Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
8,500
A chord intercepted on the circle $x^{2}+y^{2}=4$ by the line $\begin{cases} x=2-\frac{1}{2}t \\ y=-1+\frac{1}{2}t \end{cases} (t\text{ is the parameter})$ has a length of $\_\_\_\_\_\_\_.$
\sqrt{14}
70.3125
8,501
In a triangle, the lengths of the three sides are integers \( l, m, n \), with \( l > m > n \). It is known that \( \left\{ \frac{3^{l}}{10^{4}} \right\} = \left\{ \frac{3^{m}}{10^{4}} \right\} = \left\{ \frac{3^{n}}{10^{4}} \right\} \), where \( \{x\} \) denotes the fractional part of \( x \) and \( [x] \) denotes the greatest integer less than or equal to \( x \). Determine the smallest possible value of the perimeter of such a triangle.
3003
1.5625
8,502
Group the set of positive odd numbers {1, 3, 5, ...} from smallest to largest, where the $n$-th group contains $2n-1$ odd numbers. That is, the first group, the second group, the third group... consist of the sets {1}, {3, 5, 7}, {9, 11, 13, 15, 17}, ..., respectively. In which group does 2007 belong?
32
57.03125
8,503
During a break between voyages, a sailor turned 20 years old. All six crew members gathered in the cabin to celebrate. "I am twice the age of the cabin boy and 6 years older than the engineer," said the helmsman. "And I am as much older than the cabin boy as I am younger than the engineer," noted the boatswain. "In addition, I am 4 years older than the sailor." "The average age of the crew is 28 years," reported the captain. How old is the captain?
40
39.84375
8,504
We define \( a \star b = a \times a - b \times b \). Find the value of \( 3 \star 2 + 4 \star 3 + 5 \star 4 + \cdots + 20 \star 19 \).
396
92.1875
8,505
A two-meter gas pipe has rusted in two places. Determine the probability that all three resulting pieces can be used as connections to gas stoves, given that according to regulations, a stove should not be located closer than 50 cm to the main gas pipe.
1/16
9.375
8,506
Consider a 5x5 grid of squares. How many different squares can be traced using the lines in this grid?
55
44.53125
8,507
On the Island of Misfortune, there are knights, who always tell the truth, and liars, who always lie. One day, $n$ islanders gathered in a room. The first person said: "Exactly 1 percent of the people present in this room are liars." The second person said: "Exactly 2 percent of the people present in this room are liars." and so on. The person with number $n$ said: "Exactly $n$ percent of the people present in this room are liars." How many people could be in the room, given that it is known that at least one of them is a knight?
100
50.78125
8,508
Acme Corporation has released a new version of its vowel soup where each vowel (A, E, I, O, U) appears six times, and additionally, each bowl contains one wildcard character that can represent any vowel. How many six-letter "words" can be formed from a bowl of this new Acme Enhanced Vowel Soup?
46656
22.65625
8,509
Let $a,b,c$ be three distinct positive integers such that the sum of any two of them is a perfect square and having minimal sum $a + b + c$ . Find this sum.
55
61.71875
8,510
For the cubic function $f(x)=ax^3+bx^2+cx+d$ ($a\neq 0$), define: Let $f''(x)$ be the derivative of the derivative of the function $y=f(x)$, that is, the second derivative of $f(x)$. If the equation $f''(x)=0$ has a real solution $x_0$, then the point $(x_0, f(x_0))$ is called the "inflection point" of the function $y=f(x)$. Some students found that "every cubic function has an 'inflection point'; every cubic function has a center of symmetry; and the 'inflection point' is the center of symmetry." Based on this discovery, for the function $$f(x)=x^3- \frac{3}{2}x^2+3x- \frac{1}{4},$$ its center of symmetry is ___________; calculate $$f\left( \frac{1}{2013}\right)+f\left( \frac{2}{2013}\right)+f\left( \frac{3}{2013}\right)+\cdots +f\left( \frac{2012}{2013}\right)$$ = ___________.
2012
83.59375
8,511
The price of an item is decreased by 20%. To bring it back to its original value and then increase it by an additional 10%, the price after restoration must be increased by what percentage.
37.5\%
7.03125
8,512
Célia wants to trade with Guilherme stickers from an album about Brazilian animals. Célia wants to trade four butterfly stickers, five shark stickers, three snake stickers, six parakeet stickers, and six monkey stickers. All of Guilherme's stickers are of spiders. They know that: (a) one butterfly sticker is worth three shark stickers; (b) one snake sticker is worth three parakeet stickers; (c) one monkey sticker is worth four spider stickers; (d) one parakeet sticker is worth three spider stickers; (e) one shark sticker is worth two parakeet stickers. How many stickers can Célia receive if she trades all she wants?
171
64.0625
8,513
A positive integer has exactly 8 divisors. The sum of its smallest 3 divisors is 15. Additionally, for this four-digit number, one prime factor minus five times another prime factor is equal to two times the third prime factor. What is this number?
1221
9.375
8,514
A "fifty percent mirror" is a mirror that reflects half the light shined on it back and passes the other half of the light onward. Two "fifty percent mirrors" are placed side by side in parallel, and a light is shined from the left of the two mirrors. How much of the light is reflected back to the left of the two mirrors?
\frac{2}{3}
2.34375
8,515
Find the smallest constant $C$ such that for all real numbers $x, y, z$ satisfying $x + y + z = -1$, the following inequality holds: $$ \left|x^3 + y^3 + z^3 + 1\right| \leqslant C \left|x^5 + y^5 + z^5 + 1\right|. $$
\frac{9}{10}
39.84375
8,516
In a trapezoid $ABCD$ with $\angle A = \angle B = 90^{\circ}$, $|AB| = 5 \text{cm}$, $|BC| = 1 \text{cm}$, and $|AD| = 4 \text{cm}$, point $M$ is taken on side $AB$ such that $2 \angle BMC = \angle AMD$. Find the ratio $|AM| : |BM|$.
3/2
3.125
8,517
For any positive integer \( n \), let \( f(n) \) represent the last digit of \( 1 + 2 + 3 + \cdots + n \). For example, \( f(1) = 1 \), \( f(2) = 3 \), \( f(5) = 5 \), and so on. Find the value of \( f(2) + f(4) + f(6) + \cdots + f(2012) \).
3523
14.84375
8,518
When $8000^{50}$ is expanded out, the result is $1$ followed by how many zeros?
150
76.5625
8,519
A right triangle has legs of lengths 3 and 4. Find the volume of the solid formed by revolving the triangle about its hypotenuse.
\frac{48\pi}{5}
26.5625
8,520
The diagram shows a regular dodecagon and a square, whose vertices are also vertices of the dodecagon. What is the value of the ratio of the area of the square to the area of the dodecagon?
2:3
0
8,521
A right triangle $ABC$ is inscribed in the circular base of a cone. If two of the side lengths of $ABC$ are $3$ and $4$ , and the distance from the vertex of the cone to any point on the circumference of the base is $3$ , then the minimum possible volume of the cone can be written as $\frac{m\pi\sqrt{n}}{p}$ , where $m$ , $n$ , and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is squarefree. Find $m + n + p$ .
60
78.125
8,522
Given that the right focus of the ellipse $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$ is $F(\sqrt{6},0)$, a line $l$ passing through $F$ intersects the ellipse at points $A$ and $B$. If the midpoint of chord $AB$ has coordinates $(\frac{\sqrt{6}}{3},-1)$, calculate the area of the ellipse.
12\sqrt{3}\pi
32.8125
8,523
We are given a triangle $ABC$ . Points $D$ and $E$ on the line $AB$ are such that $AD=AC$ and $BE=BC$ , with the arrangment of points $D - A - B - E$ . The circumscribed circles of the triangles $DBC$ and $EAC$ meet again at the point $X\neq C$ , and the circumscribed circles of the triangles $DEC$ and $ABC$ meet again at the point $Y\neq C$ . Find the measure of $\angle ACB$ given the condition $DY+EY=2XY$ .
60
92.96875
8,524
Calculate the limit of the function: \[ \lim_{x \rightarrow 0} \frac{\arcsin(2x)}{2^{-3x} - 1} \cdot \ln 2 \]
-\frac{2}{3}
97.65625
8,525
Given that the angle between the unit vectors $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$ is $60^{\circ}$, and $\overrightarrow{a}=2\overrightarrow{e_{1}}-\overrightarrow{e_{2}}$, find the projection of $\overrightarrow{a}$ in the direction of $\overrightarrow{e_{1}}$.
\dfrac{3}{2}
25
8,526
It is known that \[ \begin{array}{l} 1 = 1^2 \\ 1 + 3 = 2^2 \\ 1 + 3 + 5 = 3^2 \\ 1 + 3 + 5 + 7 = 4^2 \end{array} \] If \(1 + 3 + 5 + \ldots + n = 20^2\), find \(n\).
39
100
8,527
If the real numbers \(x\) and \(y\) satisfy the equation \((x-2)^{2}+(y-1)^{2}=1\), then the minimum value of \(x^{2}+y^{2}\) is \_\_\_\_\_.
6-2\sqrt{5}
96.875
8,528
For the subset \( S \) of the set \(\{1,2, \cdots, 15\}\), if a positive integer \( n \) and \( n+|S| \) are both elements of \( S \), then \( n \) is called a "good number" of \( S \). If a subset \( S \) has at least one "good number", then \( S \) is called a "good set". Suppose 7 is a "good number" of a "good set" \( X \). How many such subsets \( X \) are there?
4096
25.78125
8,529
Let the sequence of non-negative integers $\left\{a_{n}\right\}$ satisfy: $$ a_{n} \leqslant n \quad (n \geqslant 1), \quad \text{and} \quad \sum_{k=1}^{n-1} \cos \frac{\pi a_{k}}{n} = 0 \quad (n \geqslant 2). $$ Find all possible values of $a_{2021}$.
2021
39.0625
8,530
If the integer part of $\sqrt{10}$ is $a$ and the decimal part is $b$, then $a=$______, $b=\_\_\_\_\_\_$.
\sqrt{10} - 3
3.125
8,531
A group of dancers are arranged in a rectangular formation. When they are arranged in 12 rows, there are 5 positions unoccupied in the formation. When they are arranged in 10 rows, there are 5 positions unoccupied. How many dancers are in the group if the total number is between 200 and 300?
295
44.53125
8,532
In $\triangle ABC$, it is known that $\cos A= \frac{1}{7}$, $\cos (A-B)= \frac{13}{14}$, and $0 < B < A < \frac{\pi}{2}$. Find the measure of angle $B$.
\frac{\pi}{3}
50.78125
8,533
The function \( y = \cos x + \sin x + \cos x \sin x \) has a maximum value of \(\quad\).
\frac{1}{2} + \sqrt{2}
60.15625
8,534
If \(100^a = 4\) and \(100^b = 5\), then find \(20^{(1 - a - b)/(2(1 - b))}\).
\sqrt{5}
32.8125
8,535
Determine the appropriate value of $h$ so that the following equation in base $h$ is accurate: $$\begin{array}{c@{}c@{}c@{}c@{}c@{}c} &&8&6&7&4_h \\ &+&4&3&2&9_h \\ \cline{2-6} &1&3&0&0&3_h. \end{array}$$
10
53.90625
8,536
On a rectangular sheet of paper, a picture in the shape of a "cross" is drawn from two rectangles $ABCD$ and $EFGH$, with sides parallel to the edges of the sheet. It is known that $AB=9$, $BC=5$, $EF=3$, and $FG=10$. Find the area of the quadrilateral $AFCH$.
52.5
64.84375
8,537
What is the area of the region defined by the equation $x^2 + y^2 - 3 = 6y - 18x + 9$?
102\pi
92.96875
8,538
When a granary records the arrival of 30 tons of grain as "+30", determine the meaning of "-30".
-30
26.5625
8,539
Given the function $f(x)=\frac{1}{3}x^3-ax^2+(a^2-1)x+b$, where $(a,b \in \mathbb{R})$ (I) If $x=1$ is an extreme point of $f(x)$, find the value of $a$; (II) If the equation of the tangent line to the graph of $y=f(x)$ at the point $(1, f(1))$ is $x+y-3=0$, find the maximum and minimum values of $f(x)$ on the interval $[-2, 4]$.
-4
27.34375
8,540
The distance from the point of intersection of a circle's diameter with a chord of length 18 cm to the center of the circle is 7 cm. This point divides the chord in the ratio 2:1. Find the radius. $$ AB = 18, EO = 7, AE = 2BE, R = ? $$
11
3.125
8,541
If digits $A$ , $B$ , and $C$ (between $0$ and $9$ inclusive) satisfy \begin{tabular}{c@{\,}c@{\,}c@{\,}c} & $C$ & $C$ & $A$ + & $B$ & $2$ & $B$ \hline & $A$ & $8$ & $8$ \end{tabular} what is $A \cdot B \cdot C$ ? *2021 CCA Math Bonanza Individual Round #5*
42
87.5
8,542
For each value of $x,$ $g(x)$ is defined to be the minimum value of the three numbers $3x + 3,$ $\frac{1}{3} x + 2,$ and $-\frac{1}{2} x + 8.$ Find the maximum value of $g(x).$
\frac{22}{5}
37.5
8,543
Find the four-digit number that is a perfect square, where the thousands digit is the same as the tens digit, and the hundreds digit is 1 greater than the units digit.
8281
87.5
8,544
Count all the distinct anagrams of the word "YOANN".
60
11.71875
8,545
Given a finite sequence $\{a\_1\}, \{a\_2\}, \ldots \{a\_m\} (m \in \mathbb{Z}^+)$ that satisfies the conditions: $\{a\_1\} = \{a\_m\}, \{a\_2\} = \{a\_{m-1}\}, \ldots \{a\_m\} = \{a\_1\}$, it is called a "symmetric sequence" with the additional property that in a $21$-term "symmetric sequence" $\{c\_n\}$, the terms $\{c\_{11}\}, \{c\_{12}\}, \ldots, \{c\_{21}\}$ form an arithmetic sequence with first term $1$ and common difference $2$. Find the value of $\{c\_2\}$.
19
60.15625
8,546
Given that the terminal side of the angle $α+ \frac {π}{6}$ passes through point P($-1$, $-2\sqrt {2}$), find the value of $\sinα$.
\frac{1-2\sqrt {6}}{6}
0
8,547
In which numeral system is 792 divisible by 297?
19
71.09375
8,548
Can you use the four basic arithmetic operations (addition, subtraction, multiplication, division) and parentheses to write the number 2016 using the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 in sequence?
2016
0
8,549
Two square napkins with dimensions \(1 \times 1\) and \(2 \times 2\) are placed on a table so that the corner of the larger napkin falls into the center of the smaller napkin. What is the maximum area of the table that the napkins can cover?
4.75
18.75
8,550
Find the sine of the angle at the vertex of an isosceles triangle, given that the perimeter of any inscribed rectangle, with two vertices lying on the base, is a constant value.
\frac{4}{5}
6.25
8,551
Consider a "Modulo $m$ graph paper," with $m = 17$, forming a grid of $17^2$ points. Each point $(x, y)$ represents integer pairs where $0 \leq x, y < 17$. We graph the congruence $$5x \equiv 3y + 2 \pmod{17}.$$ The graph has single $x$-intercept $(x_0, 0)$ and single $y$-intercept $(0, y_0)$, where $0 \leq x_0, y_0 < 17$. Determine $x_0 + y_0$.
19
4.6875
8,552
In the land of Draconia, there are red, green, and blue dragons. Each dragon has three heads, and each head always tells the truth or always lies. Additionally, each dragon has at least one head that tells the truth. One day, 530 dragons sat around a round table, and each of them said: - 1st head: "To my left is a green dragon." - 2nd head: "To my right is a blue dragon." - 3rd head: "There is no red dragon next to me." What is the maximum number of red dragons that could have been at the table?
176
68.75
8,553
For how many positive integers $n$ less than or equal to 500 is $$(\cos t - i\sin t)^n = \cos nt - i\sin nt$$ true for all real $t$?
500
84.375
8,554
A stationery store sells a certain type of pen bag for $18$ yuan each. Xiao Hua went to buy this pen bag. When checking out, the clerk said, "If you buy one more, you can get a 10% discount, which is $36 cheaper than now." Xiao Hua said, "Then I'll buy one more, thank you." According to the conversation between the two, Xiao Hua actually paid ____ yuan at checkout.
486
82.8125
8,555
Let \(P\) and \(P+2\) be both prime numbers satisfying \(P(P+2) \leq 2007\). If \(S\) represents the sum of such possible values of \(P\), find the value of \(S\).
106
87.5
8,556
Arrange positive integers that are neither perfect squares nor perfect cubes (excluding 0) in ascending order as 2, 3, 5, 6, 7, 10, ..., and determine the 1000th number in this sequence.
1039
72.65625
8,557
In the Cartesian coordinate system, with the origin O as the pole and the positive x-axis as the polar axis, a polar coordinate system is established. The polar coordinate of point P is $(1, \pi)$. Given the curve $C: \rho=2\sqrt{2}a\sin(\theta+ \frac{\pi}{4}) (a>0)$, and a line $l$ passes through point P, whose parametric equation is: $$ \begin{cases} x=m+ \frac{1}{2}t \\ y= \frac{\sqrt{3}}{2}t \end{cases} $$ ($t$ is the parameter), and the line $l$ intersects the curve $C$ at points M and N. (1) Write the Cartesian coordinate equation of curve $C$ and the general equation of line $l$; (2) If $|PM|+|PN|=5$, find the value of $a$.
2\sqrt{3}-2
0
8,558
Find the smallest integer \( n \) such that the expanded form of \( (xy - 7x - 3y + 21)^n \) has 2012 terms.
44
78.90625
8,559
How many integers from 1 to 1997 have a sum of digits that is divisible by 5?
399
69.53125
8,560
Given a positive geometric sequence $\{a_{n}\}$, if ${a_m}{a_n}=a_3^2$, find the minimum value of $\frac{2}{m}+\frac{1}{{2n}}$.
\frac{3}{4}
53.90625
8,561
Find the value of $x$ if $\log_8 x = 1.75$.
32\sqrt[4]{2}
0.78125
8,562
Niall's four children have different integer ages under 18. The product of their ages is 882. What is the sum of their ages?
31
1.5625
8,563
Find all three-digit numbers $\overline{\Pi B \Gamma}$, consisting of distinct digits $\Pi, B$, and $\Gamma$, for which the following equality holds: $\overline{\Pi B \Gamma} = (\Pi + B + \Gamma) \times (\Pi + B + \Gamma + 1)$.
156
95.3125
8,564
Using $1 \times 2$ tiles to cover a $2 \times 10$ grid, how many different ways are there to cover the grid?
89
75.78125
8,565
Given vectors $\overrightarrow{a}, \overrightarrow{b}$ that satisfy $|\overrightarrow{a} - 2\overrightarrow{b}| \leqslant 2$, find the minimum value of $\overrightarrow{a} \cdot \overrightarrow{b}$.
-\frac{1}{2}
7.03125
8,566
Suppose that \(a, b, c,\) and \(d\) are positive integers which are not necessarily distinct. If \(a^{2}+b^{2}+c^{2}+d^{2}=70\), what is the largest possible value of \(a+b+c+d?\)
16
88.28125
8,567
We write the equation on the board: $$ (x-1)(x-2) \ldots(x-2016) = (x-1)(x-2) \ldots(x-2016) $$ We want to erase some of the 4032 factors in such a way that the equation on the board has no real solutions. What is the minimum number of factors that must be erased to achieve this?
2016
66.40625
8,568
Let the sequence $x, 3x+3, 5x+5, \dots$ be in geometric progression. What is the fourth term of this sequence?
-\frac{125}{12}
67.1875
8,569
Evaluate the greatest integer less than or equal to \[\frac{5^{150} + 3^{150}}{5^{147} + 3^{147}}.\]
124
6.25
8,570
How many different right-angled triangles exist, one of the legs of which is \(\sqrt{2016}\), and the other leg and hypotenuse are expressed in natural numbers?
12
72.65625
8,571
Given the operation defined as \(a \odot b \odot c = a \times b \times c + (a \times b + b \times c + c \times a) - (a + b + c)\), calculate \(1 \odot 43 \odot 47\).
4041
68.75
8,572
In $\triangle ABC$, the length of the side opposite to angle $A$ is $2$, and the vectors $\overrightarrow{m} = (2, 2\cos^2\frac{B+C}{2} - 1)$ and $\overrightarrow{n} = (\sin\frac{A}{2}, -1)$. 1. Find the value of angle $A$ when the dot product $\overrightarrow{m} \cdot \overrightarrow{n}$ is at its maximum. 2. Under the conditions of part (1), find the maximum area of $\triangle ABC$.
\sqrt{3}
92.96875
8,573
Given an infinite grid where each cell is either red or blue, such that in any \(2 \times 3\) rectangle exactly two cells are red, determine how many red cells are in a \(9 \times 11\) rectangle.
33
47.65625
8,574
Given that point \\(A\\) on the terminal side of angle \\(\alpha\\) has coordinates \\(\left( \sqrt{3}, -1\right)\\), \\((1)\\) Find the set of angle \\(\alpha\\) \\((2)\\) Simplify the following expression and find its value: \\( \dfrac{\sin (2\pi-\alpha)\tan (\pi+\alpha)\cot (-\alpha-\pi)}{\csc (-\alpha)\cos (\pi-\alpha)\tan (3\pi-\alpha)} \\)
\dfrac{1}{2}
32.8125
8,575
Given that point $P(x,y)$ is a moving point on the circle $x^{2}+y^{2}=2y$, (1) Find the range of $z=2x+y$; (2) If $x+y+a\geqslant 0$ always holds, find the range of real numbers $a$; (3) Find the maximum and minimum values of $x^{2}+y^{2}-16x+4y$.
6-2\sqrt{73}
38.28125
8,576
A student is given a budget of $10,000 to produce a rectangular banner for a school function. The length and width (in meters) of the banner must be integers. If each meter in length costs $330 while each meter in width costs $450, what is the maximum area (in square meters) of the banner that can be produced?
165
0
8,577
Let \(\triangle ABC\) be equilateral, and let \(D, E, F\) be points on sides \(BC, CA, AB\) respectively, with \(FA = 9\), \(AE = EC = 6\), and \(CD = 4\). Determine the measure (in degrees) of \(\angle DEF\).
60
70.3125
8,578
A non-increasing sequence of 100 non-negative reals has the sum of the first two terms at most 100 and the sum of the remaining terms at most 100. What is the largest possible value for the sum of the squares of the terms?
10000
30.46875
8,579
Given an ellipse $\frac{x^2}{25}+\frac{y^2}{m^2}=1\left(m \gt 0\right)$ with one focus at $F\left(0,4\right)$, find $m$.
\sqrt{41}
50
8,580
Define the operation "□" as: $a□b=a^2+2ab-b^2$. Let the function $f(x)=x□2$, and the equation related to $x$ is $f(x)=\lg|x+2|$ ($x\neq -2$) has exactly four distinct real roots $x_1$, $x_2$, $x_3$, $x_4$. Find the value of $x_1+x_2+x_3+x_4$.
-8
25.78125
8,581
Given that the point $P$ on the ellipse $\frac{x^{2}}{64} + \frac{y^{2}}{28} = 1$ is 4 units away from the left focus, find the distance from point $P$ to the right directrix.
16
14.84375
8,582
15. If \( a = 1.69 \), \( b = 1.73 \), and \( c = 0.48 \), find the value of $$ \frac{1}{a^{2} - a c - a b + b c} + \frac{2}{b^{2} - a b - b c + a c} + \frac{1}{c^{2} - a c - b c + a b}. $$
20
5.46875
8,583
Given the polar equation of curve C is $\rho - 6\cos\theta + 2\sin\theta + \frac{1}{\rho} = 0$, with the pole as the origin of the Cartesian coordinate system and the polar axis as the positive x-axis, establish a Cartesian coordinate system in the plane xOy. The line $l$ passes through point P(3, 3) with an inclination angle $\alpha = \frac{\pi}{3}$. (1) Write the Cartesian equation of curve C and the parametric equation of line $l$; (2) Suppose $l$ intersects curve C at points A and B, find the value of $|AB|$.
2\sqrt{5}
51.5625
8,584
Given an equilateral triangle \( ABC \). Point \( K \) is the midpoint of side \( AB \), and point \( M \) lies on side \( BC \) such that \( BM : MC = 1 : 3 \). A point \( P \) is chosen on side \( AC \) such that the perimeter of triangle \( PKM \) is minimized. In what ratio does point \( P \) divide side \( AC \)?
2/3
0
8,585
If 10 people need 45 minutes and 20 people need 20 minutes to repair a dam, how many minutes would 14 people need to repair the dam?
30
4.6875
8,586
Find the sum of the roots of $\tan^2 x - 8\tan x + \sqrt{2} = 0$ that are between $x=0$ and $x=2\pi$ radians.
4\pi
32.8125
8,587
Given that \(\log_8 2 = 0.2525\) in base 8 (to 4 decimal places), find \(\log_8 4\) in base 8 (to 4 decimal places).
0.5050
100
8,588
In an isosceles triangle, the side is divided by the point of tangency of the inscribed circle in the ratio 7:5 (starting from the vertex). Find the ratio of the side to the base.
6/5
34.375
8,589
Determine the number of palindromes between 1000 and 10000 that are multiples of 6.
13
44.53125
8,590
Five brothers equally divided an inheritance from their father. The inheritance included three houses. Since three houses could not be divided into 5 parts, the three older brothers took the houses, and the younger brothers were compensated with money. Each of the three older brothers paid 800 rubles, and the younger brothers shared this money among themselves, so that everyone ended up with an equal share. What is the value of one house?
2000
18.75
8,591
An ideal gas is used as the working substance of a heat engine operating cyclically. The cycle consists of three stages: isochoric pressure reduction from $3 P_{0}$ to $P_{0}$, isobaric density increase from $\rho_{0}$ to $3 \rho_{0}$, and a return to the initial state, represented as a quarter circle in the $P / P_{0}, \rho / \rho_{0}$ coordinates with the center at point $(1,1)$. Determine the efficiency of this cycle, knowing that it is 8 times less than the maximum possible efficiency for the same minimum and maximum gas temperatures as in the given cycle.
1/9
4.6875
8,592
A point is randomly thrown onto the segment [3, 8] and let $k$ be the resulting value. Find the probability that the roots of the equation $\left(k^{2}-2 k-3\right) x^{2}+(3 k-5) x+2=0$ satisfy the condition $x_{1} \leq 2 x_{2}$.
4/15
64.84375
8,593
Find the largest four-digit number in which all digits are different and which is divisible by 2, 5, 9, and 11.
8910
67.96875
8,594
Given the numbers 2, 3, 4, 3, 1, 6, 3, 7, determine the sum of the mean, median, and mode of these numbers.
9.625
13.28125
8,595
Given the sequence \(\left\{a_{n}\right\}\), which satisfies \[ a_{1}=0,\left|a_{n+1}\right|=\left|a_{n}-2\right| \] Let \(S\) be the sum of the first 2016 terms of the sequence \(\left\{a_{n}\right\}\). Determine the maximum value of \(S\).
2016
77.34375
8,596
A rectangular metal plate measuring \(10\) cm by \(8\) cm has a circular piece of maximum size cut out, followed by cutting a rectangular piece of maximum size from the circular piece. Calculate the total metal wasted in this process.
48
27.34375
8,597
Compute the definite integral: $$ \int_{0}^{\pi} 2^{4} \cdot \sin ^{4} x \cos ^{4} x \, dx $$
\frac{3\pi}{8}
91.40625
8,598
Let $a, b$ be real numbers. If the complex number $\frac{1+2i}{a+bi} \= 1+i$, then $a=\_\_\_\_$ and $b=\_\_\_\_$.
\frac{1}{2}
4.6875
8,599
A certain TV station randomly selected $100$ viewers to evaluate a TV program in order to understand the evaluation of the same TV program by viewers of different genders. It is known that the ratio of the number of "male" to "female" viewers selected is $9:11$. The evaluation results are divided into "like" and "dislike", and some evaluation results are organized in the table below. | Gender | Like | Dislike | Total | |--------|------|---------|-------| | Male | $15$ | | | | Female | | | | | Total | $50$ | | $100$ | $(1)$ Based on the given data, complete the $2\times 2$ contingency table above. According to the independence test with $\alpha = 0.005$, can it be concluded that gender is related to the evaluation results? $(2)$ The TV station plans to expand the male audience market. Now, using a proportional stratified sampling method, $3$ viewers are selected from the male participants for a program "suggestions" solicitation reward activity. The probability that a viewer who evaluated "dislike" has their "suggestion" adopted is $\frac{1}{4}$, and the probability that a viewer who evaluated "like" has their "suggestion" adopted is $\frac{3}{4}$. The reward for an adopted "suggestion" is $100$ dollars, and for a non-adopted "suggestion" is $50$ dollars. Let $X$ be the total prize money obtained by the $3$ viewers. Find the distribution table and the expected value of $X$. Given: ${\chi}^{2}=\frac{n{(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$ | $\alpha$ | $0.010$ | $0.005$ | $0.001$ | |----------|---------|---------|---------| | $x_{\alpha}$ | $6.635$ | $7.879$ | $10.828$ |
212.5
2.34375