Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Convert dataset to Parquet
#1
by
SaylorTwift
HF Staff
- opened
- .gitattributes +1 -0
- README.md +39 -0
- data/{default.jsonl → test-00000-of-00001.parquet} +2 -2
- dataset_infos.json +0 -1
- prost.py +0 -85
.gitattributes
CHANGED
@@ -15,3 +15,4 @@
|
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
data/default.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
data/default.jsonl filter=lfs diff=lfs merge=lfs -text
|
18 |
+
data/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -21,6 +21,45 @@ task_categories:
|
|
21 |
task_ids:
|
22 |
- multiple-choice-qa
|
23 |
- open-domain-qa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
---
|
25 |
|
26 |
# PROST: Physical Reasoning about Objects Through Space and Time
|
|
|
21 |
task_ids:
|
22 |
- multiple-choice-qa
|
23 |
- open-domain-qa
|
24 |
+
configs:
|
25 |
+
- config_name: default
|
26 |
+
data_files:
|
27 |
+
- split: test
|
28 |
+
path: data/test-*
|
29 |
+
dataset_info:
|
30 |
+
features:
|
31 |
+
- name: A
|
32 |
+
dtype: string
|
33 |
+
- name: B
|
34 |
+
dtype: string
|
35 |
+
- name: C
|
36 |
+
dtype: string
|
37 |
+
- name: D
|
38 |
+
dtype: string
|
39 |
+
- name: context
|
40 |
+
dtype: string
|
41 |
+
- name: question
|
42 |
+
dtype: string
|
43 |
+
- name: ex_question
|
44 |
+
dtype: string
|
45 |
+
- name: group
|
46 |
+
dtype: string
|
47 |
+
- name: label
|
48 |
+
dtype:
|
49 |
+
class_label:
|
50 |
+
names:
|
51 |
+
'0': A
|
52 |
+
'1': B
|
53 |
+
'2': C
|
54 |
+
'3': D
|
55 |
+
- name: name
|
56 |
+
dtype: string
|
57 |
+
splits:
|
58 |
+
- name: test
|
59 |
+
num_bytes: 5698184
|
60 |
+
num_examples: 18736
|
61 |
+
download_size: 336196
|
62 |
+
dataset_size: 5698184
|
63 |
---
|
64 |
|
65 |
# PROST: Physical Reasoning about Objects Through Space and Time
|
data/{default.jsonl → test-00000-of-00001.parquet}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71e042a340deff611e48d25ae864290adf49993c9fda60f1fee26432222d426b
|
3 |
+
size 336196
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.\n", "citation": "@inproceedings{aroca-ouellette-etal-2021-prost,\n title = \"{PROST}: {P}hysical Reasoning about Objects through Space and Time\",\n author = \"Aroca-Ouellette, St{'e}phane and\n Paik, Cory and\n Roncone, Alessandro and\n Kann, Katharina\",\n booktitle = \"Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021\",\n month = aug,\n year = \"2021\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.findings-acl.404\",\n pages = \"4597--4608\",\n}\n", "homepage": "https://github.com/nala-cub/prost", "license": "Apache 2.0", "features": {"A": {"dtype": "string", "id": null, "_type": "Value"}, "B": {"dtype": "string", "id": null, "_type": "Value"}, "C": {"dtype": "string", "id": null, "_type": "Value"}, "D": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "ex_question": {"dtype": "string", "id": null, "_type": "Value"}, "group": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["A", "B", "C", "D"], "names_file": null, "id": null, "_type": "ClassLabel"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "prost", "config_name": "default", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"test": {"name": "test", "num_bytes": 5698256, "num_examples": 18736, "dataset_name": "prost"}}, "download_checksums": {"https://huggingface.co/datasets/corypaik/prost/resolve/main/data/default.jsonl": {"num_bytes": 7197063, "checksum": "05d773ae2768047579ea22415fc593199430747027b3df5621e60044fe893bde"}}, "download_size": 7197063, "post_processing_size": null, "dataset_size": 5698256, "size_in_bytes": 12895319}}
|
|
|
|
prost.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and Cory Paik
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the 'License');
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an 'AS IS' BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# ==============================================================================
|
15 |
-
""" Physical Reasoning about Objects Through Space and Time (PROST)
|
16 |
-
|
17 |
-
PROST is a probing dataset to evaluate the ability of pretrained LMs to
|
18 |
-
understand and reason about the physical world.
|
19 |
-
"""
|
20 |
-
import json
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
|
24 |
-
_CITATION = """\
|
25 |
-
@inproceedings{aroca-ouellette-etal-2021-prost,
|
26 |
-
title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
|
27 |
-
author = "Aroca-Ouellette, St{\'e}phane and
|
28 |
-
Paik, Cory and
|
29 |
-
Roncone, Alessandro and
|
30 |
-
Kann, Katharina",
|
31 |
-
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
32 |
-
month = aug,
|
33 |
-
year = "2021",
|
34 |
-
address = "Online",
|
35 |
-
publisher = "Association for Computational Linguistics",
|
36 |
-
url = "https://aclanthology.org/2021.findings-acl.404",
|
37 |
-
pages = "4597--4608",
|
38 |
-
}
|
39 |
-
"""
|
40 |
-
|
41 |
-
|
42 |
-
_DESCRIPTION = """\
|
43 |
-
*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.
|
44 |
-
"""
|
45 |
-
|
46 |
-
_HOMEPAGE = 'https://github.com/nala-cub/prost'
|
47 |
-
_LICENSE = 'Apache 2.0'
|
48 |
-
|
49 |
-
_URL = 'https://huggingface.co/datasets/corypaik/prost/resolve/main/data'
|
50 |
-
|
51 |
-
_URLs = {'default': f'{_URL}/default.jsonl'}
|
52 |
-
|
53 |
-
MC_LABELS = list('ABCD')
|
54 |
-
|
55 |
-
|
56 |
-
class Prost(datasets.GeneratorBasedBuilder):
|
57 |
-
|
58 |
-
VERSION = datasets.Version('1.0.1')
|
59 |
-
|
60 |
-
def _info(self):
|
61 |
-
features = datasets.Features({
|
62 |
-
'A': datasets.Value('string'),
|
63 |
-
'B': datasets.Value('string'),
|
64 |
-
'C': datasets.Value('string'),
|
65 |
-
'D': datasets.Value('string'),
|
66 |
-
'context': datasets.Value('string'),
|
67 |
-
'question': datasets.Value('string'),
|
68 |
-
'ex_question': datasets.Value('string'),
|
69 |
-
'group': datasets.Value('string'),
|
70 |
-
'label': datasets.ClassLabel(names=MC_LABELS),
|
71 |
-
'name': datasets.Value('string'),})
|
72 |
-
return datasets.DatasetInfo(description=_DESCRIPTION, features=features,
|
73 |
-
supervised_keys=None, homepage=_HOMEPAGE,
|
74 |
-
license=_LICENSE, citation=_CITATION)
|
75 |
-
|
76 |
-
def _split_generators(self, dl_manager):
|
77 |
-
""" Returns SplitGenerators."""
|
78 |
-
path = dl_manager.download_and_extract(_URLs[self.config.name])
|
79 |
-
kwargs = {'path': path}
|
80 |
-
return [datasets.SplitGenerator(datasets.Split.TEST, gen_kwargs=kwargs)]
|
81 |
-
|
82 |
-
def _generate_examples(self, path):
|
83 |
-
with open(path, 'r') as f:
|
84 |
-
for _id, line in enumerate(f.readlines()):
|
85 |
-
yield _id, json.loads(line)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|