - Optical Character Recognition - OCR technology for Devanagari --- Description: <a href="https://gts.ai/dataset-download/self-compounded-devanagari-characters/" target="_blank">👉 Download the dataset here</a> The Self-Compounded Devanagari Characters dataset focuses on a crucial aspect of Optical Character Recognition (OCR) for Devanagari script, essential for preserving ancient scriptures and making them more accessible in the digital age. By leveraging this dataset, researchers can enhance AI systems to recognize complex Devanagari characters accurately. Digitalization also makes handwritten text “web-friendly” and searchable, preserving knowledge that would otherwise risk being lost or damaged. Purpose of the Dataset While OCR technology for Devanagari exists, one major gap has been the recognition of compound characters—those consisting of a half letter and a full letter. This dataset specifically addresses this gap, aiding researchers, developers, and academic institutions in creating systems that can accurately detect and digitize these characters, thus preserving not only the text but also the language itself. Download Dataset Dataset Composition The dataset primarily consists of compound Devanagari characters, which are essential for enhancing OCR systems for Devanagari script. Each entry was carefully cleaned and validated before inclusion in the final dataset. This cleaning process ensures that the dataset is ready for immediate use in research and development of AI models, specifically those focused on Devanagari OCR. Applications of the Dataset This dataset has several potential applications: Academic Research: Aiding studies in linguistics, script recognition, and AI for ancient language preservation. AI & Machine Learning: Training OCR models to improve recognition of complex Devanagari script. Language Digitization: Helping in the digital preservation of sacred texts, manuscripts, and other handwritten documents. Collaborative Development: Open-source software available for expansion and adaptation to other languages, enabling a wide range of future applications. Future Scope As the dataset continues to grow, contributions from researchers, developers, and data scientists are encouraged. Future extensions could include additional languages, more complex ligature combinations, and larger sample sizes to create an even more comprehensive resource for OCR development. With the open-source data collection tool, the research community is invited to expand the dataset and collaborate in furthering OCR technology for a wide range of scripts. Conclusion The Self-Compounded Devanagari Characters Dataset fills a crucial gap in OCR technology for Devanagari script. Created during a challenging global situation, this project has laid the foundation for the digital preservation of ancient texts. With continued collaboration and contributions, it will serve as an invaluable resource for linguistic and AI research, helping to preserve cultural heritage in the digital age. This dataset is sourced from Kaggle.
deu05232/promptriever-ours-v6-vanilla2
deu05232
2025-04-11T10:07:49Z
13
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T10:01:20Z
0
--- dataset_info: features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: explanation dtype: string - name: followir_score dtype: float64 - name: joint_id dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: only_instruction dtype: string - name: only_query dtype: string - name: has_instruction dtype: bool - name: new_negatives list: - name: docid dtype: string - name: explanation dtype: string - name: followir_score dtype: float64 - name: joint_id dtype: string - name: text dtype: string - name: title dtype: string - name: d_inst_negatives list: - name: docid dtype: string - name: explanation dtype: string - name: followir_score dtype: float64 - name: joint_id dtype: string - name: text dtype: string - name: title dtype: string - name: is_gpt dtype: bool splits: - name: train num_bytes: 13230352617 num_examples: 980247 download_size: 7506456800 dataset_size: 13230352617 configs: - config_name: default data_files: - split: train path: data/train-* ---
uzair921/QWEN_SKILLSPAN_EMBEDDINGS_LLM_RAG_50
uzair921
2024-10-11T19:54:47Z
51
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-11T19:54:43Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-Skill '2': I-Skill splits: - name: train num_bytes: 1028438 num_examples: 2065 - name: validation num_bytes: 715196 num_examples: 1397 - name: test num_bytes: 758463 num_examples: 1523 download_size: 450493 dataset_size: 2502097 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Dongkkka/koch_test10
Dongkkka
2025-04-15T07:18:40Z
48
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-15T07:18:35Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 2, "total_frames": 888, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
justus27/s2-bigmath
justus27
2025-05-05T23:23:29Z
0
0
[ "region:us" ]
[]
2025-05-05T23:23:27Z
0
--- dataset_info: features: - name: problem_id dtype: string - name: task_type dtype: string - name: prompt dtype: string - name: verification_info dtype: string - name: metadata dtype: string splits: - name: train num_bytes: 94831922 num_examples: 251122 download_size: 33716599 dataset_size: 94831922 configs: - config_name: default data_files: - split: train path: data/train-* ---
nsarrazin/lichess-games-2016-12
nsarrazin
2024-10-29T06:22:07Z
68
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-14T01:55:55Z
0
--- dataset_info: features: - name: white_elo dtype: uint16 - name: black_elo dtype: uint16 - name: avg_elo dtype: uint16 - name: result dtype: uint8 - name: moves sequence: string - name: checkmate dtype: bool_ splits: - name: train num_bytes: 5183946245 num_examples: 9322331 download_size: 1093073273 dataset_size: 5183946245 configs: - config_name: default data_files: - split: train path: data/train-* ---
RobotisSW/omx_5
RobotisSW
2025-04-25T01:34:42Z
53
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-25T01:34:37Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "omx", "total_episodes": 2, "total_frames": 162, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 5 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 5 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_gripper" ] }, "observation.images.cam_1": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
seongil-dn/miracl-relevance-dataset
seongil-dn
2025-03-17T07:55:48Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T07:55:44Z
0
--- dataset_info: features: - name: query dtype: string - name: positives sequence: string - name: negatives sequence: string splits: - name: train num_bytes: 6820437 num_examples: 1474 download_size: 3851414 dataset_size: 6820437 configs: - config_name: default data_files: - split: train path: data/train-* ---
nbd22/gsm8k-deepseek-completions
nbd22
2025-01-27T21:29:03Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-27T21:29:01Z
0
--- dataset_info: features: - name: completions list: - name: content dtype: string - name: role dtype: string - name: prompts list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 23124 num_examples: 12 download_size: 11498 dataset_size: 23124 configs: - config_name: default data_files: - split: train path: data/train-* ---
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Dataset Cards

This datasets consists of dataset cards for models hosted on the Hugging Face Hub. The dataset cards are created by the community and provide information about datasets hosted on the Hugging Face Hub. This dataset is updated on a daily basis and includes publicly available datasets on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Dataset Cards from the Hub. We hope that this dataset will help support research in the area of Dataset Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in dataset cards
  • analysis of the dataset card format/content
  • topic modelling of dataset cards
  • training language models on the dataset cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with dataset cards. In particular it was created to support research in the area of dataset cards and their use. It is possible to use the Hugging Face Hub API or client library to download dataset cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for datasets hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the dataset directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the dataset cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the dataset card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the dataset card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of dataset cards to contain personal or sensitive information, it is possible that some dataset cards may contain this information. Dataset cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Dataset cards are created by the community and we do not have any control over the content of the dataset cards. We do not review the content of the dataset cards and we do not make any claims about the accuracy of the information in the dataset cards. Some dataset cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the dataset. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the dataset cards, some dataset cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,326

Space using librarian-bots/dataset_cards_with_metadata 1

Collection including librarian-bots/dataset_cards_with_metadata