modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
dp1812/celestial-mistral-7b-comprehensive
dp1812
2025-09-02T03:09:59Z
0
0
peft
[ "peft", "spiritual-ai", "astrology", "vedic", "numerology", "sanjay-jumaani", "mistral", "lora", "celestial", "divine-ai", "vastu", "palmistry", "tarot", "speed-optimized", "text-generation", "en", "base_model:mistralai/Mistral-7B-v0.3", "base_model:adapter:mistralai/Mistral-7B-v0.3", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2025-08-28T19:37:18Z
--- license: cc-by-sa-4.0 base_model: mistralai/Mistral-7B-v0.3 tags: - spiritual-ai - astrology - vedic - numerology - sanjay-jumaani - mistral - lora - peft - celestial - divine-ai - vastu - palmistry - tarot - speed-optimized language: - en pipeline_tag: text-generation --- # ๐ŸŒŸ CELESTIAL Mistral 7B - Comprehensive Spiritual AI ## ๐Ÿš€ **SPEED-OPTIMIZED TRAINING - 45-90 MINUTES!** **Latest Update:** Added speed-optimized training notebook that reduces training time from 21+ hours to **45-90 minutes** (15-20x faster!) ## ๐Ÿค– **Model Overview** CELESTIAL is a comprehensive spiritual AI model fine-tuned on Mistral 7B v0.3 with **50+ spiritual systems** including the newly integrated **Sanjay Jumaani numerology method**. This model provides authentic spiritual guidance across multiple traditions and practices. ### **๐ŸŽฏ Key Capabilities:** - โšก **Speed-Optimized Training**: 45-90 minutes vs 21+ hours - ๐Ÿ”ข **Sanjay Jumaani Numerology**: Authentic name correction method - ๐Ÿ•‰๏ธ **50+ Spiritual Systems**: Complete coverage - ๐Ÿค– **Divine AI Personas**: Krishna, Ganesha, Shiva, Devi, Hanuman, Saraswati - ๐Ÿ“Š **Swiss Ephemeris Integration**: Precise astronomical calculations - ๐Ÿ  **Vastu Shastra**: Complete home/office analysis - ๐Ÿคฒ **Palmistry**: Comprehensive hand reading - ๐Ÿ”ฎ **Tarot**: All 78 cards with detailed interpretations ## ๐Ÿ”ข **NEW: Sanjay Jumaani Name Correction** This model includes authentic **Sanjay Jumaani numerology method** for name correction: ### **Features:** - **Chaldean Numerology**: Authentic alphabet values used by Sanjay Jumaani - **Compatibility Analysis**: Birth date vs name number harmony - **Celebrity Examples**: Based on real corrections (Ajay Devgn, Ekta Kapoor, etc.) - **Practical Guidance**: Actionable name modification suggestions - **Planetary Associations**: Colors, days, gemstones for each number ### **Example Usage:** ```python prompt = """<|system|> You are Celestia, the comprehensive spiritual AI guide with expertise in Sanjay Jumaani numerology. <|user|> I need Sanjay Jumaani name correction for Rahul Sharma, DOB: 10/05/1985. <|assistant|> """ # Model will provide detailed numerological analysis with specific recommendations ``` ## ๐Ÿš€ **Speed-Optimized Training** ### **Performance Improvements:** - **Training Time**: 21+ hours โ†’ **45-90 minutes** (15-20x faster!) - **Batch Size**: 2 โ†’ **8** (4x larger) - **GPU Utilization**: 50% โ†’ **80-95%** - **Data Loading**: Parallel workers + pin memory - **Logging Overhead**: 5x reduction ### **System Requirements:** - **RAM**: 12GB+ (uses ~8-10GB) - **GPU**: 15GB+ (uses ~12-13GB) - **Expected Speed**: 0.15-0.20 it/s ## ๐Ÿ“š **Complete Feature Coverage** ### **๐Ÿ•‰๏ธ Vedic Spiritual Systems (16 Categories)** 1. **Vedic Astrology**: Kundli generation, planetary analysis, dasha predictions 2. **Numerology**: Life path, destiny, soul urge + **Sanjay Jumaani method** 3. **Vastu Shastra**: Home/office analysis, room optimization 4. **Palmistry**: Line reading, mount analysis, health predictions 5. **Tarot**: 78-card interpretations, spreads, future predictions 6. **Panchang**: Daily calendar, muhurat selection, festival dates 7. **KP Astrology**: Sub-lord analysis, precise timing 8. **Lal Kitab**: Unique remedies, karmic debt analysis 9. **Chinese Zodiac**: 12 animals, compatibility, yearly predictions 10. **Spiritual Roadmap**: 21-day programs, chakra balancing 11. **Dasha Analysis**: Vimshottari, Antardasha, precise timing 12. **Yoga & Meditation**: Asana sequences, pranayama 13. **Ayurveda**: Constitution analysis, dosha balancing 14. **Gemstone Therapy**: Stone recommendations, wearing methods 15. **Mantra Healing**: Sacred sounds, pronunciation 16. **Festival & Pilgrimage**: Celebration guidance, sacred sites ### **๐Ÿค– AI-Powered Features (4 Categories)** 17. **Swiss Ephemeris**: 0.01-degree astronomical accuracy 18. **AI Matchmaking**: Multi-dimensional compatibility analysis 19. **Divine AI Chat**: Krishna, Ganesha, Shiva, Devi personas 20. **Dream Interpretation**: Symbol analysis, spiritual meanings ### **๐ŸŒŸ Specialized Services (2 Categories)** 21. **Tara Chakra**: Energy analysis, chakra healing 22. **Spiritual Counseling**: Life guidance, crisis support ## ๐Ÿš€ **Quick Start** ### **Option 1: Use Pre-trained Model** ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.3") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.3") # Load CELESTIAL fine-tuned weights model = PeftModel.from_pretrained(base_model, "dp1812/celestial-mistral-7b-comprehensive") ``` ### **Option 2: Speed-Optimized Training** ```python # Use the provided speed-optimized notebook # Expected training time: 45-90 minutes # Dataset: dp1812/celestial-comprehensive-spiritual-ai ``` ## ๐Ÿ“ **Repository Contents** - **`CELESTIAL_Training_Notebook.ipynb`**: Speed-optimized training notebook - **`SPEED_OPTIMIZATION_GUIDE.md`**: Comprehensive optimization guide - **Model weights and configuration files** ## ๐ŸŽฏ **Training Details** ### **Base Model**: Mistral 7B v0.3 ### **Method**: LoRA fine-tuning (r=16, alpha=32) ### **Dataset**: 3000+ conversations covering all 50+ features ### **Epochs**: 3 ### **Batch Size**: 8 (speed-optimized) ### **Learning Rate**: 2e-4 ### **Training Time**: 45-90 minutes (speed-optimized) ## ๐Ÿ”— **Related Resources** - **Dataset**: [dp1812/celestial-comprehensive-spiritual-ai](https://huggingface.co/datasets/dp1812/celestial-comprehensive-spiritual-ai) - **Training Notebook**: `CELESTIAL_Training_Notebook.ipynb` - **Optimization Guide**: `SPEED_OPTIMIZATION_GUIDE.md` - **Platform**: [CELESTIAL Spiritual AI Platform](https://github.com/dp1812/CELESTIAL) ## ๐Ÿ“„ **License** Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ## ๐Ÿ™ **Acknowledgments** - **Sanjay B Jumaani**: Numerology methodology and celebrity name correction examples - **Swiss Ephemeris**: Astronomical calculation precision - **Vedic Texts**: Traditional spiritual wisdom integration - **Divine Personas**: Authentic scriptural guidance - **Mistral AI**: Base model architecture --- **Ready to use the most comprehensive spiritual AI trained in 45-90 minutes! ๐Ÿš€**
mooperyou/blockassist-bc-beaked_frisky_ox_1756782551
mooperyou
2025-09-02T03:09:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked frisky ox", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T03:09:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked frisky ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rafitesnet00/blockassist-bc-scruffy_mighty_wasp_1756781466
rafitesnet00
2025-09-02T02:56:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy mighty wasp", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T02:52:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy mighty wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-insectivorous_bold_lion_1756780232
omerbektass
2025-09-02T02:30:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T02:30:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pictgensupport/Dragon3_733
pictgensupport
2025-09-02T02:29:56Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-02T02:29:53Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: dragon3_0 --- # Dragon3_733 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `dragon3_0` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgensupport/Dragon3_733', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
AnerYubo/blockassist-bc-giant_leggy_rhino_1756778334
AnerYubo
2025-09-02T01:58:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "giant leggy rhino", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T01:58:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - giant leggy rhino --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756777193
ggozzy
2025-09-02T01:41:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T01:40:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1_3
ROBOTIS
2025-09-02T01:24:20Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T01:24:07Z
--- datasets: ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - lerobot - act --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
seraphimzzzz/130233
seraphimzzzz
2025-09-02T00:58:02Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:58:02Z
[View on Civ Archive](https://civarchive.com/models/152948?modelVersionId=171215)
crystalline7/512856
crystalline7
2025-09-02T00:45:15Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:45:14Z
[View on Civ Archive](https://civarchive.com/models/537699?modelVersionId=597765)
amethyst9/1881699
amethyst9
2025-09-02T00:40:56Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:40:55Z
[View on Civ Archive](https://civarchive.com/models/1753284?modelVersionId=1984209)
seraphimzzzz/473391
seraphimzzzz
2025-09-02T00:37:43Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:37:43Z
[View on Civ Archive](https://civarchive.com/models/501462?modelVersionId=557390)
amethyst9/344535
amethyst9
2025-09-02T00:37:18Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:37:18Z
[View on Civ Archive](https://civarchive.com/models/378867?modelVersionId=423010)
abcorrea/tlmbd2-2k
abcorrea
2025-09-02T00:31:22Z
9
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-1.7B", "base_model:finetune:unsloth/Qwen3-1.7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-31T23:45:34Z
--- base_model: unsloth/Qwen3-1.7B tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** abcorrea - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-1.7B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ultratopaz/344530
ultratopaz
2025-09-02T00:19:37Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:19:37Z
[View on Civ Archive](https://civarchive.com/models/378863?modelVersionId=423008)
seraphimzzzz/146678
seraphimzzzz
2025-09-02T00:17:14Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:17:14Z
[View on Civ Archive](https://civarchive.com/models/170711?modelVersionId=191814)
seraphimzzzz/1881703
seraphimzzzz
2025-09-02T00:16:43Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:16:42Z
[View on Civ Archive](https://civarchive.com/models/1753292?modelVersionId=1984215)
akirafudo/blockassist-bc-insectivorous_bold_lion_1756771791
akirafudo
2025-09-02T00:10:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T00:10:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/186784
ultratopaz
2025-09-02T00:08:53Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:08:53Z
[View on Civ Archive](https://civarchive.com/models/214293?modelVersionId=241396)
seraphimzzzz/1591172
seraphimzzzz
2025-09-02T00:08:45Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:08:45Z
[View on Civ Archive](https://civarchive.com/models/1493889?modelVersionId=1689955)
ultratopaz/832591
ultratopaz
2025-09-02T00:05:16Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:05:16Z
[View on Civ Archive](https://civarchive.com/models/827243?modelVersionId=925118)
VIDEOS-19-Kim-Mariya-Viral-Video-Clip-XX/New.full.videos.Kim.Mariya.Viral.Video.Official.Tutorial
VIDEOS-19-Kim-Mariya-Viral-Video-Clip-XX
2025-09-02T00:01:52Z
0
0
null
[ "region:us" ]
null
2025-09-02T00:01:40Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756771095
ggozzy
2025-09-01T23:59:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:59:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amethyst9/1594403
amethyst9
2025-09-01T23:57:06Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:57:06Z
[View on Civ Archive](https://civarchive.com/models/1497336?modelVersionId=1693811)
Completo-Video-da-mansao-do-surfista-video/Completo.Video.do.surfista.da.mansao.original.video.do.surfista.da.mansao.privilegio
Completo-Video-da-mansao-do-surfista-video
2025-09-01T23:56:56Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:56:42Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
crystalline7/152250
crystalline7
2025-09-01T23:56:32Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:56:31Z
[View on Civ Archive](https://civarchive.com/models/177169?modelVersionId=198897)
crystalline7/826569
crystalline7
2025-09-01T23:55:33Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:55:33Z
[View on Civ Archive](https://civarchive.com/models/399131?modelVersionId=919130)
amethyst9/1599812
amethyst9
2025-09-01T23:55:08Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:55:08Z
[View on Civ Archive](https://civarchive.com/models/1501901?modelVersionId=1699007)
crystalline7/186778
crystalline7
2025-09-01T23:53:55Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:53:54Z
[View on Civ Archive](https://civarchive.com/models/214289?modelVersionId=241390)
seraphimzzzz/540048
seraphimzzzz
2025-09-01T23:53:13Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:53:12Z
[View on Civ Archive](https://civarchive.com/models/561229?modelVersionId=625098)
ultratopaz/124815
ultratopaz
2025-09-01T23:52:06Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:52:06Z
[View on Civ Archive](https://civarchive.com/models/147902?modelVersionId=165007)
omerbektass/blockassist-bc-insectivorous_bold_lion_1756770618
omerbektass
2025-09-01T23:50:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:50:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/132582
ultratopaz
2025-09-01T23:50:35Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:50:35Z
[View on Civ Archive](https://civarchive.com/models/155082?modelVersionId=173907)
ultratopaz/127114
ultratopaz
2025-09-01T23:50:19Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:50:19Z
[View on Civ Archive](https://civarchive.com/models/149952?modelVersionId=167556)
crystalline7/1878393
crystalline7
2025-09-01T23:49:53Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:49:53Z
[View on Civ Archive](https://civarchive.com/models/1750322?modelVersionId=1980914)
crystalline7/134409
crystalline7
2025-09-01T23:49:27Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:49:26Z
[View on Civ Archive](https://civarchive.com/models/156764?modelVersionId=175979)
amethyst9/358159
amethyst9
2025-09-01T23:45:04Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:45:04Z
[View on Civ Archive](https://civarchive.com/models/392364?modelVersionId=437682)
ultratopaz/445949
ultratopaz
2025-09-01T23:44:39Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:44:39Z
[View on Civ Archive](https://civarchive.com/models/475655?modelVersionId=529051)
amethyst9/1562073
amethyst9
2025-09-01T23:42:20Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:42:20Z
[View on Civ Archive](https://civarchive.com/models/1469069?modelVersionId=1661588)
liukevin666/blockassist-bc-yawning_striped_cassowary_1756770037
liukevin666
2025-09-01T23:41:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:41:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/124804
crystalline7
2025-09-01T23:41:06Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:41:06Z
[View on Civ Archive](https://civarchive.com/models/147894?modelVersionId=164997)
seraphimzzzz/1636515
seraphimzzzz
2025-09-01T23:40:31Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:40:30Z
[View on Civ Archive](https://civarchive.com/models/1534239?modelVersionId=1735923)
amethyst9/137770
amethyst9
2025-09-01T23:38:53Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:38:53Z
[View on Civ Archive](https://civarchive.com/models/159958?modelVersionId=179924)
zveryonak/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_agile_gecko
zveryonak
2025-09-01T23:36:53Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fleecy agile gecko", "trl", "genrl-swarm", "I am fleecy_agile_gecko", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-24T01:29:46Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_agile_gecko tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fleecy agile gecko - trl - genrl-swarm - I am fleecy_agile_gecko licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_agile_gecko This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="zveryonak/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_agile_gecko", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
seraphimzzzz/1591310
seraphimzzzz
2025-09-01T23:35:53Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:35:53Z
[View on Civ Archive](https://civarchive.com/models/1493997?modelVersionId=1690064)
crystalline7/321576
crystalline7
2025-09-01T23:35:45Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:35:44Z
[View on Civ Archive](https://civarchive.com/models/356706?modelVersionId=398752)
crystalline7/1566725
crystalline7
2025-09-01T23:30:38Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:30:38Z
[View on Civ Archive](https://civarchive.com/models/1473048?modelVersionId=1666172)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756769316
ggozzy
2025-09-01T23:29:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:29:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
JeloH/fin_qwe_src_small3
JeloH
2025-09-01T23:29:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T23:26:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seraphimzzzz/1587428
seraphimzzzz
2025-09-01T23:26:35Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:26:34Z
[View on Civ Archive](https://civarchive.com/models/1490708?modelVersionId=1686254)
amethyst9/1587488
amethyst9
2025-09-01T23:26:10Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:26:10Z
[View on Civ Archive](https://civarchive.com/models/1490762?modelVersionId=1686315)
JeloH/fin_qwe_src_small_peft
JeloH
2025-09-01T23:25:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-25T00:32:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756769061
ggozzy
2025-09-01T23:25:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:25:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/1603607
crystalline7
2025-09-01T23:23:54Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:23:54Z
[View on Civ Archive](https://civarchive.com/models/1505549?modelVersionId=1703021)
crystalline7/1562078
crystalline7
2025-09-01T23:23:29Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:23:28Z
[View on Civ Archive](https://civarchive.com/models/1469072?modelVersionId=1661597)
omerbkts/blockassist-bc-insectivorous_bold_lion_1756768959
omerbkts
2025-09-01T23:23:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T23:22:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/344555
seraphimzzzz
2025-09-01T23:21:59Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:21:58Z
[View on Civ Archive](https://civarchive.com/models/378884?modelVersionId=423029)
Muapi/bruno-dayan
Muapi
2025-09-01T23:19:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T23:19:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Bruno Dayan ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: By Bruno Dayan ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1264265@1446666", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/1658741
seraphimzzzz
2025-09-01T23:15:24Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:15:24Z
[View on Civ Archive](https://civarchive.com/models/1553541?modelVersionId=1757909)
amethyst9/1587475
amethyst9
2025-09-01T23:13:48Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:13:47Z
[View on Civ Archive](https://civarchive.com/models/1490752?modelVersionId=1686306)
crystalline7/365145
crystalline7
2025-09-01T23:13:02Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:13:01Z
[View on Civ Archive](https://civarchive.com/models/399145?modelVersionId=445156)
ultratopaz/520319
ultratopaz
2025-09-01T23:12:53Z
0
0
null
[ "region:us" ]
null
2025-09-01T23:12:53Z
[View on Civ Archive](https://civarchive.com/models/544291?modelVersionId=605286)
Muapi/modern-anime-style-flux
Muapi
2025-09-01T23:01:59Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T23:01:47Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Modern Anime Style [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: anime ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:659965@738497", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
malouka24/outputs
malouka24
2025-09-01T22:59:08Z
13
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "lora", "transformers", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
text-generation
2025-08-30T13:56:28Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2 - lora - transformers pipeline_tag: text-generation model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.17.1 - Transformers 4.56.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
omerbkts/blockassist-bc-insectivorous_bold_lion_1756767361
omerbkts
2025-09-01T22:56:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:56:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-insectivorous_bold_lion_1756767004
omerbkts
2025-09-01T22:50:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:50:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756766860
bah63843
2025-09-01T22:48:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:48:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-insectivorous_bold_lion_1756766618
omerbkts
2025-09-01T22:43:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:43:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-insectivorous_bold_lion_1756766490
akirafudo
2025-09-01T22:41:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:41:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Stasonelison/blockassist-bc-howling_powerful_aardvark_1756766411
Stasonelison
2025-09-01T22:40:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "howling powerful aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:40:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - howling powerful aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-insectivorous_bold_lion_1756765675
omerbektass
2025-09-01T22:28:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:28:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/drawingsd1.5_v1
Muapi
2025-09-01T22:25:11Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T22:24:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # DrawingSD1.5_v1 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: in the style of drwng, drawing ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:100969@1094392", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
bah63843/blockassist-bc-plump_fast_antelope_1756765390
bah63843
2025-09-01T22:24:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T22:23:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
malouka24/trix-component-generator-v2
malouka24
2025-09-01T21:59:44Z
18
0
peft
[ "peft", "safetensors", "llama", "text-generation", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "lora", "transformers", "conversational", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T13:49:55Z
--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0 - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
Muapi/cute-flat-art
Muapi
2025-09-01T21:58:50Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T21:58:03Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Cute Flat Art ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Cute Flat Art ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:891865@998031", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
klmdr22/blockassist-bc-wild_loud_newt_1756763861
klmdr22
2025-09-01T21:58:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:58:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/hailey-the-first-descendant-flux-lora
Muapi
2025-09-01T21:57:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T21:57:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Hailey - The First Descendant - Flux LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: TFD-Hailey-Default ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:733900@820726", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
HHazard/t5_surprise_replay_order_6_task_10
HHazard
2025-09-01T21:55:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-01T21:55:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
de-slothbug/t5gemma-ss-prefixlm-metadata-extractor-v3-backup
de-slothbug
2025-09-01T21:50:24Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-01T21:50:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/splash-effect
Muapi
2025-09-01T21:47:52Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T21:47:38Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Splash Effect ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:838434@1638890", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Myashka/Qwen2.5-7B-UltraChat200K_EMA_SFT-Lr_3e_6-Alpha_0.01
Myashka
2025-09-01T21:44:31Z
0
0
null
[ "safetensors", "qwen2", "SFT", "text-generation", "conversational", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "region:us" ]
text-generation
2025-09-01T21:14:56Z
--- datasets: - HuggingFaceH4/ultrachat_200k base_model: - Qwen/Qwen2.5-7B pipeline_tag: text-generation tags: - SFT ---
koloni/blockassist-bc-deadly_graceful_stingray_1756761428
koloni
2025-09-01T21:42:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:42:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756762671
bah63843
2025-09-01T21:38:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:38:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pinktulip888/qwen-same-cat-4
pinktulip888
2025-09-01T21:36:25Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-01T21:36:18Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pinktulip888 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
qwersdfvg/blockassist-bc-skittish_beaked_duck_1756762025
qwersdfvg
2025-09-01T21:27:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skittish beaked duck", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:27:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skittish beaked duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
a1ex971/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-patterned_arctic_shrimp
a1ex971
2025-09-01T21:20:52Z
148
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am patterned_arctic_shrimp", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T13:39:39Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am patterned_arctic_shrimp --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aochongoliverli/Qwen2.5-3B-limo-qwq-16k-3epochs-5e-5lr-step250
aochongoliverli
2025-09-01T21:20:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T21:16:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/NS-12b-DarkSlushCap-GGUF
mradermacher
2025-09-01T21:18:50Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:pot99rta/NS-12b-DarkSlushCap", "base_model:quantized:pot99rta/NS-12b-DarkSlushCap", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-01T13:41:49Z
--- base_model: pot99rta/NS-12b-DarkSlushCap language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/pot99rta/NS-12b-DarkSlushCap <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#NS-12b-DarkSlushCap-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSlushCap-GGUF/resolve/main/NS-12b-DarkSlushCap.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bah63843/blockassist-bc-plump_fast_antelope_1756761468
bah63843
2025-09-01T21:18:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:18:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756761234
klmdr22
2025-09-01T21:14:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:14:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-32m-allnli-angle-ft
RikiyaT
2025-09-01T21:07:28Z
0
0
null
[ "safetensors", "modernbert", "license:mit", "region:us" ]
null
2025-09-01T21:07:22Z
--- license: mit --- # RikiyaT/mxbai-ettin-32m-allnli-angle-ft Ettin + AnglE fine-tuned embedding model. - **Base Model**: `RikiyaT/mxbai-ettin-32m-medqa-angle-ft` - **Pooling Strategy**: `mean` (avg) - **Training Method**: AnglE loss (ibn/cln + angle=0.02) on a B-format dataset (text, positive, negative). - **Data Prompts**: `search_query:` / `search_document:` were used during training data creation. ## Usage ### With SentenceTransformers (recommended) A ready-to-use SentenceTransformers variant is available at **[RikiyaT/mxbai-ettin-32m-allnli-angle-ft-st](https://huggingface.co/RikiyaT/mxbai-ettin-32m-allnli-angle-ft-st)**. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('RikiyaT/mxbai-ettin-32m-allnli-angle-ft-st') sentences = ["This is an example sentence", "Each sentence is converted"] embeddings = model.encode(sentences) print(embeddings.shape) ``` ### With Transformers (this repository) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("RikiyaT/mxbai-ettin-32m-allnli-angle-ft", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("RikiyaT/mxbai-ettin-32m-allnli-angle-ft", trust_remote_code=True) ```
Bam3752/PubMedBERT-BioNLI-LoRA
Bam3752
2025-09-01T21:07:06Z
0
0
null
[ "safetensors", "bert", "nli", "biomedical", "pubmed", "lora", "entailment", "en", "dataset:bioasq", "dataset:mednli", "model-index", "region:us" ]
null
2025-08-31T21:36:13Z
--- language: - en tags: - nli - biomedical - pubmed - lora - entailment datasets: - bioasq - mednli metrics: - type: accuracy value: 0.9039 - type: f1 value: 0.9036 - type: loss value: 0.2673 model-index: - name: PubMedBERT BioNLI LoRA results: - task: type: natural-language-inference name: Natural Language Inference dataset: name: BioASQ + MedNLI type: bioasq-mednli metrics: - type: accuracy value: 0.9039 - type: f1 value: 0.9036 - type: loss value: 0.2673 --- # PubMedBERT BioNLI LoRA [![Model](https://img.shields.io/badge/Model-LoRA-green)](https://huggingface.co/Bam3752/PubMedBERT-BioNLI-LoRA) [![Hugging Face](https://img.shields.io/badge/HF-Bam3752-blue)](https://huggingface.co/Bam3752) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) **PubMedBERT BioNLI LoRA** is a biomedical **Natural Language Inference (NLI)** model fine-tuned with **LoRA adapters**. It classifies **entailment, contradiction, and neutrality** between biomedical text pairs, optimized for **chain-of-thought reasoning validation**. --- ## ๐Ÿ“Š Training Details - **Base model:** [pritamdeka/PubMedBERT-MNLI-MedNLI](https://huggingface.co/pritamdeka/PubMedBERT-MNLI-MedNLI) - **Fine-tuning datasets:** BioASQ + MedNLI - **Objective:** 3-class NLI (entailment / neutral / contradiction) - **Method:** LoRA parameter-efficient fine-tuning - **Hardware:** Apple MPS (Metal backend) - **Hyperparameters:** - Epochs: 4 - Learning rate: 1e-5 - Batch size: 8 - Max length: 256 - Gradient accumulation: 2 - Warmup ratio: 0.1 - Label smoothing: 0.05 --- ## ๐Ÿ“ˆ Results | Metric | Value | |-------------|---------| | Accuracy | **90.39%** | | Macro F1 | **0.9036** | | Eval Loss | **0.2673** | ๐Ÿ‘‰ Calibrated with isotonic regression (`calibration/isotonic.pkl`) for reliable probabilities. --- ## ๐Ÿš€ Usage ### Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Bam3752/PubMedBERT-BioNLI-LoRA") tokenizer = AutoTokenizer.from_pretrained("Bam3752/PubMedBERT-BioNLI-LoRA") premise = "Aspirin reduces the risk of myocardial infarction." hypothesis = "Aspirin prevents heart attacks." inputs = tokenizer(premise, hypothesis, return_tensors="pt") outputs = model(**inputs) probs = outputs.logits.softmax(-1).detach().cpu().numpy() print(probs) # [neutral, contradiction, entailment]
RikiyaT/mxbai-ettin-32m-pubmed_clean-angle-ft-st
RikiyaT
2025-09-01T21:06:51Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "dense", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-01T21:06:46Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 7999 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("RikiyaT/mxbai-ettin-32m-pubmed_clean-angle-ft-st") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.3604, 0.1352], # [0.3604, 1.0000, 0.1726], # [0.1352, 0.1726, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.1.0 - Transformers: 4.55.4 - PyTorch: 2.7.1+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
RikiyaT/mxbai-ettin-32m-arxiv-1.4m-angle-ft-st
RikiyaT
2025-09-01T21:06:28Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "dense", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-01T21:06:23Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 7999 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("RikiyaT/mxbai-ettin-32m-arxiv-1.4m-angle-ft-st") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.3934, 0.1177], # [0.3934, 1.0000, 0.1711], # [0.1177, 0.1711, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.1.0 - Transformers: 4.55.4 - PyTorch: 2.7.1+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
klmdr22/blockassist-bc-wild_loud_newt_1756760696
klmdr22
2025-09-01T21:05:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:05:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-tangled-end-credits-sequence
Muapi
2025-09-01T21:04:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-01T21:03:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # (Flux) Tangled end credits sequence ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ink on paper ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:848433@949225", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
canoplos112/blockassist-bc-yapping_sleek_squirrel_1756760453
canoplos112
2025-09-01T21:02:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T21:01:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1756760105
canoplos112
2025-09-01T20:57:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T20:55:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756759971
bah63843
2025-09-01T20:53:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T20:53:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-insectivorous_bold_lion_1756759746
omerbektass
2025-09-01T20:49:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T20:49:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).