modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 06:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 06:27:44
card
stringlengths
11
1.01M
John6666/bridgetoons-mix-v50-sdxl
John6666
2025-08-27T04:14:55Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "cartoon", "toon", "comic", "western", "clean, crispy, bold outlines", "sharp colors", "normal sized heads", "anatomy", "vibrant clean coloring", "finger", "shading", "backgrounds", "colors", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-27T04:05:44Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - cartoon - toon - comic - western - clean, crispy, bold outlines - sharp colors - normal sized heads - anatomy - vibrant clean coloring - finger - shading - backgrounds - colors - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1691010/bridgetoons-mix?modelVersionId=2136423). This model created by [Bridgewalker](https://civitai.com/user/Bridgewalker).
starsfriday/Qwen-Image-Edit-Remove-Clothes
starsfriday
2025-08-27T03:56:28Z
0
2
diffusers
[ "diffusers", "image-generation", "lora", "Qwen-Image", "image-to-image", "en", "base_model:Qwen/Qwen-Image-Edit", "base_model:adapter:Qwen/Qwen-Image-Edit", "license:apache-2.0", "region:us" ]
image-to-image
2025-08-27T03:41:29Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen-Image-Edit tags: - image-generation - lora - Qwen-Image pipeline_tag: image-to-image library_name: diffusers widget: - text: >- remove all the clothes of the figure in the picture output: url: result/result1.png - text: >- remove all the clothes of the figure in the picture output: url: result/result2.png - text: >- remove all the clothes of the figure in the picture output: url: result/result3.png --- # starsfriday Qwen-Image-Edit LoRA <Gallery /> ## Model Card for Model ID ```The model is still under training at present, and the trained version will be updated synchronously later and soon······``` <!-- Provide a quick summary of what the model is/does. --> This is a model for object removal, trained on ```Qwen/Qwen-Image-Edit```, and it is mainly used to remove clothes from characters.For use in ```ComfyUI```. The greatest advantage of using this LORA is that it maintains the consistency of the original image without changing any parts. <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">ComfyUI Workflow</h2> <p>This LoRA works with a modified version of <a href="https://huggingface.co/starsfriday/Qwen-Image-Edit-Remove-Clothes/blob/main/Qwen-Edit-LORA.json" style="color: #0366d6; text-decoration: none;">Comfy's Qwen-Image-Edit workflow</a>. The main modification is adding a Qwen-Image-Edit LoRA node connected to the base model.</p> <p>See the Downloads section above for the modified workflow.</p> </div> ### Direct Use ``` from diffusers import QwenImageEditPipeline import torch from PIL import Image # Load the pipeline pipeline = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit") pipeline.to(torch.bfloat16) pipeline.to("cuda") # Load trained LoRA weights for in-scene editing pipeline.load_lora_weights("starsfriday/Qwen-Image-Edit-Remove-Clothes",weight_name="qwen-edit-remove-clothes.safetensors") # Load input image image = Image.open("./result/test.jpg").convert("RGB") # Define in-scene editing prompt prompt = "remove all the clothes of the figure in the picture " # Generate edited image with enhanced scene understanding inputs = { "image": image, "prompt": prompt, "generator": torch.manual_seed(12345), "true_cfg_scale": 4.0, "negative_prompt": " ", "num_inference_steps": 50, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save("restlt.png") ``` ## Trigger phrase ```remove all the clothes of the figure in the picture``` There is no fixed trigger word. The specific removal prompt needs to be tested more ## Download model Weights for this model are available in Safetensors format. [Download](https://huggingface.co/starsfriday/Qwen-Image-Edit-Remove-Clothes) ## Training at Chongqing Valiant Cat This model was trained by the AI Laboratory of Chongqing Valiant Cat Technology Co., LTD(```https://vvicat.com/```).Business cooperation is welcome
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756265022
vwzyrraz7l
2025-08-27T03:48:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T03:48:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1756261914
unitova
2025-08-27T03:00:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T03:00:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mima307/blockassist-bc-grazing_squinting_anaconda_1756262070
mima307
2025-08-27T02:35:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grazing squinting anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T02:35:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grazing squinting anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756260355
pempekmangedd
2025-08-27T02:31:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T02:31:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mhiah/Qwen3-0.6B-Gensyn-Swarm-hulking_deft_armadillo
mhiah
2025-08-27T01:54:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am hulking_deft_armadillo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T01:54:18Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am hulking_deft_armadillo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
elmenbillion/blockassist-bc-beaked_sharp_otter_1756257981
elmenbillion
2025-08-27T01:53:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked sharp otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T01:53:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked sharp otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thyYu2024/qwen2-7b-instruct-trl-sft-all
thyYu2024
2025-08-27T01:17:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-25T08:15:22Z
--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-all tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-all This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="thyYu2024/qwen2-7b-instruct-trl-sft-all", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ruoxue2-stony-brook-university/qwen2vl-sft-mydataset/runs/amn56hee) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu118 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
koloni/blockassist-bc-deadly_graceful_stingray_1756255007
koloni
2025-08-27T01:02:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T01:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llm-jp/optimal-sparsity-math-d2048-E128-k16-52.2B-A7.1B
llm-jp
2025-08-27T00:57:52Z
13
0
null
[ "safetensors", "mixtral", "arxiv:2508.18672", "region:us" ]
null
2025-08-19T17:38:17Z
## How to cite If you find our work helpful, please feel free to cite the paper. ``` @article{nakamura2025optimalsparsitymixtureofexpertslanguage, title={Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks}, author={Taishi Nakamura and Satoki Ishikawa and Masaki Kawamura and Takumi Okamoto and Daisuke Nohara and Jun Suzuki and Rio Yokota}, year={2025}, eprint={2508.18672}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.18672}, } ```
seraphimzzzz/1136899
seraphimzzzz
2025-08-27T00:52:05Z
0
0
null
[ "region:us" ]
null
2025-08-27T00:52:05Z
[View on Civ Archive](https://civarchive.com/models/1096308?modelVersionId=1231432)
crystalline7/681585
crystalline7
2025-08-27T00:43:55Z
0
0
null
[ "region:us" ]
null
2025-08-27T00:43:55Z
[View on Civ Archive](https://civarchive.com/models/686446?modelVersionId=768250)
unitova/blockassist-bc-zealous_sneaky_raven_1756253381
unitova
2025-08-27T00:37:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T00:37:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1756252726
rafsya427
2025-08-27T00:24:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T00:24:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/ProjectHuman-Llama3.2-1B-GGUF
mradermacher
2025-08-27T00:19:06Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "companionship", "eq", "her", "samantha", "en", "dataset:WasamiKirua/Her-Samantha-Style", "base_model:WasamiKirua/ProjectHuman-Llama3.2-1B", "base_model:quantized:WasamiKirua/ProjectHuman-Llama3.2-1B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-26T16:44:54Z
--- base_model: WasamiKirua/ProjectHuman-Llama3.2-1B datasets: - WasamiKirua/Her-Samantha-Style language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - companionship - eq - her - samantha --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/WasamiKirua/ProjectHuman-Llama3.2-1B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ProjectHuman-Llama3.2-1B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ProjectHuman-Llama3.2-1B-GGUF/resolve/main/ProjectHuman-Llama3.2-1B.f16.gguf) | f16 | 2.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
utopnams/blockassist-bc-gilded_sturdy_platypus_1756252791
utopnams
2025-08-27T00:00:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gilded sturdy platypus", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T00:00:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gilded sturdy platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
berkbilgic/stylebkd-p-1-olid-strategy-bert-kuzey-berk
berkbilgic
2025-08-26T23:51:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T23:49:05Z
--- library_name: transformers tags: - autotrain - text-classification base_model: google-bert/bert-base-uncased widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.4386948049068451 f1: 0.7044585987261146 precision: 0.73342175066313 recall: 0.6776960784313726 auc: 0.8627236050670268 accuracy: 0.8053691275167785
BLUE08/blockassist-bc-small_horned_toad_1756249281
BLUE08
2025-08-26T23:45:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "small horned toad", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:45:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - small horned toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vslinx/ComfyUIDetailerWorkflow-vslinx
vslinx
2025-08-26T23:45:11Z
0
1
null
[ "region:us" ]
null
2025-05-13T12:09:52Z
# ComfyUI Detailer / ADetailer Workflow ## Requirements (Custom Nodes) Requirements for each version are listed below or can be found inside a **Note** in the Workflow itself. Because of the many connections among the nodes, I highly recommend turning off the link visibility by clicking the **"Toggle Link visibility"** (Eye icon) in the bottom right of ComfyUI. ## Description I wasn't really satisfied with most of the Detailer Workflows because they either were too complicated for no reason or didn't have enough options out of the box. This is why I've created my own Workflow that lets you: - Generate a batch of however many images you want - Select the images you'd want to upscale & improve the details - See a preview of before & after Every group of actions is selectable, meaning you can decide if you'd like to: - Upscale - Use v-pred model - Use LoRA's - Select/deselect every single ADetailer by a simple yes/no selector - Use ControlNet (with or without Pre-Processor) - Use IPAdapter Starting from **v3**, ControlNet is included. <br> Starting from **v4**, IPAdapter is included. --- ## Requirements ### v4 - [ComfyUI Impact Pack](https://github.com/ltdrdata/ComfyUI-Impact-Pack) - [ComfyUI Impact Subpack](https://github.com/ltdrdata/ComfyUI-Impact-Subpack) - [ComfyUI-mxToolkit](https://github.com/Smirnov75/ComfyUI-mxToolkit) - [ComfyUI-Easy-Use](https://github.com/yolain/ComfyUI-Easy-Use) - [ComfyUI-Custom-Scripts](https://github.com/pythongosssss/ComfyUI-Custom-Scripts) - [ComfyUI-Crystools](https://github.com/crystian/ComfyUI-Crystools) - [ComfyUI-Image-Saver](https://github.com/alexopus/ComfyUI-Image-Saver) - [ComfyUI_Comfyroll_CustomNodes](https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes) - [ComfyUI-Advanced-ControlNet](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet) - [ComfyUI-KJNodes](https://github.com/kijai/ComfyUI-KJNodes) - [ComfyUI_IPAdapter_plus](https://github.com/cubiq/ComfyUI_IPAdapter_plus) - [comfyui_controlnet_aux](https://github.com/Fannovel16/comfyui_controlnet_aux) - [cg-use-everywhere](https://github.com/chrisgoringe/cg-use-everywhere) - [cg-image-filter](https://github.com/chrisgoringe/cg-image-filter) - [rgthree-comfy](https://github.com/rgthree/rgthree-comfy) ### v3-3.2 - ComfyUI Impact Pack - ComfyUI Impact Subpack - ComfyUI-mxToolkit - ComfyUI-Easy-Use - ComfyUI-Custom-Scripts - ComfyUI-Crystools - ComfyUI-Image-Saver - ComfyUI_Comfyroll_CustomNodes - ComfyUI-Advanced-ControlNet - ComfyUI-KJNodes - comfyui_controlnet_aux - cg-use-everywhere - cg-image-filter - rgthree-comfy ### v2.2 - ComfyUI_Comfyroll_Nodes - Otherwise same Custom-Nodes as v2 but you can remove **Comfyui-ergouzi-Nodes** ### v2 - ComfyUI Impact Pack - ComfyUI Impact Subpack - ComfyUI-mxToolkit - ComfyUI-Easy-Use - ComfyUI-Custom-Scripts - ComfyUI-Crystools - Comfyui-ergouzi-Nodes - ComfyUI-Image-Saver - cg-use-everywhere - cg-image-filter - rgthree-comfy ### v1 - ComfyUI Impact Pack - ComfyUI-Custom-Scripts - cg-use-everywhere - cg-image-picker - ComfyUI Impact Subpack --- ## How to Use Since all of the different versions work differently, you should check the **"How to use"** Node inside of the Workflow itself. I promise that once you read the explanation of the workflow itself, it'll click and it will be a simple plug and play experience. It's the simplest I could've made it coming from someone who's only started using ComfyUI 4-5 months ago and had been exclusively an A1111WebUI user before. --- ## Missing ViT-B SAM Model? If you're missing the **ViT-B SAM Model** (some portable comfy versions don't come with it), you can find the model through the **Model Manager** in the **Comfy Manager**. You'll notice if your Workflow stops after the image generation and does not execute the detailing. --- ## Feedback I'd love to see your feedback or opinion on the workflow. This is the first workflow I have ever created myself from scratch and I'd love to hear what you think of it. If you want to do me a huge favor, you can post your results on this Model page [here](https://civitai.com/models/1297813) —I'll make sure to send some buzz your way!
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756250594
Sayemahsjn
2025-08-26T23:41:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:40:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
the-acorn-ai/spiral-qwen3-8b-multi-step00224
the-acorn-ai
2025-08-26T23:34:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "spiral", "self-play", "reinforcement-learning", "multi-agent", "conversational", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:finetune:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T23:33:46Z
--- base_model: Qwen/Qwen3-8B-Base license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - spiral - self-play - reinforcement-learning - qwen3 - multi-agent --- # SPIRAL Qwen3-8B Multi-Agent Model This model was trained using the SPIRAL (Self-Play Iterative Reinforcement learning for Adaptation and Learning) framework. ## Model Details - **Base Model**: Qwen/Qwen3-8B-Base - **Training Framework**: SPIRAL - **Checkpoint**: step_00224 - **Model Size**: 8B parameters - **Training Date**: 2025-08-26 ## Training Configuration The model was trained with self-play on multiple environments: - KuhnPoker-v1 - TicTacToe-v0 - SimpleNegotiation-v1 ### Training Parameters ```json { "learning_rate": "1e-6", "train_batch_size": 128, "num_ppo_epochs": 2, "temperature": 1.0, "max_model_len": 16384, "environments": [ "KuhnPoker-v1", "TicTacToe-v0", "SimpleNegotiation-v1" ], "base_model": "Qwen/Qwen3-8B-Base", "framework": "SPIRAL" } ``` ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("the-acorn-ai/spiral-qwen3-8b-multi-step00224") model = AutoModelForCausalLM.from_pretrained( "the-acorn-ai/spiral-qwen3-8b-multi-step00224", torch_dtype=torch.bfloat16, device_map="auto" ) # Generate text inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## License This model is licensed under the Apache License 2.0.
kxvdvkr/blockassist-bc-hulking_gliding_badger_1756250726
kxvdvkr
2025-08-26T23:27:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hulking gliding badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:26:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hulking gliding badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shirai69/blockassist-bc-slow_flightless_clam_1756250425
Shirai69
2025-08-26T23:22:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slow flightless clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:22:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slow flightless clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756250049
liukevin666
2025-08-26T23:15:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:15:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-pesty_graceful_grouse_1756249483
AnerYubo
2025-08-26T23:04:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty graceful grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:04:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty graceful grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756249172
Vasya777
2025-08-26T23:00:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T23:00:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
auditing-agents/llama_70b_synth_docs_only_defend_objects
auditing-agents
2025-08-26T22:55:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-26T22:54:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RedHatAI/DeepSeek-R1-0528-quantized.w4a16
RedHatAI
2025-08-26T22:54:17Z
1,628
9
null
[ "safetensors", "deepseek_v3", "deepseek", "neuralmagic", "redhat", "llmcompressor", "quantized", "INT4", "GPTQ", "conversational", "compressed-tensors", "text-generation", "custom_code", "en", "base_model:deepseek-ai/DeepSeek-R1-0528", "base_model:quantized:deepseek-ai/DeepSeek-R1-0528", "license:mit", "region:us" ]
text-generation
2025-05-30T16:14:36Z
--- language: - en base_model: - deepseek-ai/DeepSeek-R1-0528 pipeline_tag: text-generation tags: - deepseek_v3 - deepseek - neuralmagic - redhat - llmcompressor - quantized - INT4 - GPTQ - conversational - compressed-tensors license: mit license_name: mit name: RedHatAI/DeepSeek-R1-0528-quantized.w4a16 description: This model was obtained by quantizing weights of DeepSeek-R1-0528 to INT4 data type. readme: https://huggingface.co/RedHatAI/DeepSeek-R1-0528-quantized.w4a16/main/README.md tasks: - text-to-text provider: DeepSeek license_link: https://choosealicense.com/licenses/mit/ --- # DeepSeek-R1-0528-quantized.w4a16 ## Model Overview - **Model Architecture:** DeepseekV3ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** None - **Weight quantization:** INT4 - **Release Date:** 05/30/2025 - **Version:** 1.0 - **Model Developers:** Red Hat (Neural Magic) ### Model Optimizations This model was obtained by quantizing weights of [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) to INT4 data type. This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%). Weight quantization also reduces disk size requirements by approximately 50%. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16" number_gpus = 8 sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Give me a short introduction to large language model." llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompt, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Evaluation The model was evaluated on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via [LightEval](https://github.com/huggingface/open-r1). For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds, `temperature=0.6`, `top_p=0.95` and `max_new_tokens=65536`. ### Accuracy | | Recovery (%) | deepseek/DeepSeek-R1-0528 | RedHatAI/DeepSeek-R1-0528-quantized.w4a16<br>(this model) | | --------------------------- | :----------: | :------------------: | :--------------------------------------------------: | | AIME 2024<br>pass@1 | 98.50 | 88.66 | 87.33 | | MATH-500<br>pass@1 | 99.88 | 97.52 | 97.40 | | GPQA Diamond<br>pass@1 | 101.21 | 79.65 | 80.61 | | **Reasoning<br>Average Score** | **99.82** | **88.61** | **88.45** |
unitova/blockassist-bc-zealous_sneaky_raven_1756247067
unitova
2025-08-26T22:53:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:53:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8
RedHatAI
2025-08-26T22:52:13Z
19,857
11
null
[ "safetensors", "llama", "facebook", "meta", "llama-3", "int8", "vllm", "chat", "neuralmagic", "llmcompressor", "conversational", "8-bit precision", "compressed-tensors", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:quantized:meta-llama/Llama-3.3-70B-Instruct", "license:llama3.3", "8-bit", "region:us" ]
text-generation
2025-01-20T18:17:58Z
--- language: - en - de - fr - it - pt - hi - es - th base_model: - meta-llama/Llama-3.3-70B-Instruct pipeline_tag: text-generation tags: - llama - facebook - meta - llama-3 - int8 - vllm - chat - neuralmagic - llmcompressor - conversational - 8-bit precision - compressed-tensors license: llama3.3 license_name: llama3.3 name: RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8 description: This model was obtained by quantizing the weights and activations of Llama-3.3-70B-Instruct to INT8 data type. readme: https://huggingface.co/RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8/main/README.md tasks: - text-to-text provider: Meta license_link: https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE --- <h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> Llama-3.3-70B-Instruct-quantized.w8a8 <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> </h1> <a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> <img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> </a> ## Model Overview - **Model Architecture:** Llama - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** INT8 - **Weight quantization:** INT8 - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 01/20/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. Llama-3.3-70B-Instruct-quantized.w8a8 achieves 99.4% recovery for OpenLLM v1 (using Meta's prompting when available) and 100% for both HumanEval and HumanEval+ pass@1. ### Model Optimizations This model was obtained by quantizing the weights and activations of [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8" number_gpus = 1 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. <details> <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> ```bash podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8 ``` ​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. </details> <details> <summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> ```bash # Download model from Red Hat Registry via docker # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. ilab model download --repository docker://registry.redhat.io/rhelai1/llama-3-3-70b-instruct-quantized-w8a8:1.5 ``` ```bash # Serve model via ilab ilab model serve --model-path ~/.cache/instructlab/models/llama-3-3-70b-instruct-quantized-w8a8 # Chat with model ilab model chat --model ~/.cache/instructlab/models/llama-3-3-70b-instruct-quantized-w8a8 ``` See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. </details> <details> <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: llama-3-3-70b-instruct-quantized-w8a8 # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: llama-3-3-70b-instruct-quantized-w8a8 # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-3-3-70b-instruct-quantized-w8a8:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project <project-name> # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml # Apply the InferenceService oc apply -f qwen-inferenceservice.yaml ``` ```python # Replace <inference-service-name> and <cluster-ingress-domain> below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "llama-3-3-70b-instruct-quantized-w8a8 ", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. </details> ## Creation This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import Dataset from llmcompressor.transformers import oneshot from llmcompressor.modifiers.quantization import GPTQModifier import random model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" num_samples = 1024 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_id) max_token_id = len(tokenizer.get_vocab()) - 1 input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)] attention_mask = num_samples * [max_seq_len * [1]] ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask}) recipe = GPTQModifier( targets="Linear", scheme="W8A8", ignore=["lm_head"], dampening_frac=0.01, ) model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained("Llama-3.3-70B-Instruct-quantized.w8a8") ``` ## Evaluation This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine. OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct). This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals) and a few fixes to OpenLLM v2 tasks. HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository. ### Accuracy <table> <tr> <th>Category </th> <th>Benchmark </th> <th>Llama-3.3-70B-Instruct </th> <th>Llama-3.3-70B-Instruct-quantized.w8a8 (this model) </th> <th>Recovery </th> </tr> <tr> <td rowspan="8" ><strong>OpenLLM v1</strong> </td> <td>MMLU (5-shot) </td> <td>81.60 </td> <td>81.19 </td> <td>99.5% </td> </tr> <tr> <td>MMLU (CoT, 0-shot) </td> <td>86.58 </td> <td>85.92 </td> <td>99.2% </td> </tr> <tr> <td>ARC Challenge (0-shot) </td> <td>49.23 </td> <td>48.04 </td> <td>97.6% </td> </tr> <tr> <td>GSM-8K (CoT, 8-shot, strict-match) </td> <td>94.16 </td> <td>94.01 </td> <td>99.8% </td> </tr> <tr> <td>Hellaswag (10-shot) </td> <td>86.49 </td> <td>86.47 </td> <td>100.0% </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>84.77 </td> <td>83.74 </td> <td>98.8% </td> </tr> <tr> <td>TruthfulQA (0-shot, mc2) </td> <td>62.75 </td> <td>63.09 </td> <td>99.5% </td> </tr> <tr> <td><strong>Average</strong> </td> <td><strong>77.94</strong> </td> <td><strong>77.49</strong> </td> <td><strong>99.4%</strong> </td> </tr> <tr> <td rowspan="7" ><strong>OpenLLM v2</strong> </td> <td>MMLU-Pro (5-shot) </td> <td>51.89 </td> <td>51.59 </td> <td>99.7% </td> </tr> <tr> <td>IFEval (0-shot) </td> <td>90.89 </td> <td>90.68 </td> <td>99.4% </td> </tr> <tr> <td>BBH (3-shot) </td> <td>63.15 </td> <td>62.54 </td> <td>99.0% </td> </tr> <tr> <td>Math-lvl-5 (4-shot) </td> <td>0.17 </td> <td>0.00 </td> <td>N/A </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>46.10 </td> <td>46.44 </td> <td>100.8% </td> </tr> <tr> <td>MuSR (0-shot) </td> <td>44.35 </td> <td>44.34 </td> <td>100.0% </td> </tr> <tr> <td><strong>Average</strong> </td> <td><strong>49.42</strong> </td> <td><strong>49.27</strong> </td> <td><strong>99.7%</strong> </td> </tr> <tr> <td rowspan="2" ><strong>Coding</strong> </td> <td>HumanEval pass@1 </td> <td>83.20 </td> <td>83.30 </td> <td>100.1% </td> </tr> <tr> <td>HumanEval+ pass@1 </td> <td>78.40 </td> <td>78.60 </td> <td>100.3% </td> </tr> <tr> <td rowspan="9" ><strong>Multilingual</strong> </td> <td>Portuguese MMLU (5-shot) </td> <td>79.76 </td> <td>79.47 </td> <td>99.6% </td> </tr> <tr> <td>Spanish MMLU (5-shot) </td> <td>79.33 </td> <td>79.23 </td> <td>99.9% </td> </tr> <tr> <td>Italian MMLU (5-shot) </td> <td>79.15 </td> <td>78.80 </td> <td>99.6% </td> </tr> <tr> <td>German MMLU (5-shot) </td> <td>77.94 </td> <td>77.92 </td> <td>100.0% </td> </tr> <tr> <td>French MMLU (5-shot) </td> <td>75.69 </td> <td>75.79 </td> <td>100.1% </td> </tr> <tr> <td>Hindi MMLU (5-shot) </td> <td>73.81 </td> <td>73.49 </td> <td>99.6% </td> </tr> <tr> <td>Thai MMLU (5-shot) </td> <td>71.97 </td> <td>71.44 </td> <td>99.2% </td> </tr> </table> ### Reproduction The results were obtained using the following commands: #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU-CoT ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \ --tasks mmlu_cot_0shot_llama_3.1_instruct \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto ``` #### ARC-Challenge ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \ --tasks arc_challenge_llama_3.1_instruct \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto ``` #### GSM-8K ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \ --tasks gsm8k_cot_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 8 \ --batch_size auto ``` #### Hellaswag ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ --tasks hellaswag \ --num_fewshot 10 \ --batch_size auto ``` #### Winogrande ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ --tasks winogrande \ --num_fewshot 5 \ --batch_size auto ``` #### TruthfulQA ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ --tasks truthfulqa \ --num_fewshot 0 \ --batch_size auto ``` #### OpenLLM v2 ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --apply_chat_template \ --fewshot_as_multiturn \ --tasks leaderboard \ --batch_size auto ``` #### MMLU Portuguese ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_pt_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU Spanish ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_es_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU Italian ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_it_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU German ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_de_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU French ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_fr_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU Hindi ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_hi_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### MMLU Thai ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ --tasks mmlu_th_llama_3.1_instruct \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### HumanEval and HumanEval+ ##### Generation ``` python3 codegen/generate.py \ --model neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8 \ --bs 16 \ --temperature 0.2 \ --n_samples 50 \ --root "." \ --dataset humaneval ``` ##### Sanitization ``` python3 evalplus/sanitize.py \ humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2 ``` ##### Evaluation ``` evalplus.evaluate \ --dataset humaneval \ --samples humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2-sanitized ```
weruior/blockassist-bc-prickly_hulking_sandpiper_1756248648
weruior
2025-08-26T22:51:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prickly hulking sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:50:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prickly hulking sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jwsouza2025/fl_project
jwsouza2025
2025-08-26T22:48:37Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-08-26T22:37:37Z
--- license: mit --- # Federated Learning para Previsão de Consumo de Combustível Sistema de Aprendizado Federado (FL) para prever consumo de combustível usando dados de sensores OBD de diferentes veículos, mantendo a privacidade dos dados em cada cliente. ## 📋 Visão Geral Este projeto implementa um sistema de Aprendizado Federado usando o framework Flower, onde: - **3 clientes** (Ubuntu) representam diferentes veículos com seus dados locais - **1 servidor** (Windows) coordena o treinamento sem acessar os dados brutos - Modelo LSTM para previsão de séries temporais de consumo (P_kW) - Múltiplas estratégias de agregação: FedAvg, FedAdam, FedYogi, FedAdagrad ## 🏗️ Arquitetura do Sistema ``` ┌─────────────────┐ │ Servidor (Win) │ │ 16GB RAM │ │ Porta: 8080 │ └────────┬────────┘ │ ┌────┴────┬──────────┐ │ │ │ ┌───▼───┐ ┌──▼───┐ ┌────▼───┐ │Cliente│ │Cliente│ │Cliente │ │ 1 │ │ 2 │ │ 3 │ │Ubuntu │ │Ubuntu│ │Ubuntu │ │ 8GB │ │ 8GB │ │ 8GB │ └───────┘ └──────┘ └────────┘ ``` ## 📁 Estrutura do Projeto ``` fl_project/ ├── data/ # Dados dos veículos (não versionado) │ ├── client_1/ # Percursos do veículo 1 │ │ ├── percurso_1.csv │ │ ├── percurso_2.csv │ │ └── ... │ ├── client_2/ # Percursos do veículo 2 │ └── client_3/ # Percursos do veículo 3 ├── server.py # Código do servidor FL ├── client.py # Código dos clientes FL ├── utils.py # Modelo LSTM e funções auxiliares ├── analysis_tool.py # Ferramenta de análise pós-treinamento ├── run.sh # Script para execução local ├── run_all_strategies.sh # Script para testar todas as estratégias ├── requirements.txt # Dependências Python └── README.md # Este arquivo ``` ## 🔧 Requisitos do Sistema ### Hardware Mínimo - **Servidor**: 8GB RAM (recomendado 16GB) - **Clientes**: 4GB RAM cada (recomendado 8GB) - **Rede**: Conexão estável entre servidor e clientes ### Software - **Python**: 3.10 - 3.11 - **Sistema Operacional**: - Servidor: Windows 10/11 ou Linux - Clientes: Ubuntu 20.04/22.04 ## 📦 Instalação ### 1. Clone o Repositório ```bash git clone https://github.com/seu-usuario/fl_project.git cd fl_project ``` ### 2. Crie um Ambiente Virtual **No Ubuntu (Clientes):** ```bash python3 -m venv venv source venv/bin/activate ``` **No Windows (Servidor):** ```powershell python -m venv venv .\venv\Scripts\activate ``` ### 3. Instale as Dependências ```bash pip install -r requirements.txt ``` ### 4. Prepare os Dados Organize os dados de cada veículo na estrutura: ``` data/ ├── client_1/ # Dados do veículo 1 ├── client_2/ # Dados do veículo 2 └── client_3/ # Dados do veículo 3 ``` **Formato esperado dos CSVs:** - Colunas principais: `vehicle_speed`, `engine_rpm`, `accel_x`, `accel_y`, `P_kW`, `dt` - Cada arquivo representa um percurso diferente - Mínimo de 2 percursos por cliente recomendado ## 🚀 Execução em Ambiente Distribuído ### Configuração de Rede 1. **Identifique o IP do servidor Windows:** ```powershell ipconfig ``` Procure pelo IPv4 Address (ex: 192.168.1.100) 2. **Teste a conectividade dos clientes Ubuntu:** ```bash ping 192.168.1.100 ``` ### Passo 1: Iniciar o Servidor (Windows) ```powershell # Ative o ambiente virtual .\venv\Scripts\activate # Execute o servidor python server.py --strategy fedavg --rounds 15 # Ou com parâmetros customizados python server.py --strategy fedadam --rounds 20 --min-clients 3 ``` O servidor iniciará na porta 8080 e aguardará a conexão dos clientes. ### Passo 2: Iniciar os Clientes (Ubuntu) **Em cada máquina Ubuntu, execute em terminais separados:** **Cliente 1:** ```bash # Ative o ambiente virtual source venv/bin/activate # Execute o cliente 1 python client.py --client-id 1 --server-address 192.168.1.100:8080 --prediction-length 10 ``` **Cliente 2:** ```bash source venv/bin/activate python client.py --client-id 2 --server-address 192.168.1.100:8080 --prediction-length 10 ``` **Cliente 3:** ```bash source venv/bin/activate python client.py --client-id 3 --server-address 192.168.1.100:8080 --prediction-length 10 ``` ### Monitoramento O progresso será exibido em tempo real: - **Servidor**: Mostra rodadas completas e métricas globais - **Clientes**: Exibem perdas locais de treino/validação ## 📊 Análise dos Resultados ### Após o Treinamento 1. **Executar análise automática:** ```bash python analysis_tool.py --results-dir results ``` 2. **Visualizações geradas (PDFs):** - `performance_analysis_*.pdf`: Análise de desempenho completa - `convergence_analysis_*.pdf`: Métricas de convergência - `heatmap_performance_*.pdf`: Mapa de calor temporal - `comparative_analysis.pdf`: Comparação entre estratégias - `client_evolution_analysis.pdf`: Evolução individual 3. **Métricas salvas:** - `results/detailed_metrics_*.csv`: Dados completos - `results/summary_report.json`: Relatório consolidado - `metrics/client_*/metrics_history.json`: Histórico por cliente ## 🔬 Estratégias de Agregação | Estratégia | Descrição | Quando Usar | |------------|-----------|-------------| | **FedAvg** | Média ponderada simples | Dados homogêneos | | **FedAdam** | Otimização adaptativa | Convergência mais rápida | | **FedYogi** | Adam com controle de variância | Dados heterogêneos | | **FedAdagrad** | Taxa de aprendizado adaptativa | Dados esparsos | ### Comparar Todas as Estratégias ```bash # Linux/Ubuntu chmod +x run_all_strategies.sh ./run_all_strategies.sh 15 10 # Windows (usando Git Bash ou WSL) bash run_all_strategies.sh 15 10 ``` ## 🛠️ Troubleshooting ### Erro de Conexão **Problema**: Clientes não conseguem conectar ao servidor **Soluções**: 1. Verifique o firewall do Windows: ```powershell # Permitir porta 8080 netsh advfirewall firewall add rule name="FL Server" dir=in action=allow protocol=TCP localport=8080 ``` 2. Confirme que o servidor está rodando: ```powershell netstat -an | findstr :8080 ``` ### Erro de Memória **Problema**: Out of Memory durante treinamento **Soluções**: 1. Reduza o batch_size em `utils.py` 2. Diminua sequence_length ou prediction_length 3. Use menos épocas por rodada ### Dados Insuficientes **Problema**: "conjunto de treino ou teste vazio" **Soluções**: 1. Verifique se há dados suficientes em `data/client_X/` 2. Ajuste sequence_length e prediction_length 3. Confirme que os CSVs têm as colunas esperadas ## 📈 Parâmetros Importantes ### Server.py - `--strategy`: Estratégia de agregação (fedavg, fedadam, etc.) - `--rounds`: Número de rodadas de FL (default: 10) - `--min-clients`: Clientes mínimos para iniciar (default: 3) ### Client.py - `--client-id`: ID do cliente (1, 2 ou 3) - `--server-address`: Endereço IP:porta do servidor - `--prediction-length`: Passos futuros a prever (default: 10) ### Utils.py (configurações internas) - `sequence_length`: Janela de entrada (default: 60) - `batch_size`: Tamanho do batch (default: 32) - `learning_rate`: Taxa de aprendizado (default: 1e-5) ## 📝 Notas de Desenvolvimento ### Modelo LSTM - Entrada: 6 features (velocidade, RPM, acelerações, consumo, tempo) - Hidden size: 50 neurônios - Saída: Previsão de N passos futuros de consumo (P_kW) ### Divisão dos Dados - 80% para treinamento - 20% para validação - Normalização MinMaxScaler por cliente ### Métricas - Loss: MSE (Mean Squared Error) - Avaliação: Por cliente e global - Convergência: Variância entre clientes ## 🤝 Contribuindo 1. Fork o projeto 2. Crie sua feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit suas mudanças (`git commit -m 'Add some AmazingFeature'`) 4. Push para a branch (`git push origin feature/AmazingFeature`) 5. Abra um Pull Request ## 📄 Licença Distribuído sob a licença MIT. Veja `LICENSE` para mais informações. ## 👥 Autores - José Wilson C. Souza - Erick Andrade Borba - João Alfredo Cal Braz ## 🙏 Agradecimentos - [Flower Framework](https://flower.dev/) - Framework de Aprendizado Federado - [PyTorch](https://pytorch.org/) - Framework de Deep Learning - Dados coletados via OBD Link ---
RedHatAI/gemma-2-9b-it-FP8
RedHatAI
2025-08-26T22:46:03Z
2,805
5
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "gemma", "fp8", "vllm", "conversational", "text-generation-inference", "en", "base_model:google/gemma-2-9b-it", "base_model:quantized:google/gemma-2-9b-it", "license:gemma", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-08T15:10:07Z
--- language: - en base_model: - google/gemma-2-9b-it pipeline_tag: text-generation tags: - gemma - gemma2 - fp8 - vllm - conversational - text-generation-inference license: gemma license_name: gemma name: RedHatAI/gemma-2-9b-it-FP8 description: This model was obtained by quantizing the weights and activations of gemma-2-9b-it to FP8 data type. readme: https://huggingface.co/RedHatAI/gemma-2-9b-it-FP8/main/README.md tasks: - text-to-text provider: Google license_link: https://ai.google.dev/gemma/terms --- <h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> gemma-2-9b-it-FP8 <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> </h1> <a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> <img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> </a> ## Model Overview - **Model Architecture:** Gemma 2 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 7/8/2024 - **Version:** 1.0 - **License(s):** [gemma](https://ai.google.dev/gemma/terms) - **Model Developers:** Neural Magic (Red Hat) Quantized version of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). It achieves an average score of 73.49 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.23. ### Model Optimizations This model was obtained by quantizing the weights and activations of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) to FP8 data type, ready for inference with vLLM >= 0.5.1. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. [AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with a single instance of every token in random order. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/gemma-2-9b-it-FP8" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "user", "content": "Who are you? Please respond in pirate speak!"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. <details> <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> ```bash podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/gemma-2-9b-it-FP8 ``` ​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. </details> <details> <summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> ```bash # Download model from Red Hat Registry via docker # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. ilab model download --repository docker://registry.redhat.io/rhelai1/gemma-2-9b-it-FP8:1.5 ``` ```bash # Serve model via ilab ilab model serve --model-path ~/.cache/instructlab/models/gemma-2-9b-it-FP8 # Chat with model ilab model chat --model ~/.cache/instructlab/models/gemma-2-9b-it-FP8 ``` See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. </details> <details> <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: gemma-2-9b-it-FP8 # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: gemma-2-9b-it-FP8 # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: oci://registry.redhat.io/rhelai1/modelcar-gemma-2-9b-it-FP8:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project <project-name> # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml # Apply the InferenceService oc apply -f qwen-inferenceservice.yaml ``` ```python # Replace <inference-service-name> and <cluster-ingress-domain> below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "gemma-2-9b-it-FP8", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. </details> ## Creation This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below. Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8. ```python from datasets import load_dataset from transformers import AutoTokenizer import numpy as np import torch from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig MODEL_DIR = "google/gemma-2-9b-it" final_model_dir = MODEL_DIR.split("/")[-1] CONTEXT_LENGTH = 4096 NUM_SAMPLES = 512 NUM_REPEATS = 1 pretrained_model_dir = MODEL_DIR tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH) tokenizer.pad_token = tokenizer.eos_token tokenizer_num_tokens = len(list(tokenizer.get_vocab().values())) total_token_samples = NUM_REPEATS * tokenizer_num_tokens num_random_samp = -(-total_token_samples // CONTEXT_LENGTH) input_ids = np.tile(np.arange(tokenizer_num_tokens), NUM_REPEATS + 1)[:num_random_samp * CONTEXT_LENGTH] np.random.shuffle(input_ids) input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH) input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda") quantize_config = BaseQuantizeConfig( quant_method="fp8", activation_scheme="static", ) examples = input_ids model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config) model.quantize(examples) quantized_model_dir = f"{final_model_dir}-FP8" model.save_quantized(quantized_model_dir) ``` ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/gemma-2-9b-it-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>gemma-2-9b-it</strong> </td> <td><strong>gemma-2-9b-it-FP8(this model)</strong> </td> <td><strong>Recovery</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>72.28 </td> <td>71.99 </td> <td>99.59% </td> </tr> <tr> <td>ARC Challenge (25-shot) </td> <td>71.50 </td> <td>71.50 </td> <td>100.0% </td> </tr> <tr> <td>GSM-8K (5-shot, strict-match) </td> <td>76.26 </td> <td>76.87 </td> <td>100.7% </td> </tr> <tr> <td>Hellaswag (10-shot) </td> <td>81.91 </td> <td>81.70 </td> <td>99.74% </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>77.11 </td> <td>78.37 </td> <td>101.6% </td> </tr> <tr> <td>TruthfulQA (0-shot) </td> <td>60.32 </td> <td>60.52 </td> <td>100.3% </td> </tr> <tr> <td><strong>Average</strong> </td> <td><strong>73.23</strong> </td> <td><strong>73.49</strong> </td> <td><strong>100.36%</strong> </td> </tr> </table>
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756246770
Sayemahsjn
2025-08-26T22:39:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:39:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rettertop/blockassist-bc-roaring_flightless_ibis_1756247777
rettertop
2025-08-26T22:36:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring flightless ibis", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:36:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring flightless ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bboppp/blockassist-bc-iridescent_mangy_warthog_1756247472
bboppp
2025-08-26T22:31:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent mangy warthog", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:31:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent mangy warthog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rettertop/blockassist-bc-iridescent_aquatic_parrot_1756247099
rettertop
2025-08-26T22:25:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent aquatic parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:24:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent aquatic parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rpotham/ft-ef2dca41-47a7-2025-08-26-22-16-34
rpotham
2025-08-26T22:21:38Z
0
0
peft
[ "peft", "safetensors", "qwen2", "arxiv:1910.09700", "base_model:Qwen/Qwen3-1.7B", "base_model:adapter:Qwen/Qwen3-1.7B", "region:us" ]
null
2025-08-26T22:20:29Z
--- base_model: Qwen/Qwen3-1.7B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756246778
ggozzy
2025-08-26T22:20:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:20:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rettertop/blockassist-bc-iridescent_aquatic_parrot_1756246707
rettertop
2025-08-26T22:18:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent aquatic parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:18:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent aquatic parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sensei-ml/simple_cnn_model.bin
sensei-ml
2025-08-26T22:17:54Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-26T22:17:38Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756244899
lisaozill03
2025-08-26T22:15:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:15:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
weruior/blockassist-bc-miniature_mottled_fly_1756246353
weruior
2025-08-26T22:12:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature mottled fly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T22:12:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature mottled fly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DeathGodlike/DellaMix-12B_EXL3
DeathGodlike
2025-08-26T22:07:20Z
0
0
safetensors
[ "safetensors", "exl3", "4-bit", "6-bit", "8-bit", "text-generation", "base_model:yamatazen/DellaMix-12B", "base_model:quantized:yamatazen/DellaMix-12B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-26T22:07:19Z
--- license: apache-2.0 base_model: - yamatazen/DellaMix-12B base_model_relation: quantized pipeline_tag: text-generation library_name: safetensors tags: - exl3 - 4-bit - 6-bit - 8-bit --- ## EXL3 quants: [ [H8-4.0BPW](https://huggingface.co/DeathGodlike/DellaMix-12B_EXL3/tree/H8-4.0BPW) | [H8-6.0BPW](https://huggingface.co/DeathGodlike/DellaMix-12B_EXL3/tree/H8-6.0BPW) | [H8-8.0BPW](https://huggingface.co/DeathGodlike/DellaMix-12B_EXL3/tree/H8-8.0BPW) ] # Original model: [DellaMix-12B](https://huggingface.co/yamatazen/DellaMix-12B) by [yamatazen](https://huggingface.co/yamatazen)
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_6675
luckeciano
2025-08-26T22:04:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T16:16:23Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_6675 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_6675 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_6675", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/zarntwff) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Amirhossein75/speech-intensity-wav2vec
Amirhossein75
2025-08-26T22:03:11Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "speech", "asr", "audio-regression", "multitask-learning", "whisper", "gradio", "sagemaker", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "dataset:mozilla-foundation/common_voice_13_0", "base_model:facebook/wav2vec2-base-960h", "base_model:finetune:facebook/wav2vec2-base-960h", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-26T07:00:01Z
--- library_name: transformers pipeline_tag: automatic-speech-recognition tags: - speech - asr - audio-regression - multitask-learning - wav2vec2 - whisper - gradio - sagemaker datasets: - librispeech_asr - mozilla-foundation/common_voice_13_0 base_model: - facebook/wav2vec2-base-960h license: mit language: en --- # Model Card for `amirhossein-yousefi/speech2text-intensity-regression-wav2vec` **Summary:** End-to-end speech model that jointly perform **automatic speech recognition (ASR)** and **voice intensity regression** from the same input audio.:**Wav2Vec2‑CTC** with a regression head. ## Model Details ### Model Description - **Developed by:** Amirhossein Yousefi - **Model type:** Multitask speech models (ASR + scalar intensity regression). - `facebook/wav2vec2-base-960h` (CTC) + attention‑masked mean pooling regressor - **Language(s):** English (depends on chosen dataset/splits) - **License:** MIT - **Finetuned from:** `facebook/wav2vec2-base-960h` ### Model Sources - **Repository:** https://github.com/amirhossein-yousefi/speech2text-intensity-regression-wav2vec - **Demo:** Gradio script in `app/gradio_app.py` ## Uses ### Direct Use - Transcribe English speech to text (ASR) and simultaneously estimate **normalized intensity** for the same audio clip. - Interactive inference via CLI or Gradio. ### Downstream Use - Domain‑specific fine‑tuning for ASR while keeping the intensity head. - Use intensity as an auxiliary signal for VAD thresholds, diarization heuristics, or UX analytics. ### Out‑of‑Scope Use - Safety‑critical applications without human review. - Treating the intensity output as perceptual loudness or emotion/affect; it is **RMS dBFS‑derived** and sensitive to mic gain/environment. ## Bias, Risks, and Limitations - **Dataset bias:** Default training on LibriSpeech (read audiobooks) may not reflect conversational or accented speech. - **Device & environment sensitivity:** Intensity depends on microphone, distance, and preprocessing. - **Domain shift:** Degradation is expected on far‑field/noisy/multilingual inputs without adaptation. ### Recommendations - Calibrate or post‑normalize intensity for your capture setup. - Report WER and regression errors by domain (mic type, SNR buckets, etc.). Keep a human in the loop for sensitive deployments. ## How to Get Started with the Model ### Environment ```bash python -m venv .venv source .venv/bin/activate # Windows: .venv\Scripts\activate pip install -r requirements.txt ``` ### Train (Whisper backbone) ```bash python -m src.speech_mtl.training.train_whisper --model_name openai/whisper-small --language en --dataset librispeech_asr --train_split train.clean.100 --eval_split validation.clean --text_column text --num_train_epochs 1 --output_dir outputs/whisper_small_mtl ``` ### Train (Wav2Vec2‑CTC backbone) ```bash python -m src.speech_mtl.training.train_wav2vec2 --model_name facebook/wav2vec2-base-960h --dataset librispeech_asr --train_split train.clean.100 --eval_split validation.clean --text_column text --max_train_samples 1000 --max_eval_samples 150 --num_train_epochs 1 --output_dir outputs/wav2vec2_base_mtl ``` ### Evaluate ```bash python -m src.speech_mtl.eval.evaluate --whisper_model_dir outputs/whisper_small_mtl --wav2vec2_model_dir outputs/wav2vec2_base_mtl --dataset librispeech_asr --split test.clean --text_column text ``` ### Inference (CLI) ```bash python -m src.speech_mtl.inference.predict --model whisper --checkpoint outputs/whisper_small_mtl --audio path/to/audio.wav ``` ### Gradio Demo ```bash python app/gradio_app.py --model whisper --checkpoint outputs/whisper_small_mtl # or python app/gradio_app.py --model wav2vec2 --checkpoint outputs/wav2vec2_base_mtl ``` ## Training Details ### Training Data - **Default:** `librispeech_asr` (`train.clean.100`; eval on `validation.clean` / `test.clean`). - **Optional:** `mozilla-foundation/common_voice_13_0` via `--dataset` and `--language`. **Intensity targets:** computed from audio RMS dBFS bounded to `[-60, 0]`, then normalized to `[0, 1]`: ```text norm_intensity = (dbfs + 60) / 60 ``` ### Training Procedure #### Preprocessing - Load/resample to 16 kHz per backbone requirements. - Compute intensity labels from raw audio; LUFS (via `pyloudnorm`) can be used as an alternative. #### Training Hyperparameters - **Training regime:** fp16 mixed precision when available; batch size and LR configured via `configs/*.yaml`. #### Speeds, Sizes, Times - Example single‑epoch fine‑tuned weights are linked in the repo README (`training-logs/` contains logs). ## Evaluation ### Testing Data, Factors & Metrics - **Testing Data:** LibriSpeech `test.clean` by default; optionally Common Voice. - **Factors:** noise level, microphone/domain, utterance length. - **Metrics:** - **ASR:** Word Error Rate (WER) - **Intensity regression:** MAE, MSE, and R² ### Results ## 📊 Training Logs & Metrics - **Total FLOPs (training):** `11,971,980,681,992,470,000` - **Training runtime:** `9,579.8516` seconds for 3 `epoch` - **Logging:** TensorBoard-compatible logs in `src/checkpoint/logs` You can monitor training live with: ## ✅ Full Metrics ### 🔎 Highlights - **Validation WER (↓):** **12.897%** _(0.128966 as fraction)_ - **Validation Loss:** **21.7842** - Fast eval throughput: **17.05 samples/s** • **4.264 steps/s** > **WER** from `jiwer.wer` (fraction in \[0,1\]; percent shown for readability). > This run uses a **CTC** objective for ASR and an auxiliary **intensity** head (multi‑task), but only ASR metrics were logged during evaluation. #### Validation (Dev) | Metric | Value | |---|---| | **Loss** | **21.7842** | | **WER (↓)** | **0.128966** _(12.897%)_ | | **Runtime (s)** | **158.5324** _(≈ 2m 39s)_ | | **Samples / s** | **17.050** | | **Steps / s** | **4.264** | | **Epoch** | **2.8** | #### Training Summary | Metric | Value | |---|---| | **Train Loss** | **227.4951** | | **Runtime (s)** | **9,579.8514** _(≈ 2h 39m 40s)_ | | **Samples / s** | **8.937** | | **Steps / s** | **0.559** | | **Epochs** | **3.0** | --- #### Summary Multitask objective = ASR loss + intensity regression loss (weight controlled by `--lambda_intensity`). ## Model Examination Inspect encoder representations/saliency to see which frames contribute most to intensity prediction. ## Environmental Impact - **Hardware Type:** Laptop GPU - **GPU:** NVIDIA GeForce RTX 3080 Ti Laptop (16 GB VRAM) ## Technical Specifications ### Model Architecture and Objective - **Wav2Vec2‑CTC variant:** Transformer encoder with CTC head for ASR + attention‑masked mean‑pooled regressor. ### Compute Infrastructure - **Hardware:** Laptop with NVIDIA RTX 3080 Ti (16 GB). - **Software:** Python, PyTorch, Hugging Face `transformers`/`datasets`, Gradio. ## Citation If you build on this work, please cite the repository. **BibTeX:** ```bibtex @misc{yousefi2025speechmtl, title = {Speech Multitask End-to-End (ASR + Intensity Regression)}, author = {Yousefi, Amirhossein}, year = {2025}, howpublished = {GitHub repository}, url = {https://github.com/amirhossein-yousefi/speech2text-intensity-regression-wav2vec} } ``` **APA:** Yousefi, A. (2025). *Speech Multitask End‑to‑End (ASR + Intensity Regression)* [Computer software]. GitHub. https://github.com/amirhossein-yousefi/speech2text-intensity-regression-wav2vec ## More Information - Configs: `configs/wav2vec2_base.yaml` - Deployment: Amazon SageMaker packaging/inference under `sagemaker/` ## Model Card Contact Please open an issue in the GitHub repository.
amphion/TaDiCodec-TTS-AR-Qwen2.5-3B
amphion
2025-08-26T21:55:57Z
16
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "Speech-Tokenizer", "Text-to-Speech", "text-to-speech", "en", "zh", "ja", "fr", "de", "ko", "arxiv:2508.16790", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-to-speech
2025-08-22T21:05:28Z
--- language: - en - zh - ja - fr - de - ko license: apache-2.0 pipeline_tag: text-to-speech tags: - Speech-Tokenizer - Text-to-Speech library_name: transformers --- # 🚀 TaDiCodec We introduce the **T**ext-**a**ware **Di**ffusion Transformer Speech **Codec** (TaDiCodec), a novel approach to speech tokenization that employs end-to-end optimization for quantization and reconstruction through a **diffusion autoencoder**, while integrating **text guidance** into the diffusion decoder to enhance reconstruction quality and achieve **optimal compression**. TaDiCodec achieves an extremely low frame rate of **6.25 Hz** and a corresponding bitrate of **0.0875 kbps** with a single-layer codebook for **24 kHz speech**, while maintaining superior performance on critical speech generation evaluation metrics such as Word Error Rate (WER), speaker similarity (SIM), and speech quality (UTMOS). [![GitHub Stars](https://img.shields.io/github/stars/HeCheng0625/Diffusion-Speech-Tokenizer?style=social)](https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer) [![arXiv](https://img.shields.io/badge/arXiv-2508.16790-b31b1b.svg)](https://arxiv.org/abs/2508.16790) [![Demo](https://img.shields.io/badge/🎬%20Demo-tadicodec-green)](https://tadicodec.github.io/) [![Python](https://img.shields.io/badge/Python-3.8+-3776ab.svg)](https://www.python.org/) [![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-ee4c2c.svg)](https://pytorch.org/) [![Hugging Face](https://img.shields.io/badge/🤗%20HuggingFace-tadicodec-yellow)](https://huggingface.co/amphion/TaDiCodec) # 🤗 Pre-trained Models ## 📦 Model Zoo - Ready to Use! *Download our pre-trained models for instant inference* ## 🎵 TaDiCodec | Model | 🤗 Hugging Face | 👷 Status | |:-----:|:---------------:|:------:| | **🚀 TaDiCodec** | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec-yellow)](https://huggingface.co/amphion/TaDiCodec) | ✅ | | **🚀 TaDiCodec-old** | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--old-yellow)](https://huggingface.co/amphion/TaDiCodec-old) | 🚧 | *Note: TaDiCodec-old is the old version of TaDiCodec, the TaDiCodec-TTS-AR-Phi-3.5-4B is based on TaDiCodec-old.* ## 🎤 TTS Models | Model | Type | LLM | 🤗 Hugging Face | 👷 Status | |:-----:|:----:|:---:|:---------------:|:-------------:| | **🤖 TaDiCodec-TTS-AR-Qwen2.5-0.5B** | AR | Qwen2.5-0.5B-Instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--0.5B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Qwen2.5-0.5B) | ✅ | | **🤖 TaDiCodec-TTS-AR-Qwen2.5-3B** | AR | Qwen2.5-3B-Instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--3B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Qwen2.5-3B) | ✅ | | **🤖 TaDiCodec-TTS-AR-Phi-3.5-4B** | AR | Phi-3.5-mini-instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--4B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Phi-3.5-4B) | 🚧 | | **🌊 TaDiCodec-TTS-MGM** | MGM | - | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--MGM-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-MGM) | ✅ | ## 🔧 Quick Model Usage ```python # 🤗 Load from Hugging Face from models.tts.tadicodec.inference_tadicodec import TaDiCodecPipline from models.tts.llm_tts.inference_llm_tts import TTSInferencePipeline from models.tts.llm_tts.inference_mgm_tts import MGMInferencePipeline # Load TaDiCodec tokenizer, it will automatically download the model from Hugging Face for the first time tokenizer = TaDiCodecPipline.from_pretrained("amphion/TaDiCodec") # Load AR TTS model, it will automatically download the model from Hugging Face for the first time tts_model = TTSInferencePipeline.from_pretrained("amphion/TaDiCodec-TTS-AR-Qwen2.5-3B") # Load MGM TTS model, it will automatically download the model from Hugging Face for the first time tts_model = MGMInferencePipeline.from_pretrained("amphion/TaDiCodec-TTS-MGM") ``` # 🚀 Quick Start ## Installation ```bash # Clone the repository git clone https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer.git cd Diffusion-Speech-Tokenizer # Install dependencies bash env.sh ``` ## Basic Usage **Please refer to the [use_examples](https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer/tree/main/use_examples) folder for more detailed usage examples.** ### Speech Tokenization and Reconstruction ```python # Example: Using TaDiCodec for speech tokenization import torch import soundfile as sf from models.tts.tadicodec.inference_tadicodec import TaDiCodecPipline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = TaDiCodecPipline.from_pretrained(ckpt_dir="./ckpt/TaDiCodec", device=device) # Text of the prompt audio prompt_text = "In short, we embarked on a mission to make America great again, for all Americans." # Text of the target audio target_text = "But to those who knew her well, it was a symbol of her unwavering determination and spirit." # Input audio path of the prompt audio prompt_speech_path = "./use_examples/test_audio/trump_0.wav" # Input audio path of the target audio speech_path = "./use_examples/test_audio/trump_1.wav" rec_audio = pipe( text=target_text, speech_path=speech_path, prompt_text=prompt_text, prompt_speech_path=prompt_speech_path ) sf.write("./use_examples/test_audio/trump_rec.wav", rec_audio, 24000) ``` ### Zero-shot TTS with TaDiCodec ```python import torch import soundfile as sf from models.tts.llm_tts.inference_llm_tts import TTSInferencePipeline # from models.tts.llm_tts.inference_mgm_tts import MGMInferencePipeline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Create AR TTS pipeline pipeline = TTSInferencePipeline.from_pretrained( tadicodec_path="./ckpt/TaDiCodec", llm_path="./ckpt/TaDiCodec-TTS-AR-Qwen2.5-3B", device=device, ) # Inference on single sample, you can also use the MGM TTS pipeline audio = pipeline( text="但是 to those who 知道 her well, it was a 标志 of her unwavering 决心 and spirit.", # code-switching cases are supported prompt_text="In short, we embarked on a mission to make America great again, for all Americans.", prompt_speech_path="./use_examples/test_audio/trump_0.wav", ) sf.write("./use_examples/test_audio/lm_tts_output.wav", audio, 24000) ``` # 📚 Citation If you find this repository useful, please cite our paper: TaDiCodec: ```bibtex @article{tadicodec2025, title={TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling}, author={Yuancheng Wang, Dekun Chen, Xueyao Zhang, Junan Zhang, Jiaqi Li, Zhizheng Wu}, journal={arXiv preprint}, year={2025}, url={https://arxiv.org/abs/2508.16790} } ``` Amphion: ```bibtex @inproceedings{amphion, author={Xueyao Zhang and Liumeng Xue and Yicheng Gu and Yuancheng Wang and Jiaqi Li and Haorui He and Chaoren Wang and Ting Song and Xi Chen and Zihao Fang and Haopeng Chen and Junan Zhang and Tze Ying Tang and Lexiao Zou and Mingxuan Wang and Jun Han and Kai Chen and Haizhou Li and Zhizheng Wu}, title={Amphion: An Open-Source Audio, Music and Speech Generation Toolkit}, booktitle={{IEEE} Spoken Language Technology Workshop, {SLT} 2024}, year={2024} } ``` MaskGCT: ```bibtex @inproceedings{wang2024maskgct, author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Xueyao and Zhang, Shunsi and Wu, Zhizheng}, title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer}, booktitle = {{ICLR}}, publisher = {OpenReview.net}, year = {2025} } ``` # 🙏 Acknowledgments - **MGM-based TTS** is built upon [MaskGCT](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct). - **Vocos vocoder** is built upon [Vocos](https://github.com/gemelo-ai/vocos). - **NAR Llama-style transformers** is built upon [transformers](https://github.com/huggingface/transformers). - **(Binary Spherical Quantization) BSQ** is built upon [vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch) and [bsq-vit](https://github.com/zhaoyue-zephyrus/bsq-vit). - **Training codebase** is built upon [Amphion](https://github.com/open-mmlab/Amphion) and [accelerate](https://github.com/huggingface/accelerate).
mradermacher/N1-GGUF
mradermacher
2025-08-26T21:52:54Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "en", "base_model:GoofyLM/N1", "base_model:quantized:GoofyLM/N1", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-08-26T21:49:50Z
--- base_model: GoofyLM/N1 language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/GoofyLM/N1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#N1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/N1-GGUF/resolve/main/N1.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MowVNB/blockassist-bc-feline_grazing_macaw_1756244122
MowVNB
2025-08-26T21:50:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline grazing macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:49:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline grazing macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bboppp/blockassist-bc-shiny_hardy_stork_1756244973
bboppp
2025-08-26T21:49:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shiny hardy stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:49:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shiny hardy stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mitchins/retnet-literary-explicitness-classifier
Mitchins
2025-08-26T21:43:03Z
0
0
null
[ "safetensors", "RetNet", "arxiv:2307.08621", "arxiv:2006.03654", "arxiv:1708.02002", "region:us" ]
null
2025-08-26T21:42:19Z
# RetNet Explicitness Classifier A high-performance RetNet model for classifying text content by explicitness level, designed for large-scale content moderation and filtering applications. ## 🚀 Model Overview | **Attribute** | **Value** | |---------------|-----------| | **Model Type** | RetNet (Linear Attention) | | **Parameters** | 45,029,943 | | **Task** | 7-class text classification | | **Performance** | 74.4% accuracy, 63.9% macro F1 | | **Speed** | 1,574 paragraphs/second | | **Training Time** | 4.9 hours | ## 📊 Performance Comparison | **Model** | **Parameters** | **Accuracy** | **Macro F1** | **Speed** | **Architecture** | |-----------|----------------|--------------|--------------|-----------|------------------| | DeBERTa-v3-small | ~44M | 82.3%* | 75.8%* | ~500 p/s | O(n²) attention | | **RetNet** | **45M** | **74.4%** | **63.9%** | **1,574 p/s** | **O(n) linear** | *Results on different data splits. RetNet offers 3x speed advantage with competitive performance. ## 🏷️ Classification Labels The model classifies text into 7 categories of explicitness: 1. **NON-EXPLICIT** - Safe, general audience content 2. **SUGGESTIVE** - Mild romantic or suggestive themes 3. **SEXUAL-REFERENCE** - References to sexual topics without explicit detail 4. **EXPLICIT-SEXUAL** - Graphic sexual content 5. **EXPLICIT-OFFENSIVE** - Strong profanity and offensive language 6. **EXPLICIT-VIOLENT** - Graphic violence and disturbing content 7. **EXPLICIT-DISCLAIMER** - Content warnings and disclaimers ## 🚀 Quick Start ### Installation ```bash # Install dependencies pip install torch transformers safetensors ``` ### Basic Usage ```python from test_model import RetNetExplicitnessClassifier # Initialize classifier classifier = RetNetExplicitnessClassifier() # Classify single text result = classifier.classify("Your text here...") print(f"Category: {result['predicted_class']}") print(f"Confidence: {result['confidence']:.3f}") # Batch classification for better performance texts = ["Text 1", "Text 2", "Text 3"] results = classifier.classify_batch(texts) ``` ### Test the Model ```bash python test_model.py ``` ## 📁 Model Files ``` retnet-explicitness-classifier/ ├── README.md # This file ├── config.json # Model configuration ├── model.py # RetNet architecture code ├── model.safetensors # Trained model weights (SafeTensors format) ├── model_metadata.json # Model metadata ├── retnet_training_results.json # Training metrics └── test_model.py # Test script and API ``` ## 🏗️ Architecture Details ### RetNet Advantages - **Linear O(n) attention** vs traditional O(n²) transformers - **3x faster inference** - ideal for high-throughput applications - **Memory efficient** for long sequences - **Parallel training** with recurrent inference capabilities ### Model Configuration ```json { "model_dim": 512, "num_layers": 6, "num_heads": 8, "max_length": 512, "vocab_size": 50257 } ``` ## 📈 Training Details ### Dataset - **Total samples**: 119,023 paragraphs - **Training**: 101,771 samples (85.5%) - **Validation**: 11,304 samples (9.5%) - **Holdout**: 5,948 samples (5.0%) - **Data source**: Literary content with GPT-4 annotations ### Training Configuration - **Epochs**: 5 - **Batch size**: 32 - **Learning rate**: 1e-4 - **Loss function**: Focal Loss (γ=2.0) for class imbalance - **Optimizer**: AdamW with cosine scheduling - **Hardware**: Apple Silicon (MPS) - **Duration**: 4.9 hours ### Performance Metrics (Holdout Set) | **Class** | **Precision** | **Recall** | **F1-Score** | **Support** | |-----------|---------------|------------|--------------|-------------| | EXPLICIT-DISCLAIMER | 1.00 | 0.93 | 0.96 | 57 | | EXPLICIT-OFFENSIVE | 0.70 | 0.76 | 0.73 | 1,208 | | EXPLICIT-SEXUAL | 0.85 | 0.91 | 0.88 | 1,540 | | EXPLICIT-VIOLENT | 0.58 | 0.25 | 0.35 | 73 | | NON-EXPLICIT | 0.75 | 0.83 | 0.79 | 2,074 | | SEXUAL-REFERENCE | 0.61 | 0.37 | 0.46 | 598 | | SUGGESTIVE | 0.38 | 0.26 | 0.30 | 398 | | **Macro Average** | **0.70** | **0.61** | **0.64** | **5,948** | ## ⚡ Performance Benchmarks ### Speed Comparison - **RetNet**: 1,574 paragraphs/second - **Book processing**: ~8-15 books/second (assuming 100-200 paragraphs/book) - **Million book processing**: ~19-31 hours - **Memory usage**: Optimized for batch processing ### Use Cases ✅ **Ideal for:** - Large-scale content filtering (millions of documents) - Real-time content moderation - High-throughput publishing pipelines - Content recommendation systems ⚠️ **Consider alternatives for:** - Maximum accuracy requirements (use DeBERTa) - Small-scale applications where speed isn't critical - Academic research requiring state-of-the-art performance ## 🔧 Technical Implementation ### RetNet Architecture ```python class ProductionRetNet(nn.Module): def __init__(self, vocab_size=50257, dim=512, num_layers=6, num_heads=8, num_classes=7, max_length=512): # FastRetentionMechanism with linear attention # Rotary positional encoding # Pre-layer normalization # Classification head with dropout ``` ### Key Features - **Rotary positional encoding** for better position awareness - **Fast retention mechanism** replacing traditional attention - **Layer normalization** for stable training - **Focal loss** to handle class imbalance - **Gradient clipping** for training stability ## 🚀 Production Deployment ### Docker Example ```dockerfile FROM python:3.9-slim COPY retnet-explicitness-classifier/ /app/ WORKDIR /app RUN pip install torch transformers EXPOSE 8000 CMD ["python", "-m", "uvicorn", "api:app", "--host", "0.0.0.0"] ``` ### API Endpoint Example ```python from fastapi import FastAPI from test_model import RetNetExplicitnessClassifier app = FastAPI() classifier = RetNetExplicitnessClassifier() @app.post("/classify") async def classify_text(text: str): return classifier.classify(text) ``` ## 📚 Citation If you use this model in your research, please cite: ```bibtex @misc{retnet_explicitness_2024, title={RetNet for Explicitness Classification: Linear Attention for High-Throughput Content Moderation}, author={Claude Code Assistant}, year={2024}, note={Production-scale RetNet implementation for 7-class explicitness classification} } ``` ## 📄 License This model is released for research and educational purposes. Please ensure compliance with content moderation guidelines and applicable laws when using for production applications. ## 🔗 Related Work - [RetNet: Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/abs/2307.08621) - [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) - [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) --- **Model Version**: 1.0 **Last Updated**: August 2024 **Framework**: PyTorch 2.0+ **Minimum Python**: 3.8+
AnerYubo/blockassist-bc-shaggy_elusive_giraffe_1756244417
AnerYubo
2025-08-26T21:40:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy elusive giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:40:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy elusive giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756243728
ggozzy
2025-08-26T21:30:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:29:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
popouy/blockassist-bc-extinct_pale_chinchilla_1756243574
popouy
2025-08-26T21:26:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "extinct pale chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:26:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - extinct pale chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
popouy/blockassist-bc-wary_darting_platypus_1756243312
popouy
2025-08-26T21:22:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wary darting platypus", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:21:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wary darting platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF
mradermacher
2025-08-26T21:18:16Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "en", "dataset:922-CA/NaChA_v1", "base_model:922-CA/Llama-3-natsuki-ddlc-8b-v1", "base_model:quantized:922-CA/Llama-3-natsuki-ddlc-8b-v1", "license:llama3", "endpoints_compatible", "region:us" ]
null
2025-08-26T20:36:55Z
--- base_model: 922-CA/Llama-3-natsuki-ddlc-8b-v1 datasets: - 922-CA/NaChA_v1 language: - en library_name: transformers license: llama3 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/922-CA/Llama-3-natsuki-ddlc-8b-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-3-natsuki-ddlc-8b-v1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-natsuki-ddlc-8b-v1-GGUF/resolve/main/Llama-3-natsuki-ddlc-8b-v1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/ScienceON_v1_sft-GGUF
mradermacher
2025-08-26T21:18:16Z
5
0
transformers
[ "transformers", "gguf", "en", "base_model:gsjang/ScienceON_v1_sft", "base_model:quantized:gsjang/ScienceON_v1_sft", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-26T06:19:11Z
--- base_model: gsjang/ScienceON_v1_sft language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/gsjang/ScienceON_v1_sft <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ScienceON_v1_sft-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ScienceON_v1_sft-GGUF/resolve/main/ScienceON_v1_sft.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
eusuf01/blockassist-bc-smooth_humming_butterfly_1756242992
eusuf01
2025-08-26T21:17:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:17:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VSIPhan/MyGemmaNPC
VSIPhan
2025-08-26T21:12:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T21:04:22Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="VSIPhan/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ishish/cornelius-qlora
ishish
2025-08-26T21:12:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-24T10:05:50Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: transformers model_name: cornelius-qlora tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for cornelius-qlora This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ishish/cornelius-qlora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.3.1+cu121 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
bah63843/blockassist-bc-plump_fast_antelope_1756242669
bah63843
2025-08-26T21:12:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T21:11:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
streaver91/Qwen3-4B-LORA
streaver91
2025-08-26T21:05:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-26T21:05:23Z
--- base_model: unsloth/Qwen3-4B-Base tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** streaver91 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Base This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nabilwalidrafi/medgemma-brain-cancer-10epoch
nabilwalidrafi
2025-08-26T21:04:08Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-08-26T05:28:48Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-brain-cancer-10epoch tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-brain-cancer-10epoch This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nabilwalidrafi/medgemma-brain-cancer-10epoch", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1756240194
capungmerah627
2025-08-26T20:58:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:58:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Llama-3.2-3B-Instruct-t1_25k_v2_tag5
lemonhat
2025-08-26T20:57:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T20:51:43Z
--- library_name: transformers license: other base_model: meta-llama/Llama-3.2-3B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: t1_25k_v2_tag5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t1_25k_v2_tag5 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the t1_25k_v2_tag5 dataset. It achieves the following results on the evaluation set: - Loss: 0.3038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3537 | 0.0833 | 100 | 0.4035 | | 0.3871 | 0.1667 | 200 | 0.3606 | | 0.321 | 0.25 | 300 | 0.3481 | | 0.3558 | 0.3333 | 400 | 0.3372 | | 0.3775 | 0.4167 | 500 | 0.3321 | | 0.3283 | 0.5 | 600 | 0.3225 | | 0.3371 | 0.5833 | 700 | 0.3186 | | 0.3005 | 0.6667 | 800 | 0.3113 | | 0.3223 | 0.75 | 900 | 0.3080 | | 0.3302 | 0.8333 | 1000 | 0.3047 | | 0.2852 | 0.9167 | 1100 | 0.3041 | | 0.2686 | 1.0 | 1200 | 0.3038 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Kazuki1450/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft_1p0_0p0_1p0_grpo
Kazuki1450
2025-08-26T20:53:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:mveroe/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft", "base_model:finetune:mveroe/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T10:38:53Z
--- base_model: mveroe/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft library_name: transformers model_name: Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft_1p0_0p0_1p0_grpo tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft_1p0_0p0_1p0_grpo This model is a fine-tuned version of [mveroe/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft](https://huggingface.co/mveroe/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Kazuki1450/Qwen2.5-1.5B_lightr1_3_EN_4096_1p0_0p0_1p0_sft_1p0_0p0_1p0_grpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rettertop/blockassist-bc-tiny_fierce_bee_1756241582
rettertop
2025-08-26T20:53:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tiny fierce bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:53:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tiny fierce bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CeciGonSer/translation_pu_es_biblia_hel
CeciGonSer
2025-08-26T20:46:51Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-26T20:46:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baqee/blockassist-bc-horned_placid_shrew_1756240911
baqee
2025-08-26T20:43:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "horned placid shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:43:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - horned placid shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Wyldworld/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-sharp_bipedal_jellyfish
Wyldworld
2025-08-26T20:43:27Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am sharp_bipedal_jellyfish", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T20:08:56Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am sharp_bipedal_jellyfish --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756239532
pempekmangedd
2025-08-26T20:43:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:42:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756240710
eusuf01
2025-08-26T20:39:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:39:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756240677
ggozzy
2025-08-26T20:39:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:39:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gensynme/blockassist-bc-quiet_beaked_bee_1756240700
gensynme
2025-08-26T20:38:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quiet beaked bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:38:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quiet beaked bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mavrixea/blockassist-bc-meek_stubby_falcon_1756239004
Mavrixea
2025-08-26T20:37:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek stubby falcon", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:37:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek stubby falcon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xFarzad/gemma-3
0xFarzad
2025-08-26T20:35:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-26T20:31:18Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** 0xFarzad - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
chainway9/blockassist-bc-untamed_quick_eel_1756238560
chainway9
2025-08-26T20:29:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:29:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fxcore57/blockassist-bc-gliding_running_bobcat_1756239468
fxcore57
2025-08-26T20:18:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gliding running bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:18:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gliding running bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mlfoundations-cua-dev/ui_tars_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP
mlfoundations-cua-dev
2025-08-26T20:17:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "llama-factory", "full", "generated_from_trainer", "base_model:ByteDance-Seed/UI-TARS-1.5-7B", "base_model:finetune:ByteDance-Seed/UI-TARS-1.5-7B", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-26T20:13:59Z
--- library_name: transformers license: other base_model: ByteDance-Seed/UI-TARS-1.5-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: ui_tars_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP_lr_1_0e-06_bs_1_epochs_1.0_max_pixels_4000000_deepspeed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ui_tars_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP_lr_1_0e-06_bs_1_epochs_1.0_max_pixels_4000000_deepspeed This model is a fine-tuned version of [ByteDance-Seed/UI-TARS-1.5-7B](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B) on the easyr1-10k-hard-qwen7b-easy-gta1-4MP dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
eusuf01/blockassist-bc-smooth_humming_butterfly_1756239382
eusuf01
2025-08-26T20:17:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:16:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CatkinChen/nethack-vae
CatkinChen
2025-08-26T20:16:24Z
840
0
null
[ "pytorch", "MultiModalHackVAE", "nethack", "reinforcement-learning", "variational-autoencoder", "representation-learning", "multimodal", "world-modeling", "feature-extraction", "en", "license:mit", "region:us" ]
feature-extraction
2025-08-04T14:14:08Z
--- license: mit language: en tags: - nethack - reinforcement-learning - variational-autoencoder - representation-learning - multimodal - world-modeling pipeline_tag: feature-extraction --- # MultiModalHackVAE A multi-modal Variational Autoencoder trained on NetHack game states for representation learning. ## Model Description This model is a MultiModalHackVAE that learns compact representations of NetHack game states by processing: - Game character grids (21x79) - Color information - Game statistics (blstats) - Message text - Bag of glyphs - Hero information (role, race, gender, alignment) ## Model Details - **Model Type**: Multi-modal Variational Autoencoder - **Framework**: PyTorch - **Dataset**: NetHack Learning Dataset - **Latent Dimensions**: 96 - **Low-rank Dimensions**: 0 ## Usage ```python from train import load_model_from_huggingface import torch # Load the model model = load_model_from_huggingface("CatkinChen/nethack-vae") # Example usage with synthetic data batch_size = 1 game_chars = torch.randint(32, 127, (batch_size, 21, 79)) game_colors = torch.randint(0, 16, (batch_size, 21, 79)) blstats = torch.randn(batch_size, 27) msg_tokens = torch.randint(0, 128, (batch_size, 256)) hero_info = torch.randint(0, 10, (batch_size, 4)) with torch.no_grad(): output = model( glyph_chars=game_chars, glyph_colors=game_colors, blstats=blstats, msg_tokens=msg_tokens, hero_info=hero_info ) latent_mean = output['mu'] latent_logvar = output['logvar'] lowrank_factors = output['lowrank_factors'] ``` ## Training This model was trained using adaptive loss weighting with: - Embedding warm-up for quick convergence - Gradual raw reconstruction focus - KL beta annealing for better latent structure ## Citation If you use this model, please consider citing: ```bibtex @misc{nethack-vae, title={MultiModalHackVAE: Multi-modal Variational Autoencoder for NetHack}, author={Xu Chen}, year={2025}, url={https://huggingface.co/CatkinChen/nethack-vae} } ```
eusuf01/blockassist-bc-smooth_humming_butterfly_1756239307
eusuf01
2025-08-26T20:16:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:15:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756239153
ggozzy
2025-08-26T20:13:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:13:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohbensakhri81/Ninja
mohbensakhri81
2025-08-26T20:11:05Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-08-26T20:11:05Z
--- license: bigscience-openrail-m ---
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756238898
ggozzy
2025-08-26T20:09:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:09:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
popouy/blockassist-bc-curious_rugged_mandrill_1756238867
popouy
2025-08-26T20:08:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious rugged mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious rugged mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
b1n1yam/addisAI_Finetune
b1n1yam
2025-08-26T20:06:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-26T14:58:06Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: addisAI_Finetune tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for addisAI_Finetune This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="b1n1yam/addisAI_Finetune", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
VIDEOS-18-Bfiu-head-viral-video-Clip-hq/Original.New.full.videos.Bfiu-head.Viral.Video.Official.Tutorial
VIDEOS-18-Bfiu-head-viral-video-Clip-hq
2025-08-26T20:06:34Z
0
0
null
[ "region:us" ]
null
2025-08-26T20:06:02Z
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
motza0025/blockassist-bc-keen_scavenging_llama_1756237198
motza0025
2025-08-26T20:06:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen scavenging llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:06:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen scavenging llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vpakarinen/aino-chat-3.8b-v1
vpakarinen
2025-08-26T20:06:22Z
4
0
null
[ "safetensors", "phi3", "custom_code", "en", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:finetune:microsoft/Phi-3.5-mini-instruct", "license:apache-2.0", "region:us" ]
null
2025-08-25T11:34:40Z
--- license: apache-2.0 language: - en base_model: - microsoft/Phi-3.5-mini-instruct --- Aino-Chat is a fine-tuned, conversational AI designed to be a concise, reliable, and helpful assistant. This model is a full fine-tune of microsoft/Phi-3.5-mini-instruct, a powerful 3.8B parameter model. v1 is trained on 500 high quality examples. Note: recommended to use with ChatML prompt template and temperature of 0.6.
Egor-N/blockassist-bc-vicious_stubby_bear_1756236945
Egor-N
2025-08-26T20:04:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious stubby bear", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:04:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious stubby bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-hunting_long_mallard_1756238616
AnerYubo
2025-08-26T20:03:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hunting long mallard", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:03:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hunting long mallard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youuotty/blockassist-bc-untamed_aquatic_antelope_1756238505
youuotty
2025-08-26T20:02:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed aquatic antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:01:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed aquatic antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1756238466
lilTAT
2025-08-26T20:02:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:01:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756236742
kojeklollipop
2025-08-26T20:01:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:01:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756238449
Dejiat
2025-08-26T20:01:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:01:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756238360
eusuf01
2025-08-26T20:00:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T20:00:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mlfoundations-cua-dev/qwen2_5vl_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP_deepspeed_freeze_vision_tower
mlfoundations-cua-dev
2025-08-26T19:57:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "llama-factory", "full", "generated_from_trainer", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-26T19:53:49Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-VL-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen2_5vl_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP_lr_1_0e-06_bs_1_epochs_1.0_max_pixels_4000000_deepspeed_freeze_vision_tower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2_5vl_7b_easyr1_10k_hard_qwen7b_easy_gta1-4MP_lr_1_0e-06_bs_1_epochs_1.0_max_pixels_4000000_deepspeed_freeze_vision_tower This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) on the easyr1-10k-hard-qwen7b-easy-gta1-4MP dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
eusuf01/blockassist-bc-smooth_humming_butterfly_1756238147
eusuf01
2025-08-26T19:56:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-26T19:56:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).