hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7941ca02292fe3ca47bb22618c5c7a4b82c83a41
4,201
py
Python
keystone/common/sql/migrate_repo/versions/009_normalize_identity.py
ioram7/keystone
81b5ad22cc8b85d622a332e62e5c4cb63155b654
[ "Apache-2.0" ]
null
null
null
keystone/common/sql/migrate_repo/versions/009_normalize_identity.py
ioram7/keystone
81b5ad22cc8b85d622a332e62e5c4cb63155b654
[ "Apache-2.0" ]
null
null
null
keystone/common/sql/migrate_repo/versions/009_normalize_identity.py
ioram7/keystone
81b5ad22cc8b85d622a332e62e5c4cb63155b654
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import Column, MetaData, String, Table, Text, types from sqlalchemy.orm import sessionmaker #sqlite doesn't support dropping columns. Copy to a new table instead def downgrade_user_table_with_copy(meta, migrate_engine): maker = sessionmaker(bind=migrate_engine) session = maker() session.execute("ALTER TABLE user RENAME TO orig_user;") user_table = Table( 'user', meta, Column('id', String(64), primary_key=True), Column('name', String(64), unique=True, nullable=False), Column('extra', Text())) user_table.create(migrate_engine, checkfirst=True) orig_user_table = Table('orig_user', meta, autoload=True) for user in session.query(orig_user_table): session.execute("insert into user (id, name, extra) " "values ( :id, :name, :extra);", {'id': user.id, 'name': user.name, 'extra': user.extra}) session.execute("drop table orig_user;") session.close() def downgrade_tenant_table_with_copy(meta, migrate_engine): maker = sessionmaker(bind=migrate_engine) session = maker() session.execute("ALTER TABLE tenant RENAME TO orig_tenant;") tenant_table = Table( 'tenant', meta, Column('id', String(64), primary_key=True), Column('name', String(64), unique=True, nullable=False), Column('extra', Text())) tenant_table.create(migrate_engine, checkfirst=True) orig_tenant_table = Table('orig_tenant', meta, autoload=True) for tenant in session.query(orig_tenant_table): session.execute("insert into tenant (id, name, extra) " "values ( :id, :name, :extra);", {'id': tenant.id, 'name': tenant.name, 'extra': tenant.extra}) session.execute("drop table orig_tenant;") session.close() def downgrade_user_table_with_column_drop(meta, migrate_engine): user_table = Table('user', meta, autoload=True) user_table.drop_column(Column('password', String(128))) user_table.drop_column(Column('enabled', types.Boolean, default=True)) def downgrade_tenant_table_with_column_drop(meta, migrate_engine): tenant_table = Table('tenant', meta, autoload=True) tenant_table.drop_column(Column('description', Text())) tenant_table.drop_column(Column('enabled', types.Boolean)) def upgrade_user_table(meta, migrate_engine): user_table = Table('user', meta, autoload=True) user_table.create_column(Column('password', String(128))) user_table.create_column(Column('enabled', types.Boolean, default=True)) def upgrade_tenant_table(meta, migrate_engine): tenant_table = Table('tenant', meta, autoload=True) tenant_table.create_column(Column('description', Text())) tenant_table.create_column(Column('enabled', types.Boolean)) def upgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine upgrade_user_table(meta, migrate_engine) upgrade_tenant_table(meta, migrate_engine) def downgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine if migrate_engine.name == 'sqlite': downgrade_user_table_with_copy(meta, migrate_engine) downgrade_tenant_table_with_copy(meta, migrate_engine) else: downgrade_user_table_with_column_drop(meta, migrate_engine) downgrade_tenant_table_with_column_drop(meta, migrate_engine)
37.176991
75
0.677458
7941ca2f56affdacd097a5e003117b6cea905853
11,976
py
Python
tests/test_subjects/test_asyncsubject.py
AlexMost/RxPY
05cb14c72806dc41e243789c05f498dede11cebd
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
tests/test_subjects/test_asyncsubject.py
AlexMost/RxPY
05cb14c72806dc41e243789c05f498dede11cebd
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
tests/test_subjects/test_asyncsubject.py
AlexMost/RxPY
05cb14c72806dc41e243789c05f498dede11cebd
[ "ECL-2.0", "Apache-2.0" ]
1
2021-11-04T11:13:49.000Z
2021-11-04T11:13:49.000Z
from nose.tools import assert_raises, raises from rx import Observable, Observer from rx.testing import TestScheduler, ReactiveTest, is_prime, MockDisposable from rx.disposables import Disposable, SerialDisposable from rx.subjects import AsyncSubject from rx.internal.exceptions import DisposedException on_next = ReactiveTest.on_next on_completed = ReactiveTest.on_completed on_error = ReactiveTest.on_error subscribe = ReactiveTest.subscribe subscribed = ReactiveTest.subscribed disposed = ReactiveTest.disposed created = ReactiveTest.created class RxException(Exception): pass # Helper function for raising exceptions within lambdas def _raise(ex): raise RxException(ex) def test_infinite(): subject = [None] subscription = [None] subscription1 = [None] subscription2 = [None] subscription3 = [None] scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(70, 1), on_next(110, 2), on_next(220, 3), on_next(270, 4), on_next(340, 5), on_next(410, 6), on_next(520, 7), on_next(630, 8), on_next(710, 9), on_next(870, 10), on_next(940, 11), on_next(1020, 12) ) results1 = scheduler.create_observer() results2 = scheduler.create_observer() results3 = scheduler.create_observer() def action1(scheduler, state=None): subject[0] = AsyncSubject() scheduler.schedule_absolute(100, action1) def action2(scheduler, state=None): subscription[0] = xs.subscribe(subject[0]) scheduler.schedule_absolute(200, action2) def action3(scheduler, state=None): subscription[0].dispose() scheduler.schedule_absolute(1000, action3) def action4(scheduler, state=None): subscription1[0] = subject[0].subscribe(results1) scheduler.schedule_absolute(300, action4) def action5(scheduler, state=None): subscription2[0] = subject[0].subscribe(results2) scheduler.schedule_absolute(400, action5) def action6(scheduler, state=None): subscription3[0] = subject[0].subscribe(results3) scheduler.schedule_absolute(900, action6) def action7(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(600, action7) def action8(scheduler, state=None): subscription2[0].dispose() scheduler.schedule_absolute(700, action8) def action9(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(800, action9) def action10(scheduler, state=None): subscription3[0].dispose() scheduler.schedule_absolute(950, action10) scheduler.start() results1.messages.assert_equal() results2.messages.assert_equal() results3.messages.assert_equal() def test_finite(): subject = [None] subscription = [None] subscription1 = [None] subscription2 = [None] subscription3 = [None] scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(70, 1), on_next(110, 2), on_next(220, 3), on_next(270, 4), on_next(340, 5), on_next(410, 6), on_next(520, 7), on_completed(630), on_next(640, 9), on_completed(650), on_error(660, 'ex') ) results1 = scheduler.create_observer() results2 = scheduler.create_observer() results3 = scheduler.create_observer() def action1(scheduler, state=None): subject[0] = AsyncSubject() scheduler.schedule_absolute(100, action1) def action2(scheduler, state=None): subscription[0] = xs.subscribe(subject[0]) scheduler.schedule_absolute(200, action2) def action3(scheduler, state=None): subscription[0].dispose() scheduler.schedule_absolute(1000, action3) def action4(scheduler, state=None): subscription1[0] = subject[0].subscribe(results1) scheduler.schedule_absolute(300, action4) def action5(scheduler, state=None): subscription2[0] = subject[0].subscribe(results2) scheduler.schedule_absolute(400, action5) def action6(scheduler, state=None): subscription3[0] = subject[0].subscribe(results3) scheduler.schedule_absolute(900, action6) def action7(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(600, action7) def action8(scheduler, state=None): subscription2[0].dispose() scheduler.schedule_absolute(700, action8) def action9(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(800, action9) def action10(scheduler, state=None): subscription3[0].dispose() scheduler.schedule_absolute(950, action10) scheduler.start() results1.messages.assert_equal() results2.messages.assert_equal(on_next(630, 7), on_completed(630)) results3.messages.assert_equal(on_next(900, 7), on_completed(900)) def test_error(): subject = [None] subscription = [None] subscription1 = [None] subscription2 = [None] subscription3 = [None] ex = 'ex' scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_next(70, 1), on_next(110, 2), on_next(220, 3), on_next(270, 4), on_next(340, 5), on_next(410, 6), on_next(520, 7), on_error(630, ex), on_next(640, 9), on_completed(650), on_error(660, 'ex2') ) results1 = scheduler.create_observer() results2 = scheduler.create_observer() results3 = scheduler.create_observer() def action(scheduler, state=None): subject[0] = AsyncSubject() scheduler.schedule_absolute(100, action) def action1(scheduler, state=None): subscription[0] = xs.subscribe(subject[0]) scheduler.schedule_absolute(200, action1) def action2(scheduler, state=None): subscription[0].dispose() scheduler.schedule_absolute(1000, action2) def action3(scheduler, state=None): subscription1[0] = subject[0].subscribe(results1) scheduler.schedule_absolute(300, action3) def action4(scheduler, state=None): subscription2[0] = subject[0].subscribe(results2) scheduler.schedule_absolute(400, action4) def action5(scheduler, state=None): subscription3[0] = subject[0].subscribe(results3) scheduler.schedule_absolute(900, action5) def action6(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(600, action6) def action7(scheduler, state=None): subscription2[0].dispose() scheduler.schedule_absolute(700, action7) def action8(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(800, action8) def action9(scheduler, state=None): subscription3[0].dispose() scheduler.schedule_absolute(950, action9) scheduler.start() results1.messages.assert_equal() results2.messages.assert_equal(on_error(630, ex)) results3.messages.assert_equal(on_error(900, ex)) def test_canceled(): subject = [None] subscription = [None] subscription1 = [None] subscription2 = [None] subscription3 = [None] scheduler = TestScheduler() xs = scheduler.create_hot_observable( on_completed(630), on_next(640, 9), on_completed(650), on_error(660, 'ex') ) results1 = scheduler.create_observer() results2 = scheduler.create_observer() results3 = scheduler.create_observer() def action1(scheduler, state=None): subject[0] = AsyncSubject() scheduler.schedule_absolute(100, action1) def action2(scheduler, state=None): subscription[0] = xs.subscribe(subject[0]) scheduler.schedule_absolute(200, action2) def action3(scheduler, state=None): subscription[0].dispose() scheduler.schedule_absolute(1000, action3) def action4(scheduler, state=None): subscription1[0] = subject[0].subscribe(results1) scheduler.schedule_absolute(300, action4) def action5(scheduler, state=None): subscription2[0] = subject[0].subscribe(results2) scheduler.schedule_absolute(400, action5) def action6(scheduler, state=None): subscription3[0] = subject[0].subscribe(results3) scheduler.schedule_absolute(900, action6) def action7(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(600, action7) def action8(scheduler, state=None): subscription2[0].dispose() scheduler.schedule_absolute(700, action8) def action9(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(800, action9) def action10(scheduler, state=None): subscription3[0].dispose() scheduler.schedule_absolute(950, action10) scheduler.start() results1.messages.assert_equal() results2.messages.assert_equal(on_completed(630)) results3.messages.assert_equal(on_completed(900)) def test_subject_disposed(): subject = [None] subscription1 = [None] subscription2 = [None] subscription3 = [None] scheduler = TestScheduler() results1 = scheduler.create_observer() results2 = scheduler.create_observer() results3 = scheduler.create_observer() def action1(scheduler, state=None): subject[0] = AsyncSubject() scheduler.schedule_absolute(100, action1) def action2(scheduler, state=None): subscription1[0] = subject[0].subscribe(results1) scheduler.schedule_absolute(200, action2) def action3(scheduler, state=None): subscription2[0] = subject[0].subscribe(results2) scheduler.schedule_absolute(300, action3) def action4(scheduler, state=None): subscription3[0] = subject[0].subscribe(results3) scheduler.schedule_absolute(400, action4) def action5(scheduler, state=None): subscription1[0].dispose() scheduler.schedule_absolute(500, action5) def action6(scheduler, state=None): subject[0].dispose() scheduler.schedule_absolute(600, action6) def action7(scheduler, state=None): subscription2[0].dispose() scheduler.schedule_absolute(700, action7) def action8(scheduler, state=None): subscription3[0].dispose() scheduler.schedule_absolute(800, action8) def action9(scheduler, state=None): subject[0].on_next(1) scheduler.schedule_absolute(150, action9) def action10(scheduler, state=None): subject[0].on_next(2) scheduler.schedule_absolute(250, action10) def action11(scheduler, state=None): subject[0].on_next(3) scheduler.schedule_absolute(350, action11) def action12(scheduler, state=None): subject[0].on_next(4) scheduler.schedule_absolute(450, action12) def action13(scheduler, state=None): subject[0].on_next(5) scheduler.schedule_absolute(550, action13) @raises(DisposedException) def action14(scheduler, state=None): subject[0].on_next(6) scheduler.schedule_absolute(650, action14) @raises(DisposedException) def action15(scheduler, state=None): subject[0].on_completed() scheduler.schedule_absolute(750, action15) @raises(DisposedException) def action16(scheduler, state=None): subject[0].on_error('ex') scheduler.schedule_absolute(850, action16) @raises(DisposedException) def action17(scheduler, state=None): subject[0].subscribe(None) scheduler.schedule_absolute(950, action17) scheduler.start() results1.messages.assert_equal() results2.messages.assert_equal() results3.messages.assert_equal() if __name__ == '__main__': unittest.main()
30.629156
76
0.672512
7941ca7196c438b5a8a5a44a7e20ecce35ee8c63
1,159
py
Python
nz_django/day6/model_form_demo/front/migrations/0001_initial.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
null
null
null
nz_django/day6/model_form_demo/front/migrations/0001_initial.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
27
2020-02-12T07:55:58.000Z
2022-03-12T00:19:09.000Z
nz_django/day6/model_form_demo/front/migrations/0001_initial.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
2
2020-02-18T01:54:55.000Z
2020-02-21T11:36:28.000Z
# Generated by Django 2.0 on 2020-02-25 07:32 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Book', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('page', models.IntegerField()), ('price', models.FloatField(validators=[django.core.validators.MaxValueValidator(limit_value=1000)])), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=100)), ('password', models.CharField(max_length=30)), ('telephone', models.CharField(max_length=11, validators=[django.core.validators.RegexValidator('1[3-9]\\d{9}')])), ], ), ]
34.088235
131
0.582399
7941ccda2f94efa176a95a3ca15e713b203b9779
8,221
py
Python
sdk/python/pulumi_azure_native/customerinsights/v20170101/get_connector.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/customerinsights/v20170101/get_connector.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/customerinsights/v20170101/get_connector.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetConnectorResult', 'AwaitableGetConnectorResult', 'get_connector', ] @pulumi.output_type class GetConnectorResult: """ The connector resource format. """ def __init__(__self__, connector_id=None, connector_name=None, connector_properties=None, connector_type=None, created=None, description=None, display_name=None, id=None, is_internal=None, last_modified=None, name=None, state=None, tenant_id=None, type=None): if connector_id and not isinstance(connector_id, int): raise TypeError("Expected argument 'connector_id' to be a int") pulumi.set(__self__, "connector_id", connector_id) if connector_name and not isinstance(connector_name, str): raise TypeError("Expected argument 'connector_name' to be a str") pulumi.set(__self__, "connector_name", connector_name) if connector_properties and not isinstance(connector_properties, dict): raise TypeError("Expected argument 'connector_properties' to be a dict") pulumi.set(__self__, "connector_properties", connector_properties) if connector_type and not isinstance(connector_type, str): raise TypeError("Expected argument 'connector_type' to be a str") pulumi.set(__self__, "connector_type", connector_type) if created and not isinstance(created, str): raise TypeError("Expected argument 'created' to be a str") pulumi.set(__self__, "created", created) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") pulumi.set(__self__, "display_name", display_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if is_internal and not isinstance(is_internal, bool): raise TypeError("Expected argument 'is_internal' to be a bool") pulumi.set(__self__, "is_internal", is_internal) if last_modified and not isinstance(last_modified, str): raise TypeError("Expected argument 'last_modified' to be a str") pulumi.set(__self__, "last_modified", last_modified) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if tenant_id and not isinstance(tenant_id, str): raise TypeError("Expected argument 'tenant_id' to be a str") pulumi.set(__self__, "tenant_id", tenant_id) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="connectorId") def connector_id(self) -> int: """ ID of the connector. """ return pulumi.get(self, "connector_id") @property @pulumi.getter(name="connectorName") def connector_name(self) -> Optional[str]: """ Name of the connector. """ return pulumi.get(self, "connector_name") @property @pulumi.getter(name="connectorProperties") def connector_properties(self) -> Mapping[str, Any]: """ The connector properties. """ return pulumi.get(self, "connector_properties") @property @pulumi.getter(name="connectorType") def connector_type(self) -> str: """ Type of connector. """ return pulumi.get(self, "connector_type") @property @pulumi.getter def created(self) -> str: """ The created time. """ return pulumi.get(self, "created") @property @pulumi.getter def description(self) -> Optional[str]: """ Description of the connector. """ return pulumi.get(self, "description") @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[str]: """ Display name of the connector. """ return pulumi.get(self, "display_name") @property @pulumi.getter def id(self) -> str: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="isInternal") def is_internal(self) -> Optional[bool]: """ If this is an internal connector. """ return pulumi.get(self, "is_internal") @property @pulumi.getter(name="lastModified") def last_modified(self) -> str: """ The last modified time. """ return pulumi.get(self, "last_modified") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def state(self) -> str: """ State of connector. """ return pulumi.get(self, "state") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> str: """ The hub name. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetConnectorResult(GetConnectorResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetConnectorResult( connector_id=self.connector_id, connector_name=self.connector_name, connector_properties=self.connector_properties, connector_type=self.connector_type, created=self.created, description=self.description, display_name=self.display_name, id=self.id, is_internal=self.is_internal, last_modified=self.last_modified, name=self.name, state=self.state, tenant_id=self.tenant_id, type=self.type) def get_connector(connector_name: Optional[str] = None, hub_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConnectorResult: """ The connector resource format. :param str connector_name: The name of the connector. :param str hub_name: The name of the hub. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['connectorName'] = connector_name __args__['hubName'] = hub_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:customerinsights/v20170101:getConnector', __args__, opts=opts, typ=GetConnectorResult).value return AwaitableGetConnectorResult( connector_id=__ret__.connector_id, connector_name=__ret__.connector_name, connector_properties=__ret__.connector_properties, connector_type=__ret__.connector_type, created=__ret__.created, description=__ret__.description, display_name=__ret__.display_name, id=__ret__.id, is_internal=__ret__.is_internal, last_modified=__ret__.last_modified, name=__ret__.name, state=__ret__.state, tenant_id=__ret__.tenant_id, type=__ret__.type)
34.542017
263
0.634716
7941cd0e0369fdb139f70dfc106604a172155464
285
py
Python
conftest.py
testinggg-art/Cyberbrain
e38c74c174e23aa386d005b03f09b30aa1b3a0ae
[ "MIT" ]
null
null
null
conftest.py
testinggg-art/Cyberbrain
e38c74c174e23aa386d005b03f09b30aa1b3a0ae
[ "MIT" ]
null
null
null
conftest.py
testinggg-art/Cyberbrain
e38c74c174e23aa386d005b03f09b30aa1b3a0ae
[ "MIT" ]
null
null
null
import sys # test_outside_func.py is ignored because it has code in global scope, and is always # executed if not ignored. collect_ignore = ["test/test_outside_func.py", "test/test_generator.py"] if sys.version_info[:2] < (3, 8): collect_ignore.append("test/test_block_py38.py")
31.666667
84
0.754386
7941cd222382d46946f904ece31cbd55d3b2512b
21,013
py
Python
examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence to sequence speech recognition. """ # You can also adapt this script on your own sequence to sequence speech # recognition task. Pointers for this are left as comments. import logging import os import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import torch from datasets import DatasetDict, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.19.0") require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) text_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, ) max_duration_in_seconds: float = field( default=20.0, metadata={ "help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": "Whether to only do data preprocessing and skip training. " "This is especially useful when data preprocessing errors out in distributed training due to timeout. " "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " "so that the cached datasets can consequently be loaded in distributed training" }, ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="test", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) do_lower_case: bool = field( default=True, metadata={"help": "Whether the target text should be lower cased."}, ) @dataclass class DataCollatorSpeechSeq2SeqWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor ([`Wav2Vec2Processor`]) The processor used for proccessing the data. decoder_start_token_id (`int`) The begin-of-sentence of the decoder. """ processor: Any decoder_start_token_id: int def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # 3. Detecting last checkpoint and eventualy continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # 4. Load dataset raw_datasets = DatasetDict() if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--text_column_name` to the correct text column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) # 5. Load pretrained model, tokenizer, and feature extractor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") if model_args.freeze_feature_encoder: model.freeze_feature_encoder() # 6. Resample speech dataset if necassary dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # 7. Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name num_workers = data_args.preprocessing_num_workers text_column_name = data_args.text_column_name model_input_name = feature_extractor.model_input_names[0] do_lower_case = data_args.do_lower_case if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) def prepare_dataset(batch): # process audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) # process audio length batch[model_input_name] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) # process targets input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] batch["labels"] = tokenizer(input_str).input_ids return batch with training_args.main_process_first(desc="dataset map pre-processing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=data_args.preprocessing_num_workers, desc="preprocess train dataset", ) # filter data that is shorter than min_input_length or longer than # max_input_length def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["input_length"], ) # for large datasets it is advised to run the preprocessing on a # single machine first with `args.preprocessing_only` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step `args.preprocessing_only` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: cache = {k: v.cache_files for k, v in vectorized_datasets.items()} logger.info(f"Data preprocessing finished. Files cached at {cache}.") return # 8. Load Metric metric = load_metric("wer") def compute_metrics(pred): pred_ids = pred.predictions pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) wer = metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} # 9. Create a single speech processor if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) processor = AutoProcessor.from_pretrained(training_args.output_dir) # 10. Define data collator data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id ) # 11. Initialize Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) # 12. Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the feature extractor too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # 13. Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate( metric_key_prefix="eval", max_length=model.config.max_length, num_beams=model.config.num_beams ) max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) ) metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # 14. Write Training Stats kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "speech recognition"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()
41.282908
126
0.695046
7941cef42bc9fabf52923f41cff0efd8032e3f4b
32,499
py
Python
tests/utilities/test_build_client_schema.py
hspedro/graphql-core
2b27e641d51789f532f989d3e125e04b33d24564
[ "MIT" ]
null
null
null
tests/utilities/test_build_client_schema.py
hspedro/graphql-core
2b27e641d51789f532f989d3e125e04b33d24564
[ "MIT" ]
null
null
null
tests/utilities/test_build_client_schema.py
hspedro/graphql-core
2b27e641d51789f532f989d3e125e04b33d24564
[ "MIT" ]
null
null
null
from pytest import raises # type: ignore from graphql import graphql_sync from graphql.pyutils import dedent from graphql.type import ( GraphQLArgument, GraphQLBoolean, GraphQLEnumType, GraphQLEnumValue, GraphQLField, GraphQLFloat, GraphQLID, GraphQLInt, GraphQLObjectType, GraphQLSchema, GraphQLString, assert_enum_type, ) from graphql.utilities import ( build_schema, build_client_schema, introspection_from_schema, print_schema, ) def cycle_introspection(sdl_string): """Test that the client side introspection gives the same result. This function does a full cycle of going from a string with the contents of the SDL, build in-memory GraphQLSchema from it, produce a client-side representation of the schema by using "build_client_schema" and then return that schema printed as SDL. """ options = dict(directive_is_repeatable=True) server_schema = build_schema(sdl_string) initial_introspection = introspection_from_schema(server_schema, **options) client_schema = build_client_schema(initial_introspection) # If the client then runs the introspection query against the client-side schema, # it should get a result identical to what was returned by the server second_introspection = introspection_from_schema(client_schema, **options) # If the client then runs the introspection query against the client-side # schema, it should get a result identical to what was returned by the server. assert initial_introspection == second_introspection return print_schema(client_schema) def describe_type_system_build_schema_from_introspection(): def builds_a_simple_schema(): sdl = dedent( ''' """Simple schema""" schema { query: Simple } """This is a simple type""" type Simple { """This is a string field""" string: String } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_without_the_query_type(): sdl = dedent( """ type Query { foo: String } """ ) schema = build_schema(sdl) introspection = introspection_from_schema(schema) del introspection["__schema"]["queryType"] client_schema = build_client_schema(introspection) assert client_schema.query_type is None assert print_schema(client_schema) == sdl def builds_a_simple_schema_with_all_operation_types(): sdl = dedent( ''' schema { query: QueryType mutation: MutationType subscription: SubscriptionType } """This is a simple mutation type""" type MutationType { """Set the string field""" string: String } """This is a simple query type""" type QueryType { """This is a string field""" string: String } """This is a simple subscription type""" type SubscriptionType { """This is a string field""" string: String } ''' ) assert cycle_introspection(sdl) == sdl def uses_built_in_scalars_when_possible(): sdl = dedent( """ scalar CustomScalar type Query { int: Int float: Float string: String boolean: Boolean id: ID custom: CustomScalar } """ ) assert cycle_introspection(sdl) == sdl schema = build_schema(sdl) introspection = introspection_from_schema(schema) client_schema = build_client_schema(introspection) # Built-ins are used assert client_schema.get_type("Int") is GraphQLInt assert client_schema.get_type("Float") is GraphQLFloat assert client_schema.get_type("String") is GraphQLString assert client_schema.get_type("Boolean") is GraphQLBoolean assert client_schema.get_type("ID") is GraphQLID # Custom are built custom_scalar = schema.get_type("CustomScalar") assert client_schema.get_type("CustomScalar") is not custom_scalar def includes_standard_types_only_if_they_are_used(): schema = build_schema( """ type Query { foo: String } """ ) introspection = introspection_from_schema(schema) client_schema = build_client_schema(introspection) assert client_schema.get_type("Int") is None assert client_schema.get_type("Float") is None assert client_schema.get_type("ID") is None def builds_a_schema_with_a_recursive_type_reference(): sdl = dedent( """ schema { query: Recur } type Recur { recur: Recur } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_a_circular_type_reference(): sdl = dedent( """ type Dog { bestFriend: Human } type Human { bestFriend: Dog } type Query { dog: Dog human: Human } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_an_interface(): sdl = dedent( ''' type Dog implements Friendly { bestFriend: Friendly } interface Friendly { """The best friend of this friendly thing""" bestFriend: Friendly } type Human implements Friendly { bestFriend: Friendly } type Query { friendly: Friendly } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_an_interface_hierarchy(): sdl = dedent( ''' type Dog implements Friendly & Named { bestFriend: Friendly name: String } interface Friendly implements Named { """The best friend of this friendly thing""" bestFriend: Friendly name: String } type Human implements Friendly & Named { bestFriend: Friendly name: String } interface Named { name: String } type Query { friendly: Friendly } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_an_implicit_interface(): sdl = dedent( ''' type Dog implements Friendly { bestFriend: Friendly } interface Friendly { """The best friend of this friendly thing""" bestFriend: Friendly } type Query { dog: Dog } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_a_union(): sdl = dedent( """ type Dog { bestFriend: Friendly } union Friendly = Dog | Human type Human { bestFriend: Friendly } type Query { friendly: Friendly } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_complex_field_values(): sdl = dedent( """ type Query { string: String listOfString: [String] nonNullString: String! nonNullListOfString: [String]! nonNullListOfNonNullString: [String!]! } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_field_arguments(): sdl = dedent( ''' type Query { """A field with a single arg""" one( """This is an int arg""" intArg: Int ): String """A field with a two args""" two( """This is an list of int arg""" listArg: [Int] """This is a required arg""" requiredArg: Boolean! ): String } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_default_value_on_custom_scalar_field(): sdl = dedent( """ scalar CustomScalar type Query { testField(testArg: CustomScalar = "default"): String } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_an_enum(): food_enum = GraphQLEnumType( "Food", { "VEGETABLES": GraphQLEnumValue( 1, description="Foods that are vegetables." ), "FRUITS": GraphQLEnumValue(2), "OILS": GraphQLEnumValue(3, deprecation_reason="Too fatty."), }, description="Varieties of food stuffs", ) schema = GraphQLSchema( GraphQLObjectType( "EnumFields", { "food": GraphQLField( food_enum, args={ "kind": GraphQLArgument( food_enum, description="what kind of food?" ) }, description="Repeats the arg you give it", ) }, ) ) introspection = introspection_from_schema(schema) client_schema = build_client_schema(introspection) second_introspection = introspection_from_schema(client_schema) assert second_introspection == introspection # It's also an Enum type on the client. client_food_enum = assert_enum_type(client_schema.get_type("Food")) # Client types do not get server-only values, so they are set to None # rather than using the integers defined in the "server" schema. values = { name: value.to_kwargs() for name, value in client_food_enum.values.items() } assert values == { "VEGETABLES": { "value": None, "description": "Foods that are vegetables.", "deprecation_reason": None, "extensions": None, "ast_node": None, }, "FRUITS": { "value": None, "description": None, "deprecation_reason": None, "extensions": None, "ast_node": None, }, "OILS": { "value": None, "description": None, "deprecation_reason": "Too fatty.", "extensions": None, "ast_node": None, }, } def builds_a_schema_with_an_input_object(): sdl = dedent( ''' """An input address""" input Address { """What street is this address?""" street: String! """The city the address is within?""" city: String! """The country (blank will assume USA).""" country: String = "USA" } type Query { """Get a geocode from an address""" geocode( """The address to lookup""" address: Address ): String } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_field_arguments_with_default_values(): sdl = dedent( """ input Geo { lat: Float lon: Float } type Query { defaultInt(intArg: Int = 30): String defaultList(listArg: [Int] = [1, 2, 3]): String defaultObject(objArg: Geo = {lat: 37.485, lon: -122.148}): String defaultNull(intArg: Int = null): String noDefault(intArg: Int): String } """ ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_custom_directives(): sdl = dedent( ''' """This is a custom directive""" directive @customDirective repeatable on FIELD type Query { string: String } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_without_directives(): sdl = dedent( """ type Query { foo: String } """ ) schema = build_schema(sdl) introspection = introspection_from_schema(schema) del introspection["__schema"]["directives"] client_schema = build_client_schema(introspection) assert schema.directives assert client_schema.directives == [] assert print_schema(client_schema) == sdl def builds_a_schema_aware_of_deprecation(): sdl = dedent( ''' enum Color { """So rosy""" RED """So grassy""" GREEN """So calming""" BLUE """So sickening""" MAUVE @deprecated(reason: "No longer in fashion") } type Query { """This is a shiny string field""" shinyString: String """This is a deprecated string field""" deprecatedString: String @deprecated(reason: "Use shinyString") color: Color } ''' ) assert cycle_introspection(sdl) == sdl def builds_a_schema_with_empty_deprecation_reasons(): sdl = dedent( """ type Query { someField: String @deprecated(reason: "") } enum SomeEnum { SOME_VALUE @deprecated(reason: "") } """ ) assert cycle_introspection(sdl) == sdl def can_use_client_schema_for_limited_execution(): schema = build_schema( """ scalar CustomScalar type Query { foo(custom1: CustomScalar, custom2: CustomScalar): String } """ ) introspection = introspection_from_schema(schema) client_schema = build_client_schema(introspection) class Data: foo = "bar" unused = "value" result = graphql_sync( client_schema, "query Limited($v: CustomScalar) { foo(custom1: 123, custom2: $v) }", root_value=Data(), variable_values={"v": "baz"}, ) assert result.data == {"foo": "bar"} def can_build_invalid_schema(): schema = build_schema("type Query", assume_valid=True) introspection = introspection_from_schema(schema) client_schema = build_client_schema(introspection, assume_valid=True) assert client_schema.to_kwargs()["assume_valid"] is True def describe_throws_when_given_invalid_introspection(): dummy_schema = build_schema( """ type Query { foo(bar: String): String } interface SomeInterface { foo: String } union SomeUnion = Query enum SomeEnum { FOO } input SomeInputObject { foo: String } directive @SomeDirective on QUERY """ ) def throws_when_introspection_is_missing_schema_property(): with raises(TypeError) as exc_info: # noinspection PyTypeChecker build_client_schema(None) # type: ignore assert str(exc_info.value) == ( "Invalid or incomplete introspection result. Ensure that you" " are passing the 'data' attribute of an introspection response" " and no 'errors' were returned alongside: None." ) with raises(TypeError) as exc_info: # noinspection PyTypeChecker build_client_schema({}) assert str(exc_info.value) == ( "Invalid or incomplete introspection result. Ensure that you" " are passing the 'data' attribute of an introspection response" " and no 'errors' were returned alongside: {}." ) def throws_when_referenced_unknown_type(): introspection = introspection_from_schema(dummy_schema) introspection["__schema"]["types"] = [ type_ for type_ in introspection["__schema"]["types"] if type_["name"] != "Query" ] with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == ( "Invalid or incomplete schema, unknown type: Query." " Ensure that a full introspection query is used" " in order to build a client schema." ) def throws_when_missing_definition_for_one_of_the_standard_scalars(): schema = build_schema( """ type Query { foo: Float } """ ) introspection = introspection_from_schema(schema) introspection["__schema"]["types"] = [ type_ for type_ in introspection["__schema"]["types"] if type_["name"] != "Float" ] with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value).endswith( "Invalid or incomplete schema, unknown type: Float." " Ensure that a full introspection query is used" " in order to build a client schema." ) def throws_when_type_reference_is_missing_name(): introspection = introspection_from_schema(dummy_schema) assert introspection["__schema"]["queryType"]["name"] == "Query" del introspection["__schema"]["queryType"]["name"] with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == "Unknown type reference: {}." def throws_when_missing_kind(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert query_type_introspection["kind"] == "OBJECT" del query_type_introspection["kind"] with raises( TypeError, match=r"^Invalid or incomplete introspection result\." " Ensure that a full introspection query is used" r" in order to build a client schema: {'name': 'Query', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_interfaces(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert query_type_introspection["interfaces"] == [] del query_type_introspection["interfaces"] with raises( TypeError, match="^Query interfaces cannot be resolved." " Introspection result missing interfaces:" r" {'kind': 'OBJECT', 'name': 'Query', .*}\.$", ): build_client_schema(introspection) def legacy_support_for_interfaces_with_null_as_interfaces_field(): introspection = introspection_from_schema(dummy_schema) some_interface_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "SomeInterface" ) assert some_interface_introspection["interfaces"] == [] some_interface_introspection["interfaces"] = None client_schema = build_client_schema(introspection) assert print_schema(client_schema) == print_schema(dummy_schema) def throws_when_missing_fields(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert query_type_introspection["fields"] del query_type_introspection["fields"] with raises( TypeError, match="^Query fields cannot be resolved." " Introspection result missing fields:" r" {'kind': 'OBJECT', 'name': 'Query', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_field_args(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert query_type_introspection["fields"][0]["args"] del query_type_introspection["fields"][0]["args"] with raises( TypeError, match="^Query fields cannot be resolved." r" Introspection result missing field args: {'name': 'foo', .*}\.$", ): build_client_schema(introspection) def throws_when_output_type_is_used_as_an_arg_type(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert ( query_type_introspection["fields"][0]["args"][0]["type"]["name"] == "String" ) query_type_introspection["fields"][0]["args"][0]["type"][ "name" ] = "SomeUnion" with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value).startswith( "Query fields cannot be resolved." " Introspection must provide input type for arguments," " but received: SomeUnion." ) def throws_when_output_type_is_used_as_an_input_value_type(): introspection = introspection_from_schema(dummy_schema) input_object_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "SomeInputObject" ) assert ( input_object_type_introspection["inputFields"][0]["type"]["name"] == "String" ) input_object_type_introspection["inputFields"][0]["type"][ "name" ] = "SomeUnion" with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value).startswith( "SomeInputObject fields cannot be resolved." " Introspection must provide input type for input fields," " but received: SomeUnion." ) def throws_when_input_type_is_used_as_a_field_type(): introspection = introspection_from_schema(dummy_schema) query_type_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Query" ) assert query_type_introspection["fields"][0]["type"]["name"] == "String" query_type_introspection["fields"][0]["type"]["name"] = "SomeInputObject" with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value).startswith( "Query fields cannot be resolved." " Introspection must provide output type for fields," " but received: SomeInputObject." ) def throws_when_missing_possible_types(): introspection = introspection_from_schema(dummy_schema) some_union_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "SomeUnion" ) assert some_union_introspection["possibleTypes"] del some_union_introspection["possibleTypes"] with raises( TypeError, match="^Introspection result missing possibleTypes:" r" {'kind': 'UNION', 'name': 'SomeUnion', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_enum_values(): introspection = introspection_from_schema(dummy_schema) some_enum_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "SomeEnum" ) assert some_enum_introspection["enumValues"] del some_enum_introspection["enumValues"] with raises( TypeError, match="^Introspection result missing enumValues:" r" {'kind': 'ENUM', 'name': 'SomeEnum', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_input_fields(): introspection = introspection_from_schema(dummy_schema) some_input_object_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "SomeInputObject" ) assert some_input_object_introspection["inputFields"] del some_input_object_introspection["inputFields"] with raises( TypeError, match="^Introspection result missing inputFields:" r" {'kind': 'INPUT_OBJECT', 'name': 'SomeInputObject', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_directive_locations(): introspection = introspection_from_schema(dummy_schema) some_directive_introspection = introspection["__schema"]["directives"][0] assert some_directive_introspection["name"] == "SomeDirective" assert some_directive_introspection["locations"] == ["QUERY"] del some_directive_introspection["locations"] with raises( TypeError, match="^Introspection result missing directive locations:" r" {'name': 'SomeDirective', .*}\.$", ): build_client_schema(introspection) def throws_when_missing_directive_args(): introspection = introspection_from_schema(dummy_schema) some_directive_introspection = introspection["__schema"]["directives"][0] assert some_directive_introspection["name"] == "SomeDirective" assert some_directive_introspection["args"] == [] del some_directive_introspection["args"] with raises( TypeError, match="^Introspection result missing directive args:" r" {'name': 'SomeDirective', .*}\.$", ): build_client_schema(introspection) def describe_very_deep_decorators_are_not_supported(): def fails_on_very_deep_lists_more_than_7_levels(): schema = build_schema( """ type Query { foo: [[[[[[[[String]]]]]]]] } """ ) introspection = introspection_from_schema(schema) with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == ( "Query fields cannot be resolved." " Decorated type deeper than introspection query." ) def fails_on_a_very_deep_non_null_more_than_7_levels(): schema = build_schema( """ type Query { foo: [[[[String!]!]!]!] } """ ) introspection = introspection_from_schema(schema) with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == ( "Query fields cannot be resolved." " Decorated type deeper than introspection query." ) def succeeds_on_deep_types_less_or_equal_7_levels(): # e.g., fully non-null 3D matrix sdl = dedent( """ type Query { foo: [[[String!]!]!]! } """ ) assert cycle_introspection(sdl) == sdl def describe_prevents_infinite_recursion_on_invalid_introspection(): def recursive_interfaces(): sdl = """ type Query { foo: Foo } type Foo { foo: String } """ schema = build_schema(sdl, assume_valid=True) introspection = introspection_from_schema(schema) foo_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Foo" ) assert foo_introspection["interfaces"] == [] # we need to patch here since invalid interfaces cannot be built with Python foo_introspection["interfaces"] = [ {"kind": "OBJECT", "name": "Foo", "ofType": None} ] with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == ( "Foo interfaces cannot be resolved." " Expected Foo to be a GraphQL Interface type." ) def recursive_union(): sdl = """ type Query { foo: Foo } union Foo """ schema = build_schema(sdl, assume_valid=True) introspection = introspection_from_schema(schema) foo_introspection = next( type_ for type_ in introspection["__schema"]["types"] if type_["name"] == "Foo" ) assert foo_introspection["kind"] == "UNION" assert foo_introspection["possibleTypes"] == [] # we need to patch here since invalid unions cannot be built with Python foo_introspection["possibleTypes"] = [ {"kind": "UNION", "name": "Foo", "ofType": None} ] with raises(TypeError) as exc_info: build_client_schema(introspection) assert str(exc_info.value) == ( "Foo types cannot be resolved." " Expected Foo to be a GraphQL Object type." )
31.644596
88
0.525893
7941cf9492d448499691f6cc928bf28124e1e587
1,059
py
Python
benchmarks/convnet/nets/overfeat.py
kmaehashi/chainer-benchmark
7af2005d71253d236f7f239119d7130f22b26bb4
[ "MIT" ]
9
2018-04-09T10:26:45.000Z
2019-07-13T11:31:49.000Z
benchmarks/convnet/nets/overfeat.py
chainer/chainer-benchmark
8d0c8f5052b5e2a85ad522ff48899ffc9a2bfafb
[ "MIT" ]
19
2018-04-09T10:35:12.000Z
2018-08-30T08:49:40.000Z
benchmarks/convnet/nets/overfeat.py
chainer/chainer-benchmark
8d0c8f5052b5e2a85ad522ff48899ffc9a2bfafb
[ "MIT" ]
2
2018-04-09T10:26:53.000Z
2019-03-20T01:35:26.000Z
import chainer import chainer.functions as F import chainer.links as L class overfeat(chainer.Chain): insize = 231 def __init__(self): super(overfeat, self).__init__() with self.init_scope(): self.conv1 = L.Convolution2D(3, 96, 11, stride=4) self.conv2 = L.Convolution2D(96, 256, 5, pad=0) self.conv3 = L.Convolution2D(256, 512, 3, pad=1) self.conv4 = L.Convolution2D(512, 1024, 3, pad=1) self.conv5 = L.Convolution2D(1024, 1024, 3, pad=1) self.fc6 = L.Linear(1024 * 6 * 6, 3072) self.fc7 = L.Linear(3072, 4096) self.fc8 = L.Linear(4096, 1000) def forward(self, x): h = F.max_pooling_2d(F.relu(self.conv1(x)), 2, stride=2) h = F.max_pooling_2d(F.relu(self.conv2(h)), 2, stride=2) h = F.relu(self.conv3(h)) h = F.relu(self.conv4(h)) h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2) h = F.relu(self.fc6(h)) h = F.relu(self.fc7(h)) return self.fc8(h)
35.3
66
0.564684
7941d09a5f29369cad0714aab7050d6fd1a58a9b
4,362
py
Python
contrib/devtools/logprint-scanner.py
Gh0st-N1njA/PactumCoin
bf9b86e9f4015b9edce0a662b3b0ea3e243d866f
[ "MIT" ]
null
null
null
contrib/devtools/logprint-scanner.py
Gh0st-N1njA/PactumCoin
bf9b86e9f4015b9edce0a662b3b0ea3e243d866f
[ "MIT" ]
null
null
null
contrib/devtools/logprint-scanner.py
Gh0st-N1njA/PactumCoin
bf9b86e9f4015b9edce0a662b3b0ea3e243d866f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The PCTM developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import os, sys from subprocess import check_output def countRelevantCommas(line): openParensPosStack = [] openParensPos = 0 charCounter = 0 numRelevantCommas = 0 firstOpenParensIndex = line.find("(") for char in line: if char == '(': openParensPosStack.append(charCounter) if char == ')': openParensPosStack.pop() if char == "," and openParensPosStack[-1] == firstOpenParensIndex: numRelevantCommas += 1 charCounter += 1 return numRelevantCommas if __name__ == "__main__": out = check_output("git rev-parse --show-toplevel", shell=True, universal_newlines=True) srcDir = out.rstrip() + "/src/" filelist = [os.path.join(dp, f) for dp, dn, filenames in os.walk(srcDir) for f in filenames if os.path.splitext(f)[1] == '.cpp' or os.path.splitext(f)[1] == '.h' ] incorrectInstanceCounter = 0 for file in filelist: f = open(file,"r", encoding="utf-8") data = f.read() rows = data.split("\n") count = 0 full_data = [] lineCounter = 1 tempLine = "" tempCount = 0 for row in rows: # Collapse multiple lines into one tempLine += row # Line contains LogPrint or LogPrintf if tempLine.find("LogPrint") != -1: if tempLine.count("(") == tempLine.count(")"): havePercents = tempLine.count('%') > 0 if havePercents: # This line of code has a format specifier that requires checking number of associated arguments # Determine the number of arguments provided, see if that matches the number of format specifiers # Count the number of commas after the format specifier string. Check to see if it matches the number of format specifiers. # Assumes quotes are not escaped in the specifier string and there are no percent signs when specifying the debug level. # First, determine the position of the comma after the format specifier section, named commaAfterEndSpecifierStringIndex firstSpecifierIndex = tempLine.find('%') startSpecifierStringIndex = tempLine.rfind('"',firstSpecifierIndex) endSpecifierStringIndex = tempLine.find('"',firstSpecifierIndex) commaAfterEndSpecifierStringIndex = tempLine.find(',',endSpecifierStringIndex) # Count the number of commas after the specifier string line = "(" + tempLine[commaAfterEndSpecifierStringIndex:-1] numCommas = countRelevantCommas(line) # Determine number of extra percents after specifier string numExtraPercents = tempLine.count('%', commaAfterEndSpecifierStringIndex) # Subtract extra from total count. This is the number of expected specifiers # ignore %% numPercents = tempLine.count('%') - numExtraPercents - 2*tempLine.count('%%') if numPercents != numCommas: print("Incorrect number of arguments for LogPrint(f) statement found.") print(str(file) + ":" + str(lineCounter - tempCount)) print("Line = " + tempLine) print("numRelevantCommas = " + str(numCommas) + ", numRelevantPercents = " + str(numPercents)) print("") incorrectInstanceCounter += 1 # Done with this multiline, clear tempLine tempLine = "" tempCount = 0 else: tempCount += 1 else: # No LogPrint, clear tempLine tempLine = "" tempCount = 0 lineCounter += 1 print("# of incorrect instances: " + str(incorrectInstanceCounter)) sys.exit(incorrectInstanceCounter)
42.349515
167
0.568088
7941d10480099da01f8e1544b4dcc77abcc72a85
30,741
py
Python
sahara/tests/integration/tests/base.py
esikachev/scenario
40a59114c7bac44fea510767a3c07d73649f4caf
[ "Apache-2.0" ]
null
null
null
sahara/tests/integration/tests/base.py
esikachev/scenario
40a59114c7bac44fea510767a3c07d73649f4caf
[ "Apache-2.0" ]
null
null
null
sahara/tests/integration/tests/base.py
esikachev/scenario
40a59114c7bac44fea510767a3c07d73649f4caf
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import telnetlib import time import fixtures from keystoneclient.v2_0 import client as keystone_client from neutronclient.v2_0 import client as neutron_client from novaclient.v1_1 import client as nova_client from oslo_utils import excutils from oslo_utils import uuidutils from oslotest import base from saharaclient.api import base as client_base import saharaclient.client as sahara_client import six from swiftclient import client as swift_client from testtools import testcase from sahara.tests.integration.configs import config as cfg import sahara.utils.openstack.images as imgs from sahara.utils import ssh_remote logger = logging.getLogger('swiftclient') logger.setLevel(logging.WARNING) def errormsg(message): def decorator(fct): def wrapper(*args, **kwargs): try: fct(*args, **kwargs) except Exception as e: with excutils.save_and_reraise_exception(): ITestCase.print_error_log(message, e) return wrapper return decorator def skip_test(config_name, message=''): def handle(func): def call(self, *args, **kwargs): if getattr(self, config_name): print( '\n=======================================================' ) print('INFO: ' + message) print( '=======================================================\n' ) else: return func(self, *args, **kwargs) return call return handle class ITestCase(testcase.WithAttributes, base.BaseTestCase): def setUp(self): super(ITestCase, self).setUp() self.common_config = cfg.ITConfig().common_config self.plugin_config = self.get_plugin_config() self._setup_clients() self._setup_networks() self._setup_volume_params() self._setup_flavor() self._setup_ssh_access() self._image_id, self._ssh_username = ( self.get_image_id_and_ssh_username()) telnetlib.Telnet( self.common_config.SAHARA_HOST, self.common_config.SAHARA_PORT ) def get_plugin_config(self): raise NotImplementedError def _setup_ssh_access(self): if not self.common_config.PATH_TO_SSH_KEY: self.user_keypair_id = self.rand_name( self.common_config.USER_KEYPAIR_ID) self.private_key = self.nova.keypairs.create( self.user_keypair_id).private_key else: self.user_keypair_id = self.common_config.USER_KEYPAIR_ID self.private_key = open(self.common_config.PATH_TO_SSH_KEY).read() def _setup_flavor(self): if not self.common_config.FLAVOR_ID: self.flavor_id = self.nova.flavors.create( name=self.rand_name('i-test-flavor'), ram=1024, vcpus=1, disk=10, ephemeral=10).id else: self.flavor_id = self.common_config.FLAVOR_ID def _setup_networks(self): self.floating_ip_pool = self.common_config.FLOATING_IP_POOL self.internal_neutron_net = None if self.common_config.NEUTRON_ENABLED: self.internal_neutron_net = self.get_internal_neutron_net_id() self.floating_ip_pool = ( self.get_floating_ip_pool_id_for_neutron_net()) def _setup_volume_params(self): self.volumes_per_node = 0 self.volumes_size = 0 if not getattr(self.plugin_config, 'SKIP_CINDER_TEST', False): self.volumes_per_node = 2 self.volumes_size = 2 def _setup_clients(self): keystone = keystone_client.Client( username=self.common_config.OS_USERNAME, password=self.common_config.OS_PASSWORD, tenant_name=self.common_config.OS_TENANT_NAME, auth_url=self.common_config.OS_AUTH_URL) keystone.management_url = self.common_config.OS_AUTH_URL tenant_id = [tenant.id for tenant in keystone.tenants.list() if tenant.name == self.common_config.OS_TENANT_NAME][0] self.sahara = sahara_client.Client( version=self.common_config.SAHARA_API_VERSION, username=self.common_config.OS_USERNAME, api_key=self.common_config.OS_PASSWORD, project_name=self.common_config.OS_TENANT_NAME, auth_url=self.common_config.OS_AUTH_URL, sahara_url='http://%s:%s/v%s/%s' % ( self.common_config.SAHARA_HOST, self.common_config.SAHARA_PORT, self.common_config.SAHARA_API_VERSION, tenant_id )) self.nova = nova_client.Client( username=self.common_config.OS_USERNAME, api_key=self.common_config.OS_PASSWORD, project_id=self.common_config.OS_TENANT_NAME, auth_url=self.common_config.OS_AUTH_URL) self.neutron = neutron_client.Client( username=self.common_config.OS_USERNAME, password=self.common_config.OS_PASSWORD, tenant_name=self.common_config.OS_TENANT_NAME, auth_url=self.common_config.OS_AUTH_URL) # ------------------------Methods for object creation-------------------------- def create_node_group_template(self, name, plugin_config, description, node_processes, node_configs, volumes_per_node=0, volumes_size=0, floating_ip_pool=None, **kwargs): data = self.sahara.node_group_templates.create( name, plugin_config.PLUGIN_NAME, plugin_config.HADOOP_VERSION, self.flavor_id, description, volumes_per_node, volumes_size, node_processes, node_configs, floating_ip_pool, **kwargs) node_group_template_id = data.id return node_group_template_id def create_cluster_template(self, name, plugin_config, description, cluster_configs, node_groups, anti_affinity=None, net_id=None): for node_group in node_groups: for key, value in node_group.items(): if value is None: del node_group[key] data = self.sahara.cluster_templates.create( name, plugin_config.PLUGIN_NAME, plugin_config.HADOOP_VERSION, description, cluster_configs, node_groups, anti_affinity, net_id) cluster_template_id = data.id return cluster_template_id def create_cluster(self, name, plugin_config, cluster_template_id, description, cluster_configs, node_groups=None, anti_affinity=None, net_id=None, is_transient=False): self.cluster_id = None data = self.sahara.clusters.create( name, plugin_config.PLUGIN_NAME, plugin_config.HADOOP_VERSION, cluster_template_id, self._image_id, is_transient, description, cluster_configs, node_groups, self.user_keypair_id, anti_affinity, net_id) self.cluster_id = data.id return self.cluster_id def get_cluster_info(self, plugin_config): node_ip_list_with_node_processes = ( self.get_cluster_node_ip_list_with_node_processes(self.cluster_id)) try: node_info = self.get_node_info(node_ip_list_with_node_processes, plugin_config) except Exception as e: with excutils.save_and_reraise_exception(): print( '\nFailure during check of node process deployment ' 'on cluster node: ' + six.text_type(e) ) # For example: method "create_cluster_and_get_info" return # { # 'node_info': { # 'tasktracker_count': 3, # 'node_count': 6, # 'namenode_ip': '172.18.168.242', # 'datanode_count': 3 # }, # 'cluster_id': 'bee5c6a1-411a-4e88-95fc-d1fbdff2bb9d', # 'node_ip_list': { # '172.18.168.153': ['tasktracker', 'datanode'], # '172.18.168.208': ['secondarynamenode', 'oozie'], # '172.18.168.93': ['tasktracker'], # '172.18.168.101': ['tasktracker', 'datanode'], # '172.18.168.242': ['namenode', 'jobtracker'], # '172.18.168.167': ['datanode'] # }, # 'plugin_config': <oslo_config.cfg.GroupAttr object at 0x215d9d> # } return { 'cluster_id': self.cluster_id, 'node_ip_list': node_ip_list_with_node_processes, 'node_info': node_info, 'plugin_config': plugin_config } # --------Helper methods for cluster info obtaining and its processing--------- def poll_cluster_state(self, cluster_id): data = self.sahara.clusters.get(cluster_id) timeout = self.common_config.CLUSTER_CREATION_TIMEOUT * 60 try: with fixtures.Timeout(timeout, gentle=True): while True: status = str(data.status) if status == 'Active': break if status == 'Error': self.fail('Cluster state == \'Error\'.') time.sleep(10) data = self.sahara.clusters.get(cluster_id) except fixtures.TimeoutException: self.fail("Cluster did not return to 'Active' state " "within %d minutes." % self.common_config.CLUSTER_CREATION_TIMEOUT) return status def get_cluster_node_ip_list_with_node_processes(self, cluster_id): data = self.sahara.clusters.get(cluster_id) node_groups = data.node_groups node_ip_list_with_node_processes = {} for node_group in node_groups: instances = node_group['instances'] for instance in instances: node_ip = instance['management_ip'] node_ip_list_with_node_processes[node_ip] = node_group[ 'node_processes'] # For example: # node_ip_list_with_node_processes = { # '172.18.168.181': ['tasktracker'], # '172.18.168.94': ['secondarynamenode'], # '172.18.168.208': ['namenode', 'jobtracker'], # '172.18.168.93': ['tasktracker', 'datanode'], # '172.18.168.44': ['tasktracker', 'datanode'], # '172.18.168.233': ['datanode'] # } return node_ip_list_with_node_processes def put_file_to_hdfs(self, namenode_ip, remote_path, data): tmp_file_path = '/tmp/%s' % uuidutils.generate_uuid()[:8] self.open_ssh_connection(namenode_ip) self.write_file_to(tmp_file_path, data) self.execute_command( 'sudo su - -c "hadoop dfs -copyFromLocal %s %s" %s' % ( tmp_file_path, remote_path, self.plugin_config.HADOOP_USER)) self.execute_command('rm -fr %s' % tmp_file_path) self.close_ssh_connection() def try_telnet(self, host, port): try: telnetlib.Telnet(host, port) except Exception as e: with excutils.save_and_reraise_exception(): print( '\nTelnet has failed: ' + six.text_type(e) + ' NODE IP: %s, PORT: %s. Passed %s minute(s).' % (host, port, self.common_config.TELNET_TIMEOUT) ) def get_node_info(self, node_ip_list_with_node_processes, plugin_config): tasktracker_count = 0 datanode_count = 0 timeout = self.common_config.TELNET_TIMEOUT * 60 with fixtures.Timeout(timeout, gentle=True): accessible = False proc_with_ports = plugin_config.HADOOP_PROCESSES_WITH_PORTS while not accessible: accessible = True for node_ip, processes in six.iteritems( node_ip_list_with_node_processes): try: self.try_telnet(node_ip, '22') except Exception: accessible = False for process in processes: if process in proc_with_ports: try: self.try_telnet(node_ip, proc_with_ports[process]) except Exception: print('Connection attempt. NODE PROCESS: %s, ' 'PORT: %s.' % ( process, proc_with_ports[process])) accessible = False if not accessible: time.sleep(1) for node_ip, processes in six.iteritems( node_ip_list_with_node_processes): if plugin_config.PROCESS_NAMES['tt'] in processes: tasktracker_count += 1 if plugin_config.PROCESS_NAMES['dn'] in processes: datanode_count += 1 if plugin_config.PROCESS_NAMES['nn'] in processes: namenode_ip = node_ip return { 'namenode_ip': namenode_ip, 'tasktracker_count': tasktracker_count, 'datanode_count': datanode_count, 'node_count': len(node_ip_list_with_node_processes) } def await_active_workers_for_namenode(self, node_info, plugin_config): self.open_ssh_connection(node_info['namenode_ip']) timeout = self.common_config.HDFS_INITIALIZATION_TIMEOUT * 60 try: with fixtures.Timeout(timeout, gentle=True): while True: active_tasktracker_count = self.execute_command( 'sudo -u %s bash -lc "hadoop job -list-active-trackers' '" | grep "^tracker_" | wc -l' % plugin_config.HADOOP_USER)[1] try: active_tasktracker_count = int( active_tasktracker_count) except ValueError: active_tasktracker_count = -1 active_datanode_count = self.execute_command( 'sudo -u %s bash -lc "hadoop dfsadmin -report" | ' 'grep -e "Datanodes available:.*" ' '-e "Live datanodes.*" | grep -o "[0-9]*" | head -1' % plugin_config.HADOOP_USER)[1] try: active_datanode_count = int(active_datanode_count) except ValueError: active_datanode_count = -1 if (active_tasktracker_count == node_info['tasktracker_count'] and active_datanode_count == node_info['datanode_count']): break time.sleep(10) except fixtures.TimeoutException: self.fail( 'Tasktracker or datanode cannot be started within ' '%s minute(s) for namenode.' % self.common_config.HDFS_INITIALIZATION_TIMEOUT ) finally: self.close_ssh_connection() def await_active_tasktracker(self, node_info, plugin_config): self.open_ssh_connection(node_info['namenode_ip']) for i in range(self.common_config.HDFS_INITIALIZATION_TIMEOUT * 6): time.sleep(10) active_tasktracker_count = self.execute_command( 'sudo -u %s bash -lc "hadoop job -list-active-trackers" ' '| grep "^tracker_" | wc -l' % plugin_config.HADOOP_USER)[1] active_tasktracker_count = int(active_tasktracker_count) if (active_tasktracker_count == node_info['tasktracker_count']): break else: self.fail( 'Tasktracker or datanode cannot be started within ' '%s minute(s) for namenode.' % self.common_config.HDFS_INITIALIZATION_TIMEOUT) self.close_ssh_connection() @errormsg("Failure while event log testing: ") def _test_event_log(self, cluster_id): cluster = self.sahara.clusters.get(cluster_id) events = self.sahara.events.list(cluster_id) invalid_steps = [] if not events: events = [] for step in cluster.provision_progress: if not step['successful']: invalid_steps.append(step) if len(invalid_steps) > 0 or len(events) > 0: events_info = "\n".join(six.text_type(e) for e in events) invalid_steps_info = "\n".join(six.text_type(e) for e in invalid_steps) steps_info = "\n".join(six.text_type(e) for e in cluster.provision_progress) self.fail( "Issues with event log work: " "\n Not removed events: \n\n {events}" "\n Incomplete steps: \n\n {invalid_steps}" "\n All steps: \n\n {steps}".format( events=events_info, steps=steps_info, invalid_steps=invalid_steps_info)) # --------------------------------Remote--------------------------------------- def connect_to_swift(self): return swift_client.Connection( authurl=self.common_config.OS_AUTH_URL, user=self.common_config.OS_USERNAME, key=self.common_config.OS_PASSWORD, tenant_name=self.common_config.OS_TENANT_NAME, auth_version=self.common_config.SWIFT_AUTH_VERSION ) def open_ssh_connection(self, host): ssh_remote._connect(host, self._ssh_username, self.private_key) @staticmethod def execute_command(cmd): return ssh_remote._execute_command(cmd, get_stderr=True) @staticmethod def write_file_to(remote_file, data): ssh_remote._write_file_to(remote_file, data) @staticmethod def read_file_from(remote_file): return ssh_remote._read_file_from(remote_file) @staticmethod def close_ssh_connection(): ssh_remote._cleanup() def transfer_helper_conf_file_to_node(self, file_name): file = open('sahara/tests/integration/tests/resources/%s' % file_name ).read() try: self.write_file_to(file_name, file) except Exception as e: with excutils.save_and_reraise_exception(): print( '\nFailure while conf file transferring ' 'to cluster node: ' + six.text_type(e) ) def transfer_helper_script_to_node(self, script_name, parameter_list=None): script = open('sahara/tests/integration/tests/resources/%s' % script_name).read() if parameter_list: for parameter, value in parameter_list.items(): script = script.replace( '%s=""' % parameter, '%s=%s' % (parameter, value)) try: self.write_file_to('script.sh', script) except Exception as e: with excutils.save_and_reraise_exception(): print( '\nFailure while helper script transferring ' 'to cluster node: ' + six.text_type(e) ) self.execute_command('chmod 777 script.sh') def transfer_helper_script_to_nodes(self, node_ip_list, script_name, parameter_list=None): for node_ip in node_ip_list: self.open_ssh_connection(node_ip) self.transfer_helper_script_to_node(script_name, parameter_list) self.close_ssh_connection() # -------------------------------Helper methods-------------------------------- def get_image_id_and_ssh_username(self): def print_error_log(parameter, value): print( '\nImage with %s "%s" was found in image list but it was ' 'possibly not registered for Sahara. Please, make sure image ' 'was correctly registered.' % (parameter, value) ) def try_get_image_id_and_ssh_username(parameter, value): try: return image.id, image.metadata[imgs.PROP_USERNAME] except KeyError: with excutils.save_and_reraise_exception(): print_error_log(parameter, value) images = self.nova.images.list() # If plugin_config.IMAGE_ID is not None then find corresponding image # and return its ID and username. If image not found then handle error if self.plugin_config.IMAGE_ID: for image in images: if image.id == self.plugin_config.IMAGE_ID: return try_get_image_id_and_ssh_username( 'ID', self.plugin_config.IMAGE_ID) self.fail( '\n\nImage with ID "%s" not found in image list. Please, make ' 'sure you specified right image ID.\n' % self.plugin_config.IMAGE_ID) # If plugin_config.IMAGE_NAME is not None then find corresponding image # and return its ID and username. If image not found then handle error if self.plugin_config.IMAGE_NAME: for image in images: if image.name == self.plugin_config.IMAGE_NAME: return try_get_image_id_and_ssh_username( 'name', self.plugin_config.IMAGE_NAME) self.fail( '\n\nImage with name "%s" not found in image list. Please, ' 'make sure you specified right image name.\n' % self.plugin_config.IMAGE_NAME) # If plugin_config.IMAGE_TAG is not None then find corresponding image # and return its ID and username. If image not found then handle error if self.plugin_config.IMAGE_TAG: for image in images: if (image.metadata.get(imgs.PROP_TAG + '%s' % self.plugin_config.IMAGE_TAG)) and ( image.metadata.get(imgs.PROP_TAG + str( self.plugin_config.PLUGIN_NAME))): return try_get_image_id_and_ssh_username( 'tag', self.plugin_config.IMAGE_TAG ) self.fail( '\n\nImage with tag "%s" not found in list of registered ' 'images for Sahara. Please, make sure tag "%s" was added to ' 'image and image was correctly registered.\n' % (self.plugin_config.IMAGE_TAG, self.plugin_config.IMAGE_TAG) ) # If plugin_config.IMAGE_ID, plugin_config.IMAGE_NAME and # plugin_config.IMAGE_TAG are None then image is chosen # by tag "sahara_i_tests". If image has tag "sahara_i_tests" # (at the same time image ID, image name and image tag were not # specified in configuration file of integration tests) then return # its ID and username. Found image will be chosen as image for tests. # If image with tag "sahara_i_tests" not found then handle error for image in images: if (image.metadata.get(imgs.PROP_TAG + 'sahara_i_tests')) and ( image.metadata.get(imgs.PROP_TAG + str( self.plugin_config.PLUGIN_NAME))): try: return image.id, image.metadata[imgs.PROP_USERNAME] except KeyError: with excutils.save_and_reraise_exception(): print( '\nNone of parameters of image (ID, name, tag)' ' was specified in configuration file of ' 'integration tests. That is why there was ' 'attempt to choose image by tag ' '"sahara_i_tests" and image with such tag ' 'was found in image list but it was possibly ' 'not registered for Sahara. Please, make ' 'sure image was correctly registered.' ) self.fail( '\n\nNone of parameters of image (ID, name, tag) was specified in ' 'configuration file of integration tests. That is why there was ' 'attempt to choose image by tag "sahara_i_tests" but image with ' 'such tag not found in list of registered images for Sahara. ' 'Please, make sure image was correctly registered. Please, ' 'specify one of parameters of image (ID, name or tag) in ' 'configuration file of integration tests.\n' ) def get_floating_ip_pool_id_for_neutron_net(self): # Find corresponding floating IP pool by its name and get its ID. # If pool not found then handle error try: floating_ip_pool = self.neutron.list_networks( name=self.common_config.FLOATING_IP_POOL) floating_ip_pool_id = floating_ip_pool['networks'][0]['id'] return floating_ip_pool_id except IndexError: with excutils.save_and_reraise_exception(): raise Exception( '\nFloating IP pool \'%s\' not found in pool list. ' 'Please, make sure you specified right floating IP pool.' % self.common_config.FLOATING_IP_POOL ) def get_internal_neutron_net_id(self): # Find corresponding internal Neutron network by its name and get # its ID. If network not found then handle error try: internal_neutron_net = self.neutron.list_networks( name=self.common_config.INTERNAL_NEUTRON_NETWORK) internal_neutron_net_id = internal_neutron_net['networks'][0]['id'] return internal_neutron_net_id except IndexError: with excutils.save_and_reraise_exception(): raise Exception( '\nInternal Neutron network \'%s\' not found in network ' 'list. Please, make sure you specified right network name.' % self.common_config.INTERNAL_NEUTRON_NETWORK ) def delete_objects(self, cluster_id=None, cluster_template_id=None, node_group_template_id_list=None): if not self.common_config.RETAIN_CLUSTER_AFTER_TEST: if cluster_id: try: self.sahara.clusters.delete(cluster_id) except client_base.APIException: # cluster in deleting state or deleted pass try: # waiting roughly for 300 seconds for cluster to terminate with fixtures.Timeout(300, gentle=True): while True: try: self.sahara.clusters.get(cluster_id) except client_base.APIException: # Cluster is finally deleted break time.sleep(5) except fixtures.TimeoutException: self.fail('Cluster failed to terminate in 300 seconds: ' '%s' % cluster_id) if cluster_template_id: self.sahara.cluster_templates.delete(cluster_template_id) if node_group_template_id_list: for node_group_template_id in node_group_template_id_list: self.sahara.node_group_templates.delete( node_group_template_id ) @staticmethod def delete_swift_container(swift, container): objects = [obj['name'] for obj in swift.get_container(container)[1]] for obj in objects: swift.delete_object(container, obj) swift.delete_container(container) @staticmethod def print_error_log(message, exception=None): print( '\n\n!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!* ' 'ERROR LOG *!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*' '!*!\n' ) print(message + six.text_type(exception)) print( '\n!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!* END OF ' 'ERROR LOG *!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*' '!*!\n\n' ) def capture_error_log_from_cluster_node(self, log_file): print( '\n\n!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!* CAPTURED ERROR ' 'LOG FROM CLUSTER NODE *!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*' '!*!\n' ) print(self.read_file_from(log_file)) print( '\n!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!* END OF CAPTURED ERROR ' 'LOG FROM CLUSTER NODE *!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*' '!*!\n\n' ) @staticmethod def rand_name(name): return '%s-%s' % (name, uuidutils.generate_uuid()[:8]) def tearDown(self): if not self.common_config.PATH_TO_SSH_KEY: self.nova.keypairs.delete(self.user_keypair_id) if not self.common_config.FLAVOR_ID: self.nova.flavors.delete(self.flavor_id) super(ITestCase, self).tearDown()
42.226648
79
0.560489
7941d295aa85e160e8382d424eaa3e3f6df7164c
2,846
py
Python
nbr/models.py
johnmwangi/Nbr_Hood
7a4be73db001560a2a17f37166a544381fe07581
[ "MIT" ]
null
null
null
nbr/models.py
johnmwangi/Nbr_Hood
7a4be73db001560a2a17f37166a544381fe07581
[ "MIT" ]
3
2021-03-19T01:03:21.000Z
2022-01-13T01:16:52.000Z
nbr/models.py
johnmwangi/Nbr_Hood
7a4be73db001560a2a17f37166a544381fe07581
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. class Location(models.Model): name = models.CharField(max_length=100,null=True) def __str__(self): return self.name class Hood(models.Model): hood_photo = models.ImageField(upload_to='hoods/') hood_name = models.CharField(max_length=100, null=True) occupants_count = models.PositiveIntegerField(default=0) location = models.ForeignKey(Location, on_delete=models.CASCADE, null=True) user = models.ForeignKey(User, on_delete=models.CASCADE, null=True) @classmethod def get_hoods(cls): hoods = Hood.objects.all() return hoods @classmethod def search_hood(cls,hood_search): hoods = cls.objects.filter(id__icontains = hood_search) return hoods class Meta: ordering = ['hood_name'] class Business(models.Model): b_photo = models.ImageField(upload_to='business/',null=True) b_name = models.CharField(max_length=100, blank=True, null=True) b_description = models.TextField(max_length=200, blank=True, null=True) b_email = models.CharField(max_length=100, blank=True, null=True) user = models.ForeignKey(User, on_delete=models.CASCADE,null=True) hood = models.ForeignKey(Hood, on_delete=models.CASCADE, related_name='biz',null=True) @classmethod def get_business(cls): business = Business.objects.all() return business class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE,null=True) profile_photo= models.ImageField(upload_to='profiles/',null=True) bio= models.CharField(max_length=240, null=True) email = models.CharField(max_length=100, blank=True, null=True) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) post_save.connect(create_user_profile, sender=User) @receiver(post_save, sender=User) def update_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) instance.profile.save() @classmethod def get_profile(cls): profile = Profile.objects.all() return profile class Meta: ordering = ['user'] class Join(models.Model): user_id = models.OneToOneField(User) hood_id = models.ForeignKey(Hood) def __str__(self): return self.user_id class Posts(models.Model): title = models.CharField(max_length = 300) content = models.TextField() posted_by = models.ForeignKey(User, null=True) hood = models.ForeignKey(Hood) def save_posts(self): self.save() def delete_posts(self): self.delete() def __str__(self): return self.title
29.957895
90
0.711525
7941d2ba01ba9a99ddc42ff4ed2404d541fdfbfc
162
py
Python
app/gpt/gptauto.py
toratoradora/sukima
456fb160b5455ed9f3a1eac648cd1ad1c9fcc2f1
[ "BSD-2-Clause" ]
null
null
null
app/gpt/gptauto.py
toratoradora/sukima
456fb160b5455ed9f3a1eac648cd1ad1c9fcc2f1
[ "BSD-2-Clause" ]
null
null
null
app/gpt/gptauto.py
toratoradora/sukima
456fb160b5455ed9f3a1eac648cd1ad1c9fcc2f1
[ "BSD-2-Clause" ]
null
null
null
class GPTAuto: def __init__(self, model_name='generic'): self.model_name = model_name def generate(self, args): return 'Not implemented'
23.142857
45
0.660494
7941d31624033994a517c40e2ab0ec5b9de9c537
15,881
py
Python
app/enquiries/tests/test_auth.py
uktrade/enquiry-mgmt-tool
547a195cb9296ad0b1dbc5c8435bfeeae9755bb4
[ "MIT" ]
3
2020-04-03T12:16:56.000Z
2020-12-09T18:18:49.000Z
app/enquiries/tests/test_auth.py
uktrade/enquiry-mgmt-tool
547a195cb9296ad0b1dbc5c8435bfeeae9755bb4
[ "MIT" ]
173
2020-03-18T09:31:50.000Z
2022-03-26T04:19:41.000Z
app/enquiries/tests/test_auth.py
uktrade/enquiry-mgmt-tool
547a195cb9296ad0b1dbc5c8435bfeeae9755bb4
[ "MIT" ]
null
null
null
import datetime from collections.abc import Mapping, Sequence import mohawk import pytest from django.urls import reverse, path from freezegun import freeze_time from rest_framework import status from rest_framework.response import Response from rest_framework.test import APIRequestFactory from rest_framework.views import APIView from app.enquiries import auth from app.enquiries.tests.factories import OwnerFactory HAWK_CREDENTIALS = { "test-id-without-scope": { "key": "test-key-without-scope", "scopes": (), }, "test-id-with-scope": { "key": "test-key-with-scope", "scopes": ("enquiries",), }, "test-id-with-multiple-scopes": { "key": "test-key-with-multiple-scopes", "scopes": ("enquiries", "views"), }, } class HawkViewWithoutScope(auth.HawkResponseSigningMixin, APIView): """View using Hawk authentication.""" authentication_classes = (auth.HawkAuthentication,) permission_classes = () def get(self, request): """Simple test view with fixed response.""" return Response({"content": "hawk-test-view-without-scope"}) class HawkViewWithScope(auth.HawkResponseSigningMixin, APIView): """View using Hawk authentication.""" authentication_classes = (auth.HawkAuthentication,) permission_classes = (auth.HawkScopePermission,) required_hawk_scope = "enquiries" def get(self, request): """Simple test view with fixed response.""" return Response({"content": "hawk-test-view-with-scope"}) class PaasIPView(APIView): """View using PaaS IP Authentication.""" authentication_classes = (auth.PaaSIPAuthentication,) permission_classes = () def get(self, request): """Simple test view with fixed response.""" return Response({"content": "paas-ip-test-view"}) urlpatterns = [ path( "test-hawk-without-scope/", HawkViewWithoutScope.as_view(), name="test-hawk-without-scope", ), path( "test-hawk-with-scope/", HawkViewWithScope.as_view(), name="test-hawk-with-scope", ), path( "test-paas-ip/", PaasIPView.as_view(), name="test-paas-ip", ), ] def _url(): return "http://testserver" + reverse("test-hawk-without-scope") def _url_incorrect_domain(): return "http://incorrect" + reverse("test-hawk-without-scope") def _url_incorrect_path(): return "http://testserver" + reverse("test-hawk-without-scope") + "incorrect/" def _url_with_scope(): return "http://testserver" + reverse("test-hawk-with-scope") def _auth_sender( key_id="test-id-without-scope", secret_key="test-key-without-scope", url=_url, method="GET", content="", content_type="", ): credentials = { "id": key_id, "key": secret_key, "algorithm": "sha256", } return mohawk.Sender( credentials, url(), method, content=content, content_type=content_type, ) def identity(value): """Pass through a single argument unchanged.""" return value def resolve_data(data, value_resolver=identity): """ Recursively resolve callables in data structures. Given a value: - if it's a callable, resolve it - if it's a sequence, resolve each of the sequence's values - if it's a dict, resolve each value of the dict The resolved value is returned. Used in parametrised tests. """ if isinstance(data, Mapping): return { key: resolve_data(value, value_resolver=value_resolver) for key, value in data.items() } if isinstance(data, Sequence) and not isinstance(data, (str, bytes)): return [resolve_data(value, value_resolver=value_resolver) for value in data] if callable(data): return value_resolver(data()) return value_resolver(data) @pytest.mark.django_db @pytest.mark.urls("app.enquiries.tests.test_auth") class TestHawkAuthentication: """Tests Hawk authentication when using HawkAuthentication.""" @pytest.mark.parametrize( "get_kwargs,expected_json", ( ( # If the Authorization header isn't passed { "content_type": "", }, {"detail": "Authentication credentials were not provided."}, ), ( # If the Authorization header generated from an incorrect ID { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(key_id="incorrect").request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from an incorrect secret { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(secret_key="incorrect").request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from an incorrect domain { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(url=_url_incorrect_domain).request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from an incorrect path { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(url=_url_incorrect_path).request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from an incorrect method { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(method="POST").request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from an incorrect # content-type { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(content_type="incorrect").request_header, }, {"detail": "Incorrect authentication credentials."}, ), ( # If the Authorization header generated from incorrect content { "content_type": "", "HTTP_AUTHORIZATION": lambda: _auth_sender(content="incorrect").request_header, }, {"detail": "Incorrect authentication credentials."}, ), ), ) def test_401_returned(self, api_client, get_kwargs, expected_json): """If the request isn't properly Hawk-authenticated, then a 401 is returned """ resolved_get_kwargs = resolve_data(get_kwargs) response = api_client.get( _url(), **resolved_get_kwargs, ) assert response.status_code == status.HTTP_401_UNAUTHORIZED assert response.json() == expected_json def test_if_61_seconds_in_past_401_returned(self, api_client): """If the Authorization header is generated 61 seconds in the past, then a 401 is returned """ past = datetime.datetime.now() - datetime.timedelta(seconds=61) with freeze_time(past): auth = _auth_sender().request_header response = api_client.get( reverse("test-hawk-without-scope"), content_type="", HTTP_AUTHORIZATION=auth, ) assert response.status_code == status.HTTP_401_UNAUTHORIZED assert response.json() == {"detail": "Incorrect authentication credentials."} @pytest.mark.usefixtures("local_memory_cache") def test_if_authentication_reused_401_returned(self, api_client, settings): """If the Authorization header is reused, then a 401 is returned""" settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS auth = _auth_sender().request_header response_1 = api_client.get( _url(), content_type="", HTTP_AUTHORIZATION=auth, ) assert response_1.status_code == status.HTTP_200_OK response_2 = api_client.get( _url(), content_type="", HTTP_AUTHORIZATION=auth, ) assert response_2.status_code == status.HTTP_401_UNAUTHORIZED assert response_2.json() == {"detail": "Incorrect authentication credentials."} def test_returned_object_with_authentication_3_ips(self, api_client, settings): """If the Authorization and X-Forwarded-For headers are correct, with an extra IP address prepended to the X-Forwarded-For then the correct, and authentic, data is returned """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender() response = api_client.get( _url(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_200_OK assert response.json() == {"content": "hawk-test-view-without-scope"} def test_returned_object_with_authentication(self, api_client, settings): """If the Authorization and X-Forwarded-For headers are correct, then the correct, and authentic, data is returned """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender() response = api_client.get( _url(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_200_OK assert response.json() == {"content": "hawk-test-view-without-scope"} @pytest.mark.django_db @pytest.mark.urls("app.enquiries.tests.test_auth") class TestHawkResponseSigningMixin: """Tests Hawk response signing when using HawkResponseMiddleware.""" def test_returned_object_with_authentication(self, api_client, settings): """If the Authorization and X-Forwarded-For headers are correct, then the correct, and authentic, data is returned """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender() response = api_client.get( _url(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_200_OK # Just asserting that accept_response doesn't raise is a bit weak, # so we also assert that it raises if the header, content, or # content_type are incorrect sender.accept_response( response_header=response["Server-Authorization"], content=response.content, content_type=response["Content-Type"], ) with pytest.raises(mohawk.exc.MacMismatch): sender.accept_response( response_header='Hawk mac="incorrect", hash="incorrect"', content=response.content, content_type=response["Content-Type"], ) with pytest.raises(mohawk.exc.MisComputedContentHash): sender.accept_response( response_header=response["Server-Authorization"], content="incorrect", content_type=response["Content-Type"], ) with pytest.raises(mohawk.exc.MisComputedContentHash): sender.accept_response( response_header=response["Server-Authorization"], content=response.content, content_type="incorrect", ) def test_does_not_sign_non_hawk_requests(self): """Test that a 403 is returned if the request is not authenticated using Hawk.""" from rest_framework.test import force_authenticate factory = APIRequestFactory() user = OwnerFactory() view = HawkViewWithScope.as_view() request = factory.get("/test-hawk-with-scope/") force_authenticate(request, user=user) response = view(request) assert response.status_code == status.HTTP_403_FORBIDDEN assert response.data == { "detail": "You do not have permission to perform this action.", } @pytest.mark.django_db @pytest.mark.urls("app.enquiries.tests.test_auth") class TestHawkScopePermission: """Tests scoped-based permissions using HawkScopePermission.""" def test_denies_access_when_without_the_required_scope(self, api_client, settings): """ Test that a 403 is returned if the request is Hawk authenticated but the client doesn't have the required scope. """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender( key_id="test-id-without-scope", secret_key="test-key-without-scope", url=_url_with_scope, ) response = api_client.get( _url_with_scope(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_403_FORBIDDEN assert response.json() == { "detail": "You do not have permission to perform this action.", } def test_denies_access_if_not_authenticated_using_hawk(self): """Test that a 403 is returned if the request is not authenticated using Hawk.""" from rest_framework.test import force_authenticate factory = APIRequestFactory() user = OwnerFactory() view = HawkViewWithScope.as_view() request = factory.get("/test-hawk-with-scope/") force_authenticate(request, user=user) response = view(request) assert response.status_code == status.HTTP_403_FORBIDDEN assert response.data == { "detail": "You do not have permission to perform this action.", } def test_authorises_when_with_the_required_scope(self, api_client, settings): """ Test that a 200 is returned if the request is Hawk authenticated and the client has the required scope. """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender( key_id="test-id-with-scope", secret_key="test-key-with-scope", url=_url_with_scope, ) response = api_client.get( _url_with_scope(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_200_OK assert response.json() == {"content": "hawk-test-view-with-scope"} def test_authorises_when_with_one_of_the_required_scopes(self, api_client, settings): """ Test that a 200 is returned if the request is Hawk authenticated and the client has one of the required scope. """ settings.HAWK_CREDENTIALS = HAWK_CREDENTIALS sender = _auth_sender( key_id="test-id-with-multiple-scopes", secret_key="test-key-with-multiple-scopes", url=_url_with_scope, ) response = api_client.get( _url_with_scope(), content_type="", HTTP_AUTHORIZATION=sender.request_header, ) assert response.status_code == status.HTTP_200_OK assert response.json() == {"content": "hawk-test-view-with-scope"}
34.300216
99
0.607707
7941d32dbc9a6d8f5f932f59da624b6f97dc0965
24,953
py
Python
modules/tools/prediction/data_pipelines/cruiseMLP_train.py
seeclong/apollo
99c8afb5ebcae2a3c9359a156a957ff03944b27b
[ "Apache-2.0" ]
27
2019-04-06T02:27:14.000Z
2021-11-27T13:47:06.000Z
modules/tools/prediction/data_pipelines/cruiseMLP_train.py
seeclong/apollo
99c8afb5ebcae2a3c9359a156a957ff03944b27b
[ "Apache-2.0" ]
7
2021-03-10T18:14:25.000Z
2022-02-27T04:46:46.000Z
modules/tools/prediction/data_pipelines/cruiseMLP_train.py
seeclong/apollo
99c8afb5ebcae2a3c9359a156a957ff03944b27b
[ "Apache-2.0" ]
38
2019-04-15T10:58:37.000Z
2022-01-27T08:52:39.000Z
############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ @requirement: pytorch 0.4.1 """ import os import h5py import numpy as np import logging import argparse import proto.cruise_model_pb2 from proto.cruise_model_pb2 import TensorParameter, InputParameter,\ Conv1dParameter, DenseParameter, ActivationParameter, MaxPool1dParameter,\ AvgPool1dParameter, LaneFeatureConvParameter, ObsFeatureFCParameter,\ ClassifyParameter, RegressParameter, CruiseModelParameter from cruise_models import FullyConn_NN, FCNN_CNN1D import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader, sampler import sklearn from sklearn.model_selection import train_test_split from sklearn.utils import class_weight from common.configure import parameters # TODO(panjiacheng): the data-loader part needs to be modified. # Constants dim_input = parameters['cruise_mlp']['dim_input'] dim_hidden_1 = parameters['cruise_mlp']['dim_hidden_1'] dim_hidden_2 = parameters['cruise_mlp']['dim_hidden_2'] dim_output = parameters['cruise_mlp']['dim_output'] # Setup cuda_is_available = torch.cuda.is_available() logging.basicConfig(filename='training.log', level=logging.INFO) def load_Conv1dParameter(model, key, stride=1): model_pb = Conv1dParameter() model_pb.shape.extend(list(model.state_dict()[key+'.weight'].shape)) model_pb.use_bias = True kernel_param = TensorParameter() kernel_param.shape.extend(list(model.state_dict()[key+'.weight'].shape)) kernel_param.data.extend( list(model.state_dict()[key+'.weight'].numpy().reshape(-1))) model_pb.kernel.CopyFrom(kernel_param) bias_param = TensorParameter() bias_param.shape.extend(list(model.state_dict()[key+'.bias'].shape)) bias_param.data.extend( list(model.state_dict()[key+'.bias'].numpy().reshape(-1))) model_pb.bias.CopyFrom(bias_param) model_pb.stride = stride return model_pb def load_DenseParameter(model, key): model_pb = DenseParameter() model_pb.use_bias = True weights_param = TensorParameter() weights_param.shape.extend( list(model.state_dict()[key+'.weight'].numpy().T.shape)) weights_param.data.extend( list(model.state_dict()[key+'.weight'].numpy().T.reshape(-1))) model_pb.weights.CopyFrom(weights_param) bias_param = TensorParameter() bias_param.shape.extend( list(model.state_dict()[key+'.bias'].numpy().shape)) bias_param.data.extend(list(model.state_dict()[key+'.bias'].numpy())) model_pb.bias.CopyFrom(bias_param) model_pb.units = model_pb.bias.shape[0] return model_pb def save_FCNN_CNN1D(model, filename): model_pb = CruiseModelParameter() lane_feature_conv = LaneFeatureConvParameter() lane_feature_conv.conv1d_0.CopyFrom( load_Conv1dParameter(model, 'lane_feature_conv.0', stride=1)) lane_feature_conv.activation_1.activation = 'relu' lane_feature_conv.conv1d_2.CopyFrom( load_Conv1dParameter(model, 'lane_feature_conv.2', stride=2)) lane_feature_conv.activation_3.activation = 'relu' lane_feature_conv.conv1d_4.CopyFrom( load_Conv1dParameter(model, 'lane_feature_conv.4', stride=2)) lane_feature_maxpool = MaxPool1dParameter() lane_feature_maxpool.kernel_size = 3 lane_feature_maxpool.stride = 3 lane_feature_avgpool = AvgPool1dParameter() lane_feature_avgpool.kernel_size = 3 lane_feature_avgpool.stride = 3 obs_feature_fc = ObsFeatureFCParameter() obs_feature_fc.linear_0.CopyFrom( load_DenseParameter(model, 'obs_feature_fc.0')) obs_feature_fc.activation_1.activation = 'sigmoid' obs_feature_fc.linear_3.CopyFrom( load_DenseParameter(model, 'obs_feature_fc.3')) obs_feature_fc.activation_4.activation = 'sigmoid' classify = ClassifyParameter() classify.linear_0.CopyFrom(load_DenseParameter(model, 'classify.0')) classify.activation_1.activation = 'sigmoid' classify.linear_3.CopyFrom(load_DenseParameter(model, 'classify.3')) classify.activation_4.activation = 'sigmoid' classify.linear_6.CopyFrom(load_DenseParameter(model, 'classify.6')) classify.activation_7.activation = 'sigmoid' classify.linear_9.CopyFrom(load_DenseParameter(model, 'classify.9')) classify.activation_10.activation = 'sigmoid' regress = RegressParameter() regress.linear_0.CopyFrom(load_DenseParameter(model, 'regress.0')) regress.activation_1.activation = 'relu' regress.linear_3.CopyFrom(load_DenseParameter(model, 'regress.3')) regress.activation_4.activation = 'relu' regress.linear_6.CopyFrom(load_DenseParameter(model, 'regress.6')) regress.activation_7.activation = 'relu' regress.linear_9.CopyFrom(load_DenseParameter(model, 'regress.9')) regress.activation_10.activation = 'relu' model_pb.lane_feature_conv.CopyFrom(lane_feature_conv) model_pb.lane_feature_maxpool.CopyFrom(lane_feature_maxpool) model_pb.lane_feature_avgpool.CopyFrom(lane_feature_avgpool) model_pb.obs_feature_fc.CopyFrom(obs_feature_fc) model_pb.classify.CopyFrom(classify) model_pb.regress.CopyFrom(regress) with open(filename, 'wb') as params_file: params_file.write(model_pb.SerializeToString()) ''' Custom defined loss function that lumps the loss of classification and of regression together. ''' def loss_fn(c_pred, r_pred, target, balance): loss_C = nn.BCEWithLogitsLoss( pos_weight=torch.FloatTensor([balance]).cuda()) # nn.BCELoss() loss_R = nn.MSELoss() #loss = loss_C(c_pred, target[:,0].view(target.shape[0],1)) loss = 4 * loss_C(c_pred, target[:, 0].view(target.shape[0], 1)) + \ loss_R(((target[:, 2] > 0.0) * (target[:, 2] <= 3.0)).float().view(target.shape[0], 1) * r_pred + ((target[:, 2] <= 0.0) + (target[:, 2] > 3.0)).float().view( target.shape[0], 1) * target[:, 2].view(target.shape[0], 1), target[:, 2].view(target.shape[0], 1)) #loss_R((target[:,1] < 10.0).float().view(target.shape[0],1) * r_pred + \ # (target[:,1] >= 10.0).float().view(target.shape[0],1) * target[:,1].view(target.shape[0],1), \ # target[:,1].view(target.shape[0],1)) return loss # ======================================================================== # Helper functions ''' Get the full path of all files under the directory: 'dirName' ''' def getListOfFiles(dirName): listOfFiles = os.listdir(dirName) allFiles = list() for entry in listOfFiles: fullPath = os.path.join(dirName, entry) if os.path.isdir(fullPath): allFiles = allFiles + getListOfFiles(fullPath) else: allFiles.append(fullPath) return allFiles ''' Print the distribution of data labels. ''' def print_dist(label): unique_labels = np.unique(label) for l in unique_labels: print ('Label = {}: {}%'.format(l, np.sum(label == l)/len(label)*100)) # ======================================================================== # ======================================================================== # Data Loading and preprocessing (Non Data-Loader case) def load_data(filename): ''' Load the data from h5 file to the numpy format. (Only for non data-loader case) ''' if not (os.path.exists(filename)): logging.error("file: {}, does not exist".format(filename)) os._exit(1) if os.path.splitext(filename)[1] != '.h5': logging.error("file: {} is not an hdf5 file".format(filename)) os._exit(1) samples = dict() h5_file = h5py.File(filename, 'r') for key in h5_file.keys(): samples[key] = h5_file[key][:] print("load file success") return samples['data'] def load_npy_data(dir): ''' Load all .npy files under a certain dir; merge them together into one; return. ''' def data_preprocessing(data): ''' Preprocess the data. (Only for non data-loader case) - separate input X and output y - process output label from {-1,0,1,2,3,4} to {0,1} - Take out only those meaningful features - shuffle data ''' # Various input features separation X_obs_old_features = data[:, 0:23] X_surround_obs = data[:, -dim_output-8:-dim_output] X_obs_now = data[:, 23:32] X_obs_hist_5 = data[:, 23:68] X_lane = data[:, 68:-dim_output-8] # mask out those that don't have any history # mask5 = (data[:,53] != 100) X = np.concatenate((X_obs_old_features, X_obs_hist_5, X_lane), axis=1) # X = X[mask5, :] y = data[:, -dim_output:] # y = y[mask5, :] # Binary classification y[:, 0] = (y[:, 0] > 0).astype(float) #y[:, 0] = np.logical_and((y[:, 0] > 0), (y[:, 1] < 1.0)) # Random shuffling X_new, X_dummy, y_new, y_dummy = train_test_split( X, y, test_size=0.0, random_state=233) return X_new, y_new # , X_dummy, y_dummy # ======================================================================== # ======================================================================== # Data Loading and preprocessing (Data-Loader case) ''' TODO: implement custom collate_fn to incorporate down-sampling function for certain labels. ''' def collate_wDownSample(batch): return None ''' If datasets are too large, use Dataloader to load from disk. ''' class TrainValidDataset(Dataset): ''' Args: - root_dir (string): Directory containing all folders with different dates, each folder containing .cruise.h5 data files. ''' def __init__(self, list_of_files): self.list_of_files_ = list_of_files self.data_size_until_this_file_ = [] self.dataset_size = 0 for file in self.list_of_files_: with h5py.File(file, 'r') as h5_file: data_size = h5_file[list(h5_file.keys())[0]].shape[0] self.dataset_size += data_size self.data_size_until_this_file_.append(self.dataset_size) #print ('Total size of dataset: {}'.format(self.data_size_until_this_file_)) def __len__(self): return self.dataset_size def __getitem__(self, index): bin_idx = self.FindBin(index, 0, len( self.data_size_until_this_file_)-1) with h5py.File(self.list_of_files_[bin_idx], 'r') as h5_file: idx_offset = self.data_size_until_this_file_[bin_idx] - \ h5_file[list(h5_file.keys())[0]].shape[0] data = h5_file[list(h5_file.keys())[0]][index-idx_offset] label = data[-dim_output:] label[0] = (label[0] > 0.0).astype(float) return data[:-dim_output], label # Binary search to expedite the data-loading process. def FindBin(self, index, start, end): if (start == end): return start mid = int((start+end)/2.0) if (self.data_size_until_this_file_[mid] <= index): return self.FindBin(index, mid+1, end) else: return self.FindBin(index, start, mid) # ======================================================================== # ======================================================================== # Data training and validation ''' Train the data. (vanilla version without dataloader) ''' def train_vanilla(train_X, train_y, model, optimizer, epoch, batch_size=2048, balance=1.0): model.train() loss_history = [] logging.info('Epoch: {}'.format(epoch+1)) print ('Epoch: {}.'.format(epoch+1)) num_of_data = train_X.shape[0] num_of_batch = int(num_of_data / batch_size) + 1 pred_y = None for i in range(num_of_batch): optimizer.zero_grad() X = train_X[i*batch_size: min(num_of_data, (i+1)*batch_size), ] y = train_y[i*batch_size: min(num_of_data, (i+1)*batch_size), ] c_pred, r_pred = model(X) loss = loss_fn(c_pred, r_pred, y, balance) loss_history.append(loss.data) loss.backward() optimizer.step() c_pred = c_pred.data.cpu().numpy() c_pred = c_pred.reshape(c_pred.shape[0], 1) pred_y = np.concatenate((pred_y, c_pred), axis=0) if pred_y is not None \ else c_pred if (i > 0) and (i % 100 == 0): logging.info('Step: {}, train_loss: {}'.format( i, np.mean(loss_history[-100:]))) print ("Step: {}, training loss: {}".format( i, np.mean(loss_history[-100:]))) pred_y = (pred_y > 0.0) train_y = train_y.data.cpu().numpy() training_accuracy = sklearn.metrics.accuracy_score( train_y[:, 0], pred_y.reshape(-1)) train_loss = np.mean(loss_history) logging.info('Training loss: {}'.format(train_loss)) logging.info('Training Accuracy: {}.'.format(training_accuracy)) print ('Training Loss: {}. Training Accuracy: {}' .format(train_loss, training_accuracy)) ''' Validation (vanilla version without dataloader) ''' def validate_vanilla(valid_X, valid_y, model, batch_size=2048, balance=1.0, pos_label=1.0): model.eval() loss_history = [] num_of_data = valid_X.shape[0] num_of_batch = int(num_of_data / batch_size) + 1 pred_y = None for i in range(num_of_batch): X = valid_X[i*batch_size: min(num_of_data, (i+1)*batch_size), ] y = valid_y[i*batch_size: min(num_of_data, (i+1)*batch_size), ] c_pred, r_pred = model(X) valid_loss = loss_fn(c_pred, r_pred, y, balance) loss_history.append(valid_loss.data) c_pred = c_pred.data.cpu().numpy() c_pred = c_pred.reshape(c_pred.shape[0], 1) pred_y = np.concatenate((pred_y, c_pred), axis=0) if pred_y is not None \ else c_pred valid_y = valid_y.data.cpu().numpy() valid_auc = sklearn.metrics.roc_auc_score( valid_y[:, 0], pred_y.reshape(-1)) pred_y = (pred_y > 0.0) valid_accuracy = sklearn.metrics.accuracy_score( valid_y[:, 0], pred_y.reshape(-1)) valid_precision = sklearn.metrics.precision_score( valid_y[:, 0], pred_y.reshape(-1), pos_label=pos_label) valid_recall = sklearn.metrics.recall_score( valid_y[:, 0], pred_y.reshape(-1), pos_label=pos_label) logging.info('Validation loss: {}. Accuracy: {}.\ Precision: {}. Recall: {}. AUC: {}.' .format(np.mean(loss_history), valid_accuracy, valid_precision, valid_recall, valid_auc)) print ('Validation loss: {}. Accuracy: {}.\ Precision: {}. Recall: {}. AUC: {}.' .format(np.mean(loss_history), valid_accuracy, valid_precision, valid_recall, valid_auc)) return np.mean(loss_history) ''' Train the data. (using dataloader) ''' def train_dataloader(train_loader, model, optimizer, epoch, balance=1.0): model.train() loss_history = [] train_correct_class = 0 total_size = 0 logging.info('Epoch: {}'.format(epoch)) for i, (inputs, targets) in enumerate(train_loader): total_size += targets.shape[0] optimizer.zero_grad() if cuda_is_available: X = (inputs).float().cuda() y = (targets).float().cuda() c_pred, r_pred = model(X) loss = loss_fn(c_pred, r_pred, y, balance) #loss.data[0].cpu().numpy() loss_history.append(loss.data) loss.backward() optimizer.step() train_correct_class += \ np.sum((c_pred.data.cpu().numpy() > 0.5).astype(float) == y[:, 0].data.cpu().numpy().reshape(c_pred.data.cpu().numpy().shape[0], 1)) #if i > 100: # break if i % 100 == 0: logging.info('Step: {}, train_loss: {}'.format( i, np.mean(loss_history[-100:]))) print ("Step: {}, training loss: {}".format( i, np.mean(loss_history[-100:]))) train_loss = np.mean(loss_history) logging.info('Training loss: {}'.format(train_loss)) print ('Epoch: {}. Training Loss: {}'.format(epoch, train_loss)) ''' Validation (using dataloader) ''' def validate_dataloader(valid_loader, model, balance=1.0): model.eval() loss_history = [] valid_correct_class = 0.0 total_size = 0 for i, (X, y) in enumerate(valid_loader): total_size += y.shape[0] if cuda_is_available: X = X.float().cuda() y = y.float().cuda() c_pred, r_pred = model(X) valid_loss = loss_fn(c_pred, r_pred, y, balance) loss_history.append(valid_loss.data) valid_correct_class += \ np.sum((c_pred.data.cpu().numpy() > 0.5).astype(float) == y[:, 0].data.cpu().numpy().reshape(c_pred.data.cpu().numpy().shape[0], 1)) valid_classification_accuracy = valid_correct_class / total_size logging.info('Validation loss: {}. Validation classification accuracy: {}' .format(np.mean(loss_history), valid_classification_accuracy)) print ('Validation loss: {}. Classification accuracy: {}.' .format(np.mean(loss_history), valid_classification_accuracy)) return valid_loss # ======================================================================== # ======================================================================== # Main function: if __name__ == "__main__": parser = argparse.ArgumentParser( description='train neural network based on feature files and save parameters') parser.add_argument('train_file', type=str, help='training data (h5)') parser.add_argument('valid_file', type=str, help='validation data (h5)') parser.add_argument('-n', '--network-structure', type=int, default=1, help='Specify which network to use:\n \ \t 0: Fully connected neural network.\n \ \t 1: 1D-CNN for lane feature extraction.') parser.add_argument('-d', '--data-loader', action='store_true', help='Use the dataloader (when memory size is smaller than dataset size)') parser.add_argument('-s', '--save-path', type=str, default='./', help='Specify the directory to save trained models.') parser.add_argument('-g', '--go', action='store_true', help='It is training lane-follow (go) cases.') parser.add_argument('-b', '--balance', type=float, default=1.0, help='Specify the weight for positive predictions.') #parser.add_argument('-g', '--gpu_num', type=int, default=0, \ # help='Specify which GPU to use.') args = parser.parse_args() #os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' #specifies the same order as nvidia-smi #os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_num) if not args.data_loader: # Load from file and print out general information of the data. train_file = args.train_file valid_file = args.valid_file train_data = load_data(train_file) valid_data = load_data(valid_file) print ('Data loaded successfully.') classes_train = np.asarray(train_data[:, -dim_output]) print ('Total number of training samples: {}'.format(len(classes_train))) print ('Training set distribution:') print_dist(classes_train) classes_valid = np.asarray(valid_data[:, -dim_output]) print ('Total number of validation samples: {}'.format(len(classes_valid))) print ('Validation set distribution:') print_dist(classes_valid) # Data preprocessing X_train, y_train = data_preprocessing(train_data) X_valid, y_valid = data_preprocessing(valid_data) # Model declaration model = None if args.network_structure == 0: model = FullyConn_NN() elif args.network_structure == 1: model = FCNN_CNN1D() print ("The model used is: ") print (model) learning_rate = 6.561e-4 optimizer = optim.Adam(model.parameters(), lr=learning_rate) scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=0.3, patience=2, min_lr=1e-8, verbose=1, mode='min') # CUDA set-up: cuda_is_available = torch.cuda.is_available() if (cuda_is_available): print ("Using CUDA to speed up training.") model.cuda() X_train = Variable(torch.FloatTensor(X_train).cuda()) X_valid = Variable(torch.FloatTensor(X_valid).cuda()) y_train = Variable(torch.FloatTensor(y_train).cuda()) y_valid = Variable(torch.FloatTensor(y_valid).cuda()) # Model training: pos_label = 1.0 if args.go: pos_label = 0.0 best_valid_loss = float('+inf') for epoch in range(50): train_vanilla(X_train, y_train, model, optimizer, epoch, balance=args.balance) valid_loss = validate_vanilla( X_valid, y_valid, model, balance=args.balance, pos_label=pos_label) scheduler.step(valid_loss) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), args.save_path + 'cruise_model{}_epoch{}_valloss{:.6f}.pt' .format(args.network_structure, epoch+1, valid_loss)) else: train_dir = args.train_file valid_dir = args.valid_file # Data preprocessing (training data balancing). list_of_training_files = getListOfFiles(train_dir) list_of_validation_files = getListOfFiles(valid_dir) classes_train = [] for file in list_of_training_files: with h5py.File(file, 'r') as h5_file: data = h5_file[list(h5_file.keys())[0]][:, -2] classes_train.append(data.tolist()) # "Flattening" the list of lists classes_train = [item for sublist in classes_train for item in sublist] classes_train = np.asarray(classes_train) print ('Total number of training samples: {}'.format(len(classes_train))) print ('Training set distribution:') print_dist(classes_train) classes_valid = [] for file in list_of_validation_files: with h5py.File(file, 'r') as h5_file: data = h5_file[list(h5_file.keys())[0]][:, -2] classes_valid.append(data.tolist()) # "Flattening" the list of lists classes_valid = [item for sublist in classes_valid for item in sublist] classes_valid = np.asarray(classes_valid) print ('Total number of validation samples: {}'.format(len(classes_valid))) print ('Validation set distribution:') print_dist(classes_valid) #class_weights = class_weight.compute_class_weight('balanced', np.unique(classes_train), classes_train) #weights = [class_weights[int(i+1)] for i in classes_train] #weights = torch.DoubleTensor(weights) #train_sampler = sampler.WeightedRandomSampler(weights, int(len(weights)/1), replacement=True) model = FCNN_CNN1D() learning_rate = 6.561e-4 optimizer = optim.Adam(model.parameters(), lr=learning_rate) scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=0.3, patience=2, min_lr=1e-8, verbose=1, mode='min') if (cuda_is_available): print ('Using CUDA to speed up training.') model.cuda() train_dataset = TrainValidDataset(list_of_training_files) valid_dataset = TrainValidDataset(list_of_validation_files) train_loader = DataLoader(train_dataset, batch_size=1024, num_workers=8, pin_memory=True, shuffle=True) # sampler=train_sampler) valid_loader = DataLoader( valid_dataset, batch_size=1024, num_workers=8, pin_memory=True) for epoch in range(100): train_dataloader(train_loader, model, optimizer, epoch) valid_loss = validate_dataloader(valid_loader, model) scheduler.step(valid_loss) # ========================================================================
36.374636
111
0.625135
7941d3f85c65a9427a9c5a3bb6de94f55fab2624
5,157
py
Python
support/blink1_ctypes.py
fullphat/redsquare
cd0114e605a90930210e61ea31a88f8fbc1325b9
[ "MIT" ]
1
2020-05-25T21:32:35.000Z
2020-05-25T21:32:35.000Z
support/blink1_ctypes.py
fullphat/redsquare
cd0114e605a90930210e61ea31a88f8fbc1325b9
[ "MIT" ]
null
null
null
support/blink1_ctypes.py
fullphat/redsquare
cd0114e605a90930210e61ea31a88f8fbc1325b9
[ "MIT" ]
null
null
null
""" blink1_ctypes.py -- blink(1) Python library Uses ctypes wrapper around blink1-lib C library (which in turn wraps HIDAPI) Make sure you have the blink1-lib shared library in the same directory as blink1_ctypes.py or in your LD_LIBRARY_PATH Based on Stephen Youndt's script on how to wrap the C library 2013, Tod E. Kurt, http://thingm.com/ """ import time from ctypes import * from ctypes.util import find_library import inspect, os import glob # Find the blink1-lib C library localpath = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) libname = find_library("blink1") if libname is None: libname = find_library("Blink1") if libname is None: libname = find_library("blink1-lib") if libname is None: pathlist = glob.glob(os.path.join(localpath, '[Bb]link1-lib.so')) # unix if pathlist: libname = pathlist[-1] if libname is None: pathlist = glob.glob(os.path.join(localpath, 'blink1-lib.dll')) # windows if pathlist: libname = pathlist[-1] if libname is None: pathlist = glob.glob(os.path.join(localpath, 'lib[Bb]link1*')) # mac if pathlist: libname = pathlist[-1] # If we found the library, load it if not libname: raise ImportError("no blink1-lib shared library found") libblink1 = CDLL(libname) enumerate = libblink1.blink1_enumerate enumerate.restype = c_int enumerateByVidPid = libblink1.blink1_enumerateByVidPid enumerateByVidPid.restype = c_int enumerateByVidPid.argtypes = [c_int, c_int] getCachedPath = libblink1.blink1_getCachedPath getCachedPath.restype = c_char_p getCachedPath.argtypes = [c_int] getCachedSerial = libblink1.blink1_getCachedSerial getCachedSerial.restype = c_char_p getCachedSerial.argtypes = [c_int] getCachedCount = libblink1.blink1_getCachedCount getCachedCount.restype = c_int open = libblink1.blink1_open open.restype = c_void_p openByPath = libblink1.blink1_openByPath openByPath.restype = c_void_p openByPath.argtypes = [c_char_p] openBySerial = libblink1.blink1_openBySerial openBySerial.restype = c_void_p openBySerial.argtypes = [c_char_p] openById = libblink1.blink1_openById openById.restype = c_void_p openById.argtypes = [c_int] close = libblink1.blink1_close close.argtypes = [c_void_p] # getVersion = libblink1.blink1_getVersion getVersion.restype = c_int getVersion.argtypes = [c_void_p] fadeToRGB = libblink1.blink1_fadeToRGB fadeToRGB.restype = c_int fadeToRGB.argtypes = [c_void_p, c_ushort, c_ubyte, c_ubyte, c_ubyte] fadeToRGBN = libblink1.blink1_fadeToRGBN fadeToRGBN.restype = c_int fadeToRGBN.argtypes = [c_void_p, c_ushort, c_ubyte, c_ubyte, c_ubyte, c_ubyte] setRGB = libblink1.blink1_setRGB setRGB.restype = c_int setRGB.argtypes = [c_void_p, c_ubyte, c_ubyte, c_ubyte] serverdown = libblink1.blink1_serverdown serverdown.restype = c_int serverdown.argtypes = [c_void_p, c_ubyte, c_ushort] play = libblink1.blink1_play play.restype = c_int play.argtypes = [c_void_p, c_ubyte, c_ubyte] writePatternLine = libblink1.blink1_writePatternLine writePatternLine.restype = c_int writePatternLine.argtypes = [c_void_p, c_ushort, c_ubyte, c_ubyte, c_ubyte, c_ubyte] readPatternLine = libblink1.blink1_readPatternLine readPatternLine.restype = c_int readPatternLine.argtypes = [c_void_p, c_void_p,c_void_p,c_void_p,c_void_p,c_void_p] enableDegamma = libblink1.blink1_enableDegamma disableDegamma = libblink1.blink1_disableDegamma ################################################################################# debug_rw = False class Blink1: def __init__(self): self.dev = None self.open() def find(self): return self.open() def enumerate(self): enumerate() def open(self): self.close() self.dev = open() def open_by_id(self,id): self.dev = openById(id) def close(self): if self.dev != None: close(self.dev) self.dev = None def notfound(self): return None # fixme what to do here def fade_to_rgbn(self, fade_millis, red,green,blue, ledn): """ Command blink(1) to fade to RGB color """ return fadeToRGBN( self.dev, fade_millis, red,green,blue, ledn) def fade_to_rgb(self, fade_millis, red,green,blue): """ Command blink(1) to fade to RGB color """ return self.fade_to_rgbn( fade_millis, red,green,blue, 0) def playloop(self, play,startpos,endpos,count): """ """ playloop(self.dev, play, startpos,endpos, count) def play(self, play,startpos): """ """ playloop(self.dev, play, startpos,endpos, count) def get_version(self): """ Get blink(1) firmware version """ return str(getVersion(self.dev)) def get_serialnumber(self): ''' Get blink(1) serial number ''' sernum = getCachedSerial(0) if not sernum : sernum = '00000000' return sernum def get_serialnumbers(self): # FIXME: seriallist = [] for i in range(0, getCachedCount()): seriallist.append( getCachedSerial(i) ) return seriallist
28.65
85
0.696529
7941d4c41897eefbb29ff935d1b88637e441b89e
7,302
py
Python
venv/lib/python3.6/site-packages/sqlalchemy/dialects/mysql/mysqldb.py
tchengatcincoai/cryptocoin-prices-compare
f295fecc7213a877bf717af0eb98414e9137b554
[ "MIT" ]
78
2017-08-19T03:46:13.000Z
2020-02-19T04:29:45.000Z
desktop/core/ext-py/SQLAlchemy-1.2.0b3/lib/sqlalchemy/dialects/mysql/mysqldb.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
5
2017-08-21T16:33:08.000Z
2018-06-21T18:37:18.000Z
desktop/core/ext-py/SQLAlchemy-1.2.0b3/lib/sqlalchemy/dialects/mysql/mysqldb.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
43
2018-02-05T23:23:46.000Z
2021-07-28T22:51:42.000Z
# mysql/mysqldb.py # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ .. dialect:: mysql+mysqldb :name: MySQL-Python :dbapi: mysqldb :connectstring: mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> :url: http://sourceforge.net/projects/mysql-python .. _mysqldb_unicode: Unicode ------- Please see :ref:`mysql_unicode` for current recommendations on unicode handling. Py3K Support ------------ Currently, MySQLdb only runs on Python 2 and development has been stopped. `mysqlclient`_ is fork of MySQLdb and provides Python 3 support as well as some bugfixes. .. _mysqlclient: https://github.com/PyMySQL/mysqlclient-python Using MySQLdb with Google Cloud SQL ----------------------------------- Google Cloud SQL now recommends use of the MySQLdb dialect. Connect using a URL like the following:: mysql+mysqldb://root@/<dbname>?unix_socket=/cloudsql/<projectid>:<instancename> Server Side Cursors ------------------- The mysqldb dialect supports server-side cursors. See :ref:`mysql_ss_cursors`. """ from .base import (MySQLDialect, MySQLExecutionContext, MySQLCompiler, MySQLIdentifierPreparer) from .base import TEXT from ... import sql from ... import util import re class MySQLExecutionContext_mysqldb(MySQLExecutionContext): @property def rowcount(self): if hasattr(self, '_rowcount'): return self._rowcount else: return self.cursor.rowcount class MySQLCompiler_mysqldb(MySQLCompiler): pass class MySQLIdentifierPreparer_mysqldb(MySQLIdentifierPreparer): pass class MySQLDialect_mysqldb(MySQLDialect): driver = 'mysqldb' supports_unicode_statements = True supports_sane_rowcount = True supports_sane_multi_rowcount = True supports_native_decimal = True default_paramstyle = 'format' execution_ctx_cls = MySQLExecutionContext_mysqldb statement_compiler = MySQLCompiler_mysqldb preparer = MySQLIdentifierPreparer_mysqldb def __init__(self, server_side_cursors=False, **kwargs): super(MySQLDialect_mysqldb, self).__init__(**kwargs) self.server_side_cursors = server_side_cursors @util.langhelpers.memoized_property def supports_server_side_cursors(self): try: cursors = __import__('MySQLdb.cursors').cursors self._sscursor = cursors.SSCursor return True except (ImportError, AttributeError): return False @classmethod def dbapi(cls): return __import__('MySQLdb') def do_executemany(self, cursor, statement, parameters, context=None): rowcount = cursor.executemany(statement, parameters) if context is not None: context._rowcount = rowcount def _check_unicode_returns(self, connection): # work around issue fixed in # https://github.com/farcepest/MySQLdb1/commit/cd44524fef63bd3fcb71947392326e9742d520e8 # specific issue w/ the utf8_bin collation and unicode returns has_utf8_bin = self.server_version_info > (5, ) and \ connection.scalar( "show collation where %s = 'utf8' and %s = 'utf8_bin'" % ( self.identifier_preparer.quote("Charset"), self.identifier_preparer.quote("Collation") )) if has_utf8_bin: additional_tests = [ sql.collate(sql.cast( sql.literal_column( "'test collated returns'"), TEXT(charset='utf8')), "utf8_bin") ] else: additional_tests = [] return super(MySQLDialect_mysqldb, self)._check_unicode_returns( connection, additional_tests) def create_connect_args(self, url): opts = url.translate_connect_args(database='db', username='user', password='passwd') opts.update(url.query) util.coerce_kw_type(opts, 'compress', bool) util.coerce_kw_type(opts, 'connect_timeout', int) util.coerce_kw_type(opts, 'read_timeout', int) util.coerce_kw_type(opts, 'client_flag', int) util.coerce_kw_type(opts, 'local_infile', int) # Note: using either of the below will cause all strings to be # returned as Unicode, both in raw SQL operations and with column # types like String and MSString. util.coerce_kw_type(opts, 'use_unicode', bool) util.coerce_kw_type(opts, 'charset', str) # Rich values 'cursorclass' and 'conv' are not supported via # query string. ssl = {} keys = ['ssl_ca', 'ssl_key', 'ssl_cert', 'ssl_capath', 'ssl_cipher'] for key in keys: if key in opts: ssl[key[4:]] = opts[key] util.coerce_kw_type(ssl, key[4:], str) del opts[key] if ssl: opts['ssl'] = ssl # FOUND_ROWS must be set in CLIENT_FLAGS to enable # supports_sane_rowcount. client_flag = opts.get('client_flag', 0) if self.dbapi is not None: try: CLIENT_FLAGS = __import__( self.dbapi.__name__ + '.constants.CLIENT' ).constants.CLIENT client_flag |= CLIENT_FLAGS.FOUND_ROWS except (AttributeError, ImportError): self.supports_sane_rowcount = False opts['client_flag'] = client_flag return [[], opts] def _get_server_version_info(self, connection): dbapi_con = connection.connection version = [] r = re.compile(r'[.\-]') for n in r.split(dbapi_con.get_server_info()): try: version.append(int(n)) except ValueError: version.append(n) return tuple(version) def _extract_error_code(self, exception): return exception.args[0] def _detect_charset(self, connection): """Sniff out the character set in use for connection results.""" try: # note: the SQL here would be # "SHOW VARIABLES LIKE 'character_set%%'" cset_name = connection.connection.character_set_name except AttributeError: util.warn( "No 'character_set_name' can be detected with " "this MySQL-Python version; " "please upgrade to a recent version of MySQL-Python. " "Assuming latin1.") return 'latin1' else: return cset_name() _isolation_lookup = set(['SERIALIZABLE', 'READ UNCOMMITTED', 'READ COMMITTED', 'REPEATABLE READ', 'AUTOCOMMIT']) def _set_isolation_level(self, connection, level): if level == 'AUTOCOMMIT': connection.autocommit(True) else: connection.autocommit(False) super(MySQLDialect_mysqldb, self)._set_isolation_level(connection, level) dialect = MySQLDialect_mysqldb
33.040724
95
0.618461
7941d5639f8d2aa0213dc65774928f1e91249cec
1,254
py
Python
mbrl/third_party/pytorch_sac/agent/critic.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
592
2021-04-20T04:30:18.000Z
2022-03-30T13:34:54.000Z
mbrl/third_party/pytorch_sac/agent/critic.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
57
2021-04-21T17:20:05.000Z
2022-03-28T15:31:45.000Z
mbrl/third_party/pytorch_sac/agent/critic.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
76
2021-04-20T15:50:14.000Z
2022-03-25T19:05:25.000Z
import torch from torch import nn from mbrl.third_party.pytorch_sac import utils class DoubleQCritic(nn.Module): """Critic network, employes double Q-learning.""" def __init__(self, obs_dim, action_dim, hidden_dim, hidden_depth): super().__init__() self.Q1 = utils.mlp(obs_dim + action_dim, hidden_dim, 1, hidden_depth) self.Q2 = utils.mlp(obs_dim + action_dim, hidden_dim, 1, hidden_depth) self.outputs = dict() self.apply(utils.weight_init) def forward(self, obs, action): assert obs.size(0) == action.size(0) obs_action = torch.cat([obs, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) self.outputs["q1"] = q1 self.outputs["q2"] = q2 return q1, q2 def log(self, logger, step): for k, v in self.outputs.items(): logger.log_histogram(f"train_critic/{k}_hist", v, step) assert len(self.Q1) == len(self.Q2) for i, (m1, m2) in enumerate(zip(self.Q1, self.Q2)): assert type(m1) == type(m2) if type(m1) is nn.Linear: logger.log_param(f"train_critic/q1_fc{i}", m1, step) logger.log_param(f"train_critic/q2_fc{i}", m2, step)
30.585366
78
0.606858
7941d58023e4359b860a8ca02acfd8a6374c3557
3,016
py
Python
dmonscikit/dmonscikitdbscan.py
dice-project/DICE-Anomaly-Detection-Tool
a5eeacb9e888348adbe97be0c26a500f2f03ec6f
[ "Apache-2.0" ]
4
2017-02-06T15:33:06.000Z
2018-05-08T01:43:03.000Z
dmonscikit/dmonscikitdbscan.py
dice-project/DICE-Anomaly-Detection-Tool
a5eeacb9e888348adbe97be0c26a500f2f03ec6f
[ "Apache-2.0" ]
null
null
null
dmonscikit/dmonscikitdbscan.py
dice-project/DICE-Anomaly-Detection-Tool
a5eeacb9e888348adbe97be0c26a500f2f03ec6f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler import os import pandas as pd ############################################################################## # Generate sample data # centers = [[1, 1], [-1, -1], [1, -1]] # X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, # random_state=0) # print labels_true # print X dataDir = os.path.join(os.path.dirname(os.path.abspath('')), 'data') data = pd.read_csv(os.path.join(dataDir, 'Final_Merge.csv')) print data.shape # kmeans_model = KMeans(n_clusters=5, random_state=1) # good_columns = data._get_numeric_data() X = StandardScaler().fit_transform(data) # print X ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.9, min_samples=10).fit(X) # core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # # core_samples_mask[db.core_sample_indices_] = True print type(db) print db.leaf_size print db.algorithm print db.eps print db.min_samples print db.n_jobs labels = db.labels_ print labels # print X[labels == -1] # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) # print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) # print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) # print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) # print("Adjusted Rand Index: %0.3f" # % metrics.adjusted_rand_score(labels_true, labels)) # print("Adjusted Mutual Information: %0.3f" # % metrics.adjusted_mutual_info_score(labels_true, labels)) # print("Silhouette Coefficient: %0.3f" # % metrics.silhouette_score(X, labels)) # ############################################################################## # # Plot result # import matplotlib.pyplot as plt # # # Black removed and is used for noise instead. # unique_labels = set(labels) # colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) # for k, col in zip(unique_labels, colors): # if k == -1: # # Black used for noise. # col = 'k' # # class_member_mask = (labels == k) # # xy = X[class_member_mask & core_samples_mask] # plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, # markeredgecolor='k', markersize=14) # # xy = X[class_member_mask & ~core_samples_mask] # plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, # markeredgecolor='k', markersize=6) # # plt.title('Estimated number of clusters: %d' % n_clusters_) # plt.show()
30.16
80
0.623674
7941d5c82199f6fd04f65d3d6c085ae095c8c9aa
2,814
py
Python
var/spack/repos/builtin/packages/rocm-device-libs/package.py
keerthana4708/spack
b3deaed2b32fe410b40537d969460f084dddadbb
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/rocm-device-libs/package.py
keerthana4708/spack
b3deaed2b32fe410b40537d969460f084dddadbb
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/rocm-device-libs/package.py
keerthana4708/spack
b3deaed2b32fe410b40537d969460f084dddadbb
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2022-02-22T12:42:18.000Z
2022-02-22T12:42:18.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RocmDeviceLibs(CMakePackage): """set of AMD specific device-side language runtime libraries""" homepage = "https://github.com/RadeonOpenCompute/ROCm-Device-Libs" git = "https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git" url = "https://github.com/RadeonOpenCompute/ROCm-Device-Libs/archive/rocm-4.5.0.tar.gz" maintainers = ['srekolam', 'arjun-raj-kuppala', 'haampie'] version('master', branch='amd-stg-open') version('4.5.2', sha256='50e9e87ecd6b561cad0d471295d29f7220e195528e567fcabe2ec73838979f61') version('4.5.0', sha256='78412fb10ceb215952b5cc722ed08fa82501b5848d599dc00744ae1bdc196f77') version('4.3.1', sha256='a7291813168e500bfa8aaa5d1dccf5250764ddfe27535def01b51eb5021d4592') version('4.3.0', sha256='055a67e63da6491c84cd45865500043553fb33c44d538313dd87040a6f3826f2') version('4.2.0', sha256='34a2ac39b9bb7cfa8175cbab05d30e7f3c06aaffce99eed5f79c616d0f910f5f') version('4.1.0', sha256='f5f5aa6bfbd83ff80a968fa332f80220256447c4ccb71c36f1fbd2b4a8e9fc1b') version('4.0.0', sha256='d0aa495f9b63f6d8cf8ac668f4dc61831d996e9ae3f15280052a37b9d7670d2a') version('3.10.0', sha256='bca9291385d6bdc91a8b39a46f0fd816157d38abb1725ff5222e6a0daa0834cc') version('3.9.0', sha256='c99f45dacf5967aef9a31e3731011b9c142446d4a12bac69774998976f2576d7') version('3.8.0', sha256='e82cc9a8eb7d92de02cabb856583e28f17a05c8cf9c97aec5275608ef1a38574') version('3.7.0', sha256='b3a114180bf184b3b829c356067bc6a98021d52c1c6f9db6bc57272ebafc5f1d') version('3.5.0', sha256='dce3a4ba672c4a2da4c2260ee4dc96ff6dd51877f5e7e1993cb107372a35a378') variant('build_type', default='Release', values=("Release", "Debug", "RelWithDebInfo"), description='CMake build type') depends_on('cmake@3:', type='build') depends_on('zlib', type='link', when='@3.9.0:') depends_on('texinfo', type='link', when='@3.9.0:') # Make sure llvm is not built with rocm-device-libs (that is, it's already # built with rocm-device-libs as an external project). depends_on('llvm-amdgpu ~rocm-device-libs') for ver in ['3.5.0', '3.7.0', '3.8.0', '3.9.0', '3.10.0', '4.0.0', '4.1.0', '4.2.0', '4.3.0', '4.3.1', '4.5.0', '4.5.2', 'master']: depends_on('rocm-cmake@' + ver, type='build', when='@' + ver) depends_on('llvm-amdgpu@' + ver, when='@' + ver) def cmake_args(self): spec = self.spec return [ self.define('LLVM_DIR', spec['llvm-amdgpu'].prefix), self.define('CMAKE_C_COMPILER', spec['llvm-amdgpu'].prefix.bin.clang) ]
51.163636
123
0.712154
7941d6045c4b9e330b505217ea29784c96ff6a30
2,710
py
Python
elasticutils/contrib/django/tests/__init__.py
peopledoc/elasticutils
17e3f97b0ea36a7159ce806f48a662a3f8d678b3
[ "BSD-3-Clause" ]
59
2015-01-04T07:39:01.000Z
2019-12-27T14:10:32.000Z
elasticutils/contrib/django/tests/__init__.py
tictail/elasticutils
de2987ff0bc2ee15cdfea13899d9c5e1347d75f0
[ "BSD-3-Clause" ]
11
2015-01-03T17:39:07.000Z
2019-02-19T16:42:53.000Z
elasticutils/contrib/django/tests/__init__.py
tictail/elasticutils
de2987ff0bc2ee15cdfea13899d9c5e1347d75f0
[ "BSD-3-Clause" ]
21
2015-01-05T13:14:02.000Z
2022-02-16T06:44:42.000Z
# We need to put these in a separate module so they're easy to import # on a test-by-test basis so that we can skip django-requiring tests # if django isn't installed. from elasticutils.contrib.django import MappingType, Indexable _model_cache = [] def reset_model_cache(): del _model_cache[0:] class Meta(object): def __init__(self, db_table): self.db_table = db_table class SearchQuerySet(object): # Yes. This is kind of crazy, but ... whatever. def __init__(self, model): self.model = model self.steps = [] def get(self, pk): pk = int(pk) return [m for m in _model_cache if m.id == pk][0] def filter(self, id__in=None): self.steps.append(('filter', id__in)) return self def order_by(self, *fields): self.steps.append(('order_by', fields)) return self def values_list(self, *args, **kwargs): self.steps.append(('values_list', args, kwargs.pop('flat', False))) return self def __iter__(self): order_by = None values_list = None objs = _model_cache for mem in self.steps: if mem[0] == 'filter': objs = [obj for obj in objs if obj.id in mem[1]] elif mem[0] == 'order_by': order_by_field = mem[1][0] elif mem[0] == 'values_list': values_list = (mem[1], mem[2]) if order_by: objs.sort(key=getattr(obj, order_by_field)) if values_list: # Note: Hard-coded to just id and flat objs = [obj.id for obj in objs] return iter(objs) class Manager(object): def get_query_set(self): return SearchQuerySet(self) def get(self, pk): return self.get_query_set().get(pk) def filter(self, *args, **kwargs): return self.get_query_set().filter(*args, **kwargs) def order_by(self, *args, **kwargs): return self.get_query_set().order_by(*args, **kwargs) def values_list(self, *args, **kwargs): return self.get_query_set().values_list(*args, **kwargs) class FakeModel(object): _meta = Meta('fake') objects = Manager() def __init__(self, **kw): self._doc = kw for key in kw: setattr(self, key, kw[key]) _model_cache.append(self) class FakeDjangoMappingType(MappingType, Indexable): @classmethod def get_model(cls): return FakeModel @classmethod def extract_document(cls, obj_id, obj=None): if obj is None: raise ValueError('I\'m a dumb mock object and I have no idea ' 'what to do with these args.') return obj._doc
25.809524
75
0.593727
7941d667ee65669cbeb144fb621a256dcef07879
4,206
py
Python
setup.py
smacken/mockportfolio
bb7ef73ba19be52e22adf5b22e30fd1e9e0e585f
[ "MIT" ]
null
null
null
setup.py
smacken/mockportfolio
bb7ef73ba19be52e22adf5b22e30fd1e9e0e585f
[ "MIT" ]
297
2019-10-21T17:26:33.000Z
2021-07-19T17:19:23.000Z
setup.py
smacken/trading-mock-portfolio
bb7ef73ba19be52e22adf5b22e30fd1e9e0e585f
[ "MIT" ]
null
null
null
''' mock portfolio ''' import os.path # import codecs # To use a consistent encoding import setuptools import re import time here = os.path.abspath(os.path.dirname(__file__)) now = str(round(time.time())) with open("README.md", "r") as f: desc = f.read() desc = desc.split("<!-- content -->")[-1] desc = re.sub("<[^<]+?>", "", desc) # Remove html def get_property(prop, project): ''' get a project property: from init ''' result = re.search(r'{}\s*=\s*[\'"]([^\'"]*)[\'"]'.format(prop), open(project + '/__init__.py').read()) return result.group(1) # Package name pname = 'mockportfolio' # Generate linkes gurl = 'https://github.com/smacken/' + 'trading-mock-portfolio' setuptools.setup( name=pname, version=get_property('__version__', pname) + f'.{now}', description='Portfolio Engine', long_description=desc, long_description_content_type="text/markdown", # The project's main homepage. url=gurl, # Author details author='Scott Mackenzie', author_email='[email protected]', # Choose your license license='GPLv3+', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Financial and Insurance Industry', # Indicate which Topics are covered by the package 'Topic :: Software Development', 'Topic :: Office/Business :: Financial', # Pick your license as you wish (should match "license" above) ('License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)'), # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', # Operating Systems on which it runs 'Operating System :: OS Independent', ], # What does your project relate to? keywords=['trading', 'development'], # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=setuptools.find_packages(exclude=['docs', 'docs2', 'samples']), # packages=['mockportfolio', '], # List run-time dependencies here. # These will be installed by pip when your # project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html # install_requires=['six'], # List additional groups of dependencies here # (e.g. development dependencies). # You can install these using the following syntax, for example: # $ pip install -e .[dev,test] extras_require={}, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={'sample': ['package_data.dat'],}, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={'console_scripts': ['sample=sample:main',],}, # scripts=['tools/bt-run.py'], )
35.644068
107
0.651213
7941d728ba3052ec7d68f3352b7aae2b6daea405
4,128
py
Python
san/transform.py
Singularity-DAO/sanpy
51cffce07bd36548cb1d7eb8dc40136cf075729d
[ "MIT" ]
1
2022-03-21T22:38:43.000Z
2022-03-21T22:38:43.000Z
san/transform.py
Singularity-DAO/sanpy
51cffce07bd36548cb1d7eb8dc40136cf075729d
[ "MIT" ]
null
null
null
san/transform.py
Singularity-DAO/sanpy
51cffce07bd36548cb1d7eb8dc40136cf075729d
[ "MIT" ]
null
null
null
""" In order to have metrics, which require different order, we need to have transform functions, which reorder or make different dictionaries in general. """ import operator import pandas as pd from san.pandas_utils import convert_to_datetime_idx_df from functools import reduce from collections import OrderedDict from san.graphql import execute_gql from san.sanbase_graphql_helper import QUERY_MAPPING QUERY_PATH_MAP = { 'eth_top_transactions': ['ethTopTransactions'], 'eth_spent_over_time': ['ethSpentOverTime'], 'token_top_transactions': ['tokenTopTransactions'], 'get_metric': ['timeseriesData'], 'topic_search': ['chartData'] } def path_to_data(idx, query, data): """ With this function we jump straight onto the key from the dataframe, that we want and start from there. We use our future starting points from the QUERY_PATH_MAP. """ return reduce( operator.getitem, [ 'query_' + str(idx), ] + QUERY_PATH_MAP[query], data) def transform_query_result(idx, query, data): """ If there is a transforming function for this query, then the result is passed for it for another transformation """ if query in QUERY_PATH_MAP: result = path_to_data(idx, query, data) elif query in QUERY_MAPPING: result = data['query_' + str(idx)] else: result = path_to_data(idx, 'get_metric', data) if query + '_transform' in globals(): result = globals()[query + '_transform'](result) return convert_to_datetime_idx_df(result) def eth_top_transactions_transform(data): return list(map(lambda column: { 'datetime': column['datetime'], 'fromAddress': column['fromAddress']['address'], 'fromAddressIsExchange': column['fromAddress']['isExchange'], 'toAddress': column['toAddress']['address'], 'toAddressIsExchange': column['toAddress']['isExchange'], 'trxHash': column['trxHash'], 'trxValue': column['trxValue'] }, data)) def top_transfers_transform(data): return list(map(lambda column: { 'datetime': column['datetime'], 'fromAddress': column['fromAddress']['address'], 'toAddress': column['toAddress']['address'], 'trxHash': column['trxHash'], 'trxValue': column['trxValue'] }, data)) def news_transform(data): result = list(map(lambda column: OrderedDict({ 'datetime': column['datetime'], 'title': column['title'], 'description': column['description'], 'sourceName': column['sourceName'], 'url': column['url'] }), data)) return result def token_top_transactions_transform(data): return list(map(lambda column: { 'datetime': column['datetime'], 'fromAddress': column['fromAddress']['address'], 'fromAddressIsExchange': column['fromAddress']['isExchange'], 'toAddress': column['toAddress']['address'], 'toAddressIsExchange': column['toAddress']['isExchange'], 'trxHash': column['trxHash'], 'trxValue': column['trxValue'] }, data)) def emerging_trends_transform(data): result = [] for column in data: for i in range(0, len(column['topWords'])): result.append({ 'datetime': column['datetime'], 'score': column['topWords'][i]['score'], 'word': column['topWords'][i]['word'] }) result.sort(key=lambda elem: elem['datetime']) return result def top_social_gainers_losers_transform(data): result = [] for column in data: for i in range(0, len(column['projects'])): result.append({ 'datetime': column['datetime'], 'slug': column['projects'][i]['slug'], 'change': column['projects'][i]['change'], 'status': column['projects'][i]['status'], }) result = list(map(lambda column: OrderedDict({ 'datetime': column['datetime'], 'slug': column['slug'], 'change': column['change'], 'status': column['status'] }), result)) return result
32.25
97
0.626211
7941d736623b035efc0ec533604ca0753310c982
2,874
py
Python
transform/stacked_autoencoder_tf.py
kashefy/transform
bb0855d06c878b5015810bbf6e1f9c7b6b1414a3
[ "BSD-2-Clause" ]
null
null
null
transform/stacked_autoencoder_tf.py
kashefy/transform
bb0855d06c878b5015810bbf6e1f9c7b6b1414a3
[ "BSD-2-Clause" ]
null
null
null
transform/stacked_autoencoder_tf.py
kashefy/transform
bb0855d06c878b5015810bbf6e1f9c7b6b1414a3
[ "BSD-2-Clause" ]
null
null
null
''' Created on May 26, 2017 @author: kashefy ''' from nideep.nets.abstract_net_tf import AbstractNetTF from autoencoder_tf import Autoencoder as AE class StackedAutoencoder(AbstractNetTF): ''' classdocs ''' def _init_learning_params_scoped(self): pass def _init_ops(self): pass def _in_op_cur(self): in_op = None if len(self.sae) > 0: in_op = self.sae[-1].representation() else: in_op = self.in_op return in_op def stack(self, dim): if not isinstance(dim, (list, tuple)): dim = [dim] for d in dim: self.dims.append(d) in_op = self._in_op_cur() # Network Parameters ae_params = { 'n_nodes' : dim, 'n_input' : int(in_op.get_shape()[-1]), 'prefix' : '%s-%d' % (self.prefix, len(self.sae)+1), 'reuse' : self.reuse, 'do_denoising' : self.do_denoising, 'input_noise_std' : self.input_noise_std, } ae = AE(ae_params) ae.x = in_op _, _ = ae.build() if len(self.sae) > 0: self.sae[-1].decoder(ae.p) self.sae.append(ae) if len(self.sae) == 1: self.enc_in = self.sae[0].enc_in # Targets (Labels) are the input data. self._y_true = self.sae[-1].x @property def y_true(self): return self._y_true @y_true.setter def y_true(self, value): self._y_true = value def cost(self, name=None): return self.sae[-1].cost_cross_entropy(self.y_true, name=name) def vars_new(self): return self.sae[-1].vars_new() @property def representation(self): return self.sae[-1].representation() @property def x(self): return self.sae[0].x @property def p(self): return self.sae[0].p @property def logits(self): return self.sae[0].logits @property def w(self): w = {} for ae in self.sae: for k in ae.w: w[k] = ae.w[k] return w @property def vars_restored(self): self._vars_restored = [] for ae in self.sae: self._vars_restored.extend(ae.vars_restored) return self._vars_restored def __init__(self, params): ''' Constructor ''' self.dims = [] self.in_op = params['in_op'] params['n_input'] = int(self.in_op.get_shape()[-1]) super(StackedAutoencoder, self).__init__(params) self.sae = [] self.do_denoising = params.get('do_denoising', False) self.input_noise_std = params.get('input_noise_std', 0.) if self.input_noise_std == 0.: self.do_denoising = False
26.127273
70
0.533403
7941d74b3a31046e7e3b166d5f847511c699425a
78
py
Python
dream/game/__init__.py
icyblade/dream
818e77f1c25e51f8cd966f7aa4eb1bcd4207b208
[ "MIT" ]
null
null
null
dream/game/__init__.py
icyblade/dream
818e77f1c25e51f8cd966f7aa4eb1bcd4207b208
[ "MIT" ]
null
null
null
dream/game/__init__.py
icyblade/dream
818e77f1c25e51f8cd966f7aa4eb1bcd4207b208
[ "MIT" ]
null
null
null
class Game(object): """Abstract class of Texas Hold'em game.""" pass
15.6
47
0.628205
7941d7629d93b12b7ca31af401c1c19f4609c054
6,117
py
Python
engine/migrations/0001_initial.py
ainterr/scoring_engine
d986eef08dcb819add20ed87d91239f887f62daa
[ "MIT" ]
null
null
null
engine/migrations/0001_initial.py
ainterr/scoring_engine
d986eef08dcb819add20ed87d91239f887f62daa
[ "MIT" ]
7
2016-02-24T21:01:22.000Z
2017-01-04T03:22:44.000Z
engine/migrations/0001_initial.py
ainterr/scoring_engine
d986eef08dcb819add20ed87d91239f887f62daa
[ "MIT" ]
2
2016-03-04T17:04:48.000Z
2020-01-30T21:03:49.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-30 19:11 from __future__ import unicode_literals import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=30, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ], options={ 'verbose_name_plural': 'users', 'verbose_name': 'user', 'abstract': False, }, ), migrations.CreateModel( name='Credential', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=20)), ('password', models.CharField(max_length=40)), ('default', models.BooleanField()), ], ), migrations.CreateModel( name='Plugin', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ], ), migrations.CreateModel( name='Result', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.BooleanField(default=False)), ('plugin', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='results', to='engine.Plugin')), ], ), migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, unique=True)), ('subnet_host', models.PositiveIntegerField()), ('port', models.PositiveIntegerField()), ('plugin', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='services', to='engine.Plugin')), ], ), migrations.CreateModel( name='Team', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, unique=True)), ('subnet', models.GenericIPAddressField(unique=True)), ('netmask', models.GenericIPAddressField()), ], ), migrations.AddField( model_name='result', name='service', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='results', to='engine.Service'), ), migrations.AddField( model_name='result', name='team', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='results', to='engine.Team'), ), migrations.AddField( model_name='credential', name='services', field=models.ManyToManyField(related_name='credentials', to='engine.Service'), ), migrations.AddField( model_name='credential', name='team', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='credentials', to='engine.Team'), ), migrations.AddField( model_name='user', name='team', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='users', to='engine.Team'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
52.732759
329
0.614353
7941d7bcf6767496d6e77091790a358a3a167815
10,355
py
Python
codes/informed-ID-man-conflict.py
hamedwaezi01/ai
74257b732eb2457ab98d93e5acd6ce37e8eb1d01
[ "MIT" ]
1
2020-10-30T08:28:30.000Z
2020-10-30T08:28:30.000Z
codes/informed-ID-man-conflict.py
hamedwaezi01/ai
74257b732eb2457ab98d93e5acd6ce37e8eb1d01
[ "MIT" ]
null
null
null
codes/informed-ID-man-conflict.py
hamedwaezi01/ai
74257b732eb2457ab98d93e5acd6ce37e8eb1d01
[ "MIT" ]
null
null
null
''' Hamed Waezi AI HW1 IDA* Heuristic => Manhattan Distance + Linear Conflicts Cutoff => f(n) ''' import heapq import copy print('Dimensions:') dim = int(input()) tiles = dim*dim class Node: # Node is the state def __init__(self, n, data, pp, blank, g): self.n = n self.data = data # A 2D array self.pp = pp self.blank = blank self.hash = None self.heuristic = None self.g = g def __str__(self,): ret = '' for rows in self.data: ret = ret + '\n' + rows.__str__() return self.data.__str__() def __hash__(self,): if self.hash is not None: return self.hash hashBase = 67 hashMode = 1e12+7 self.hash = 1 for i in range(0,self.n): for j in range(0,self.n): self.hash = self.hash * hashBase self.hash = self.hash + self.data[i][j] self.hash = self.hash % hashMode self.hash = int(self.hash) return self.hash def __gt__(self,other): return self.f() > other.f() def __lt__(self, other): return self.f() < other.f() def __eq__(self, other): return self.hash == other.hash def move(self, pp, direction): if pp is None: g = 1 else: g = pp.g + 1 if direction == 0: # UP newData = copy.deepcopy(self.data) newData[self.blank[0]][self.blank[1]] = newData[self.blank[0] - 1][self.blank[1]] newData[self.blank[0] - 1][self.blank[1]] = 0 temp = Node(n=self.n, data=newData, pp=self, blank=(self.blank[0] - 1, self.blank[1]), g=g) return temp elif direction == 1: # DOWN newData = copy.deepcopy(self.data) newData[self.blank[0]][self.blank[1]] = newData[self.blank[0] + 1][self.blank[1]] newData[self.blank[0] + 1][self.blank[1]] = 0 temp = Node(n=self.n, data=newData, pp=self, blank=(self.blank[0] + 1, self.blank[1]), g=g) return temp elif direction == 2: # RIGHT newData = copy.deepcopy(self.data) newData[self.blank[0]][self.blank[1]] = newData[self.blank[0]][self.blank[1] + 1] newData[self.blank[0]][self.blank[1] + 1] = 0 temp = Node(n=self.n, data=newData, pp=self, blank=(self.blank[0], self.blank[1] + 1), g=g) return temp elif direction == 3: # LEFT newData = copy.deepcopy(self.data) newData[self.blank[0]][self.blank[1]] = newData[self.blank[0]] [self.blank[1] - 1] newData[self.blank[0]] [self.blank[1] - 1] = 0 temp = Node(n=self.n, data=newData, pp=self, blank=(self.blank[0], self.blank[1] - 1), g=g) return temp def manhattanDistance(self, curr, goal,): # h-value return abs(curr[0]- goal // self.n) + abs(curr[1] - goal % self.n) # dX + dY def linearConflicts(self,index): conflicts = 0 for i in range(0,self.n): for j in range(i+1, self.n): # checking Columns if self.data[i][index] != 0 and self.data[j][index] != 0 and (self.data[i][index] -1) % self.n == index and (self.data[j][index] - 1) % self.n == index and self.data[i][index] > self.data[j][index]: conflicts = conflicts + 1 # checking Rows if self.data[index][i] != 0 and self.data[index][j] != 0 and (self.data[index][i]-1) // self.n == index and (self.data[index][j] - 1) // self.n == index and self.data[index][i] > self.data[index][j]: conflicts = conflicts + 1 return conflicts def f(self,): # Always call f if self.heuristic is not None: return self.heuristic + self.g heuristic = 0 conflicts=0 for i in range(0, self.n): conflicts += self.linearConflicts(i) for j in range(0, self.n): temp = self.data[i][j] - 1 if self.data[i][j] != 0: heuristic = heuristic + self.manhattanDistance(curr=(i, j), goal=temp) self.heuristic = heuristic self.conflicts = conflicts return heuristic + self.g + conflicts * 2 class Puzzle: # it is the current puzzle def countInversions(self,): dd = [] for i in range (0, self.n): for j in range(0,self.n): dd.append(self.root.data[i][j]) inversions = 0 for i in range(0,self.n*self.n-1): for j in range(i+1, self.n*self.n): if dd[j] != 0 and dd[i] != 0 and dd[i] > dd[j]: inversions = inversions + 1 print('# Inversions : '+str(inversions)) return inversions def isSolvable(self,): inversions = self.countInversions() # print(str(inversions)+ ' ' + str((self.root.blank[0] - self.n) % 1)) if self.n % 2 == 1: return inversions % 2 == 0 else: return (inversions % 2 == 0 and ((self.root.blank[0] - self.n) % 2 == 1)) or (inversions % 2 == 1 and ((self.root.blank[0] - self.n) % 2 == 0)) def __init__(self, n,): # `n` is the dim of puzzle self.states = set() # it holds hashes pointing to states self.root= [] blank = None self.nodes = [] self.nodesExpanded = 1 self.nodesDeleted = 0 heapq.heapify(self.nodes) self.n = n goal = [] for i in range(0,self.n): temp = [] for j in range(0,self.n): temp.append(i * self.n + j + 1) goal.append(temp) goal[i][j] = 0 goal = Node(n=self.n,data=goal,pp=None,blank=(self.n - 1,self.n - 1), g = 0) self.goalhash = goal.__hash__() # print('Input your matrix') # for i in range(0, self.n): # temp = input().split() # temp = list(map(int, temp)) # if len(temp) != self.n: # raise Exception("Bad Input\n"+"Dimension is: "+str(self.n)) # for j in range(0, self.n): # if temp[j] == 0: # blank = (i,j) # self.root.append(temp) self.root=[[13,2,10,3],[1,12,8,4],[5,0,9,6],[15,14,11,7]] blank=(2,1) #### DEVIL'S CONFIGURATION #self.root=[[0, 15, 8, 3], [12, 11, 7, 4] ,[14, 10, 5, 6], [9, 13, 2, 1]] #blank=(0,0) ##### #self.root=[[3, 4, 8, 12], [7, 5, 10, 14], [0, 1, 6, 15], [2, 9, 13, 11]] #blank=(2,0) self.root = Node(n=self.n,data=self.root, pp=None, blank=blank, g=1) self.solvable = self.isSolvable() heapq.heappush(self.nodes,self.root) self.states.add(self.root) def verify(self, node): return node.__hash__() == self.goalhash def __eventLoop__(self,cutoff): iterations=0 print("Length of states : "+str(len(self.states)) + " & nodes : "+str(len(self.nodes))) while True: if len(self.nodes) == 0: return None, iterations #print(str(iterations)) bestNode = heapq.heappop(self.nodes) #print('# expanded : ' + str(self.nodesExpanded) + ' # deleted : '+str(self.nodesDeleted) + ' F: '+str(bestNode.f())) blank = bestNode.blank moves = [] if blank[0] > 0: moves.append(0) if blank[0] < self.n-1 : moves.append(1) if blank[1] > 0 : moves.append(3) if blank[1] < self.n-1 : moves.append(2) # print('MOVES : '+str(moves)) for i in moves: newNode = bestNode.move(pp=bestNode, direction=i) if newNode in self.states or newNode.f() > cutoff: self.nodesDeleted = self.nodesDeleted + 1 #print ('Expanded : ' + str(self.nodesExpanded) +' deleted : ' + str(self.nodesDeleted) + ' f : ' + str(bestNode.f())+' blank:'+ bestNode.blank.__str__() + ' node :\n'+bestNode.__str__()+' deleting') del newNode else: iterations+=1 self.nodesExpanded = self.nodesExpanded + 1 # if self.nodesExpanded % 5000 == 0: # print(self.nodesExpanded) #print ('Expanded : ' + str(self.nodesExpanded) + ' deleted : ' + str(self.nodesDeleted) + ' f : ' + str(bestNode.f())+' blank:'+ bestNode.blank.__str__() + ' node :\n'+bestNode.__str__()+' adding') # print('f : ' + str(newNode.f()) + ' ' + str(newNode.g)) if self.verify(newNode): print('Done : ' + str(newNode.f())) return newNode, iterations self.states.add(newNode) heapq.heappush(self.nodes,newNode) def run(self,): self.itr = 0 if not self.solvable: print ('is not solvable') return None terminal = None # The leaf of tree which might be the goal cutoff = 0 iterations=0 while terminal is None: terminal, iterations=self.__eventLoop__(cutoff) self.itr += iterations print(str(self.itr)+' '+ str(self.nodesExpanded)+' '+str(iterations) + ' ' + str(cutoff)) if terminal is not None: return terminal cutoff += 1 self.states.clear() self.nodes.clear() self.nodes.append(self.root) if __name__ == '__main__': fileName = input() puzzle = Puzzle(n=dim,) res = puzzle.run() if res is not None: f = open(fileName,'w+') temp = res f.write(str(dim)+'\n') badChars = ['[',']'] result = [str(res)] while temp.pp is not None: temp = temp.pp result.append(str(temp)) for i in range(len(result)-1,-1,-1): temp= result[i].replace('[','') temp= temp.replace(']','') f.write(temp+'\n') f.write('NodesExpanded: '+str(puzzle.nodesExpanded)) f.close()
38.069853
220
0.499083
7941d88daf9ae8f320d610a717cdeed4551427bd
2,065
py
Python
src/panoptoindexconnector/implementations/debug_implementation.py
Panopto/panopto-index-connector
8fc5597c42e4dd4ee0001ec8d1b67750cf5eab1f
[ "Apache-2.0" ]
2
2020-09-30T06:42:34.000Z
2021-11-05T15:19:06.000Z
src/panoptoindexconnector/implementations/debug_implementation.py
Panopto/panopto-index-connector
8fc5597c42e4dd4ee0001ec8d1b67750cf5eab1f
[ "Apache-2.0" ]
4
2021-08-03T21:29:21.000Z
2022-03-11T19:51:51.000Z
src/panoptoindexconnector/implementations/debug_implementation.py
Panopto/panopto-index-connector
8fc5597c42e4dd4ee0001ec8d1b67750cf5eab1f
[ "Apache-2.0" ]
2
2020-09-29T15:17:42.000Z
2021-08-02T04:04:36.000Z
""" Methods for the connector application to convert and sync content to the target endpoint Implement these methods for the connector application """ # Standard Library Imports import json import logging import os # Third party # import requests # Global constants DIR = os.path.dirname(os.path.realpath(__file__)) LOG = logging.getLogger(__name__) ######################################################################### # # Exported methods to implement # ######################################################################### # since this is debug, we'll disable using all the args # pylint: disable=unused-argument def convert_to_target(panopto_content, config): """ Implement this method to convert to target format """ field_mapping = config.field_mapping LOG.info('Received the following panopto content: %s', json.dumps(panopto_content, indent=2)) target_content = {'id': panopto_content['Id']} target_content['fields'] = { field: panopto_content['VideoContent'][key] for key, field in field_mapping['Metadata'].items() } target_content['fields'].update({ field: panopto_content['VideoContent'][key] for key, field in field_mapping['Info'].items() }) # Principals target_content['permissions'] = [ { 'principal': { 'name': principal.get('Username', principal.get('Groupname')), 'type': 'user' if principal.get('Username') else 'group' }, 'readable': True } for principal in panopto_content['VideoContent']['Principals'] ] return target_content def push_to_target(target_content, config): """ Implement this method to push converted content to the target """ LOG.info('Would push the following to target: %s', json.dumps(target_content, indent=2)) def delete_from_target(video_id, config): """ Implement this method to push converted content to the target """ LOG.info('Would delete the following target: %s', video_id)
26.139241
97
0.621792
7941d8d7297023314ec46851ba8569eb75c28abc
112,254
py
Python
src/metpy/calc/thermo.py
gerritholl/MetPy
3f08b770485835982989f34aedb87791af250301
[ "BSD-3-Clause" ]
null
null
null
src/metpy/calc/thermo.py
gerritholl/MetPy
3f08b770485835982989f34aedb87791af250301
[ "BSD-3-Clause" ]
null
null
null
src/metpy/calc/thermo.py
gerritholl/MetPy
3f08b770485835982989f34aedb87791af250301
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2008,2015,2016,2017,2018,2019 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Contains a collection of thermodynamic calculations.""" import contextlib import warnings import numpy as np import scipy.integrate as si import scipy.optimize as so import xarray as xr from .tools import (_greater_or_close, _less_or_close, _remove_nans, find_bounding_indices, find_intersections, first_derivative, get_layer) from .. import constants as mpconsts from ..cbook import broadcast_indices from ..interpolate.one_dimension import interpolate_1d from ..package_tools import Exporter from ..units import check_units, concatenate, units from ..xarray import add_vertical_dim_from_xarray, preprocess_and_wrap exporter = Exporter(globals()) sat_pressure_0c = units.Quantity(6.112, 'millibar') @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('temperature', 'dewpoint')) @check_units('[temperature]', '[temperature]') def relative_humidity_from_dewpoint(temperature, dewpoint): r"""Calculate the relative humidity. Uses temperature and dewpoint to calculate relative humidity as the ratio of vapor pressure to saturation vapor pressures. Parameters ---------- temperature : `pint.Quantity` Air temperature dewpoint : `pint.Quantity` Dewpoint temperature Returns ------- `pint.Quantity` Relative humidity .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` See Also -------- saturation_vapor_pressure """ e = saturation_vapor_pressure(dewpoint) e_s = saturation_vapor_pressure(temperature) return (e / e_s) @exporter.export @preprocess_and_wrap(wrap_like='pressure') @check_units('[pressure]', '[pressure]') def exner_function(pressure, reference_pressure=mpconsts.P0): r"""Calculate the Exner function. .. math:: \Pi = \left( \frac{p}{p_0} \right)^\kappa This can be used to calculate potential temperature from temperature (and visa-versa), since: .. math:: \Pi = \frac{T}{\theta} Parameters ---------- pressure : `pint.Quantity` Total atmospheric pressure reference_pressure : `pint.Quantity`, optional The reference pressure against which to calculate the Exner function, defaults to metpy.constants.P0 Returns ------- `pint.Quantity` Value of the Exner function at the given pressure See Also -------- potential_temperature temperature_from_potential_temperature """ return (pressure / reference_pressure).to('dimensionless')**mpconsts.kappa @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('pressure', 'temperature')) @check_units('[pressure]', '[temperature]') def potential_temperature(pressure, temperature): r"""Calculate the potential temperature. Uses the Poisson equation to calculation the potential temperature given `pressure` and `temperature`. Parameters ---------- pressure : `pint.Quantity` Total atmospheric pressure temperature : `pint.Quantity` Air temperature Returns ------- `pint.Quantity` Potential temperature corresponding to the temperature and pressure See Also -------- dry_lapse Notes ----- Formula: .. math:: \Theta = T (P_0 / P)^\kappa Examples -------- >>> from metpy.units import units >>> metpy.calc.potential_temperature(800. * units.mbar, 273. * units.kelvin) <Quantity(290.972015, 'kelvin')> """ return temperature / exner_function(pressure) @exporter.export @preprocess_and_wrap( wrap_like='potential_temperature', broadcast=('pressure', 'potential_temperature') ) @check_units('[pressure]', '[temperature]') def temperature_from_potential_temperature(pressure, potential_temperature): r"""Calculate the temperature from a given potential temperature. Uses the inverse of the Poisson equation to calculate the temperature from a given potential temperature at a specific pressure level. Parameters ---------- pressure : `pint.Quantity` Total atmospheric pressure potential_temperature : `pint.Quantity` Potential temperature Returns ------- `pint.Quantity` Temperature corresponding to the potential temperature and pressure See Also -------- dry_lapse potential_temperature Notes ----- Formula: .. math:: T = \Theta (P / P_0)^\kappa Examples -------- >>> from metpy.units import units >>> from metpy.calc import temperature_from_potential_temperature >>> # potential temperature >>> theta = np.array([ 286.12859679, 288.22362587]) * units.kelvin >>> p = 850 * units.mbar >>> T = temperature_from_potential_temperature(p, theta) .. versionchanged:: 1.0 Renamed ``theta`` parameter to ``potential_temperature`` """ return potential_temperature * exner_function(pressure) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'reference_pressure') ) @check_units('[pressure]', '[temperature]', '[pressure]') def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): r"""Calculate the temperature at a level assuming only dry processes. This function lifts a parcel starting at ``temperature``, conserving potential temperature. The starting pressure can be given by ``reference_pressure``. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest temperature : `pint.Quantity` Starting temperature reference_pressure : `pint.Quantity`, optional Reference pressure; if not given, it defaults to the first element of the pressure array. Returns ------- `pint.Quantity` The parcel's resulting temperature at levels given by ``pressure`` See Also -------- moist_lapse : Calculate parcel temperature assuming liquid saturation processes parcel_profile : Calculate complete parcel profile potential_temperature Notes ----- Only reliably functions on 1D profiles (not higher-dimension vertical cross sections or grids) unless reference_pressure is specified. .. versionchanged:: 1.0 Renamed ``ref_pressure`` parameter to ``reference_pressure`` """ if reference_pressure is None: reference_pressure = pressure[0] return temperature * (pressure / reference_pressure)**mpconsts.kappa @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'reference_pressure') ) @check_units('[pressure]', '[temperature]', '[pressure]') def moist_lapse(pressure, temperature, reference_pressure=None): r"""Calculate the temperature at a level assuming liquid saturation processes. This function lifts a parcel starting at `temperature`. The starting pressure can be given by `reference_pressure`. Essentially, this function is calculating moist pseudo-adiabats. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest temperature : `pint.Quantity` Starting temperature reference_pressure : `pint.Quantity`, optional Reference pressure; if not given, it defaults to the first element of the pressure array. Returns ------- `pint.Quantity` The resulting parcel temperature at levels given by `pressure` See Also -------- dry_lapse : Calculate parcel temperature assuming dry adiabatic processes parcel_profile : Calculate complete parcel profile Notes ----- This function is implemented by integrating the following differential equation: .. math:: \frac{dT}{dP} = \frac{1}{P} \frac{R_d T + L_v r_s} {C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}} This equation comes from [Bakhshaii2013]_. Only reliably functions on 1D profiles (not higher-dimension vertical cross sections or grids). .. versionchanged:: 1.0 Renamed ``ref_pressure`` parameter to ``reference_pressure`` """ def dt(t, p): t = units.Quantity(t, temperature.units) p = units.Quantity(p, pressure.units) rs = saturation_mixing_ratio(p, t) frac = ((mpconsts.Rd * t + mpconsts.Lv * rs) / (mpconsts.Cp_d + (mpconsts.Lv * mpconsts.Lv * rs * mpconsts.epsilon / (mpconsts.Rd * t * t)))).to('kelvin') return (frac / p).magnitude pressure = np.atleast_1d(pressure) if reference_pressure is None: reference_pressure = pressure[0] if np.isnan(reference_pressure): return units.Quantity(np.full(pressure.shape, np.nan), temperature.units) pressure = pressure.to('mbar') reference_pressure = reference_pressure.to('mbar') temperature = np.atleast_1d(temperature) side = 'left' pres_decreasing = (pressure[0] > pressure[-1]) if pres_decreasing: # Everything is easier if pressures are in increasing order pressure = pressure[::-1] side = 'right' ref_pres_idx = np.searchsorted(pressure.m, reference_pressure.m, side=side) ret_temperatures = np.empty((0, temperature.shape[0])) if _greater_or_close(reference_pressure, pressure.min()): # Integrate downward in pressure pres_down = np.append(reference_pressure.m, pressure[(ref_pres_idx - 1)::-1].m) trace_down = si.odeint(dt, temperature.m.squeeze(), pres_down.squeeze()) ret_temperatures = np.concatenate((ret_temperatures, trace_down[:0:-1])) if reference_pressure < pressure.max(): # Integrate upward in pressure pres_up = np.append(reference_pressure.m, pressure[ref_pres_idx:].m) trace_up = si.odeint(dt, temperature.m.squeeze(), pres_up.squeeze()) ret_temperatures = np.concatenate((ret_temperatures, trace_up[1:])) if pres_decreasing: ret_temperatures = ret_temperatures[::-1] return units.Quantity(ret_temperatures.T.squeeze(), temperature.units) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def lcl(pressure, temperature, dewpoint, max_iters=50, eps=1e-5): r"""Calculate the lifted condensation level (LCL) from the starting point. The starting state for the parcel is defined by `temperature`, `dewpoint`, and `pressure`. If these are arrays, this function will return a LCL for every index. This function does work with surface grids as a result. Parameters ---------- pressure : `pint.Quantity` Starting atmospheric pressure temperature : `pint.Quantity` Starting temperature dewpoint : `pint.Quantity` Starting dewpoint Returns ------- `pint.Quantity` LCL pressure `pint.Quantity` LCL temperature Other Parameters ---------------- max_iters : int, optional The maximum number of iterations to use in calculation, defaults to 50. eps : float, optional The desired relative error in the calculated value, defaults to 1e-5. See Also -------- parcel_profile Notes ----- This function is implemented using an iterative approach to solve for the LCL. The basic algorithm is: 1. Find the dewpoint from the LCL pressure and starting mixing ratio 2. Find the LCL pressure from the starting temperature and dewpoint 3. Iterate until convergence The function is guaranteed to finish by virtue of the `max_iters` counter. Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` """ def _lcl_iter(p, p0, w, t): nonlocal nan_mask td = globals()['dewpoint'](vapor_pressure(units.Quantity(p, pressure.units), w)) p_new = (p0 * (td / t) ** (1. / mpconsts.kappa)).m nan_mask = nan_mask | np.isnan(p_new) return np.where(np.isnan(p_new), p, p_new) # Handle nans by creating a mask that gets set by our _lcl_iter function if it # ever encounters a nan, at which point pressure is set to p, stopping iteration. nan_mask = False w = mixing_ratio(saturation_vapor_pressure(dewpoint), pressure) lcl_p = so.fixed_point(_lcl_iter, pressure.m, args=(pressure.m, w, temperature), xtol=eps, maxiter=max_iters) lcl_p = np.where(nan_mask, np.nan, lcl_p) # np.isclose needed if surface is LCL due to precision error with np.log in dewpoint. # Causes issues with parcel_profile_with_lcl if removed. Issue #1187 lcl_p = units.Quantity(np.where(np.isclose(lcl_p, pressure.m), pressure.m, lcl_p), pressure.units) return lcl_p, globals()['dewpoint'](vapor_pressure(lcl_p, w)).to(temperature.units) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]') def lfc(pressure, temperature, dewpoint, parcel_temperature_profile=None, dewpoint_start=None, which='top'): r"""Calculate the level of free convection (LFC). This works by finding the first intersection of the ideal parcel path and the measured parcel temperature. If this intersection occurs below the LCL, the LFC is determined to be the same as the LCL, based upon the conditions set forth in [USAF1990]_, pg 4-14, where a parcel must be lifted dry adiabatically to saturation before it can freely rise. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure temperature : `pint.Quantity` Temperature at the levels given by `pressure` dewpoint : `pint.Quantity` Dewpoint at the levels given by `pressure` parcel_temperature_profile: `pint.Quantity`, optional The parcel's temperature profile from which to calculate the LFC. Defaults to the surface parcel profile. dewpoint_start: `pint.Quantity`, optional Dewpoint of the parcel for which to calculate the LFC. Defaults to the surface dewpoint. which: str, optional Pick which LFC to return. Options are 'top', 'bottom', 'wide', 'most_cape', and 'all'; 'top' returns the lowest-pressure LFC (default), 'bottom' returns the highest-pressure LFC, 'wide' returns the LFC whose corresponding EL is farthest away, 'most_cape' returns the LFC that results in the most CAPE in the profile. Returns ------- `pint.Quantity` LFC pressure, or array of same if which='all' `pint.Quantity` LFC temperature, or array of same if which='all' See Also -------- parcel_profile Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``dewpt``,``dewpoint_start`` parameters to ``dewpoint``, ``dewpoint_start`` """ pressure, temperature, dewpoint = _remove_nans(pressure, temperature, dewpoint) # Default to surface parcel if no profile or starting pressure level is given if parcel_temperature_profile is None: new_stuff = parcel_profile_with_lcl(pressure, temperature, dewpoint) pressure, temperature, dewpoint, parcel_temperature_profile = new_stuff parcel_temperature_profile = parcel_temperature_profile.to(temperature.units) if dewpoint_start is None: dewpoint_start = dewpoint[0] # The parcel profile and data may have the same first data point. # If that is the case, ignore that point to get the real first # intersection for the LFC calculation. Use logarithmic interpolation. if np.isclose(parcel_temperature_profile[0].to(temperature.units).m, temperature[0].m): x, y = find_intersections(pressure[1:], parcel_temperature_profile[1:], temperature[1:], direction='increasing', log_x=True) else: x, y = find_intersections(pressure, parcel_temperature_profile, temperature, direction='increasing', log_x=True) # Compute LCL for this parcel for future comparisons this_lcl = lcl(pressure[0], parcel_temperature_profile[0], dewpoint_start) # The LFC could: # 1) Not exist # 2) Exist but be equal to the LCL # 3) Exist and be above the LCL # LFC does not exist or is LCL if len(x) == 0: # Is there any positive area above the LCL? mask = pressure < this_lcl[0] if np.all(_less_or_close(parcel_temperature_profile[mask], temperature[mask])): # LFC doesn't exist x = units.Quantity(np.nan, pressure.units) y = units.Quantity(np.nan, temperature.units) else: # LFC = LCL x, y = this_lcl return x, y # LFC exists. Make sure it is no lower than the LCL else: idx = x < this_lcl[0] # LFC height < LCL height, so set LFC = LCL if not any(idx): el_pressure, _ = find_intersections(pressure[1:], parcel_temperature_profile[1:], temperature[1:], direction='decreasing', log_x=True) if np.min(el_pressure) > this_lcl[0]: x = units.Quantity(np.nan, pressure.units) y = units.Quantity(np.nan, temperature.units) else: x, y = this_lcl return x, y # Otherwise, find all LFCs that exist above the LCL # What is returned depends on which flag as described in the docstring else: return _multiple_el_lfc_options(x, y, idx, which, pressure, parcel_temperature_profile, temperature, dewpoint, intersect_type='LFC') def _multiple_el_lfc_options(intersect_pressures, intersect_temperatures, valid_x, which, pressure, parcel_temperature_profile, temperature, dewpoint, intersect_type): """Choose which ELs and LFCs to return from a sounding.""" p_list, t_list = intersect_pressures[valid_x], intersect_temperatures[valid_x] if which == 'all': x, y = p_list, t_list elif which == 'bottom': x, y = p_list[0], t_list[0] elif which == 'top': x, y = p_list[-1], t_list[-1] elif which == 'wide': x, y = _wide_option(intersect_type, p_list, t_list, pressure, parcel_temperature_profile, temperature) elif which == 'most_cape': x, y = _most_cape_option(intersect_type, p_list, t_list, pressure, temperature, dewpoint, parcel_temperature_profile) else: raise ValueError('Invalid option for "which". Valid options are "top", "bottom", ' '"wide", "most_cape", and "all".') return x, y def _wide_option(intersect_type, p_list, t_list, pressure, parcel_temperature_profile, temperature): """Calculate the LFC or EL that produces the greatest distance between these points.""" # zip the LFC and EL lists together and find greatest difference if intersect_type == 'LFC': # Find EL intersection pressure values lfc_p_list = p_list el_p_list, _ = find_intersections(pressure[1:], parcel_temperature_profile[1:], temperature[1:], direction='decreasing', log_x=True) else: # intersect_type == 'EL' el_p_list = p_list # Find LFC intersection pressure values lfc_p_list, _ = find_intersections(pressure, parcel_temperature_profile, temperature, direction='increasing', log_x=True) diff = [lfc_p.m - el_p.m for lfc_p, el_p in zip(lfc_p_list, el_p_list)] return (p_list[np.where(diff == np.max(diff))][0], t_list[np.where(diff == np.max(diff))][0]) def _most_cape_option(intersect_type, p_list, t_list, pressure, temperature, dewpoint, parcel_temperature_profile): """Calculate the LFC or EL that produces the most CAPE in the profile.""" # Need to loop through all possible combinations of cape, find greatest cape profile cape_list, pair_list = [], [] for which_lfc in ['top', 'bottom']: for which_el in ['top', 'bottom']: cape, _ = cape_cin(pressure, temperature, dewpoint, parcel_temperature_profile, which_lfc=which_lfc, which_el=which_el) cape_list.append(cape.m) pair_list.append([which_lfc, which_el]) (lfc_chosen, el_chosen) = pair_list[np.where(cape_list == np.max(cape_list))[0][0]] if intersect_type == 'LFC': if lfc_chosen == 'top': x, y = p_list[-1], t_list[-1] else: # 'bottom' is returned x, y = p_list[0], t_list[0] else: # EL is returned if el_chosen == 'top': x, y = p_list[-1], t_list[-1] else: x, y = p_list[0], t_list[0] return x, y @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]') def el(pressure, temperature, dewpoint, parcel_temperature_profile=None, which='top'): r"""Calculate the equilibrium level. This works by finding the last intersection of the ideal parcel path and the measured environmental temperature. If there is one or fewer intersections, there is no equilibrium level. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure profile temperature : `pint.Quantity` Temperature at the levels given by `pressure` dewpoint : `pint.Quantity` Dewpoint at the levels given by `pressure` parcel_temperature_profile: `pint.Quantity`, optional The parcel's temperature profile from which to calculate the EL. Defaults to the surface parcel profile. which: str, optional Pick which LFC to return. Options are 'top', 'bottom', 'wide', 'most_cape', and 'all'. 'top' returns the lowest-pressure EL, default. 'bottom' returns the highest-pressure EL. 'wide' returns the EL whose corresponding LFC is farthest away. 'most_cape' returns the EL that results in the most CAPE in the profile. Returns ------- `pint.Quantity` EL pressure, or array of same if which='all' `pint.Quantity` EL temperature, or array of same if which='all' See Also -------- parcel_profile Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` """ pressure, temperature, dewpoint = _remove_nans(pressure, temperature, dewpoint) # Default to surface parcel if no profile or starting pressure level is given if parcel_temperature_profile is None: new_stuff = parcel_profile_with_lcl(pressure, temperature, dewpoint) pressure, temperature, dewpoint, parcel_temperature_profile = new_stuff parcel_temperature_profile = parcel_temperature_profile.to(temperature.units) # If the top of the sounding parcel is warmer than the environment, there is no EL if parcel_temperature_profile[-1] > temperature[-1]: return (units.Quantity(np.nan, pressure.units), units.Quantity(np.nan, temperature.units)) # Interpolate in log space to find the appropriate pressure - units have to be stripped # and reassigned to allow np.log() to function properly. x, y = find_intersections(pressure[1:], parcel_temperature_profile[1:], temperature[1:], direction='decreasing', log_x=True) lcl_p, _ = lcl(pressure[0], temperature[0], dewpoint[0]) idx = x < lcl_p if len(x) > 0 and x[-1] < lcl_p: return _multiple_el_lfc_options(x, y, idx, which, pressure, parcel_temperature_profile, temperature, dewpoint, intersect_type='EL') else: return (units.Quantity(np.nan, pressure.units), units.Quantity(np.nan, temperature.units)) @exporter.export @preprocess_and_wrap(wrap_like='pressure') @check_units('[pressure]', '[temperature]', '[temperature]') def parcel_profile(pressure, temperature, dewpoint): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up dry adiabatically to the LCL, and then moist adiabatically from there. `pressure` specifies the pressure levels for the profile. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest. This array must be from high to low pressure. temperature : `pint.Quantity` Starting temperature dewpoint : `pint.Quantity` Starting dewpoint Returns ------- `pint.Quantity` The parcel's temperatures at the specified pressure levels See Also -------- lcl, moist_lapse, dry_lapse Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` """ _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint) return concatenate((t_l, t_u)) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def parcel_profile_with_lcl(pressure, temperature, dewpoint): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up dry adiabatically to the LCL, and then moist adiabatically from there. `pressure` specifies the pressure levels for the profile. This function returns a profile that includes the LCL. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest. This array must be from high to low pressure. temperature : `pint.Quantity` Atmospheric temperature at the levels in `pressure`. The first entry should be at the same level as the first `pressure` data point. dewpoint : `pint.Quantity` Atmospheric dewpoint at the levels in `pressure`. The first entry should be at the same level as the first `pressure` data point. Returns ------- pressure : `pint.Quantity` The parcel profile pressures, which includes the specified levels and the LCL ambient_temperature : `pint.Quantity` Atmospheric temperature values, including the value interpolated to the LCL level ambient_dew_point : `pint.Quantity` Atmospheric dewpoint values, including the value interpolated to the LCL level profile_temperature : `pint.Quantity` The parcel profile temperatures at all of the levels in the returned pressures array, including the LCL See Also -------- lcl, moist_lapse, dry_lapse, parcel_profile, parcel_profile_with_lcl_as_dataset Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Also, will only return Pint Quantities, even when given xarray DataArray profiles. To obtain a xarray Dataset instead, use `parcel_profile_with_lcl_as_dataset` instead. .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` """ p_l, p_lcl, p_u, t_l, t_lcl, t_u = _parcel_profile_helper(pressure, temperature[0], dewpoint[0]) new_press = concatenate((p_l, p_lcl, p_u)) prof_temp = concatenate((t_l, t_lcl, t_u)) new_temp = _insert_lcl_level(pressure, temperature, p_lcl) new_dewp = _insert_lcl_level(pressure, dewpoint, p_lcl) return new_press, new_temp, new_dewp, prof_temp @exporter.export def parcel_profile_with_lcl_as_dataset(pressure, temperature, dewpoint): r"""Calculate the profile a parcel takes through the atmosphere, returning a Dataset. The parcel starts at `temperature`, and `dewpoint`, lifted up dry adiabatically to the LCL, and then moist adiabatically from there. `pressure` specifies the pressure levels for the profile. This function returns a profile that includes the LCL. Parameters ---------- pressure : `pint.Quantity` The atmospheric pressure level(s) of interest. This array must be from high to low pressure. temperature : `pint.Quantity` The atmospheric temperature at the levels in `pressure`. The first entry should be at the same level as the first `pressure` data point. dewpoint : `pint.Quantity` The atmospheric dewpoint at the levels in `pressure`. The first entry should be at the same level as the first `pressure` data point. Returns ------- profile : `xarray.Dataset` The interpolated profile with three data variables: ambient_temperature, ambient_dew_point, and profile_temperature, all of which are on an isobaric coordinate. See Also -------- lcl, moist_lapse, dry_lapse, parcel_profile, parcel_profile_with_lcl Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). """ p, ambient_temperature, ambient_dew_point, profile_temperature = parcel_profile_with_lcl( pressure, temperature, dewpoint ) return xr.Dataset( { 'ambient_temperature': ( ('isobaric',), ambient_temperature, {'standard_name': 'air_temperature'} ), 'ambient_dew_point': ( ('isobaric',), ambient_dew_point, {'standard_name': 'dew_point_temperature'} ), 'parcel_temperature': ( ('isobaric',), profile_temperature, {'long_name': 'air_temperature_of_lifted_parcel'} ) }, coords={ 'isobaric': ( 'isobaric', p.m, {'units': str(p.units), 'standard_name': 'air_pressure'} ) } ) def _parcel_profile_helper(pressure, temperature, dewpoint): """Help calculate parcel profiles. Returns the temperature and pressure, above, below, and including the LCL. The other calculation functions decide what to do with the pieces. """ # Find the LCL press_lcl, temp_lcl = lcl(pressure[0], temperature, dewpoint) press_lcl = press_lcl.to(pressure.units) # Find the dry adiabatic profile, *including* the LCL. We need >= the LCL in case the # LCL is included in the levels. It's slightly redundant in that case, but simplifies # the logic for removing it later. press_lower = concatenate((pressure[pressure >= press_lcl], press_lcl)) temp_lower = dry_lapse(press_lower, temperature) # If the pressure profile doesn't make it to the lcl, we can stop here if _greater_or_close(np.nanmin(pressure), press_lcl): return (press_lower[:-1], press_lcl, units.Quantity(np.array([]), press_lower.units), temp_lower[:-1], temp_lcl, units.Quantity(np.array([]), temp_lower.units)) # Find moist pseudo-adiabatic profile starting at the LCL press_upper = concatenate((press_lcl, pressure[pressure < press_lcl])) temp_upper = moist_lapse(press_upper, temp_lower[-1]).to(temp_lower.units) # Return profile pieces return (press_lower[:-1], press_lcl, press_upper[1:], temp_lower[:-1], temp_lcl, temp_upper[1:]) def _insert_lcl_level(pressure, temperature, lcl_pressure): """Insert the LCL pressure into the profile.""" interp_temp = interpolate_1d(lcl_pressure, pressure, temperature) # Pressure needs to be increasing for searchsorted, so flip it and then convert # the index back to the original array loc = pressure.size - pressure[::-1].searchsorted(lcl_pressure) return units.Quantity(np.insert(temperature.m, loc, interp_temp.m), temperature.units) @exporter.export @preprocess_and_wrap(wrap_like='mixing_ratio', broadcast=('pressure', 'mixing_ratio')) @check_units('[pressure]', '[dimensionless]') def vapor_pressure(pressure, mixing_ratio): r"""Calculate water vapor (partial) pressure. Given total ``pressure`` and water vapor ``mixing_ratio``, calculates the partial pressure of water vapor. Parameters ---------- pressure : `pint.Quantity` Total atmospheric pressure mixing_ratio : `pint.Quantity` Dimensionless mass mixing ratio Returns ------- `pint.Quantity` Ambient water vapor (partial) pressure in the same units as ``pressure`` Notes ----- This function is a straightforward implementation of the equation given in many places, such as [Hobbs1977]_ pg.71: .. math:: e = p \frac{r}{r + \epsilon} .. versionchanged:: 1.0 Renamed ``mixing`` parameter to ``mixing_ratio`` See Also -------- saturation_vapor_pressure, dewpoint """ return pressure * mixing_ratio / (mpconsts.epsilon + mixing_ratio) @exporter.export @preprocess_and_wrap(wrap_like='temperature') @check_units('[temperature]') def saturation_vapor_pressure(temperature): r"""Calculate the saturation water vapor (partial) pressure. Parameters ---------- temperature : `pint.Quantity` Air temperature Returns ------- `pint.Quantity` Saturation water vapor (partial) pressure See Also -------- vapor_pressure, dewpoint Notes ----- Instead of temperature, dewpoint may be used in order to calculate the actual (ambient) water vapor (partial) pressure. The formula used is that from [Bolton1980]_ for T in degrees Celsius: .. math:: 6.112 e^\frac{17.67T}{T + 243.5} """ # Converted from original in terms of C to use kelvin. Using raw absolute values of C in # a formula plays havoc with units support. return sat_pressure_0c * np.exp(17.67 * (temperature - units.Quantity(273.15, 'kelvin')) / (temperature - units.Quantity(29.65, 'kelvin'))) @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('temperature', 'relative_humidity')) @check_units('[temperature]', '[dimensionless]') def dewpoint_from_relative_humidity(temperature, relative_humidity): r"""Calculate the ambient dewpoint given air temperature and relative humidity. Parameters ---------- temperature : `pint.Quantity` Air temperature relative_humidity : `pint.Quantity` Relative humidity expressed as a ratio in the range 0 < relative_humidity <= 1 Returns ------- `pint.Quantity` Dewpoint temperature .. versionchanged:: 1.0 Renamed ``rh`` parameter to ``relative_humidity`` See Also -------- dewpoint, saturation_vapor_pressure """ if np.any(relative_humidity > 1.2): warnings.warn('Relative humidity >120%, ensure proper units.') return dewpoint(relative_humidity * saturation_vapor_pressure(temperature)) @exporter.export @preprocess_and_wrap(wrap_like='vapor_pressure') @check_units('[pressure]') def dewpoint(vapor_pressure): r"""Calculate the ambient dewpoint given the vapor pressure. Parameters ---------- e : `pint.Quantity` Water vapor partial pressure Returns ------- `pint.Quantity` Dewpoint temperature See Also -------- dewpoint_from_relative_humidity, saturation_vapor_pressure, vapor_pressure Notes ----- This function inverts the [Bolton1980]_ formula for saturation vapor pressure to instead calculate the temperature. This yield the following formula for dewpoint in degrees Celsius: .. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)} .. versionchanged:: 1.0 Renamed ``e`` parameter to ``vapor_pressure`` """ val = np.log(vapor_pressure / sat_pressure_0c) return (units.Quantity(0., 'degC') + units.Quantity(243.5, 'delta_degC') * val / (17.67 - val)) @exporter.export @preprocess_and_wrap(wrap_like='partial_press', broadcast=('partial_press', 'total_press')) @check_units('[pressure]', '[pressure]', '[dimensionless]') def mixing_ratio(partial_press, total_press, molecular_weight_ratio=mpconsts.epsilon): r"""Calculate the mixing ratio of a gas. This calculates mixing ratio given its partial pressure and the total pressure of the air. There are no required units for the input arrays, other than that they have the same units. Parameters ---------- partial_press : `pint.Quantity` Partial pressure of the constituent gas total_press : `pint.Quantity` Total air pressure molecular_weight_ratio : `pint.Quantity` or float, optional The ratio of the molecular weight of the constituent gas to that assumed for air. Defaults to the ratio for water vapor to dry air (:math:`\epsilon\approx0.622`). Returns ------- `pint.Quantity` The (mass) mixing ratio, dimensionless (e.g. Kg/Kg or g/g) Notes ----- This function is a straightforward implementation of the equation given in many places, such as [Hobbs1977]_ pg.73: .. math:: r = \epsilon \frac{e}{p - e} .. versionchanged:: 1.0 Renamed ``part_press``, ``tot_press`` parameters to ``partial_press``, ``total_press`` See Also -------- saturation_mixing_ratio, vapor_pressure """ return (molecular_weight_ratio * partial_press / (total_press - partial_press)).to('dimensionless') @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('total_press', 'temperature')) @check_units('[pressure]', '[temperature]') def saturation_mixing_ratio(total_press, temperature): r"""Calculate the saturation mixing ratio of water vapor. This calculation is given total atmospheric pressure and air temperature. Parameters ---------- total_press: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature Returns ------- `pint.Quantity` Saturation mixing ratio, dimensionless Notes ----- This function is a straightforward implementation of the equation given in many places, such as [Hobbs1977]_ pg.73: .. math:: r_s = \epsilon \frac{e_s}{p - e_s} .. versionchanged:: 1.0 Renamed ``tot_press`` parameter to ``total_press`` """ return mixing_ratio(saturation_vapor_pressure(temperature), total_press) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'dewpoint') ) @check_units('[pressure]', '[temperature]', '[temperature]') def equivalent_potential_temperature(pressure, temperature, dewpoint): r"""Calculate equivalent potential temperature. This calculation must be given an air parcel's pressure, temperature, and dewpoint. The implementation uses the formula outlined in [Bolton1980]_: First, the LCL temperature is calculated: .. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{ln(T_{K}/T_{D})}{800}}+56 Which is then used to calculate the potential temperature at the LCL: .. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k \left(\frac{T_{K}}{T_{L}}\right)^{.28r} Both of these are used to calculate the final equivalent potential temperature: .. math:: \theta_{E}=\theta_{DL}\exp\left[\left(\frac{3036.}{T_{L}} -1.78\right)*r(1+.448r)\right] Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Temperature of parcel dewpoint: `pint.Quantity` Dewpoint of parcel Returns ------- `pint.Quantity` Equivalent potential temperature of the parcel Notes ----- [Bolton1980]_ formula for Theta-e is used, since according to [DaviesJones2009]_ it is the most accurate non-iterative formulation available. """ t = temperature.to('kelvin').magnitude td = dewpoint.to('kelvin').magnitude r = saturation_mixing_ratio(pressure, dewpoint).magnitude e = saturation_vapor_pressure(dewpoint) t_l = 56 + 1. / (1. / (td - 56) + np.log(t / td) / 800.) th_l = potential_temperature(pressure - e, temperature) * (t / t_l) ** (0.28 * r) return th_l * np.exp(r * (1 + 0.448 * r) * (3036. / t_l - 1.78)) @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('pressure', 'temperature')) @check_units('[pressure]', '[temperature]') def saturation_equivalent_potential_temperature(pressure, temperature): r"""Calculate saturation equivalent potential temperature. This calculation must be given an air parcel's pressure and temperature. The implementation uses the formula outlined in [Bolton1980]_ for the equivalent potential temperature, and assumes a saturated process. First, because we assume a saturated process, the temperature at the LCL is equivalent to the current temperature. Therefore the following equation. .. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{ln(T_{K}/T_{D})}{800}}+56 reduces to: .. math:: T_{L} = T_{K} Then the potential temperature at the temperature/LCL is calculated: .. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k \left(\frac{T_{K}}{T_{L}}\right)^{.28r} However, because: .. math:: T_{L} = T_{K} it follows that: .. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k Both of these are used to calculate the final equivalent potential temperature: .. math:: \theta_{E}=\theta_{DL}\exp\left[\left(\frac{3036.}{T_{K}} -1.78\right)*r(1+.448r)\right] Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Temperature of parcel Returns ------- `pint.Quantity` Saturation equivalent potential temperature of the parcel Notes ----- [Bolton1980]_ formula for Theta-e is used (for saturated case), since according to [DaviesJones2009]_ it is the most accurate non-iterative formulation available. """ t = temperature.to('kelvin').magnitude p = pressure.to('hPa').magnitude e = saturation_vapor_pressure(temperature).to('hPa').magnitude r = saturation_mixing_ratio(pressure, temperature).magnitude th_l = t * (1000 / (p - e)) ** mpconsts.kappa th_es = th_l * np.exp((3036. / t - 1.78) * r * (1 + 0.448 * r)) return units.Quantity(th_es, units.kelvin) @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('temperature', 'mixing_ratio')) @check_units('[temperature]', '[dimensionless]', '[dimensionless]') def virtual_temperature(temperature, mixing_ratio, molecular_weight_ratio=mpconsts.epsilon): r"""Calculate virtual temperature. This calculation must be given an air parcel's temperature and mixing ratio. The implementation uses the formula outlined in [Hobbs2006]_ pg.80. Parameters ---------- temperature: `pint.Quantity` Air temperature mixing_ratio : `pint.Quantity` Mass mixing ratio (dimensionless) molecular_weight_ratio : `pint.Quantity` or float, optional The ratio of the molecular weight of the constituent gas to that assumed for air. Defaults to the ratio for water vapor to dry air. (:math:`\epsilon\approx0.622`) Returns ------- `pint.Quantity` Corresponding virtual temperature of the parcel Notes ----- .. math:: T_v = T \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})} .. versionchanged:: 1.0 Renamed ``mixing`` parameter to ``mixing_ratio`` """ return temperature * ((mixing_ratio + molecular_weight_ratio) / (molecular_weight_ratio * (1 + mixing_ratio))) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'mixing_ratio') ) @check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]') def virtual_potential_temperature(pressure, temperature, mixing_ratio, molecular_weight_ratio=mpconsts.epsilon): r"""Calculate virtual potential temperature. This calculation must be given an air parcel's pressure, temperature, and mixing ratio. The implementation uses the formula outlined in [Markowski2010]_ pg.13. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature mixing_ratio : `pint.Quantity` Dimensionless mass mixing ratio molecular_weight_ratio : `pint.Quantity` or float, optional The ratio of the molecular weight of the constituent gas to that assumed for air. Defaults to the ratio for water vapor to dry air. (:math:`\epsilon\approx0.622`) Returns ------- `pint.Quantity` Corresponding virtual potential temperature of the parcel Notes ----- .. math:: \Theta_v = \Theta \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})} .. versionchanged:: 1.0 Renamed ``mixing`` parameter to ``mixing_ratio`` """ pottemp = potential_temperature(pressure, temperature) return virtual_temperature(pottemp, mixing_ratio, molecular_weight_ratio) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'mixing_ratio') ) @check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]') def density(pressure, temperature, mixing_ratio, molecular_weight_ratio=mpconsts.epsilon): r"""Calculate density. This calculation must be given an air parcel's pressure, temperature, and mixing ratio. The implementation uses the formula outlined in [Hobbs2006]_ pg.67. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature mixing_ratio : `pint.Quantity` Mass mixing ratio (dimensionless) molecular_weight_ratio : `pint.Quantity` or float, optional The ratio of the molecular weight of the constituent gas to that assumed for air. Defaults to the ratio for water vapor to dry air. (:math:`\epsilon\approx0.622`) Returns ------- `pint.Quantity` Corresponding density of the parcel Notes ----- .. math:: \rho = \frac{p}{R_dT_v} .. versionchanged:: 1.0 Renamed ``mixing`` parameter to ``mixing_ratio`` """ virttemp = virtual_temperature(temperature, mixing_ratio, molecular_weight_ratio) return (pressure / (mpconsts.Rd * virttemp)).to('kg/m**3') @exporter.export @preprocess_and_wrap( wrap_like='dry_bulb_temperature', broadcast=('pressure', 'dry_bulb_temperature', 'wet_bulb_temperature') ) @check_units('[pressure]', '[temperature]', '[temperature]') def relative_humidity_wet_psychrometric(pressure, dry_bulb_temperature, wet_bulb_temperature, **kwargs): r"""Calculate the relative humidity with wet bulb and dry bulb temperatures. This uses a psychrometric relationship as outlined in [WMO8]_, with coefficients from [Fan1987]_. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure dry_bulb_temperature: `pint.Quantity` Dry bulb temperature wet_bulb_temperature: `pint.Quantity` Wet bulb temperature Returns ------- `pint.Quantity` Relative humidity Notes ----- .. math:: RH = \frac{e}{e_s} * :math:`RH` is relative humidity as a unitless ratio * :math:`e` is vapor pressure from the wet psychrometric calculation * :math:`e_s` is the saturation vapor pressure .. versionchanged:: 1.0 Changed signature from ``(dry_bulb_temperature, web_bulb_temperature, pressure, **kwargs)`` See Also -------- psychrometric_vapor_pressure_wet, saturation_vapor_pressure """ return (psychrometric_vapor_pressure_wet(pressure, dry_bulb_temperature, wet_bulb_temperature, **kwargs) / saturation_vapor_pressure(dry_bulb_temperature)) @exporter.export @preprocess_and_wrap( wrap_like='dry_bulb_temperature', broadcast=('pressure', 'dry_bulb_temperature', 'wet_bulb_temperature') ) @check_units('[pressure]', '[temperature]', '[temperature]') def psychrometric_vapor_pressure_wet(pressure, dry_bulb_temperature, wet_bulb_temperature, psychrometer_coefficient=None): r"""Calculate the vapor pressure with wet bulb and dry bulb temperatures. This uses a psychrometric relationship as outlined in [WMO8]_, with coefficients from [Fan1987]_. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure dry_bulb_temperature: `pint.Quantity` Dry bulb temperature wet_bulb_temperature: `pint.Quantity` Wet bulb temperature psychrometer_coefficient: `pint.Quantity`, optional Psychrometer coefficient. Defaults to 6.21e-4 K^-1. Returns ------- `pint.Quantity` Vapor pressure Notes ----- .. math:: e' = e'_w(T_w) - A p (T - T_w) * :math:`e'` is vapor pressure * :math:`e'_w(T_w)` is the saturation vapor pressure with respect to water at temperature :math:`T_w` * :math:`p` is the pressure of the wet bulb * :math:`T` is the temperature of the dry bulb * :math:`T_w` is the temperature of the wet bulb * :math:`A` is the psychrometer coefficient Psychrometer coefficient depends on the specific instrument being used and the ventilation of the instrument. .. versionchanged:: 1.0 Changed signature from ``(dry_bulb_temperature, wet_bulb_temperature, pressure, psychrometer_coefficient)`` See Also -------- saturation_vapor_pressure """ if psychrometer_coefficient is None: psychrometer_coefficient = units.Quantity(6.21e-4, '1/K') return (saturation_vapor_pressure(wet_bulb_temperature) - psychrometer_coefficient * pressure * (dry_bulb_temperature - wet_bulb_temperature).to('kelvin')) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'relative_humidity') ) @check_units('[pressure]', '[temperature]', '[dimensionless]') def mixing_ratio_from_relative_humidity(pressure, temperature, relative_humidity): r"""Calculate the mixing ratio from relative humidity, temperature, and pressure. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature relative_humidity: array_like The relative humidity expressed as a unitless ratio in the range [0, 1]. Can also pass a percentage if proper units are attached. Returns ------- `pint.Quantity` Mixing ratio (dimensionless) Notes ----- Formula adapted from [Hobbs1977]_ pg. 74. .. math:: w = (rh)(w_s) * :math:`w` is mixing ratio * :math:`rh` is relative humidity as a unitless ratio * :math:`w_s` is the saturation mixing ratio .. versionchanged:: 1.0 Changed signature from ``(relative_humidity, temperature, pressure)`` See Also -------- relative_humidity_from_mixing_ratio, saturation_mixing_ratio """ return (relative_humidity * saturation_mixing_ratio(pressure, temperature)).to('dimensionless') @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'mixing_ratio') ) @check_units('[pressure]', '[temperature]', '[dimensionless]') def relative_humidity_from_mixing_ratio(pressure, temperature, mixing_ratio): r"""Calculate the relative humidity from mixing ratio, temperature, and pressure. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature mixing_ratio: `pint.Quantity` Dimensionless mass mixing ratio Returns ------- `pint.Quantity` Relative humidity Notes ----- Formula based on that from [Hobbs1977]_ pg. 74. .. math:: rh = \frac{w}{w_s} * :math:`rh` is relative humidity as a unitless ratio * :math:`w` is mixing ratio * :math:`w_s` is the saturation mixing ratio .. versionchanged:: 1.0 Changed signature from ``(mixing_ratio, temperature, pressure)`` See Also -------- mixing_ratio_from_relative_humidity, saturation_mixing_ratio """ return mixing_ratio / saturation_mixing_ratio(pressure, temperature) @exporter.export @preprocess_and_wrap(wrap_like='specific_humidity') @check_units('[dimensionless]') def mixing_ratio_from_specific_humidity(specific_humidity): r"""Calculate the mixing ratio from specific humidity. Parameters ---------- specific_humidity: `pint.Quantity` Specific humidity of air Returns ------- `pint.Quantity` Mixing ratio Notes ----- Formula from [Salby1996]_ pg. 118. .. math:: w = \frac{q}{1-q} * :math:`w` is mixing ratio * :math:`q` is the specific humidity See Also -------- mixing_ratio, specific_humidity_from_mixing_ratio """ with contextlib.suppress(AttributeError): specific_humidity = specific_humidity.to('dimensionless') return specific_humidity / (1 - specific_humidity) @exporter.export @preprocess_and_wrap(wrap_like='mixing_ratio') @check_units('[dimensionless]') def specific_humidity_from_mixing_ratio(mixing_ratio): r"""Calculate the specific humidity from the mixing ratio. Parameters ---------- mixing_ratio: `pint.Quantity` Mixing ratio Returns ------- `pint.Quantity` Specific humidity Notes ----- Formula from [Salby1996]_ pg. 118. .. math:: q = \frac{w}{1+w} * :math:`w` is mixing ratio * :math:`q` is the specific humidity See Also -------- mixing_ratio, mixing_ratio_from_specific_humidity """ with contextlib.suppress(AttributeError): mixing_ratio = mixing_ratio.to('dimensionless') return mixing_ratio / (1 + mixing_ratio) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'specific_humidity') ) @check_units('[pressure]', '[temperature]', '[dimensionless]') def relative_humidity_from_specific_humidity(pressure, temperature, specific_humidity): r"""Calculate the relative humidity from specific humidity, temperature, and pressure. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature specific_humidity: `pint.Quantity` Specific humidity of air Returns ------- `pint.Quantity` Relative humidity Notes ----- Formula based on that from [Hobbs1977]_ pg. 74. and [Salby1996]_ pg. 118. .. math:: relative_humidity = \frac{q}{(1-q)w_s} * :math:`relative_humidity` is relative humidity as a unitless ratio * :math:`q` is specific humidity * :math:`w_s` is the saturation mixing ratio .. versionchanged:: 1.0 Changed signature from ``(specific_humidity, temperature, pressure)`` See Also -------- relative_humidity_from_mixing_ratio """ return (mixing_ratio_from_specific_humidity(specific_humidity) / saturation_mixing_ratio(pressure, temperature)) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]') def cape_cin(pressure, temperature, dewpoint, parcel_profile, which_lfc='bottom', which_el='top'): r"""Calculate CAPE and CIN. Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) of a given upper air profile and parcel path. CIN is integrated between the surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of the measured temperature profile and parcel profile are logarithmically interpolated. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest, in order from highest to lowest pressure temperature : `pint.Quantity` Atmospheric temperature corresponding to pressure dewpoint : `pint.Quantity` Atmospheric dewpoint corresponding to pressure parcel_profile : `pint.Quantity` Temperature profile of the parcel which_lfc : str Choose which LFC to integrate from. Valid options are 'top', 'bottom', 'wide', and 'most_cape'. Default is 'bottom'. which_el : str Choose which EL to integrate to. Valid options are 'top', 'bottom', 'wide', and 'most_cape'. Default is 'top'. Returns ------- `pint.Quantity` Convective Available Potential Energy (CAPE) `pint.Quantity` Convective Inhibition (CIN) Notes ----- Formula adopted from [Hobbs1977]_. .. math:: \text{CAPE} = -R_d \int_{LFC}^{EL} (T_{parcel} - T_{env}) d\text{ln}(p) .. math:: \text{CIN} = -R_d \int_{SFC}^{LFC} (T_{parcel} - T_{env}) d\text{ln}(p) * :math:`CAPE` is convective available potential energy * :math:`CIN` is convective inhibition * :math:`LFC` is pressure of the level of free convection * :math:`EL` is pressure of the equilibrium level * :math:`SFC` is the level of the surface or beginning of parcel path * :math:`R_d` is the gas constant * :math:`g` is gravitational acceleration * :math:`T_{parcel}` is the parcel temperature * :math:`T_{env}` is environment temperature * :math:`p` is atmospheric pressure Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``dewpt`` parameter to ``dewpoint`` See Also -------- lfc, el """ pressure, temperature, dewpoint, parcel_profile = _remove_nans(pressure, temperature, dewpoint, parcel_profile) # Calculate LFC limit of integration lfc_pressure, _ = lfc(pressure, temperature, dewpoint, parcel_temperature_profile=parcel_profile, which=which_lfc) # If there is no LFC, no need to proceed. if np.isnan(lfc_pressure): return units.Quantity(0, 'J/kg'), units.Quantity(0, 'J/kg') else: lfc_pressure = lfc_pressure.magnitude # Calculate the EL limit of integration el_pressure, _ = el(pressure, temperature, dewpoint, parcel_temperature_profile=parcel_profile, which=which_el) # No EL and we use the top reading of the sounding. if np.isnan(el_pressure): el_pressure = pressure[-1].magnitude else: el_pressure = el_pressure.magnitude # Difference between the parcel path and measured temperature profiles y = (parcel_profile - temperature).to(units.degK) # Estimate zero crossings x, y = _find_append_zero_crossings(np.copy(pressure), y) # CAPE # Only use data between the LFC and EL for calculation p_mask = _less_or_close(x.m, lfc_pressure) & _greater_or_close(x.m, el_pressure) x_clipped = x[p_mask].magnitude y_clipped = y[p_mask].magnitude cape = (mpconsts.Rd * units.Quantity(np.trapz(y_clipped, np.log(x_clipped)), 'K')).to(units('J/kg')) # CIN # Only use data between the surface and LFC for calculation p_mask = _greater_or_close(x.m, lfc_pressure) x_clipped = x[p_mask].magnitude y_clipped = y[p_mask].magnitude cin = (mpconsts.Rd * units.Quantity(np.trapz(y_clipped, np.log(x_clipped)), 'K')).to(units('J/kg')) # Set CIN to 0 if it's returned as a positive value (#1190) if cin > units.Quantity(0, 'J/kg'): cin = units.Quantity(0, 'J/kg') return cape, cin def _find_append_zero_crossings(x, y): r""" Find and interpolate zero crossings. Estimate the zero crossings of an x,y series and add estimated crossings to series, returning a sorted array with no duplicate values. Parameters ---------- x : `pint.Quantity` X values of data y : `pint.Quantity` Y values of data Returns ------- x : `pint.Quantity` X values of data y : `pint.Quantity` Y values of data """ crossings = find_intersections(x[1:], y[1:], units.Quantity(np.zeros_like(y[1:]), y.units), log_x=True) x = concatenate((x, crossings[0])) y = concatenate((y, crossings[1])) # Resort so that data are in order sort_idx = np.argsort(x) x = x[sort_idx] y = y[sort_idx] # Remove duplicate data points if there are any keep_idx = np.ediff1d(x.magnitude, to_end=[1]) > 1e-6 x = x[keep_idx] y = y[keep_idx] return x, y @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def most_unstable_parcel(pressure, temperature, dewpoint, height=None, bottom=None, depth=None): """ Determine the most unstable parcel in a layer. Determines the most unstable parcel of air by calculating the equivalent potential temperature and finding its maximum in the specified layer. Parameters ---------- pressure: `pint.Quantity` Atmospheric pressure profile temperature: `pint.Quantity` Atmospheric temperature profile dewpoint: `pint.Quantity` Atmospheric dewpoint profile height: `pint.Quantity`, optional Atmospheric height profile. Standard atmosphere assumed when None (the default). bottom: `pint.Quantity`, optional Bottom of the layer to consider for the calculation in pressure or height. Defaults to using the bottom pressure or height. depth: `pint.Quantity`, optional Depth of the layer to consider for the calculation in pressure or height. Defaults to 300 hPa. Returns ------- `pint.Quantity` Pressure, temperature, and dewpoint of most unstable parcel in the profile integer Index of the most unstable parcel in the given profile See Also -------- get_layer Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``heights`` parameter to ``height`` """ if depth is None: depth = units.Quantity(300, 'hPa') p_layer, t_layer, td_layer = get_layer(pressure, temperature, dewpoint, bottom=bottom, depth=depth, height=height, interpolate=False) theta_e = equivalent_potential_temperature(p_layer, t_layer, td_layer) max_idx = np.argmax(theta_e) return p_layer[max_idx], t_layer[max_idx], td_layer[max_idx], max_idx @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap() @check_units('[temperature]', '[pressure]', '[temperature]') def isentropic_interpolation(levels, pressure, temperature, *args, vertical_dim=0, temperature_out=False, max_iters=50, eps=1e-6, bottom_up_search=True, **kwargs): r"""Interpolate data in isobaric coordinates to isentropic coordinates. Parameters ---------- levels : array One-dimensional array of desired potential temperature surfaces pressure : array One-dimensional array of pressure levels temperature : array Array of temperature vertical_dim : int, optional The axis corresponding to the vertical in the temperature array, defaults to 0. temperature_out : bool, optional If true, will calculate temperature and output as the last item in the output list. Defaults to False. max_iters : int, optional Maximum number of iterations to use in calculation, defaults to 50. eps : float, optional The desired absolute error in the calculated value, defaults to 1e-6. bottom_up_search : bool, optional Controls whether to search for levels bottom-up, or top-down. Defaults to True, which is bottom-up search. args : array, optional Any additional variables will be interpolated to each isentropic level Returns ------- list List with pressure at each isentropic level, followed by each additional argument interpolated to isentropic coordinates. Notes ----- Input variable arrays must have the same number of vertical levels as the pressure levels array. Pressure is calculated on isentropic surfaces by assuming that temperature varies linearly with the natural log of pressure. Linear interpolation is then used in the vertical to find the pressure at each isentropic level. Interpolation method from [Ziv1994]_. Any additional arguments are assumed to vary linearly with temperature and will be linearly interpolated to the new isentropic levels. Will only return Pint Quantities, even when given xarray DataArray profiles. To obtain a xarray Dataset instead, use `isentropic_interpolation_as_dataset` instead. .. versionchanged:: 1.0 Renamed ``theta_levels``, ``axis`` parameters to ``levels``, ``vertical_dim`` See Also -------- potential_temperature, isentropic_interpolation_as_dataset """ # iteration function to be used later # Calculates theta from linearly interpolated temperature and solves for pressure def _isen_iter(iter_log_p, isentlevs_nd, ka, a, b, pok): exner = pok * np.exp(-ka * iter_log_p) t = a * iter_log_p + b # Newton-Raphson iteration f = isentlevs_nd - t * exner fp = exner * (ka * t - a) return iter_log_p - (f / fp) # Get dimensions in temperature ndim = temperature.ndim # Convert units pressure = pressure.to('hPa') temperature = temperature.to('kelvin') slices = [np.newaxis] * ndim slices[vertical_dim] = slice(None) slices = tuple(slices) pressure = units.Quantity(np.broadcast_to(pressure[slices].magnitude, temperature.shape), pressure.units) # Sort input data sort_pressure = np.argsort(pressure.m, axis=vertical_dim) sort_pressure = np.swapaxes(np.swapaxes(sort_pressure, 0, vertical_dim)[::-1], 0, vertical_dim) sorter = broadcast_indices(pressure, sort_pressure, ndim, vertical_dim) levs = pressure[sorter] tmpk = temperature[sorter] levels = np.asarray(levels.m_as('kelvin')).reshape(-1) isentlevels = levels[np.argsort(levels)] # Make the desired isentropic levels the same shape as temperature shape = list(temperature.shape) shape[vertical_dim] = isentlevels.size isentlevs_nd = np.broadcast_to(isentlevels[slices], shape) # exponent to Poisson's Equation, which is imported above ka = mpconsts.kappa.m_as('dimensionless') # calculate theta for each point pres_theta = potential_temperature(levs, tmpk) # Raise error if input theta level is larger than pres_theta max if np.max(pres_theta.m) < np.max(levels): raise ValueError('Input theta level out of data bounds') # Find log of pressure to implement assumption of linear temperature dependence on # ln(p) log_p = np.log(levs.m) # Calculations for interpolation routine pok = mpconsts.P0 ** ka # index values for each point for the pressure level nearest to the desired theta level above, below, good = find_bounding_indices(pres_theta.m, levels, vertical_dim, from_below=bottom_up_search) # calculate constants for the interpolation a = (tmpk.m[above] - tmpk.m[below]) / (log_p[above] - log_p[below]) b = tmpk.m[above] - a * log_p[above] # calculate first guess for interpolation isentprs = 0.5 * (log_p[above] + log_p[below]) # Make sure we ignore any nans in the data for solving; checking a is enough since it # combines log_p and tmpk. good &= ~np.isnan(a) # iterative interpolation using scipy.optimize.fixed_point and _isen_iter defined above log_p_solved = so.fixed_point(_isen_iter, isentprs[good], args=(isentlevs_nd[good], ka, a[good], b[good], pok.m), xtol=eps, maxiter=max_iters) # get back pressure from log p isentprs[good] = np.exp(log_p_solved) # Mask out points we know are bad as well as points that are beyond the max pressure isentprs[~(good & _less_or_close(isentprs, np.max(pressure.m)))] = np.nan # create list for storing output data ret = [units.Quantity(isentprs, 'hPa')] # if temperature_out = true, calculate temperature and output as last item in list if temperature_out: ret.append(units.Quantity((isentlevs_nd / ((mpconsts.P0.m / isentprs) ** ka)), 'K')) # do an interpolation for each additional argument if args: others = interpolate_1d(isentlevels, pres_theta.m, *(arr[sorter] for arr in args), axis=vertical_dim, return_list_always=True) ret.extend(others) return ret @exporter.export def isentropic_interpolation_as_dataset( levels, temperature, *args, max_iters=50, eps=1e-6, bottom_up_search=True ): r"""Interpolate xarray data in isobaric coords to isentropic coords, returning a Dataset. Parameters ---------- levels : `pint.Quantity` One-dimensional array of desired potential temperature surfaces temperature : `xarray.DataArray` Array of temperature args : `xarray.DataArray`, optional Any other given variables will be interpolated to each isentropic level. Must have names in order to have a well-formed output Dataset. max_iters : int, optional The maximum number of iterations to use in calculation, defaults to 50. eps : float, optional The desired absolute error in the calculated value, defaults to 1e-6. bottom_up_search : bool, optional Controls whether to search for levels bottom-up, or top-down. Defaults to True, which is bottom-up search. Returns ------- xarray.Dataset Dataset with pressure, temperature, and each additional argument, all on the specified isentropic coordinates. Notes ----- Input variable arrays must have the same number of vertical levels as the pressure levels array. Pressure is calculated on isentropic surfaces by assuming that temperature varies linearly with the natural log of pressure. Linear interpolation is then used in the vertical to find the pressure at each isentropic level. Interpolation method from [Ziv1994]_. Any additional arguments are assumed to vary linearly with temperature and will be linearly interpolated to the new isentropic levels. This formulation relies upon xarray functionality. If using Pint Quantities, use `isentropic_interpolation` instead. See Also -------- potential_temperature, isentropic_interpolation """ # Ensure matching coordinates by broadcasting all_args = xr.broadcast(temperature, *args) # Obtain result as list of Quantities ret = isentropic_interpolation( levels, all_args[0].metpy.vertical, all_args[0].metpy.unit_array, *(arg.metpy.unit_array for arg in all_args[1:]), vertical_dim=all_args[0].metpy.find_axis_number('vertical'), temperature_out=True, max_iters=max_iters, eps=eps, bottom_up_search=bottom_up_search ) # Reconstruct coordinates and dims (add isentropic levels, remove isobaric levels) vertical_dim = all_args[0].metpy.find_axis_name('vertical') new_coords = { 'isentropic_level': xr.DataArray( levels.m, dims=('isentropic_level',), coords={'isentropic_level': levels.m}, name='isentropic_level', attrs={ 'units': str(levels.units), 'positive': 'up' } ), **{ key: value for key, value in all_args[0].coords.items() if key != vertical_dim } } new_dims = [ dim if dim != vertical_dim else 'isentropic_level' for dim in all_args[0].dims ] # Build final dataset from interpolated Quantities and original DataArrays return xr.Dataset( { 'pressure': ( new_dims, ret[0], {'standard_name': 'air_pressure'} ), 'temperature': ( new_dims, ret[1], {'standard_name': 'air_temperature'} ), **{ all_args[i].name: (new_dims, ret[i + 1], all_args[i].attrs) for i in range(1, len(all_args)) } }, coords=new_coords ) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def surface_based_cape_cin(pressure, temperature, dewpoint): r"""Calculate surface-based CAPE and CIN. Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) of a given upper air profile for a surface-based parcel. CIN is integrated between the surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of the measured temperature profile and parcel profile are logarithmically interpolated. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure profile. The first entry should be the starting (surface) observation, with the array going from high to low pressure. temperature : `pint.Quantity` Temperature profile corresponding to the `pressure` profile dewpoint : `pint.Quantity` Dewpoint profile corresponding to the `pressure` profile Returns ------- `pint.Quantity` Surface based Convective Available Potential Energy (CAPE) `pint.Quantity` Surface based Convective Inhibition (CIN) See Also -------- cape_cin, parcel_profile Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. """ pressure, temperature, dewpoint = _remove_nans(pressure, temperature, dewpoint) p, t, td, profile = parcel_profile_with_lcl(pressure, temperature, dewpoint) return cape_cin(p, t, td, profile) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def most_unstable_cape_cin(pressure, temperature, dewpoint, **kwargs): r"""Calculate most unstable CAPE/CIN. Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) of a given upper air profile and most unstable parcel path. CIN is integrated between the surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of the measured temperature profile and parcel profile are logarithmically interpolated. Parameters ---------- pressure : `pint.Quantity` Pressure profile temperature : `pint.Quantity` Temperature profile dewpoint : `pint.Quantity` Dew point profile kwargs Additional keyword arguments to pass to `most_unstable_parcel` Returns ------- `pint.Quantity` Most unstable Convective Available Potential Energy (CAPE) `pint.Quantity` Most unstable Convective Inhibition (CIN) See Also -------- cape_cin, most_unstable_parcel, parcel_profile Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. """ pressure, temperature, dewpoint = _remove_nans(pressure, temperature, dewpoint) _, _, _, parcel_idx = most_unstable_parcel(pressure, temperature, dewpoint, **kwargs) p, t, td, mu_profile = parcel_profile_with_lcl(pressure[parcel_idx:], temperature[parcel_idx:], dewpoint[parcel_idx:]) return cape_cin(p, t, td, mu_profile) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def mixed_layer_cape_cin(pressure, temperature, dewpoint, **kwargs): r"""Calculate mixed-layer CAPE and CIN. Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) of a given upper air profile and mixed-layer parcel path. CIN is integrated between the surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of the measured temperature profile and parcel profile are logarithmically interpolated. Kwargs for `mixed_parcel` can be provided, such as `depth`. Default mixed-layer depth is 100 hPa. Parameters ---------- pressure : `pint.Quantity` Pressure profile temperature : `pint.Quantity` Temperature profile dewpoint : `pint.Quantity` Dewpoint profile kwargs Additional keyword arguments to pass to `mixed_parcel` Returns ------- `pint.Quantity` Mixed-layer Convective Available Potential Energy (CAPE) `pint.Quantity` Mixed-layer Convective INhibition (CIN) See Also -------- cape_cin, mixed_parcel, parcel_profile Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. """ depth = kwargs.get('depth', units.Quantity(100, 'hPa')) parcel_pressure, parcel_temp, parcel_dewpoint = mixed_parcel(pressure, temperature, dewpoint, **kwargs) # Remove values below top of mixed layer and add in the mixed layer values pressure_prof = pressure[pressure < (pressure[0] - depth)] temp_prof = temperature[pressure < (pressure[0] - depth)] dew_prof = dewpoint[pressure < (pressure[0] - depth)] pressure_prof = concatenate([parcel_pressure, pressure_prof]) temp_prof = concatenate([parcel_temp, temp_prof]) dew_prof = concatenate([parcel_dewpoint, dew_prof]) p, t, td, ml_profile = parcel_profile_with_lcl(pressure_prof, temp_prof, dew_prof) return cape_cin(p, t, td, ml_profile) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def mixed_parcel(pressure, temperature, dewpoint, parcel_start_pressure=None, height=None, bottom=None, depth=None, interpolate=True): r"""Calculate the properties of a parcel mixed from a layer. Determines the properties of an air parcel that is the result of complete mixing of a given atmospheric layer. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure profile temperature : `pint.Quantity` Atmospheric temperature profile dewpoint : `pint.Quantity` Atmospheric dewpoint profile parcel_start_pressure : `pint.Quantity`, optional Pressure at which the mixed parcel should begin (default None) height: `pint.Quantity`, optional Atmospheric heights corresponding to the given pressures (default None) bottom : `pint.Quantity`, optional The bottom of the layer as a pressure or height above the surface pressure (default None) depth : `pint.Quantity`, optional The thickness of the layer as a pressure or height above the bottom of the layer (default 100 hPa) interpolate : bool, optional Interpolate the top and bottom points if they are not in the given data Returns ------- `pint.Quantity` Pressure of the mixed parcel `pint.Quantity` Temperature of the mixed parcel `pint.Quantity` Dewpoint of the mixed parcel Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``p``, ``dewpt``, ``heights`` parameters to ``pressure``, ``dewpoint``, ``height`` """ # If a parcel starting pressure is not provided, use the surface if not parcel_start_pressure: parcel_start_pressure = pressure[0] if depth is None: depth = units.Quantity(100, 'hPa') # Calculate the potential temperature and mixing ratio over the layer theta = potential_temperature(pressure, temperature) mixing_ratio = saturation_mixing_ratio(pressure, dewpoint) # Mix the variables over the layer mean_theta, mean_mixing_ratio = mixed_layer(pressure, theta, mixing_ratio, bottom=bottom, height=height, depth=depth, interpolate=interpolate) # Convert back to temperature mean_temperature = mean_theta * exner_function(parcel_start_pressure) # Convert back to dewpoint mean_vapor_pressure = vapor_pressure(parcel_start_pressure, mean_mixing_ratio) # Using globals() here allows us to keep the dewpoint parameter but still call the # function of the same name. mean_dewpoint = globals()['dewpoint'](mean_vapor_pressure) return (parcel_start_pressure, mean_temperature.to(temperature.units), mean_dewpoint.to(dewpoint.units)) @exporter.export @preprocess_and_wrap() @check_units('[pressure]') def mixed_layer(pressure, *args, height=None, bottom=None, depth=None, interpolate=True): r"""Mix variable(s) over a layer, yielding a mass-weighted average. This function will integrate a data variable with respect to pressure and determine the average value using the mean value theorem. Parameters ---------- pressure : array-like Atmospheric pressure profile datavar : array-like Atmospheric variable measured at the given pressures height: array-like, optional Atmospheric heights corresponding to the given pressures (default None) bottom : `pint.Quantity`, optional The bottom of the layer as a pressure or height above the surface pressure (default None) depth : `pint.Quantity`, optional The thickness of the layer as a pressure or height above the bottom of the layer (default 100 hPa) interpolate : bool, optional Interpolate the top and bottom points if they are not in the given data (default True) Returns ------- `pint.Quantity` The mixed value of the data variable Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``p``, ``heights`` parameters to ``pressure``, ``height`` """ if depth is None: depth = units.Quantity(100, 'hPa') layer = get_layer(pressure, *args, height=height, bottom=bottom, depth=depth, interpolate=interpolate) p_layer = layer[0] datavars_layer = layer[1:] ret = [] for datavar_layer in datavars_layer: actual_depth = abs(p_layer[0] - p_layer[-1]) ret.append(units.Quantity(np.trapz(datavar_layer.m, p_layer.m) / -actual_depth.m, datavar_layer.units)) return ret @exporter.export @preprocess_and_wrap(wrap_like='temperature', broadcast=('height', 'temperature')) @check_units('[length]', '[temperature]') def dry_static_energy(height, temperature): r"""Calculate the dry static energy of parcels. This function will calculate the dry static energy following the first two terms of equation 3.72 in [Hobbs2006]_. Notes ----- .. math::\text{dry static energy} = c_{pd} * T + gz * :math:`T` is temperature * :math:`z` is height Parameters ---------- height : `pint.Quantity` Atmospheric height temperature : `pint.Quantity` Air temperature Returns ------- `pint.Quantity` Dry static energy .. versionchanged:: 1.0 Renamed ``heights`` parameter to ``height`` See Also -------- montgomery_streamfunction """ return (mpconsts.g * height + mpconsts.Cp_d * temperature).to('kJ/kg') @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('height', 'temperature', 'specific_humidity') ) @check_units('[length]', '[temperature]', '[dimensionless]') def moist_static_energy(height, temperature, specific_humidity): r"""Calculate the moist static energy of parcels. This function will calculate the moist static energy following equation 3.72 in [Hobbs2006]_. Parameters ---------- height : `pint.Quantity` Atmospheric height temperature : `pint.Quantity` Air temperature specific_humidity : `pint.Quantity` Atmospheric specific humidity Returns ------- `pint.Quantity` Moist static energy Notes ----- .. math::\text{moist static energy} = c_{pd} * T + gz + L_v q * :math:`T` is temperature * :math:`z` is height * :math:`q` is specific humidity .. versionchanged:: 1.0 Renamed ``heights`` parameter to ``height`` """ return (dry_static_energy(height, temperature) + mpconsts.Lv * specific_humidity.to('dimensionless')).to('kJ/kg') @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]') def thickness_hydrostatic(pressure, temperature, mixing_ratio=None, molecular_weight_ratio=mpconsts.epsilon, bottom=None, depth=None): r"""Calculate the thickness of a layer via the hypsometric equation. This thickness calculation uses the pressure and temperature profiles (and optionally mixing ratio) via the hypsometric equation with virtual temperature adjustment. .. math:: Z_2 - Z_1 = -\frac{R_d}{g} \int_{p_1}^{p_2} T_v d\ln p, Which is based off of Equation 3.24 in [Hobbs2006]_. This assumes a hydrostatic atmosphere. Layer bottom and depth specified in pressure. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure profile temperature : `pint.Quantity` Atmospheric temperature profile mixing_ratio : `pint.Quantity`, optional Profile of dimensionless mass mixing ratio. If none is given, virtual temperature is simply set to be the given temperature. molecular_weight_ratio : `pint.Quantity` or float, optional The ratio of the molecular weight of the constituent gas to that assumed for air. Defaults to the ratio for water vapor to dry air. (:math:`\epsilon\approx0.622`) bottom : `pint.Quantity`, optional The bottom of the layer in pressure. Defaults to the first observation. depth : `pint.Quantity`, optional The depth of the layer in hPa. Defaults to the full profile if bottom is not given, and 100 hPa if bottom is given. Returns ------- `pint.Quantity` The thickness of the layer in meters See Also -------- thickness_hydrostatic_from_relative_humidity, pressure_to_height_std, virtual_temperature Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. .. versionchanged:: 1.0 Renamed ``mixing`` parameter to ``mixing_ratio`` """ # Get the data for the layer, conditional upon bottom/depth being specified and mixing # ratio being given if bottom is None and depth is None: if mixing_ratio is None: layer_p, layer_virttemp = pressure, temperature else: layer_p = pressure layer_virttemp = virtual_temperature(temperature, mixing_ratio, molecular_weight_ratio) else: if mixing_ratio is None: layer_p, layer_virttemp = get_layer(pressure, temperature, bottom=bottom, depth=depth) else: layer_p, layer_temp, layer_w = get_layer(pressure, temperature, mixing_ratio, bottom=bottom, depth=depth) layer_virttemp = virtual_temperature(layer_temp, layer_w, molecular_weight_ratio) # Take the integral (with unit handling) and return the result in meters integral = units.Quantity(np.trapz(layer_virttemp.m_as('K'), np.log(layer_p.m_as('hPa'))), units.K) return (-mpconsts.Rd / mpconsts.g * integral).to('m') @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]') def thickness_hydrostatic_from_relative_humidity(pressure, temperature, relative_humidity, bottom=None, depth=None): r"""Calculate the thickness of a layer given pressure, temperature and relative humidity. Similar to ``thickness_hydrostatic``, this thickness calculation uses the pressure, temperature, and relative humidity profiles via the hypsometric equation with virtual temperature adjustment .. math:: Z_2 - Z_1 = -\frac{R_d}{g} \int_{p_1}^{p_2} T_v d\ln p, which is based off of Equation 3.24 in [Hobbs2006]_. Virtual temperature is calculated from the profiles of temperature and relative humidity. This assumes a hydrostatic atmosphere. Layer bottom and depth specified in pressure. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure profile temperature : `pint.Quantity` Atmospheric temperature profile relative_humidity : `pint.Quantity` Atmospheric relative humidity profile. The relative humidity is expressed as a unitless ratio in the range [0, 1]. Can also pass a percentage if proper units are attached. bottom : `pint.Quantity`, optional The bottom of the layer in pressure. Defaults to the first observation. depth : `pint.Quantity`, optional The depth of the layer in hPa. Defaults to the full profile if bottom is not given, and 100 hPa if bottom is given. Returns ------- `pint.Quantity` The thickness of the layer in meters See Also -------- thickness_hydrostatic, pressure_to_height_std, virtual_temperature, mixing_ratio_from_relative_humidity Notes ----- Only functions on 1D profiles (not higher-dimension vertical cross sections or grids). Since this function returns scalar values when given a profile, this will return Pint Quantities even when given xarray DataArray profiles. """ mixing = mixing_ratio_from_relative_humidity(pressure, temperature, relative_humidity) return thickness_hydrostatic(pressure, temperature, mixing_ratio=mixing, bottom=bottom, depth=depth) @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap(wrap_like='height', broadcast=('height', 'potential_temperature')) @check_units('[length]', '[temperature]') def brunt_vaisala_frequency_squared(height, potential_temperature, vertical_dim=0): r"""Calculate the square of the Brunt-Vaisala frequency. Brunt-Vaisala frequency squared (a measure of atmospheric stability) is given by the formula: .. math:: N^2 = \frac{g}{\theta} \frac{d\theta}{dz} This formula is based off of Equations 3.75 and 3.77 in [Hobbs2006]_. Parameters ---------- height : `xarray.DataArray` or `pint.Quantity` Atmospheric (geopotential) height potential_temperature : `xarray.DataArray` or `pint.Quantity` Atmospheric potential temperature vertical_dim : int, optional The axis corresponding to vertical in the potential temperature array, defaults to 0, unless `height` and `potential_temperature` given as `xarray.DataArray`, in which case it is automatically determined from the coordinate metadata. Returns ------- `pint.Quantity` or `xarray.DataArray` The square of the Brunt-Vaisala frequency. Given as `pint.Quantity`, unless both `height` and `potential_temperature` arguments are given as `xarray.DataArray`, in which case will be `xarray.DataArray`. .. versionchanged:: 1.0 Renamed ``heights``, ``axis`` parameters to ``height``, ``vertical_dim`` See Also -------- brunt_vaisala_frequency, brunt_vaisala_period, potential_temperature """ # Ensure validity of temperature units potential_temperature = potential_temperature.to('K') # Calculate and return the square of Brunt-Vaisala frequency return mpconsts.g / potential_temperature * first_derivative( potential_temperature, x=height, axis=vertical_dim ) @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap(wrap_like='height', broadcast=('height', 'potential_temperature')) @check_units('[length]', '[temperature]') def brunt_vaisala_frequency(height, potential_temperature, vertical_dim=0): r"""Calculate the Brunt-Vaisala frequency. This function will calculate the Brunt-Vaisala frequency as follows: .. math:: N = \left( \frac{g}{\theta} \frac{d\theta}{dz} \right)^\frac{1}{2} This formula based off of Equations 3.75 and 3.77 in [Hobbs2006]_. This function is a wrapper for `brunt_vaisala_frequency_squared` that filters out negative (unstable) quantities and takes the square root. Parameters ---------- height : `xarray.DataArray` or `pint.Quantity` Atmospheric (geopotential) height potential_temperature : `xarray.DataArray` or `pint.Quantity` Atmospheric potential temperature vertical_dim : int, optional The axis corresponding to vertical in the potential temperature array, defaults to 0, unless `height` and `potential_temperature` given as `xarray.DataArray`, in which case it is automatically determined from the coordinate metadata. Returns ------- `pint.Quantity` or `xarray.DataArray` Brunt-Vaisala frequency. Given as `pint.Quantity`, unless both `height` and `potential_temperature` arguments are given as `xarray.DataArray`, in which case will be `xarray.DataArray`. .. versionchanged:: 1.0 Renamed ``heights``, ``axis`` parameters to ``height``, ``vertical_dim`` See Also -------- brunt_vaisala_frequency_squared, brunt_vaisala_period, potential_temperature """ bv_freq_squared = brunt_vaisala_frequency_squared(height, potential_temperature, vertical_dim=vertical_dim) bv_freq_squared[bv_freq_squared.magnitude < 0] = np.nan return np.sqrt(bv_freq_squared) @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap(wrap_like='height', broadcast=('height', 'potential_temperature')) @check_units('[length]', '[temperature]') def brunt_vaisala_period(height, potential_temperature, vertical_dim=0): r"""Calculate the Brunt-Vaisala period. This function is a helper function for `brunt_vaisala_frequency` that calculates the period of oscillation as in Exercise 3.13 of [Hobbs2006]_: .. math:: \tau = \frac{2\pi}{N} Returns `NaN` when :math:`N^2 > 0`. Parameters ---------- height : `xarray.DataArray` or `pint.Quantity` Atmospheric (geopotential) height potential_temperature : `xarray.DataArray` or `pint.Quantity` Atmospheric potential temperature vertical_dim : int, optional The axis corresponding to vertical in the potential temperature array, defaults to 0, unless `height` and `potential_temperature` given as `xarray.DataArray`, in which case it is automatically determined from the coordinate metadata. Returns ------- `pint.Quantity` or `xarray.DataArray` Brunt-Vaisala period. Given as `pint.Quantity`, unless both `height` and `potential_temperature` arguments are given as `xarray.DataArray`, in which case will be `xarray.DataArray`. .. versionchanged:: 1.0 Renamed ``heights``, ``axis`` parameters to ``height``, ``vertical_dim`` See Also -------- brunt_vaisala_frequency, brunt_vaisala_frequency_squared, potential_temperature """ bv_freq_squared = brunt_vaisala_frequency_squared(height, potential_temperature, vertical_dim=vertical_dim) bv_freq_squared[bv_freq_squared.magnitude <= 0] = np.nan return 2 * np.pi / np.sqrt(bv_freq_squared) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'dewpoint') ) @check_units('[pressure]', '[temperature]', '[temperature]') def wet_bulb_temperature(pressure, temperature, dewpoint): """Calculate the wet-bulb temperature using Normand's rule. This function calculates the wet-bulb temperature using the Normand method. The LCL is computed, and that parcel brought down to the starting pressure along a moist adiabat. The Normand method (and others) are described and compared by [Knox2017]_. Parameters ---------- pressure : `pint.Quantity` Initial atmospheric pressure temperature : `pint.Quantity` Initial atmospheric temperature dewpoint : `pint.Quantity` Initial atmospheric dewpoint Returns ------- `pint.Quantity` Wet-bulb temperature See Also -------- lcl, moist_lapse Notes ----- Since this function iteratively applies a parcel calculation, it should be used with caution on large arrays. """ if not hasattr(pressure, 'shape'): pressure = np.atleast_1d(pressure) temperature = np.atleast_1d(temperature) dewpoint = np.atleast_1d(dewpoint) lcl_press, lcl_temp = lcl(pressure, temperature, dewpoint) it = np.nditer([pressure.magnitude, lcl_press.magnitude, lcl_temp.magnitude, None], op_dtypes=['float', 'float', 'float', 'float'], flags=['buffered']) for press, lpress, ltemp, ret in it: moist_adiabat_temperatures = moist_lapse(units.Quantity(press, pressure.units), units.Quantity(ltemp, lcl_temp.units), units.Quantity(lpress, lcl_press.units)) ret[...] = moist_adiabat_temperatures.magnitude # If we started with a scalar, return a scalar ret = it.operands[3] if ret.size == 1: ret = ret[0] return units.Quantity(ret, moist_adiabat_temperatures.units) @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap(wrap_like='temperature', broadcast=('pressure', 'temperature')) @check_units('[pressure]', '[temperature]') def static_stability(pressure, temperature, vertical_dim=0): r"""Calculate the static stability within a vertical profile. .. math:: \sigma = -\frac{RT}{p} \frac{\partial \ln \theta}{\partial p} This formula is based on equation 4.3.6 in [Bluestein1992]_. Parameters ---------- pressure : `pint.Quantity` Profile of atmospheric pressure temperature : `pint.Quantity` Profile of temperature vertical_dim : int, optional The axis corresponding to vertical in the pressure and temperature arrays, defaults to 0. Returns ------- `pint.Quantity` The profile of static stability .. versionchanged:: 1.0 Renamed ``axis`` parameter ``vertical_dim`` """ theta = potential_temperature(pressure, temperature) return - mpconsts.Rd * temperature / pressure * first_derivative( np.log(theta.m_as('K')), x=pressure, axis=vertical_dim ) @exporter.export @preprocess_and_wrap( wrap_like='temperature', broadcast=('pressure', 'temperature', 'specific_humdiity') ) @check_units('[pressure]', '[temperature]', '[dimensionless]') def dewpoint_from_specific_humidity(pressure, temperature, specific_humidity): r"""Calculate the dewpoint from specific humidity, temperature, and pressure. Parameters ---------- pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature specific_humidity: `pint.Quantity` Specific humidity of air Returns ------- `pint.Quantity` Dew point temperature .. versionchanged:: 1.0 Changed signature from ``(specific_humidity, temperature, pressure)`` See Also -------- relative_humidity_from_mixing_ratio, dewpoint_from_relative_humidity """ return dewpoint_from_relative_humidity(temperature, relative_humidity_from_specific_humidity( pressure, temperature, specific_humidity)) @exporter.export @preprocess_and_wrap(wrap_like='w', broadcast=('w', 'pressure', 'temperature')) @check_units('[length]/[time]', '[pressure]', '[temperature]') def vertical_velocity_pressure(w, pressure, temperature, mixing_ratio=0): r"""Calculate omega from w assuming hydrostatic conditions. This function converts vertical velocity with respect to height :math:`\left(w = \frac{Dz}{Dt}\right)` to that with respect to pressure :math:`\left(\omega = \frac{Dp}{Dt}\right)` assuming hydrostatic conditions on the synoptic scale. By Equation 7.33 in [Hobbs2006]_, .. math:: \omega \simeq -\rho g w Density (:math:`\rho`) is calculated using the :func:`density` function, from the given pressure and temperature. If `mixing_ratio` is given, the virtual temperature correction is used, otherwise, dry air is assumed. Parameters ---------- w: `pint.Quantity` Vertical velocity in terms of height pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature mixing_ratio: `pint.Quantity`, optional Mixing ratio of air Returns ------- `pint.Quantity` Vertical velocity in terms of pressure (in Pascals / second) See Also -------- density, vertical_velocity """ rho = density(pressure, temperature, mixing_ratio) return (-mpconsts.g * rho * w).to('Pa/s') @exporter.export @preprocess_and_wrap( wrap_like='omega', broadcast=('omega', 'pressure', 'temperature', 'mixing_ratio') ) @check_units('[pressure]/[time]', '[pressure]', '[temperature]') def vertical_velocity(omega, pressure, temperature, mixing_ratio=0): r"""Calculate w from omega assuming hydrostatic conditions. This function converts vertical velocity with respect to pressure :math:`\left(\omega = \frac{Dp}{Dt}\right)` to that with respect to height :math:`\left(w = \frac{Dz}{Dt}\right)` assuming hydrostatic conditions on the synoptic scale. By Equation 7.33 in [Hobbs2006]_, .. math:: \omega \simeq -\rho g w so that .. math:: w \simeq \frac{- \omega}{\rho g} Density (:math:`\rho`) is calculated using the :func:`density` function, from the given pressure and temperature. If `mixing_ratio` is given, the virtual temperature correction is used, otherwise, dry air is assumed. Parameters ---------- omega: `pint.Quantity` Vertical velocity in terms of pressure pressure: `pint.Quantity` Total atmospheric pressure temperature: `pint.Quantity` Air temperature mixing_ratio: `pint.Quantity`, optional Mixing ratio of air Returns ------- `pint.Quantity` Vertical velocity in terms of height (in meters / second) See Also -------- density, vertical_velocity_pressure """ rho = density(pressure, temperature, mixing_ratio) return (omega / (- mpconsts.g * rho)).to('m/s') @exporter.export @preprocess_and_wrap(wrap_like='dewpoint', broadcast=('dewpoint', 'pressure')) @check_units('[pressure]', '[temperature]') def specific_humidity_from_dewpoint(pressure, dewpoint): r"""Calculate the specific humidity from the dewpoint temperature and pressure. Parameters ---------- dewpoint: `pint.Quantity` Dewpoint temperature pressure: `pint.Quantity` Pressure Returns ------- `pint.Quantity` Specific humidity .. versionchanged:: 1.0 Changed signature from ``(dewpoint, pressure)`` See Also -------- mixing_ratio, saturation_mixing_ratio """ mixing_ratio = saturation_mixing_ratio(pressure, dewpoint) return specific_humidity_from_mixing_ratio(mixing_ratio) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def lifted_index(pressure, temperature, parcel_profile): """Calculate Lifted Index from the pressure temperature and parcel profile. Lifted index formula derived from [Galway1956]_ and referenced by [DoswellSchultz2006]_: LI = T500 - Tp500 where: T500 is the measured temperature at 500 hPa Tp500 is the temperature of the lifted parcel at 500 hPa Calculation of the lifted index is defined as the temperature difference between the observed 500 hPa temperature and the temperature of a parcel lifted from the surface to 500 hPa. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest, in order from highest to lowest pressure temperature : `pint.Quantity` Atmospheric temperature corresponding to pressure parcel_profile : `pint.Quantity` Temperature profile of the parcel Returns ------- `pint.Quantity` Lifted Index """ # find the index for the 500 hPa pressure level. idx = np.where(pressure == units.Quantity(500, 'hPa')) # find the measured temperature at 500 hPa. t500 = temperature[idx] # find the parcel profile temperature at 500 hPa. tp500 = parcel_profile[idx] # calculate the lifted index. lifted_index = t500 - tp500.to(units.degC) return lifted_index @exporter.export @add_vertical_dim_from_xarray @preprocess_and_wrap( wrap_like='potential_temperature', broadcast=('height', 'potential_temperature', 'u', 'v') ) @check_units('[length]', '[temperature]', '[speed]', '[speed]') def gradient_richardson_number(height, potential_temperature, u, v, vertical_dim=0): r"""Calculate the gradient (or flux) Richardson number. .. math:: Ri = (g/\theta) * \frac{\left(\partial \theta/\partial z\)} {[\left(\partial u / \partial z\right)^2 + \left(\partial v / \partial z\right)^2} See [Holton2004]_ pg. 121-122. As noted by [Holton2004]_, flux Richardson number values below 0.25 indicate turbulence. Parameters ---------- height : `pint.Quantity` Atmospheric height potential_temperature : `pint.Quantity` Atmospheric potential temperature u : `pint.Quantity` X component of the wind v : `pint.Quantity` y component of the wind vertical_dim : int, optional The axis corresponding to vertical, defaults to 0. Automatically determined from xarray DataArray arguments. Returns ------- `pint.Quantity` Gradient Richardson number """ dthetadz = first_derivative(potential_temperature, x=height, axis=vertical_dim) dudz = first_derivative(u, x=height, axis=vertical_dim) dvdz = first_derivative(v, x=height, axis=vertical_dim) return (mpconsts.g / potential_temperature) * (dthetadz / (dudz ** 2 + dvdz ** 2)) @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def showalter_index(pressure, temperature, dewpt): """Calculate Showalter Index from pressure temperature and 850 hPa lcl. Showalter Index derived from [Galway1956]_: SI = T500 - Tp500 where: T500 is the measured temperature at 500 hPa Tp500 is the temperature of the lifted parcel at 500 hPa Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure level(s) of interest, in order from highest to lowest pressure temperature : `pint.Quantity` Parcel temperature for corresponding pressure dewpt : `pint.Quantity` Parcel dew point temperatures for corresponding pressure Returns ------- `pint.Quantity` Showalter index """ # find the measured temperature and dew point temperature at 850 hPa. t850, td850 = interpolate_1d(units.Quantity(850, 'hPa'), pressure, temperature, dewpt) # find the parcel profile temperature at 500 hPa. tp500 = interpolate_1d(units.Quantity(500, 'hPa'), pressure, temperature) # Calculate lcl at the 850 hPa level lcl_calc, _ = lcl(units.Quantity(850, 'hPa'), t850[0], td850[0]) # Define end height for moist lapse rate calculation p_end = units.Quantity(500, 'hPa') # Calculate parcel temp when raised dry adiabatically from surface to lcl dl = dry_lapse(lcl_calc, temperature[0], pressure[0]) # Calculate parcel temp when raised moist adiabatically from lcl to 500mb ml = moist_lapse(p_end, dl, lcl_calc) # Calculate the Showalter index return tp500 - ml
33.538691
95
0.66607
7941d8fb2d5f70a785138454856ad5b071f37c07
4,077
py
Python
datasets/lj_speech/lj_speech.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
3,395
2020-05-13T21:16:50.000Z
2020-09-10T14:36:50.000Z
datasets/lj_speech/lj_speech.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
370
2020-05-13T21:28:57.000Z
2020-09-10T11:03:38.000Z
datasets/lj_speech/lj_speech.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
258
2020-05-15T01:17:09.000Z
2020-09-10T12:41:43.000Z
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """LJ automatic speech recognition dataset.""" import csv import os import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @misc{ljspeech17, author = {Keith Ito and Linda Johnson}, title = {The LJ Speech Dataset}, howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}}, year = 2017 } """ _DESCRIPTION = """\ This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books in English. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. Note that in order to limit the required storage for preparing this dataset, the audio is stored in the .wav format and is not converted to a float32 array. To convert the audio file to a float32 array, please make use of the `.map()` function as follows: ```python import soundfile as sf def map_to_array(batch): speech_array, _ = sf.read(batch["file"]) batch["speech"] = speech_array return batch dataset = dataset.map(map_to_array, remove_columns=["file"]) ``` """ _URL = "https://keithito.com/LJ-Speech-Dataset/" _DL_URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" class LJSpeech(datasets.GeneratorBasedBuilder): """LJ Speech dataset.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="main", version=VERSION, description="The full LJ Speech dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=22050), "file": datasets.Value("string"), "text": datasets.Value("string"), "normalized_text": datasets.Value("string"), } ), supervised_keys=("file", "text"), homepage=_URL, citation=_CITATION, task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], ) def _split_generators(self, dl_manager): root_path = dl_manager.download_and_extract(_DL_URL) root_path = os.path.join(root_path, "LJSpeech-1.1") wav_path = os.path.join(root_path, "wavs") csv_path = os.path.join(root_path, "metadata.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"wav_path": wav_path, "csv_path": csv_path} ), ] def _generate_examples(self, wav_path, csv_path): """Generate examples from an LJ Speech archive_path.""" with open(csv_path, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, delimiter="|", quotechar=None, skipinitialspace=True) for row in csv_reader: uid, text, norm_text = row filename = f"{uid}.wav" example = { "id": uid, "file": os.path.join(wav_path, filename), "audio": os.path.join(wav_path, filename), "text": text, "normalized_text": norm_text, } yield uid, example
34.846154
109
0.640177
7941d90d5d685319d17da28a739766de1175b9c9
1,209
py
Python
models/command_wrapper.py
Minigrim0/DiscordReminderBot
9b94c989fd3573fc2b2f8e2f389505bfa6e5eb85
[ "MIT" ]
2
2021-04-02T12:44:30.000Z
2021-04-02T12:50:50.000Z
models/command_wrapper.py
Minigrim0/DiscordReminderBot
9b94c989fd3573fc2b2f8e2f389505bfa6e5eb85
[ "MIT" ]
4
2021-04-02T22:54:20.000Z
2021-04-26T09:02:36.000Z
models/command_wrapper.py
Minigrim0/DiscordReminderBot
9b94c989fd3573fc2b2f8e2f389505bfa6e5eb85
[ "MIT" ]
2
2021-03-02T17:07:14.000Z
2021-03-27T15:29:30.000Z
from discord import Embed class CommandWrapper: """Represents a command, with its help text, its description and the command in itself""" def __init__(self, fun: callable): self.description = None self.command = None self.fun = fun self.help = "" async def __call__(self, *args, **kwargs): await self.fun(*args, **kwargs) def __str__(self): return f"\nCommand: {self.command}\n\tname: {self.fun.__name__}\n\tdescription: {self.description}" def __repr__(self): return str(self) def __eq__(self, command): return command == self.command def asEmbed(self) -> Embed: """Generates an Embed representing the command Returns: Embed: The embed of the command """ em = Embed(title=self.fun.__name__, description=self.description) em.add_field(name="parameters", value=self.help) return em @property def asEmbedPart(self) -> list: description = f"**help:**\n {self.help}\n**description:**\n {self.description}" return { "name": self.fun.__name__, "value": description, "inline": False }
27.477273
107
0.598015
7941d915b6363ecbdf98bde2599ec77ea5305f91
343
py
Python
0x04-python-more_data_structures/102-complex_delete.py
oluwaseun-ebenezer/holbertonschool-higher_level_programming
e830f969d3ca71abf0a2f6d4f7c64a82337eccd7
[ "MIT" ]
null
null
null
0x04-python-more_data_structures/102-complex_delete.py
oluwaseun-ebenezer/holbertonschool-higher_level_programming
e830f969d3ca71abf0a2f6d4f7c64a82337eccd7
[ "MIT" ]
null
null
null
0x04-python-more_data_structures/102-complex_delete.py
oluwaseun-ebenezer/holbertonschool-higher_level_programming
e830f969d3ca71abf0a2f6d4f7c64a82337eccd7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # 102-complex_delete.py def complex_delete(a_dictionary, value): """Delete keys with a specific value in a dictionary.""" while value in a_dictionary.values(): for k, v in a_dictionary.items(): if v == value: del a_dictionary[k] break return (a_dictionary)
24.5
60
0.606414
7941dae7b60ce8980c84d9a03156e4431838e8f7
652
py
Python
analyzer/models/v3.py
AmirSalari/DoHLyzer
07e0a1e64310dad779934a97ebe7db2a03eff3d9
[ "Unlicense" ]
23
2021-04-14T23:46:19.000Z
2022-03-31T04:46:47.000Z
analyzer/models/v3.py
AmirSalari/DoHLyzer
07e0a1e64310dad779934a97ebe7db2a03eff3d9
[ "Unlicense" ]
5
2021-04-19T20:12:20.000Z
2022-02-10T02:12:12.000Z
analyzer/models/v3.py
AmirSalari/DoHLyzer
07e0a1e64310dad779934a97ebe7db2a03eff3d9
[ "Unlicense" ]
8
2021-04-15T06:50:35.000Z
2022-01-15T00:44:45.000Z
from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM, Conv1D, MaxPool1D, Flatten def create_model(segment_size): model = Sequential() model.add(Conv1D(segment_size * 2, kernel_size=3, input_shape=(segment_size, 5), activation='relu')) model.add(MaxPool1D()) model.add(Flatten()) model.add(Dense(segment_size * 6, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(segment_size * 2, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model
38.352941
104
0.70092
7941db5edd18eca063a39158e20d1754a4bd61cd
4,509
py
Python
tests/app_test.py
jimtheplant/bioplatform
5097fae3a03c48338b552ad15d02b29e408ddbb9
[ "Apache-2.0" ]
null
null
null
tests/app_test.py
jimtheplant/bioplatform
5097fae3a03c48338b552ad15d02b29e408ddbb9
[ "Apache-2.0" ]
null
null
null
tests/app_test.py
jimtheplant/bioplatform
5097fae3a03c48338b552ad15d02b29e408ddbb9
[ "Apache-2.0" ]
null
null
null
import datetime import uuid from unittest.mock import Mock import graphene import pytest from bioplatform.app import app_factory from bioplatform.util import Status BASE_SCALAR_TEST_DATA = [ { "queries": [ { "class_name": "SimpleStringSingleField", "query_fields": [ ("test1", graphene.String(), "Testing") ] } ] }, { "queries": [ { "class_name": "SimpleIntSingleField", "query_fields": [ ("test1", graphene.Int(), 1) ] } ] }, { "queries": [ { "class_name": "SimpleFloatSingleField", "query_fields": [ ("test1", graphene.Float(), 1.0) ] } ] }, { "queries": [ { "class_name": "SimpleBooleanSingleField", "query_fields": [ ("test1", graphene.Boolean(), True) ] } ] }, { "queries": [ { "class_name": "SimpleIDSingleField", "query_fields": [ ("test1", graphene.ID(), str(uuid.uuid4())) ] } ] }, { "queries": [ { "class_name": "SimpleDateSingleField", "query_fields": [ ("test1", graphene.Date(), datetime.date(2019, 9, 15)) ] } ] }, { "queries": [ { "class_name": "SimpleDateTimeSingleField", "query_fields": [ ("test1", graphene.Date(), datetime.date(2019, 9, 15)) ] } ] }, ] @pytest.fixture() def simple_query_factory(): def _simple_query_factory(query_name, query_fields): query_dict = {} for field in query_fields: query_dict.update(field) return type(query_name, (graphene.ObjectType,), query_dict) return _simple_query_factory @pytest.fixture() def query_field_factory(): def _query_field_factory(field_name, field_type, field_value): return { field_name: field_type, "resolve_" + field_name: lambda self, info: field_value } return _query_field_factory @pytest.fixture() def initializer_mock_factory(): def _mock_initializer(return_value): mock_initializer = Mock() mock_initializer.init.return_value = return_value return mock_initializer return _mock_initializer @pytest.fixture() def initializers_factory(initializer_mock_factory, query_field_factory, simple_query_factory): def _initializers_factory(param): initializers = [] for query_info in param["queries"]: query_fields = [] for field in query_info["query_fields"]: query_fields.append(query_field_factory(*field)) query = simple_query_factory(query_info["class_name"], query_fields) initializers.append(initializer_mock_factory(query)) return initializers return _initializers_factory def test_app_factory_no_initializers(): app = app_factory([]) schema = app.routes[0].app.schema assert app.routes[0].path == "/" response = schema.execute("{appStatus}") assert response.data == {'appStatus': Status.OK.value} def format_expected_response(field_type, data): if type(field_type) == graphene.Date: return data.strftime("%Y-%m-%d") return data @pytest.mark.parametrize("param", BASE_SCALAR_TEST_DATA) def test_app_factory_initializers_base_scalars_no_dates(initializers_factory, param): initializers = initializers_factory(param) app = app_factory(initializers) schema = app.routes[0].app.schema assert app.routes[0].path == "/" response = schema.execute("{appStatus}") assert response.data == {'appStatus': Status.OK.value} queries_to_test = [] for query_info in param["queries"]: for query_field_info in query_info["query_fields"]: queries_to_test.append(query_field_info) for query in queries_to_test: response = schema.execute("{" + query[0] + "}") assert response.errors is None assert response.data == { query[0]: format_expected_response(query[1], query[2]) }
26.839286
94
0.556886
7941dba5828a88f19e8edd7999d205c7dc73817e
1,019
py
Python
manga_py/providers/readcomiconline_to.py
sonvt1710/manga-py
848a78e93b890af0c92056a1a9fc7f6ce5707cf6
[ "MIT" ]
337
2019-08-27T16:14:50.000Z
2022-03-29T09:58:22.000Z
manga_py/providers/readcomiconline_to.py
sonvt1710/manga-py
848a78e93b890af0c92056a1a9fc7f6ce5707cf6
[ "MIT" ]
225
2019-08-25T15:02:01.000Z
2022-03-31T06:36:09.000Z
manga_py/providers/readcomiconline_to.py
sonvt1710/manga-py
848a78e93b890af0c92056a1a9fc7f6ce5707cf6
[ "MIT" ]
41
2019-10-04T13:28:02.000Z
2022-03-19T08:18:34.000Z
from manga_py.provider import Provider from .helpers.std import Std class ReadComicOnlineTo(Provider, Std): def get_archive_name(self) -> str: chapter = self.re.search(r'id=(\d+)', self.chapter).group(1) return self.normal_arc_name([self.chapter_id, chapter]) def get_chapter_index(self, no_increment=False) -> str: return str(self.chapter_id) def get_content(self): return self._get_content(r'{}/Comic/{}') def get_manga_name(self) -> str: return self._get_name(r'/Comic/([^/]+)') def get_chapters(self): return self._elements('table.listing td > a') def prepare_cookies(self): self.http().cookies['rco_quality'] = 'hq' def get_files(self): content = self.http_get(self.chapter + '&readType=1') items = self.re.findall(r'lstImages.push\("([^"]+)"\)', content) return items def get_cover(self): return self._cover_from_content('.rightBox .barContent img[width]') main = ReadComicOnlineTo
29.114286
75
0.651619
7941dc35ed19bdd429a600103d6142c5d347f9ff
11,855
py
Python
rdflib/plugins/parsers/pyRdfa/property.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
4
2019-01-07T06:55:58.000Z
2021-07-16T13:34:58.000Z
rdflib/plugins/parsers/pyRdfa/property.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
null
null
null
rdflib/plugins/parsers/pyRdfa/property.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
2
2018-05-01T13:18:13.000Z
2018-11-15T04:58:05.000Z
# -*- coding: utf-8 -*- """ Implementation of the C{@property} value handling. RDFa 1.0 and RDFa 1.1 are fairly different. RDFa 1.0 generates only literals, see U{RDFa Task Force's wiki page<http://www.w3.org/2006/07/SWD/wiki/RDFa/LiteralObject>} for the details. On the other hand, RDFa 1.1, beyond literals, can also generate URI references. Hence the duplicate method in the L{ProcessProperty} class, one for RDFa 1.0 and the other for RDFa 1.1. @summary: RDFa Literal generation @requires: U{RDFLib package<http://rdflib.net>} @organization: U{World Wide Web Consortium<http://www.w3.org>} @author: U{Ivan Herman<a href="http://www.w3.org/People/Ivan/">} @license: This software is available for use under the U{W3C® SOFTWARE NOTICE AND LICENSE<href="http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231">} """ """ $Id: property.py,v 1.11 2012/06/12 11:47:11 ivan Exp $ $Date: 2012/06/12 11:47:11 $ """ import re, sys from rdflib import BNode from rdflib import Literal, URIRef from rdflib import RDF as ns_rdf from rdflib.term import XSDToPython from . import IncorrectBlankNodeUsage, IncorrectLiteral, err_no_blank_node from .utils import has_one_of_attributes, return_XML XMLLiteral = ns_rdf["XMLLiteral"] HTMLLiteral = URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML") class ProcessProperty : """Generate the value for C{@property} taking into account datatype, etc. Note: this class is created only if the C{@property} is indeed present, no need to check. @ivar node: DOM element node @ivar graph: the (RDF) graph to add the properies to @ivar subject: the RDFLib URIRef serving as a subject for the generated triples @ivar state: the current state to be used for the CURIE-s @type state: L{state.ExecutionContext} @ivar typed_resource: Typically the bnode generated by a @typeof """ def __init__(self, node, graph, subject, state, typed_resource = None) : """ @param node: DOM element node @param graph: the (RDF) graph to add the properies to @param subject: the RDFLib URIRef serving as a subject for the generated triples @param state: the current state to be used for the CURIE-s @param state: L{state.ExecutionContext} @param typed_resource: Typically the bnode generated by a @typeof; in RDFa 1.1, that becomes the object for C{@property} """ self.node = node self.graph = graph self.subject = subject self.state = state self.typed_resource = typed_resource def generate(self) : """ Common entry point for the RDFa 1.0 and RDFa 1.1 versions; bifurcates based on the RDFa version, as retrieved from the state object. """ if self.state.rdfa_version >= "1.1" : self.generate_1_1() else : self.generate_1_0() def generate_1_1(self) : """Generate the property object, 1.1 version""" ######################################################################### # See if the target is _not_ a literal irirefs = ("resource", "href", "src") noiri = ("content", "datatype", "rel", "rev") notypediri = ("content", "datatype", "rel", "rev", "about", "about_pruned") if has_one_of_attributes(self.node, irirefs) and not has_one_of_attributes(self.node, noiri) : # @href/@resource/@src takes the lead here... object = self.state.getResource(irirefs) elif self.node.hasAttribute("typeof") and not has_one_of_attributes(self.node, notypediri) and self.typed_resource != None : # a @typeof creates a special branch in case the typed resource was set during parsing object = self.typed_resource else : # We have to generate a literal # Get, if exists, the value of @datatype datatype = '' dtset = False if self.node.hasAttribute("datatype") : dtset = True dt = self.node.getAttribute("datatype") if dt != "" : datatype = self.state.getURI("datatype") # Supress lange is set in case some elements explicitly want to supress the effect of language # There were discussions, for example, that the <time> element should do so. Although, # after all, this was reversed, the functionality is kept in the code in case another # element might need it... if self.state.lang != None and self.state.supress_lang == False : lang = self.state.lang else : lang = '' # The simple case: separate @content attribute if self.node.hasAttribute("content") : val = self.node.getAttribute("content") # Handling the automatic uri conversion case if dtset == False : object = Literal(val, lang=lang) else : object = self._create_Literal(val, datatype=datatype, lang=lang) # The value of datatype has been set, and the keyword parameters take care of the rest else : # see if there *is* a datatype (even if it is empty!) if dtset : if datatype == XMLLiteral : litval = self._get_XML_literal(self.node) object = Literal(litval,datatype=XMLLiteral) elif datatype == HTMLLiteral : # I am not sure why this hack is necessary, but otherwise an encoding error occurs # In Python3 all this should become moot, due to the unicode everywhere approach... if sys.version_info[0] >= 3 : object = Literal(self._get_HTML_literal(self.node), datatype=HTMLLiteral) else : litval = self._get_HTML_literal(self.node) o = Literal(litval, datatype=XMLLiteral) object = Literal(o, datatype=HTMLLiteral) else : object = self._create_Literal(self._get_literal(self.node), datatype=datatype, lang=lang) else : object = self._create_Literal(self._get_literal(self.node), lang=lang) if object != None : for prop in self.state.getURI("property") : if not isinstance(prop, BNode) : if self.node.hasAttribute("inlist") : self.state.add_to_list_mapping(prop, object) else : self.graph.add( (self.subject, prop, object) ) else : self.state.options.add_warning(err_no_blank_node % "property", warning_type=IncorrectBlankNodeUsage, node=self.node.nodeName) # return def generate_1_0(self) : """Generate the property object, 1.0 version""" ######################################################################### # We have to generate a literal indeed. # Get, if exists, the value of @datatype datatype = '' dtset = False if self.node.hasAttribute("datatype") : dtset = True dt = self.node.getAttribute("datatype") if dt != "" : datatype = self.state.getURI("datatype") if self.state.lang != None : lang = self.state.lang else : lang = '' # The simple case: separate @content attribute if self.node.hasAttribute("content") : val = self.node.getAttribute("content") # Handling the automatic uri conversion case if dtset == False : object = Literal(val, lang=lang) else : object = self._create_Literal(val, datatype=datatype, lang=lang) # The value of datatype has been set, and the keyword parameters take care of the rest else : # see if there *is* a datatype (even if it is empty!) if dtset : # yep. The Literal content is the pure text part of the current element: # We have to check whether the specified datatype is, in fact, an # explicit XML Literal if datatype == XMLLiteral : litval = self._get_XML_literal(self.node) object = Literal(litval,datatype=XMLLiteral) elif datatype == HTMLLiteral : # I am not sure why this hack is necessary, but otherwise an encoding error occurs # In Python3 all this should become moot, due to the unicode everywhere approach... if sys.version_info[0] >= 3 : object = Literal(self._get_HTML_literal(self.node), datatype=HTMLLiteral) else : litval = self._get_HTML_literal(self.node) o = Literal(litval, datatype=XMLLiteral) object = Literal(o, datatype=HTMLLiteral) else : object = self._create_Literal(self._get_literal(self.node), datatype=datatype, lang=lang) else : # no controlling @datatype. We have to see if there is markup in the contained # element if True in [ n.nodeType == self.node.ELEMENT_NODE for n in self.node.childNodes ] : # yep, and XML Literal should be generated object = self._create_Literal(self._get_XML_literal(self.node), datatype=XMLLiteral) else : # At this point, there might be entities in the string that are returned as real characters by the dom # implementation. That should be turned back object = self._create_Literal(self._get_literal(self.node), lang=lang) for prop in self.state.getURI("property") : if not isinstance(prop,BNode) : self.graph.add( (self.subject,prop,object) ) else : self.state.options.add_warning(err_no_blank_node % "property", warning_type=IncorrectBlankNodeUsage, node=self.node.nodeName) # return ###################################################################################################################################### def _putBackEntities(self, str) : """Put 'back' entities for the '&','<', and '>' characters, to produce a proper XML string. Used by the XML Literal extraction. @param str: string to be converted @return: string with entities @rtype: string """ return str.replace('&','&amp;').replace('<','&lt;').replace('>','&gt;') def _get_literal(self, Pnode): """ Get (recursively) the full text from a DOM Node. @param Pnode: DOM Node @return: string """ rc = "" for node in Pnode.childNodes: if node.nodeType == node.TEXT_NODE: rc = rc + node.data elif node.nodeType == node.ELEMENT_NODE : rc = rc + self._get_literal(node) # The decision of the group in February 2008 is not to normalize the result by default. # This is reflected in the default value of the option if self.state.options.space_preserve : return rc else : return re.sub(r'(\r| |\n|\t)+'," ",rc).strip() # end getLiteral def _get_XML_literal(self, Pnode) : """ Get (recursively) the XML Literal content of a DOM Node. @param Pnode: DOM Node @return: string """ rc = "" for node in Pnode.childNodes: if node.nodeType == node.TEXT_NODE: rc = rc + self._putBackEntities(node.data) elif node.nodeType == node.ELEMENT_NODE : rc = rc + return_XML(self.state, node, base = False) return rc # end getXMLLiteral def _get_HTML_literal(self, Pnode) : """ Get (recursively) the XML Literal content of a DOM Node. @param Pnode: DOM Node @return: string """ rc = "" for node in Pnode.childNodes: if node.nodeType == node.TEXT_NODE: rc = rc + self._putBackEntities(node.data) elif node.nodeType == node.ELEMENT_NODE : rc = rc + return_XML(self.state, node, base = False, xmlns = False ) return rc # end getXMLLiteral def _create_Literal(self, val, datatype = '', lang = '') : """ Create a literal, taking into account the datatype and language. @return: Literal """ if datatype == None or datatype == '' : return Literal(val, lang=lang) #elif datatype == ns_xsd["string"] : # return Literal(val) else : # This is a bit convoluted... the default setup of rdflib does not gracefully react if the # datatype cannot properly be converted to Python. I have to copy and reuse some of the # rdflib code to get this working... # To make things worse: rdlib 3.1.0 does not handle the various xsd date types properly, ie, # the conversion function below will generate errors. Ie, the check should be skipped for those convFunc = XSDToPython.get(datatype, None) if convFunc : try : pv = convFunc(val) # If we got there the literal value and its datatype match except : self.state.options.add_warning("Incompatible value (%s) and datatype (%s) in Literal definition." % (val, datatype), warning_type=IncorrectLiteral, node=self.node.nodeName) return Literal(val, datatype=datatype)
38.868852
184
0.677436
7941dce19c4a933853cfcaeead8c12a4d93dd05d
1,555
py
Python
tests/test_base.py
jonancm/django-quantity-field
a1966b2db4e25358ef6520b80cc6b57f90cc847a
[ "MIT" ]
4
2018-02-24T02:54:44.000Z
2021-10-09T12:40:58.000Z
tests/test_base.py
jonancm/django-quantity-field
a1966b2db4e25358ef6520b80cc6b57f90cc847a
[ "MIT" ]
1
2021-10-20T02:40:24.000Z
2021-10-20T02:40:24.000Z
tests/test_base.py
jonancm/django-quantity-field
a1966b2db4e25358ef6520b80cc6b57f90cc847a
[ "MIT" ]
2
2019-02-05T02:19:17.000Z
2019-11-06T21:47:32.000Z
# coding: utf-8 import unittest from quantity_field import ureg from quantity_field.base import MultiQuantity class MultiQuantityTest(unittest.TestCase): def test_single_value(self): self.assertIsInstance(MultiQuantity(0), ureg.Quantity) self.assertEqual(MultiQuantity(3.5, ureg.kg), 3.5 * ureg.kg) self.assertEqual(MultiQuantity.from_string('42 kilogram'), 42 * ureg.kg) mq = MultiQuantity.from_list(100, ureg.m) self.assertEqual(mq, 100 * ureg.m) self.assertEqual(mq.units, ureg.m) self.assertEqual(mq[0], 100 * ureg.m) self.assertEqual(mq.dim, 1) self.assertEqual(mq * 2 * ureg.m, 200 * ureg.m * ureg.m) self.assertGreater(mq, 50 * ureg.m) self.assertEqual(unicode(mq), '100.0 meter') self.assertEqual(mq.to_string(), '100.0 meter') self.assertEqual(mq.to_list(), [100, 'meter']) def test_multi_value(self): self.assertEqual(MultiQuantity.from_string('2.5*4*3 meter'), 30 * ureg.m ** 3) mq = MultiQuantity.from_list(2.5, 4, ureg.m) self.assertEqual(mq, 10 * ureg.m ** 2) self.assertEqual(mq.units, ureg.m ** 2) self.assertEqual([q for q in mq], [2.5 * ureg.m, 4 * ureg.m]) self.assertEqual(mq.dim, 2) self.assertEqual(mq * 2 * ureg.m, 20 * ureg.m ** 3) self.assertGreater(mq, 5 * ureg.m ** 2) self.assertEqual(unicode(mq), '2.5*4.0 meter') self.assertEqual(mq.to_string(), '2.5*4.0 meter') self.assertEqual(mq.to_list(), [2.5, 4, 'meter'])
35.340909
86
0.626367
7941dd126eaaf30d0da82004367c9b0aa09ffb30
28,247
py
Python
dataset_reader.py
DREAM-ODA-OS/CloudfreeCoverage
ab1fcac9c94c9a876c8294f968c8fe2e4ba17266
[ "Unlicense", "MIT" ]
null
null
null
dataset_reader.py
DREAM-ODA-OS/CloudfreeCoverage
ab1fcac9c94c9a876c8294f968c8fe2e4ba17266
[ "Unlicense", "MIT" ]
null
null
null
dataset_reader.py
DREAM-ODA-OS/CloudfreeCoverage
ab1fcac9c94c9a876c8294f968c8fe2e4ba17266
[ "Unlicense", "MIT" ]
null
null
null
#!/usr/bin/env python # #------------------------------------------------------------------------------ # -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # # # Dataset reader module of the create_cloudless.py # --- currently containing Readers for: # -- Reader Class (General) # - CF_landsat5_2a_Reader # - CF_spot4take5_n2a_pente_Reader # - CF_cryoland_Reader # # - CF_landsat5_f_Reader # - CF_spot4take5_f_Reader # - CF_landsat5_m_Reader # - CF_cryoland_local_Reader # # # for internal testing: # '_f' = means located at hard disk # '_w' = means accessible via WCS service # '_m' = means use of the "local-mixed" dataset # # # Project: DeltaDREAM # Name: dataset_reader.py # Authors: Christian Schiller <christian dot schiller at eox dot at> # #------------------------------------------------------------------------------- # Copyright (C) 2014 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- # # import sys import os import os.path import time import fnmatch import datetime from util import parse_xml, print_log import wcs_client wcs = wcs_client.wcsClient() #/************************************************************************/ #/* findfile() */ #/************************************************************************/ def findfile(indir, inmask): """ literal_directory, basename_pattern (simple shell-style wildcards), includes dot-files no regex, but constructs like e.g. L5_[!a-f]*.tif , are possible """ filelist = [] for root, dd, files in os.walk(indir): for ff in files: if fnmatch.fnmatchcase(ff, inmask): filelist.append( os.path.join(root, ff) ) return filelist #/************************************************************************/ #/* get_taget_list() */ #/************************************************************************/ def get_daterange(from_date, composite_range): """ calculate the new date for the time interval depending on the composite_range """ from_date = str(from_date) composite_range = int(composite_range) # consider the starting day from_year = int(from_date[0:4]) from_month = int(from_date[4:6]) from_day = int(from_date[6:8]) time_stamp = datetime.datetime(day=from_day, month=from_month, year=from_year ) difference = time_stamp + datetime.timedelta(days=int(composite_range)) to_date ='%.4d-%.2d-%.2d' % (difference.year, difference.month, difference.day) return to_date #/************************************************************************/ #/* Reader() */ #/************************************************************************/ class Reader(object): """ Reader class - gathering information about filenames, dates, etc. - provide the listing of Base-files, Base-masks, GFP-files and GFP-masks to be used """ def __init__(self): pass #--------- def get_filelist(self, input_params, settings): """ uses WCS requests to generate filelist of files available at service/server """ cov_list = self.base_desceocover(input_params, settings, mask=False) # check if there is realy a list of datasets returned or an error msg if type(cov_list) is str: # and cov_list.find('numberMatched="0"') is not -1: err_msg = '[Error] -- No Datasets found. Service returned the follwing information.' print_log(settings, err_msg) print_log(settings, cov_list) sys.exit() mask_list = self.base_desceocover(input_params, settings, mask=True) if type(mask_list) is str: # and cov_list.find('numberMatched="0"') is not -1: err_msg = '[Error] -- No Datasets found. Service returned the follwing information.' print_log(settings, err_msg) print_log(settings, cov_list) sys.exit() # split up the received listing - Base, Base_mask, GFPs, GFPMask # (--> cryoland products do not have masks) cnt = 0 base_flist = [] gfp_flist = [] for elem in cov_list: idx = elem.find(input_params['toi']) if idx > -1: b_cov = cov_list.pop(cnt) base_flist.append(b_cov) cnt += 1 gfp_flist = list(cov_list) base_mask_flist = [] gfpmask_flist = [] cnt = 0 for elem in mask_list: idx = elem.find(input_params['toi']) if idx > -1: b_mask = mask_list.pop(cnt) base_mask_flist.append(b_mask) cnt += 1 gfpmask_flist = list(mask_list) gfp_flist, gfpmask_flist = self.apply_scenario(gfp_flist, gfpmask_flist, input_params['scenario'], base_flist, base_mask_flist ) if len(base_flist) != len(base_mask_flist): err_msg = 'Number of datafiles and number of cloud-masks do not correspond' print_log(settings, err_msg) sys.exit(4) if len(gfp_flist) != len(gfpmask_flist): err_msg = 'Number of datafiles and number of cloud-masks do not correspond' print_log(settings, err_msg) sys.exit(4) return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #--------- def get_maskname(self, filename): """ set the mask filename filter and get the mask filename(-list) return mask-filename or list of mask-filenames (if list is provided) *) eg. CryoLand doesn't have mask files """ pass #--------- def set_request_values(self, settings, input_params, mask): """ set the request parameters """ if mask is True: searchkey = input_params['dataset'][:-3]+'_mask_clouds' if settings.has_key('dataset.'+searchkey) is True: service = settings['dataset.'+searchkey] else: searchkey = input_params['dataset']+'_clouds' if settings.has_key('dataset.'+searchkey) is True: service = settings['dataset.'+searchkey] else: searchkey = input_params['dataset'][:-6]+'_nua' if settings.has_key('dataset.'+searchkey) is True: service = settings['dataset.'+searchkey] else: service = settings['dataset.'+input_params['dataset']] aoi_values = input_params['aoi'] toi_values = [] if input_params['scenario'] == 'T': target_date = get_daterange(input_params['toi'], -input_params['period']) in_date = get_daterange(input_params['toi'], 0) toi_values.append(target_date) toi_values.append(in_date) if input_params['scenario'] == 'B': target_date = get_daterange(input_params['toi'], input_params['period']) in_date = get_daterange(input_params['toi'], 0) toi_values.append(in_date) toi_values.append(target_date) if input_params['scenario'] == 'M': tt = int((input_params['period']/2)) tt1 = int((input_params['period']/2.)+0.5) # correct for the rounding error target_date = get_daterange(input_params['toi'], -tt) toi_values.append(target_date) target_date = get_daterange(input_params['toi'], tt1) toi_values.append(target_date) service1 = service.rsplit('EOID')[0] dss = service.rsplit('EOID')[1][1:] return service1, toi_values, aoi_values, dss #--------- def base_desceocover(self, input_params, settings, mask): """ Send a DescribeEOCoverageSet request to the WCS Service, asking for the available Coverages, according to the user defined AOI, TOI, and DatasetSeries. The function returns the available CoveragesIDs. """ target_server, toi_values, aoi_values, dss = self.set_request_values(settings, input_params, mask) request = {'request': 'DescribeEOCoverageSet' , 'server_url': target_server , 'eoID': dss , 'subset_lon': aoi_values[0]+','+aoi_values[1] , 'subset_lat': aoi_values[2]+','+aoi_values[3] , 'subset_time': toi_values[0]+'T00:00'+','+ toi_values[1]+'T23:59' , 'IDs_only': True } cids = wcs.DescribeEOCoverageSet(request, settings) return cids #--------- def apply_scenario(self, gfp_flist, gfpmask_flist, scenario, base_flist, base_mask_flist): """ apply the selected scenario i.e. sort the gfp lists accordingly """ if scenario == 'T': gfp_flist.reverse() gfpmask_flist.reverse() return gfp_flist, gfpmask_flist elif scenario == 'B': gfp_flist.sort() gfpmask_flist.sort() return gfp_flist, gfpmask_flist elif scenario == 'M': gfp_tmp = list(gfp_flist) gfp_masktmp = list(gfpmask_flist) gfp_tmp.extend(base_flist) gfp_masktmp.extend(base_mask_flist) gfp_tmp.sort() gfp_masktmp.sort() toi_pos1 = gfp_tmp.index(base_flist[0]) toi_pos2 = gfp_masktmp.index(base_mask_flist[0]) newer_flist1 = gfp_tmp[toi_pos1+1:] older_flist1 = gfp_tmp[:toi_pos1] older_flist1.reverse() newer_flist2 = gfp_masktmp[toi_pos2+1:] older_flist2 = gfp_masktmp[:toi_pos2] older_flist2.reverse() # we always use the newer files first gfp = map(None, newer_flist1, older_flist1) gfpm = map(None, newer_flist2, older_flist2) out_gfp = [] for k, v in gfp: if k is not None: out_gfp.append(k) if v is not None: out_gfp.append(v) out_gfpm = [] for k, v in gfpm: if k is not None: out_gfpm.append(k) if v is not None: out_gfpm.append(v) return out_gfp, out_gfpm else: print_log(settings, '[Error] -- Choosen Scenario is not supported. Please use either T, B or M -- ') sys.exit(3) #--------- def base_getcover(self, file_list, input_params, settings, temp_storage, mask): """ Function to actually requesting and saving the available coverages on the local file system. """ # get the time of downloading - to be used in the filename (to differentiate if multiple AOIs of # the same coverages are downloaded to the same output directory) target_server, toi_values, aoi_values, dss = self.set_request_values(settings, input_params, mask=False) request = {'request': 'GetCoverage' , 'server_url': target_server , # this is set in the file_list loop # 'coverageID': COVERAGEID , 'format': 'tiff' , 'subset_x': 'epsg:4326 Long '+ aoi_values[0]+','+aoi_values[1] , 'subset_y': 'epsg:4326 Lat '+aoi_values[2]+','+aoi_values[3], # 'output': input_params['output_dir'] } # we need to use the tmporary directory here! 'output': temp_storage } # create output-crs syntax to be added to GetCoverage request if input_params['output_crs'] != None: request['outputcrs'] = input_params['output_crs'].split(':')[1] # handle band-subsetting if input_params['bands'] != '999': bands = '' for bb in input_params['bands']: bands = bands+bb+',' request['rangesubset'] = bands[:-1] # don't use bandsubsetting for requests regarding mask-files if mask is True: request['rangesubset'] = None for COVERAGEID in file_list: request['coverageID'] = COVERAGEID res_getcov = wcs.GetCoverage(request, settings, input_params) if res_getcov is not 200: print_log(settings, res_getcov) #/************************************************************************/ #/* CF_landsat5_2a_Reader */ #/************************************************************************/ class CF_landsat5_2a_Reader(Reader): """ reader module for the cryoland dataset - mainly for testing and development - and for demonstration of WCS usage """ def __init__(self): Reader.__init__(self) #/************************************************************************/ #/* CF_spot4take5_Reader() */ #/************************************************************************/ class CF_spot4take5_n2a_pente_Reader(Reader): """ reader module for the spot4take5_n2a_pentec dataset - mainly for testing and development - and for demonstration of WCS usage """ def __init__(self): Reader.__init__(self) #/************************************************************************/ #/* CF_cryoland_Reader */ #/************************************************************************/ class CF_cryoland_Reader(Reader): """ reader module for the cryoland dataset - mainly for testing and development - and for demonstration of WCS usage """ def __init__(self): Reader.__init__(self) #--------- def get_filelist(self, input_params, settings): """ uses WCS requests to generate filelist of files available at service/server """ cov_list = self.base_desceocover(input_params, settings, mask=False) base_flist = [] base_mask_flist = [] gfp_flist = [] gfpmask_flist = [] # split up the received listing - Base, Base_mask, GFPs, GFPMask (--> cryoland products do not have masks) cnt = 0 for elem in cov_list: try: idx = elem.find(input_params['toi']) if idx > -1: b_cov = cov_list.pop(cnt) base_flist.append(b_cov) else: b_cov = '' cnt += 1 except ValueError: print_log(settings, str(ValueError)) gfp_flist = list(cov_list) return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #/************************************************************************/ #/* CF_landsat5_f_Reader */ #/************************************************************************/ class CF_landsat5_f_Reader(Reader): """ reader module for the landsat5_f dataset '_f' = means located at hard disk '_w' = means accessible via WCS service """ def __init__(self): Reader.__init__(self) #---- def get_maskname(self, filename): """ set the mask filename filter and get the mask filename(-list) return mask-filename or list of mask-filenames (if list is provided) """ # check if list or single name has been provided if type(filename) == list: mask_filename = [] for elem in filename: # for landsat5 - mask would be base, extension = os.path.splitext(elem) m_filename = "%s.nuages%s" % (base, extension) mask_filename.append(m_filename) elif type(filename) == str: base, extension = os.path.splitext(filename) mask_filename = "%s.nuages%s" % (base, extension) return mask_filename #---- def get_filelist(self, input_params, settings): """ gets the listing of filenames of available: Base files, GFP files and Mask files """ target_date = input_params['toi'] access_path1 = settings['dataset.'+input_params['dataset']] pos1 = str.index(access_path1, '://') access_path = access_path1[pos1+3:] ## TODO: this should be more general - eg. using: get_daterange() ?? start_year = int(input_params['toi'][0:4]) start_month = int(input_params['toi'][4:6]) if input_params['scenario'] == 'T': if start_month == 1: loop = [ start_year - 1, '11', start_year -1 , '12', start_year, start_month ] elif start_month == 2: loop = [ start_year - 1, '12', start_year, start_month -1 , start_year, start_month ] else: loop = [start_year, start_month - 2, start_year, start_month -1 , start_year, start_month ] elif input_params['scenario'] == 'B': if start_month == 12: loop = [start_year, start_month, start_year + 1, '01', start_year + 1, '02' ] elif start_month == 11: loop = [start_year, start_month, start_year, start_month + 1 , start_year +1 , '01' ] else: loop = [start_year, start_month, start_year, start_month + 1, start_year, start_month + 2 ] elif input_params['scenario'] == 'M': if start_month == 12: loop = [start_year, start_month - 1, start_year, start_month, start_year +1 , '01' ] elif start_month == 1: loop = [start_year -1, '12', start_year, start_month, start_year, start_month + 1 ] else: loop = [start_year, start_month - 1, start_year, start_month, start_year, start_month + 1 ] if len(str(loop[1])) == 1: loop[1] = '0'+str(loop[1]) if len(str(loop[3])) == 1: loop[3] = '0'+str(loop[3]) if len(str(loop[5])) == 1: loop[5] = '0'+str(loop[5]) base_flist = [] base_mask_flist = [] gfp_flist = [] gfpmask_flist = [] base_fname_syntax = 'L*_' + target_date + '*_L5_*_surf_pente_30m.tif' gfp_fname_syntax = 'L*_*_L5_*_surf_pente_30m.tif' for jj in range(0, len(loop)-1, 2): target = str(loop[jj])+'/'+str(loop[jj+1])+'/' base_flist = base_flist+sorted(findfile(access_path+target, base_fname_syntax)) gfp_flist = gfp_flist+sorted(findfile(access_path+target, gfp_fname_syntax)) # now remove any base_filenames from the gfp_flist, to avoid duplicates gfp_flist = [item for item in gfp_flist if not item in base_flist] # create the file-list for the mask-files gfpmask_flist = self.get_maskname(gfp_flist) base_mask_flist = self.get_maskname(base_flist) # return all created file-lists return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #---- def base_getcover(self, file_list, input_params, settings, temp_storage, mask): """ Processing takes place on the original data (skipping copying, but maybe risking data cuorruption ?), no data transformation (subsetting, CRS, band subsetting) is currently implemented """ pass #---- #/************************************************************************/ #/* CF_spot4take5_f_Reader */ #/************************************************************************/ class CF_spot4take5_f_Reader(Reader): """ reader module for the spot4take5_f dataset '_f' = means located at hard disk '_w' = means accessible via WCS service """ def __init__(self): Reader.__init__(self) def get_maskname(self, filename): """ set the mask filename filter and get the mask filename(-list) return m ask-filename or list of mask-filenames (if list is provided) """ # check if list or single name has been provided if type(filename) == list: mask_filename = [] for elem in filename: dirname = os.path.dirname(elem) basename = os.path.basename(elem) #basename1 = basename.replace('_ORTHO_','_') # basename1 = basename1.replace('_PENTE_','_') m_filename1 = basename[0:25]+'*_NUA.TIF' m_filename = sorted(findfile(dirname+'/MASK/', m_filename1)) mask_filename.append(str(m_filename[0])) elif type(filename) == str: dirname = os.path.dirname(elem) basename = os.path.basename(elem) #basename1 = basename.replace('_ORTHO_','_') #basename1 = basename1.replace('_PENTE_','_') m_filename1 = basename[0:25]+'*_NUA.TIF' m_filename = sorted(findfile(dirname+'/MASK/', m_filename1)) mask_filename = str(m_filename[0]) return mask_filename #---- def get_filelist(self, input_params, settings): """ gets the listing of filenames of available: Base files, GFP files and Mask files """ target_date = input_params['toi'] access_path1 = settings['dataset.'+input_params['dataset']] pos1 = str.index(access_path1, '://') access_path = access_path1[pos1+3:] base_flist = [] base_mask_flist = [] gfp_flist = [] gfpmask_flist = [] base_fname_syntax = 'SPOT4_*' + target_date + '*_PENTE_*.TIF' gfp_fname_syntax = 'SPOT4_*_PENTE_*.TIF' base_flist = base_flist+sorted(findfile(access_path, base_fname_syntax)) base_mask_flist = self.get_maskname(base_flist) gfp_flist = gfp_flist+sorted(findfile(access_path, gfp_fname_syntax)) gfp_flist = [item for item in gfp_flist if not item in base_flist] gfpmask_flist = self.get_maskname(gfp_flist) return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #---- def base_getcover(self, file_list, input_params, settings, temp_storage, mask): """ Processing takes place on the original data (skipping copying, but maybe risking data cuorruption ?), no data transformation (subsetting, CRS, band subsetting) is currently implemented """ pass #/************************************************************************/ #/* CF_spot4take5_f_Reader */ #/************************************************************************/ class CF_cryoland_local_Reader(Reader): """ reader module for the cryoland dataset - mainly for testing and development - and for demonstration of WCS usage """ def __init__(self): Reader.__init__(self) #---- def get_filelist(self, input_params, settings): """ uses WCS requests to generate filelist of files available at service/server """ avail_dss = self.get_available_dss(input_params, settings, False) base_flist = [] base_flist = list(avail_dss) base_mask_flist = list(base_flist) gfp_flist = [] gfpmask_flist = list(gfp_flist) return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #/************************************************************************/ #/* CF_landsat5_m_Reader */ #/************************************************************************/ class CF_landsat5_m_Reader(Reader): """ This represents actually a "_f" but it contians files in an unstructured way (-> mix) set-up for easier testing purpose only reader module for the landsat5_f dataset '_f' = means located at hard disk '_w' = means accessible via WCS service '_m' = means use of the "local-mixed" dataset """ def __init__(self): Reader.__init__(self) #---- def get_maskname(self, filename): """ set the mask filename filter and get the mask filename(-list) return mask-filename or list of mask-filenames (if list is provided) """ # check if list or single name has been provided if type(filename) == list: mask_filename = [] for elem in filename: # for landsat5 - mask would be base, extension = os.path.splitext(elem) m_filename = "%s.nuages%s" % (base, extension) mask_filename.append(m_filename) elif type(filename) == str: base, extension = os.path.splitext(filename) mask_filename = "%s.nuages%s" % (base, extension) return mask_filename #---- def get_filelist(self, input_params, settings): """ gets the listing of filenames of available: Base files, GFP files and Mask files """ target_date = input_params['toi'] access_path1 = settings['dataset.'+input_params['dataset']] pos1 = str.index(access_path1, '://') acces_path = access_path1[pos1+3:] base_fname_syntax = 'L*_' + target_date + '_L5_*_surf_pente_30m.tif' gfp_fname_syntax = 'L*_*_L5_*_surf_pente_30m.tif' base_flist = sorted(findfile(acces_path, base_fname_syntax)) gfp_flist = sorted(findfile(acces_path, gfp_fname_syntax))[0:input_params['period']] # now remove any base_filenames from the gfp_flist, to avoid duplicates gfp_flist = [item for item in gfp_flist if not item in base_flist] # create the file-list for the mask-files gfpmask_flist = self.get_maskname(gfp_flist) base_mask_flist = self.get_maskname(base_flist) return base_flist, base_mask_flist, gfp_flist, gfpmask_flist #---- def base_getcover(self, file_list, input_params, settings, temp_storage, mask): """ Processing takes place on the original data (skipping copying, but maybe risking data cuorruption ?), no data transformation (subsetting, CRS, band subsetting) is currently implemented """ pass #/************************************************************************/ #/* main() */ #/************************************************************************/ if __name__ == '__main__': Reader()
37.763369
136
0.540659
7941ddf01269aa1b65e2cc1702e4afa3dfdd2a20
11,769
py
Python
envycontrol.py
mphe/envycontrol
ab567d623e58e71a80db10cf01fda4046d14e237
[ "MIT" ]
null
null
null
envycontrol.py
mphe/envycontrol
ab567d623e58e71a80db10cf01fda4046d14e237
[ "MIT" ]
null
null
null
envycontrol.py
mphe/envycontrol
ab567d623e58e71a80db10cf01fda4046d14e237
[ "MIT" ]
null
null
null
#!/usr/bin/env python import argparse import sys import os import re import subprocess # constants declaration VERSION = '1.2.1' # for integrated mode BLACKLIST_PATH = '/etc/modprobe.d/blacklist-nvidia.conf' BLACKLIST_CONTENT = '''# Do not modify this file # Generated by EnvyControl blacklist nouveau blacklist nvidia blacklist nvidia_drm blacklist nvidia_uvm blacklist nvidia_modeset alias nouveau off alias nvidia off alias nvidia_drm off alias nvidia_uvm off alias nvidia_modeset off ''' UDEV_PATH = '/lib/udev/rules.d/50-remove-nvidia.rules' UDEV_CONTENT = '''# Do not modify this file # Generated by EnvyControl # Remove NVIDIA USB xHCI Host Controller devices, if present ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x10de", ATTR{class}=="0x0c0330", ATTR{remove}="1" # Remove NVIDIA USB Type-C UCSI devices, if present ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x10de", ATTR{class}=="0x0c8000", ATTR{remove}="1" # Remove NVIDIA Audio devices, if present ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x10de", ATTR{class}=="0x040300", ATTR{remove}="1" # Finally, remove the NVIDIA dGPU ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x10de", ATTR{class}=="0x03[0-9]*", ATTR{remove}="1" ''' # for Nvidia mode XORG_PATH = '/etc/X11/xorg.conf.d/90-nvidia.conf' XORG_CONTENT_INTEL = '''# Do not modify this file # Generated by EnvyControl Section "ServerLayout" Identifier "layout" Screen 0 "nvidia" Inactive "intel" EndSection Section "Device" Identifier "nvidia" Driver "nvidia" BusID "PCI:{}" EndSection Section "Screen" Identifier "nvidia" Device "nvidia" Option "AllowEmptyInitialConfiguration" EndSection Section "Device" Identifier "intel" Driver "modesetting" EndSection Section "Screen" Identifier "intel" Device "intel" EndSection ''' XORG_CONTENT_AMD = '''# Do not modify this file # Generated by EnvyControl Section "ServerLayout" Identifier "layout" Screen 0 "nvidia" Inactive "amdgpu" EndSection Section "Device" Identifier "nvidia" Driver "nvidia" BusID "PCI:{}" EndSection Section "Screen" Identifier "nvidia" Device "nvidia" Option "AllowEmptyInitialConfiguration" EndSection Section "Device" Identifier "amdgpu" Driver "modesetting" EndSection Section "Screen" Identifier "amd" Device "amdgpu" EndSection ''' NVIDIA_MODESET_PATH = '/etc/modprobe.d/nvidia.conf' NVIDIA_MODESET_CONTENT = '''# Do not modify this file # Generated by EnvyControl options nvidia-drm modeset=1 ''' # SDDM and LightDM require additional setup for Nvidia mode XRANDR_SCRIPT = '''#!/bin/sh # Do not modify this file # Generated by EnvyControl xrandr --setprovideroutputsource modesetting NVIDIA-0 xrandr --auto ''' SDDM_SCRIPT_PATH = '/usr/share/sddm/scripts/Xsetup' LIGHTDM_SCRIPT_PATH = '/etc/lightdm/nvidia.sh' LIGHTDM_CONFIG_PATH = '/etc/lightdm/lightdm.conf.d/20-nvidia.conf' LIGHTDM_CONFIG_CONTENT = '''# Do not modify this file # Generated by EnvyControl [Seat:*] display-setup-script=/etc/lightdm/nvidia.sh ''' # function declaration def _check_root(): if not os.geteuid() == 0: print('Error: this operation requires root privileges') sys.exit(1) def _check_status(): if os.path.exists(BLACKLIST_PATH) and os.path.exists(UDEV_PATH): mode = 'integrated' elif os.path.exists(XORG_PATH) and os.path.exists(NVIDIA_MODESET_PATH): mode = 'nvidia' else: mode = 'hybrid' print(f'Current graphics mode is: {mode}') def _file_remover(): # utility function to cleanup environment before setting any mode # don't raise warning if file is not found try: os.remove(BLACKLIST_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(UDEV_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(XORG_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(NVIDIA_MODESET_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(SDDM_SCRIPT_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(LIGHTDM_SCRIPT_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) try: os.remove(LIGHTDM_CONFIG_PATH) except OSError as e: if e.errno != 2: print(f'Error: {e}') sys.exit(1) def _get_igpu_vendor(): # automatically detect whether Intel or AMD iGPU is present pattern_intel = re.compile(r'(VGA).*(Intel)') pattern_amd = re.compile(r'(VGA).*(ATI|AMD|AMD\/ATI)') lspci = subprocess.run(['lspci'], capture_output=True, text=True).stdout if pattern_intel.findall(lspci): return 'intel' elif pattern_amd.findall(lspci): return 'amd' else: print('Error: could not find Intel or AMD iGPU') sys.exit(1) def _get_pci_bus(): # dynamically get the PCI bus of the Nvidia dGPU # exit if not found pattern = re.compile(r'([0-9]{2}:[0-9a-z]{2}.[0-9]).*(VGA compatible controller: NVIDIA|3D controller: NVIDIA)') lspci = subprocess.run(['lspci'], capture_output=True, text=True).stdout try: # X.org requires PCI:X:X:X format return ':'.join([str(int(element)) for element in pattern.findall(lspci)[0][0].replace('.', ':').split(':')]) except Exception: print('Error: could not find Nvidia GPU on PCI bus, please switch to hybrid mode first') sys.exit(1) def _check_display_manager(): # automatically detect the current Display Manager # this depends on systemd pattern = re.compile(r'(\/usr\/bin\/|\/usr\/sbin\/)(.*)') try: with open('/etc/systemd/system/display-manager.service',mode='r', encoding='utf-8') as f: display_manager = pattern.findall(f.read())[0][1] except Exception: display_manager = '' print('Warning: automatic Display Manager detection is not available') finally: return display_manager def _setup_display_manager(display_manager): # setup the Xrandr script if necessary if display_manager == 'sddm': try: with open(SDDM_SCRIPT_PATH, mode='w', encoding='utf-8') as f: f.write(XRANDR_SCRIPT) except Exception as e: print(f'Error: {e}') sys.exit(1) subprocess.run(['chmod','+x',SDDM_SCRIPT_PATH], stdout=subprocess.DEVNULL) elif display_manager == 'lightdm': try: with open(LIGHTDM_SCRIPT_PATH, mode='w', encoding='utf-8') as f: f.write(XRANDR_SCRIPT) except Exception as e: print(f'Error: {e}') sys.exit(1) subprocess.run(['chmod','+x',LIGHTDM_SCRIPT_PATH], stdout=subprocess.DEVNULL) # create config if not os.path.exists(os.path.dirname(LIGHTDM_CONFIG_PATH)): try: os.makedirs(os.path.dirname(LIGHTDM_CONFIG_PATH)) except Exception as e: print(f'Error: {e}') sys.exit(1) with open(LIGHTDM_CONFIG_PATH, mode='w', encoding='utf-8') as f: f.write(LIGHTDM_CONFIG_CONTENT) elif display_manager not in ['', 'gdm', 'gdm3']: print('Error: provided Display Manager is not valid') print('Supported Display Managers: gdm, sddm, lightdm') sys.exit(1) def _rebuild_initramfs(): # Debian and its derivatives require rebuilding the initramfs after switching modes is_debian = os.path.exists('/etc/debian_version') if is_debian: print('Rebuilding initramfs...') p = subprocess.run(['update-initramfs', '-u', '-k', 'all'], stdout=subprocess.DEVNULL) if p.returncode == 0: print('Successfully rebuilt initramfs!') else: print('Error: an error ocurred rebuilding the initramfs') def _switcher(mode, display_manager = ''): # exit if not running as root _check_root() if mode == 'integrated': _file_remover() try: # blacklist all nouveau and Nvidia modules with open(BLACKLIST_PATH, mode='w', encoding='utf-8') as f: f.write(BLACKLIST_CONTENT) # power off the Nvidia GPU with Udev rules with open(UDEV_PATH, mode='w', encoding='utf-8') as f: f.write(UDEV_CONTENT) except Exception as e: print(f'Error: {e}') sys.exit(1) _rebuild_initramfs() elif mode == 'nvidia': _file_remover() # detect if Intel or AMD iGPU igpu_vendor = _get_igpu_vendor() # get the Nvidia dGPU PCI bus pci_bus = _get_pci_bus() # detect Display Manager if not provided if display_manager == '': display_manager = _check_display_manager() _setup_display_manager(display_manager) try: # create X.org config with open(XORG_PATH, mode='w', encoding='utf-8') as f: if igpu_vendor == 'intel': f.write(XORG_CONTENT_INTEL.format(pci_bus)) elif igpu_vendor == 'amd': f.write(XORG_CONTENT_AMD.format(pci_bus)) # modeset for Nvidia driver is required to prevent tearing on internal screen with open(NVIDIA_MODESET_PATH, mode='w', encoding='utf-8') as f: f.write(NVIDIA_MODESET_CONTENT) except Exception as e: print(f'Error: {e}') sys.exit(1) _rebuild_initramfs() elif mode == 'hybrid': # remove all files created by other EnvyControl modes # Nvidia and nouveau drivers fallback to hybrid mode by default _file_remover() _rebuild_initramfs() else: print('Error: provided graphics mode is not valid') print('Supported modes: integrated, nvidia, hybrid') sys.exit(1) print(f'Graphics mode set to: {mode}') print('Please reboot your computer for changes to apply') def _print_version(): print(f'EnvyControl {VERSION}') def main(): parser = argparse.ArgumentParser() parser.add_argument('--status', action='store_true', help='Query the current graphics mode set by EnvyControl') parser.add_argument('--switch', type=str, metavar='MODE', action='store', help='Switch the graphics mode. You need to reboot for changes to apply. Supported modes: integrated, nvidia, hybrid') parser.add_argument('--dm', type=str, metavar='DISPLAY_MANAGER', action='store', help='Manually specify your Display Manager. This is required only for systems without systemd. Supported DMs: gdm, sddm, lightdm') parser.add_argument('--version', '-v', action='store_true', help='Print the current version and exit') # print help if no arg is provided if len(sys.argv)==1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.status: _check_status() elif args.version: _print_version() elif args.switch: if args.dm and args.switch == 'nvidia': _switcher(args.switch, args.dm) else: _switcher(args.switch) elif args.dm and not args.switch: print('Error: this option is intended to be used with --switch nvidia') print('Example: sudo envycontrol --switch nvidia --dm sddm') sys.exit(1) if __name__ == '__main__': main()
30.808901
155
0.633019
7941df7ee157705072049a880567ebe91c62aea4
1,576
py
Python
Macropad_Hotkeys/macros/win-edge.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
665
2017-09-27T21:20:14.000Z
2022-03-31T09:09:25.000Z
Macropad_Hotkeys/macros/win-edge.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
641
2017-10-03T19:46:37.000Z
2022-03-30T18:28:46.000Z
Macropad_Hotkeys/macros/win-edge.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
734
2017-10-02T22:47:38.000Z
2022-03-30T14:03:51.000Z
# MACROPAD Hotkeys example: Microsoft Edge web browser for Windows from adafruit_hid.keycode import Keycode # REQUIRED if using Keycode.* values app = { # REQUIRED dict, must be named 'app' 'name' : 'Windows Edge', # Application name 'macros' : [ # List of button macros... # COLOR LABEL KEY SEQUENCE # 1st row ---------- (0x004000, '< Back', [Keycode.ALT, Keycode.LEFT_ARROW]), (0x004000, 'Fwd >', [Keycode.ALT, Keycode.RIGHT_ARROW]), (0x400000, 'Up', [Keycode.SHIFT, ' ']), # Scroll up # 2nd row ---------- (0x202000, '- Size', [Keycode.CONTROL, Keycode.KEYPAD_MINUS]), (0x202000, 'Size +', [Keycode.CONTROL, Keycode.KEYPAD_PLUS]), (0x400000, 'Down', ' '), # Scroll down # 3rd row ---------- (0x000040, 'Reload', [Keycode.CONTROL, 'r']), (0x000040, 'Home', [Keycode.ALT, Keycode.HOME]), (0x000040, 'Private', [Keycode.CONTROL, 'N']), # 4th row ---------- (0x000000, 'Ada', [Keycode.CONTROL, 'n', -Keycode.COMMAND, 'www.adafruit.com\n']), # Adafruit in new window (0x800000, 'Digi', [Keycode.CONTROL, 'n', -Keycode.COMMAND, 'www.digikey.com\n']), # Digi-Key in new window (0x101010, 'Hacks', [Keycode.CONTROL, 'n', -Keycode.COMMAND, 'www.hackaday.com\n']), # Hack-a-Day in new win # Encoder button --- (0x000000, '', [Keycode.CONTROL, 'w']) # Close tab ] }
49.25
77
0.521574
7941e13004cbd1b3c30644ced9bb63039b4bcfa3
2,330
py
Python
WebKit/Tools/gtk/common.py
JavaScriptTesting/LJS
9818dbdb421036569fff93124ac2385d45d01c3a
[ "Apache-2.0" ]
1
2019-06-18T06:52:54.000Z
2019-06-18T06:52:54.000Z
WebKit/Tools/gtk/common.py
JavaScriptTesting/LJS
9818dbdb421036569fff93124ac2385d45d01c3a
[ "Apache-2.0" ]
null
null
null
WebKit/Tools/gtk/common.py
JavaScriptTesting/LJS
9818dbdb421036569fff93124ac2385d45d01c3a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright (C) 2011 Igalia S.L. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import os import subprocess import sys script_dir = None build_dir = None def script_path(*args): global script_dir if not script_dir: script_dir = os.path.join(os.path.dirname(__file__), '..', 'Scripts') return os.path.join(*(script_dir,) + args) def top_level_path(*args): return os.path.join(*((script_path('..', '..'),) + args)) def get_build_path(): global build_dir if build_dir: return build_dir def is_valid_build_directory(path): return os.path.exists(os.path.join(path, 'GNUmakefile')) build_types = ['Release', 'Debug'] if '--debug' in sys.argv: build_types.reverse() for build_type in build_types: build_dir = top_level_path('WebKitBuild', build_type) if is_valid_build_directory(build_dir): return build_dir # distcheck builds in a directory named _build in the top-level path. build_dir = top_level_path("_build") if is_valid_build_directory(build_dir): return build_dir build_dir = top_level_path() if is_valid_build_directory(build_dir): return build_dir build_dir = top_level_path("WebKitBuild") if is_valid_build_directory(build_dir): return build_dir print 'Could not determine build directory.' sys.exit(1) def build_path(*args): return os.path.join(*(get_build_path(),) + args) def number_of_cpus(): process = subprocess.Popen([script_path('num-cpus')], stdout=subprocess.PIPE) stdout = process.communicate()[0] return int(stdout)
29.493671
81
0.707725
7941e1a47f8bfd3693956b90a156b5c63e99d1a3
883
py
Python
Medeina/config.py
Daniel-Davies/Medeina
94ee3f083032f65570e6073b874aba1820451f26
[ "MIT" ]
1
2020-06-28T00:18:15.000Z
2020-06-28T00:18:15.000Z
Medeina/config.py
Daniel-Davies/Medeina
94ee3f083032f65570e6073b874aba1820451f26
[ "MIT" ]
null
null
null
Medeina/config.py
Daniel-Davies/Medeina
94ee3f083032f65570e6073b874aba1820451f26
[ "MIT" ]
null
null
null
import os.path DATASETS = "datasets" WEB = "interactionWeb" TAXA = "taxonomicIndex" # CONFIDENCE = 'confidences' LINKS = "links" EXCEPTIONS = "reorderedTaxaInteractions" REALNAMES = "speciesStringNames" IDTRACKER = ( "numericCounter-b2ca94aee362f455a41493a0d28b98bc5074065b0f96cbb95028ead20b1c72ea" ) my_path = os.path.abspath(os.path.dirname(__file__)) ROOT = my_path ZIPDIR = os.path.join(my_path, "CompressedWebStore.zip") BASEDIR = os.path.join(my_path, "CompressedWebStore") TAXA_OF_INTEREST = ["kingdom", "phylum", "order", "class", "family", "genus"] APIMAX = 100 APIURL = "http://resolver.globalnames.org/name_resolvers.json" DATASET_METAS = [ "interactionType", "evidencedBy", "webName", "citation", "location", "date", ] LINK_METAS = ["interactionType", "evidencedBy", "location"] PRECOMPUTER_STORE_PATH = "TaxaMapper/newMappingIndex"
22.641026
85
0.732729
7941e1eeef41a7113b9de950ba38f7fac8277a12
7,556
py
Python
pgmpy/estimators/CITests.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
pgmpy/estimators/CITests.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
pgmpy/estimators/CITests.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
from warnings import warn import numpy as np import pandas as pd from scipy import stats def chi_square(X, Y, Z, data, **kwargs): """ Chi-square conditional independence test. Tests the null hypothesis that X is independent from Y given Zs. This is done by comparing the observed frequencies with the expected frequencies if X,Y were conditionally independent, using a chisquare deviance statistic. The expected frequencies given independence are `P(X,Y,Zs) = P(X|Zs)*P(Y|Zs)*P(Zs)`. The latter term can be computed as `P(X,Zs)*P(Y,Zs)/P(Zs). Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Zs: list of variable names A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] Returns ------- chi2: float The chi2 test statistic. p_value: float The p_value, i.e. the probability of observing the computed chi2 statistic (or an even higher value), given the null hypothesis that X _|_ Y | Zs. sufficient_data: bool A flag that indicates if the sample size is considered sufficient. As in [4], require at least 5 samples per parameter (on average). That is, the size of the data set must be greater than `5 * (c(X) - 1) * (c(Y) - 1) * prod([c(Z) for Z in Zs])` (c() denotes the variable cardinality). References ---------- [1] Koller & Friedman, Probabilistic Graphical Models - Principles and Techniques, 2009 Section 18.2.2.3 (page 789) [2] Neapolitan, Learning Bayesian Networks, Section 10.3 (page 600ff) http://www.cs.technion.ac.il/~dang/books/Learning%20Bayesian%20Networks(Neapolitan,%20Richard).pdf [3] Chi-square test https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test#Test_of_independence [4] Tsamardinos et al., The max-min hill-climbing BN structure learning algorithm, 2005, Section 4 Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.estimators import ConstraintBasedEstimator >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> c = ConstraintBasedEstimator(data) >>> print(c.test_conditional_independence('A', 'C')) # independent (0.95035644482050263, 0.8132617142699442, True) >>> print(c.test_conditional_independence('A', 'B', 'D')) # independent (5.5227461320130899, 0.59644169242588885, True) >>> print(c.test_conditional_independence('A', 'B', ['D', 'E'])) # dependent (9192.5172226063387, 0.0, True) """ if isinstance(Z, (frozenset, list, set, tuple)): Z = list(Z) else: Z = [Z] state_names = kwargs["state_names"] num_params = ( (len(state_names[X]) - 1) * (len(state_names[Y]) - 1) * np.prod([len(state_names[z]) for z in Z]) ) sufficient_data = len(data) >= num_params * 5 if not sufficient_data: warn( "Insufficient data for testing {0} _|_ {1} | {2}. ".format(X, Y, Z) + "At least {0} samples recommended, {1} present.".format(5 * num_params, len(data)) ) # compute actual frequency/state_count table: # = P(X,Y,Zs) XYZ_state_counts = pd.crosstab(index=data[X], columns=[data[Y]] + [data[z] for z in Z]) # reindex to add missing rows & columns (if some values don't appear in data) row_index = state_names[X] column_index = pd.MultiIndex.from_product( [state_names[Y]] + [state_names[z] for z in Z], names=[Y] + Z ) if not isinstance(XYZ_state_counts.columns, pd.MultiIndex): XYZ_state_counts.columns = pd.MultiIndex.from_arrays([XYZ_state_counts.columns]) XYZ_state_counts = XYZ_state_counts.reindex(index=row_index, columns=column_index).fillna(0) # compute the expected frequency/state_count table if X _|_ Y | Zs: # = P(X|Zs)*P(Y|Zs)*P(Zs) = P(X,Zs)*P(Y,Zs)/P(Zs) if Z: XZ_state_counts = XYZ_state_counts.sum(axis=1, level=Z) # marginalize out Y YZ_state_counts = XYZ_state_counts.sum().unstack(Z) # marginalize out X else: XZ_state_counts = XYZ_state_counts.sum(axis=1) YZ_state_counts = XYZ_state_counts.sum() Z_state_counts = YZ_state_counts.sum() # marginalize out both XYZ_expected = pd.DataFrame(index=XYZ_state_counts.index, columns=XYZ_state_counts.columns) for X_val in XYZ_expected.index: if Z: for Y_val in XYZ_expected.columns.levels[0]: XYZ_expected.loc[X_val, Y_val] = ( XZ_state_counts.loc[X_val] * YZ_state_counts.loc[Y_val] / Z_state_counts ).values else: for Y_val in XYZ_expected.columns: XYZ_expected.loc[X_val, Y_val] = ( XZ_state_counts.loc[X_val] * YZ_state_counts.loc[Y_val] / float(Z_state_counts) ) observed = XYZ_state_counts.values.flatten() expected = XYZ_expected.fillna(0).values.flatten() # remove elements where the expected value is 0; # this also corrects the degrees of freedom for chisquare observed, expected = zip(*((o, e) for o, e in zip(observed, expected) if not e == 0)) chi2, significance_level = stats.chisquare(observed, expected) return chi2, significance_level def pearsonr(X, Y, Z, data): """ Computes Pearson correlation coefficient and p-value for testing non-correlation. Should be used only on continuous data. In case when :math:`Z != \null` uses linear regression and computes pearson coefficient on residuals. Parameters ---------- X: str The first variable for testing the independence condition X _|_ Y | Z Y: str The second variable for testing the independence condition X _|_ Y | Z Z: list/array-like A list of conditional variable for testing the condition X _|_ Y | Z data: pandas.DataFrame The dataset in which to test the indepenedence condition. Returns ------- Pearson's correlation coefficient: float p-value: float References ---------- [1] https://en.wikipedia.org/wiki/Pearson_correlation_coefficient [2] https://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression """ # Step 1: Test if the inputs are correct if not hasattr(Z, "__iter__"): raise ValueError("Variable Z. Expected type: iterable. Got type: {t}".format(t=type(Z))) else: Z = list(Z) if not isinstance(data, pd.DataFrame): raise ValueError( "Variable data. Expected type: pandas.DataFrame. Got type: {t}".format(t=type(data)) ) # Step 2: If Z is empty compute a non-conditional test. if len(Z) == 0: return stats.pearsonr(data.loc[:, X], data.loc[:, Y]) # Step 3: If Z is non-empty, use linear regression to compute residuals and test independence on it. else: X_coef = np.linalg.lstsq(data.loc[:, Z], data.loc[:, X], rcond=None)[0] Y_coef = np.linalg.lstsq(data.loc[:, Z], data.loc[:, Y], rcond=None)[0] residual_X = data.loc[:, X] - data.loc[:, Z].dot(X_coef) residual_Y = data.loc[:, Y] - data.loc[:, Z].dot(Y_coef) return stats.pearsonr(residual_X, residual_Y)
39.560209
106
0.645844
7941e283964f544bb443152b4877c38a9edc6cae
4,105
py
Python
template_site_name/settings.py
Hack3rOneness/django-site-template
90f9649d4130a5c0c5e105071f1338663a2e239b
[ "MIT" ]
8
2019-04-22T04:37:39.000Z
2021-05-20T02:49:10.000Z
template_site_name/settings.py
Hack3rOneness/django-site-template
90f9649d4130a5c0c5e105071f1338663a2e239b
[ "MIT" ]
2
2021-03-25T23:53:40.000Z
2021-06-10T23:04:55.000Z
template_site_name/settings.py
Hack3rOneness/django-site-template
90f9649d4130a5c0c5e105071f1338663a2e239b
[ "MIT" ]
15
2018-07-09T01:11:39.000Z
2022-03-23T19:12:29.000Z
""" Django settings for template_site_name project. Generated by 'django-admin startproject' using Django 1.9.2. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os import dj_database_url # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y5&e!$t0#tk9^2pf-bplp8=7(f7$7q^!#!50(3+ihulo#f+=l_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', 'infopages', 'homepage', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', # 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'template_site_name.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'template_site_name.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Update database configuration with $DATABASE_URL. db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Allow all host headers ALLOWED_HOSTS = ['*'] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage'
27.92517
91
0.709622
7941e3446d22ac84d389605fa04fe1097e041c11
1,257
py
Python
django_template_obfuscator/tests.py
rafahuelin/django-template-obfuscator
5211bda5b9f37e8da6a44425f0362837e9d5a6ad
[ "MIT" ]
3
2019-09-20T14:39:17.000Z
2022-03-15T06:41:51.000Z
django_template_obfuscator/tests.py
rafahuelin/django-template-obfuscator
5211bda5b9f37e8da6a44425f0362837e9d5a6ad
[ "MIT" ]
5
2020-03-31T07:01:09.000Z
2021-06-02T00:25:48.000Z
example/django_template_obfuscator/tests.py
rafahuelin/django-template-obfuscator
5211bda5b9f37e8da6a44425f0362837e9d5a6ad
[ "MIT" ]
1
2019-09-20T14:39:01.000Z
2019-09-20T14:39:01.000Z
import unittest from os import path from selenium import webdriver from templatetags.encoder import obfuscation APP_DIR = path.dirname(path.abspath(__file__)) class ObfuscationTest(unittest.TestCase): def setUp(self): self.browser = webdriver.Firefox() def tearDown(self): self.browser.quit() def test_text_obfuscated_and_deobfuscated_equals_original_text(self): target = "Text difficult to scrape." obfuscated = obfuscation(target) # import JS in charge of deobfuscation filepath = APP_DIR + r'\static\js\django_template_obfuscator.js' with open(filepath) as f: js = f"<script>{f.read()}</script>" html_content = f""" <p class="obfuscated"> {obfuscated} </p> """ self.browser.get(f"data:text/html;charset=utf-8, {html_content} {js}") deobfuscated_target = self.browser.find_element_by_xpath('//*[@class="obfuscated"]').text self.assertEqual(target, deobfuscated_target) def test_obfuscate_function_uses_rot13_encode_algorithm(self): obfuscated = obfuscation('Abracadabra!') self.assertEqual(obfuscated, 'Noenpnqnoen!') if __name__ == '__main__': unittest.main()
27.933333
97
0.666667
7941e36ec83f81d453e71f7189dab4f2a571513f
1,852
py
Python
neutron/agent/l3/dvr_snat_ns.py
ISCAS-VDI/neutron-base
687f03d7131839ae8bc324d5823194d1245bb050
[ "Apache-2.0" ]
null
null
null
neutron/agent/l3/dvr_snat_ns.py
ISCAS-VDI/neutron-base
687f03d7131839ae8bc324d5823194d1245bb050
[ "Apache-2.0" ]
3
2015-02-27T00:48:55.000Z
2015-04-21T05:29:37.000Z
neutron/agent/l3/dvr_snat_ns.py
ISCAS-VDI/neutron-base
687f03d7131839ae8bc324d5823194d1245bb050
[ "Apache-2.0" ]
3
2015-02-26T00:55:17.000Z
2020-03-01T17:05:40.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from neutron.agent.l3 import namespaces from neutron.agent.linux import ip_lib from neutron.common import constants LOG = logging.getLogger(__name__) SNAT_NS_PREFIX = 'snat-' SNAT_INT_DEV_PREFIX = constants.SNAT_INT_DEV_PREFIX class SnatNamespace(namespaces.Namespace): def __init__(self, router_id, agent_conf, driver, use_ipv6): self.router_id = router_id name = self.get_snat_ns_name(router_id) super(SnatNamespace, self).__init__( name, agent_conf, driver, use_ipv6) @classmethod def get_snat_ns_name(cls, router_id): return namespaces.build_ns_name(SNAT_NS_PREFIX, router_id) def delete(self): ns_ip = ip_lib.IPWrapper(namespace=self.name) if ns_ip.netns.exists(self.name): for d in ns_ip.get_devices(exclude_loopback=True): if d.name.startswith(SNAT_INT_DEV_PREFIX): LOG.debug('Unplugging DVR device %s', d.name) self.driver.unplug(d.name, namespace=self.name, prefix=SNAT_INT_DEV_PREFIX) # TODO(mrsmith): delete ext-gw-port LOG.debug('DVR: destroy snat ns: %s', self.name) super(SnatNamespace, self).delete()
38.583333
78
0.683585
7941e3fb6202d27762536634a13a14dd20ad336d
3,896
py
Python
token_management_system/token_manager/api/views.py
pawanvirsingh/token_management
b1ef01e19e37a61c627c6712917807424e77b823
[ "Apache-2.0" ]
null
null
null
token_management_system/token_manager/api/views.py
pawanvirsingh/token_management
b1ef01e19e37a61c627c6712917807424e77b823
[ "Apache-2.0" ]
null
null
null
token_management_system/token_manager/api/views.py
pawanvirsingh/token_management
b1ef01e19e37a61c627c6712917807424e77b823
[ "Apache-2.0" ]
null
null
null
from rest_framework import status from rest_framework.decorators import action from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.mixins import DestroyModelMixin, RetrieveModelMixin, \ UpdateModelMixin from rest_framework.viewsets import GenericViewSet from token_management_system.token_manager.api.serializers import TokenSerializer from token_management_system.token_manager.models import Token class TokenViewset(RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, GenericViewSet): serializer_class = TokenSerializer permission_classes = (AllowAny,) def get_queryset(self): return Token.objects.all() def list(self, request, *args, **kwargs): result = Token.assign() if result: return Response(data={'token': result }, status=status.HTTP_200_OK) return Response(status=status.HTTP_404_NOT_FOUND) @action(methods=['get'], detail=True,url_path='unblock') def unblock(self, request, pk=None): object = self.get_object() print(object.__dict__) print( object.status == Token.FREE) print(object.status) if object.status == Token.FREE: return Response({"success": False, "message":"You can not unblock a free token "}, status=status.HTTP_400_BAD_REQUEST) object.unblock_token() return Response({"success":True},status=status.HTTP_200_OK) @action(methods=['get'], detail=True, url_path='keep-alive') def alive(self, request, pk=None): object = self.get_object() print() print(object.status == Token.FREE) if object.status == Token.FREE: return Response({"success": False, "message": "You can not keep alive a already free token"}, status=status.HTTP_400_BAD_REQUEST) object.mark_token_alive() return Response({"success": True}, status=status.HTTP_200_OK) # class GetPlanView(ListModelMixin, GenericViewSet): # serializer_class = serializers.PlanValiditySerializer # permission_classes = (ServerPermission,) # filter_backends = [DjangoFilterBackend] # filterset_fields = ['customer__user_id', 'customer__product__name'] # # def get_queryset(self): # return Subscription.objects.filter(expires_at__gte=datetime.date.today()-datetime.timedelta(days=7)) # class HostedPageView(GenericViewSet, CreateModelMixin): # serializer_class = serializers.HostedPageSerialzer # permission_classes = [ServerPermission] # # def create(self, request, *args, **kwargs): # serializer = self.get_serializer(data=request.data) # serializer.is_valid(raise_exception=True) # headers = self.get_success_headers(serializer.data) # return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers) # # # class PlanPaymentViewSet(GenericViewSet, CreateModelMixin): # serializer_class = serializers.HostedPagePaymentSerialzer # permission_classes = [ServerPermission] # # def create(self, request, *args, **kwargs): # serializer = self.get_serializer(data=request.data) # serializer.is_valid(raise_exception=True) # headers = self.get_success_headers(serializer.data) # return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers) # # # class RenewSubscriptionPaymentViewSet(GenericViewSet, CreateModelMixin): # serializer_class = serializers.SubscriptionRenewPaymentSerialzer # permission_classes = [ServerPermission] # # def create(self, request, *args, **kwargs): # serializer = self.get_serializer(data=request.data) # serializer.is_valid(raise_exception=True) # headers = self.get_success_headers(serializer.data) # return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers)
41.892473
130
0.719969
7941e4f457d8f77bb56910fca9c64f649b0a699f
1,963
py
Python
src/plot/plot_int.py
Zimiao1025/Sesica
8b96a9e35a423ef6bd8561ba296ca3f55057af06
[ "BSD-2-Clause" ]
null
null
null
src/plot/plot_int.py
Zimiao1025/Sesica
8b96a9e35a423ef6bd8561ba296ca3f55057af06
[ "BSD-2-Clause" ]
null
null
null
src/plot/plot_int.py
Zimiao1025/Sesica
8b96a9e35a423ef6bd8561ba296ca3f55057af06
[ "BSD-2-Clause" ]
null
null
null
from itertools import cycle import joblib import matplotlib.pyplot as plt def bar_fig(model_path, feats_name, fig_path): # 利用shap打印特征重要度 gbm = joblib.load(model_path) scores = gbm.feature_importances_ print(scores) plt.figure(0) bar_width = 0.4 x1 = [] for i in range(len(scores)): x1.append(i) plt.bar(x1, scores, bar_width, color='crimson', align="center", label="scores", alpha=0.8) plt.xticks(x1, feats_name, size=10) plt.title('Feature importance for LTR', fontsize=18) plt.xlabel('method', fontsize=16) plt.ylabel('Feature importance', fontsize=16) ax_width = 1 ax = plt.gca() # 获取边框 ax.spines['bottom'].set_linewidth(ax_width) ax.spines['left'].set_linewidth(ax_width) ax.spines['top'].set_linewidth(ax_width) ax.spines['right'].set_linewidth(ax_width) plt.savefig(fig_path, bbox_inches='tight') plt.close(0) def pie_fig(model_path, recipe, fig_path): gbm = joblib.load(model_path) scores = gbm.feature_importances_ color_sets = cycle(['crimson', 'navy', 'teal', 'darkorange', 'purple', 'gray', 'green', 'dodgerblue', 'gold', 'lightcoral', 'red']) def make_auto_pct(values): def my_auto_pct(pct): total = sum(values) val = int(round(pct * total / 100.0)) # 同时显示数值和占比的饼图 return '{p:.1f}% ({v:d})'.format(p=pct, v=val) return my_auto_pct _, ax = plt.subplots(subplot_kw=dict(aspect="equal")) ax.pie(scores, startangle=90, radius=1.3, pctdistance=0.9, colors=color_sets, autopct=make_auto_pct(scores), textprops={'fontsize': 13, 'color': 'k'}) ax.legend(recipe, bbox_to_anchor=(1.0, 1.0), loc='center left') ax.text(0.1, 1.6, 'Feature importance for LTR', fontsize=18, ha='center', va='top', wrap=True) # plt.title('Feature importance for LTR', fontsize=18) plt.savefig(fig_path, bbox_inches='tight') plt.close(0)
35.053571
113
0.642384
7941e76e08aefc2c14e31c6a4a136434704c67f8
467
py
Python
users/migrations/0002_auto_20210313_1801.py
ezekieltech/eduTech-backend
33b82f57add98285b73d89bc9d97f499cdb3f1e4
[ "MIT" ]
null
null
null
users/migrations/0002_auto_20210313_1801.py
ezekieltech/eduTech-backend
33b82f57add98285b73d89bc9d97f499cdb3f1e4
[ "MIT" ]
15
2021-01-02T17:43:37.000Z
2021-02-13T12:02:11.000Z
users/migrations/0002_auto_20210313_1801.py
ezekieltech/eduTech-backend
33b82f57add98285b73d89bc9d97f499cdb3f1e4
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-03-13 17:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='customuser', name='role', field=models.CharField(choices=[('Mentor', 'Mentor'), ('Mentee', 'Mentee'), ('Edu-Consultant', 'Edu-Consultant')], max_length=20), ), ]
24.578947
142
0.593148
7941e9f7e10a1ea7006e313a82152b07ba584c86
6,311
py
Python
.vscode/arctictern.py
Code-Institute-Submissions/patmcdonald-PP1-HTML-CSS_FebResub
ba2d69f3ca0f670a34cee6471f90d905115e493d
[ "BSD-Source-Code" ]
1
2022-01-13T13:51:02.000Z
2022-01-13T13:51:02.000Z
.vscode/arctictern.py
Code-Institute-Submissions/patmcdonald-PP1-HTML-CSS_FebResub
ba2d69f3ca0f670a34cee6471f90d905115e493d
[ "BSD-Source-Code" ]
29
2022-01-22T19:05:56.000Z
2022-03-01T08:57:14.000Z
.vscode/arctictern.py
Code-Institute-Submissions/patmcdonald-PP1-HTML-CSS_FebResub
ba2d69f3ca0f670a34cee6471f90d905115e493d
[ "BSD-Source-Code" ]
1
2022-02-21T12:06:01.000Z
2022-02-21T12:06:01.000Z
""" arctictern.py A little script that does a big migration """ import json import os import requests import shutil import subprocess import sys from os.path import exists BASE_URL = "https://raw.githubusercontent.com/Code-Institute-Org/gitpod-full-template/master/" BACKUP = True MIGRATE = False CURRENT_VERSION = 1.0 THIS_VERSION = 1.0 MIGRATE_FILE_LIST = [{"filename": ".theia/settings.json", "url": ".vscode/settings.json" }, {"filename": ".gitpod.yml", "url": ".gitpod.yml" }, {"filename": ".gitpod.dockerfile", "url": ".gitpod.dockerfile" }, {"filename": ".theia/heroku_config.sh", "url": ".vscode/heroku_config.sh" }, {"filename": ".theia/uptime.sh", "url": ".vscode/uptime.sh" }, {"filename": ".theia/init_tasks.sh", "url": ".vscode/init_tasks.sh" }] UPGRADE_FILE_LIST = [{"filename": ".vscode/client.cnf", "url": ".vscode/client.cnf" }, {"filename": ".vscode/mysql.cnf", "url": ".vscode/mysql.cnf" }, {"filename": ".vscode/settings.json", "url": ".vscode/settings.json" }, {"filename": ".vscode/launch.json", "url": ".vscode/launch.json" }, {"filename": ".gitpod.yml", "url": ".gitpod.yml" }, {"filename": ".gitpod.dockerfile", "url": ".gitpod.dockerfile" }, {"filename": ".vscode/heroku_config.sh", "url": ".vscode/heroku_config.sh" }, {"filename": ".vscode/init_tasks.sh", "url": ".vscode/init_tasks.sh" }, {"filename": ".vscode/uptime.sh", "url": ".vscode/uptime.sh" }, {"filename": ".vscode/make_url.py", "url": ".vscode/make_url.py" }, {"filename": ".vscode/arctictern.py", "url": ".vscode/arctictern.py" }] FINAL_LINES = "\nexport POST_UPGRADE_RUN=1\nsource ~/.bashrc\n" def needs_upgrade(): """ Checks the version of the current template against this version. Returns True if upgrade is needed, False if not. """ if exists(".vscode/version.txt"): with open(".vscode/version.txt", "r") as f: THIS_VERSION = float(f.read().strip()) else: THIS_VERSION = 1.0 with open(".vscode/version.txt", "w") as f: f.write(str(THIS_VERSION)) r = requests.get(BASE_URL + ".vscode/version.txt") CURRENT_VERSION = float(r.content) print(f"Upstream version: {CURRENT_VERSION}") print(f"Local version: {THIS_VERSION}") return CURRENT_VERSION > THIS_VERSION def build_post_upgrade(): r = requests.get(BASE_URL + ".vscode/upgrades.json") upgrades = json.loads(r.content.decode("utf-8")) content = "" for k,v in upgrades.items(): if float(k) > THIS_VERSION: print(f"Adding version changes for {k} to post_upgrade.sh") content += v if content: content += FINAL_LINES with open(".vscode/post_upgrade.sh", "w") as f: f.writelines(content) print("Built post_upgrade.sh. Restart your workspace for it to take effect") def process(file, suffix): """ Replaces and optionally backs up the files that need to be changed. Arguments: file - a path and filename suffix - the suffix to the BASE_URL """ if BACKUP: try: shutil.copyfile(file, f"{file}.bak") except FileNotFoundError: print(f"{file} not found, a new one will be created") with open(file, "wb") as f: r = requests.get(BASE_URL + suffix) f.write(r.content) def start_migration(): """ Calls the process function and renames the directory """ if not os.path.isdir(".theia") and MIGRATE: sys.exit("The .theia directory does not exist") FILE_LIST = MIGRATE_FILE_LIST if MIGRATE else UPGRADE_FILE_LIST if not MIGRATE and not os.path.isdir(".vscode"): print("Creating .vscode directory") os.mkdir(".vscode") for file in FILE_LIST: print(f"Processing: {file['filename']}") process(file["filename"], file["url"]) if MIGRATE and os.path.isdir(".vscode"): print(".vscode directory already exists") if input("Overwrite? Y/N ").lower() == "y": shutil.rmtree(".vscode") else: print("You will need to manually remove the .theia directory after migration.") if MIGRATE and not os.path.isdir(".vscode"): print("Renaming directory") os.rename(".theia", ".vscode") if not MIGRATE and needs_upgrade(): build_post_upgrade() print("Changes saved.") print("Please add, commit and push to GitHub.") print("You may need to stop and restart your workspace for") print("the changes to take effect.") if __name__ == "__main__": BACKUP = "--nobackup" not in sys.argv MIGRATE = "--migrate" in sys.argv print("CI Template Migration Utility 0.2") print("---------------------------------") print("The default action is to upgrade the workspace to the latest version.") print(f"Usage: python3 {sys.argv[0]} [--nobackup --migrate]") if not BACKUP: print("If the --nobackup switch is provided, then changed files will not be backed up.") if not MIGRATE: print("If the --migrate switch is provided, the repo will be migrated from Theia to VS Code") print() if input("Start? Y/N ").lower() == "y": start_migration() else: sys.exit("Migration cancelled by the user")
31.873737
101
0.524164
7941ebf7d25e463c031750c846f7658d800f0e9d
4,608
py
Python
tests/ut/python/parallel/test_sparse_feature_bprop.py
PowerOlive/mindspore
bda20724a94113cedd12c3ed9083141012da1f15
[ "Apache-2.0" ]
3,200
2020-02-17T12:45:41.000Z
2022-03-31T20:21:16.000Z
tests/ut/python/parallel/test_sparse_feature_bprop.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
176
2020-02-12T02:52:11.000Z
2022-03-28T22:15:55.000Z
tests/ut/python/parallel/test_sparse_feature_bprop.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
621
2020-03-09T01:31:41.000Z
2022-03-30T03:43:19.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test sparse feature bprop """ import pytest import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import context from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore.ops import composite as C, operations as P from mindspore.ops.operations.comm_ops import AllReduce from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Adam grad_all = C.GradOperation(get_all=True) @pytest.fixture(name="test_context") def _test_context(): context.set_context(enable_sparse=True) yield context.set_context(enable_sparse=False) context.reset_auto_parallel_context() class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def test_bprop_with_sparse_feature_allreduce(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="hybrid_parallel") class Net(nn.Cell): def __init__(self, axis=0, shape=None): super(Net, self).__init__() if shape is None: shape = [8, 8] self.all_reduce = AllReduce() self.gatherv2 = P.SparseGatherV2() self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis def construct(self, x): out = self.all_reduce(x) out = self.gatherv2(out, self.index, self.axis) return out net = GradWrap(Net()) x = Tensor(np.ones([64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x) def test_bprop_with_sparse_feature_mirror(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") class Net(nn.Cell): def __init__(self, shape=None): super(Net, self).__init__() if shape is None: shape = [8, 8] self.index = Tensor(np.ones(shape), dtype=ms.int32) self.embeddinglookup = nn.EmbeddingLookup(64, 64, param_init='ones') self.embeddinglookup.embeddinglookup.shard(((1, 1), (8, 1))) def construct(self, x, b): out = self.embeddinglookup(self.index) return out _x = Tensor(np.ones([126, 64, 32]), dtype=ms.float32) _b = Tensor(np.ones([126, 64, 32]), dtype=ms.float32) def compile_net(net): optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) net = Net() compile_net(net) def test_bprop_with_sparse_feature_dataparallel(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="data_parallel") class Net(nn.Cell): def __init__(self, axis=0, shape=None): super(Net, self).__init__() if shape is None: shape = [8, 8] weight = Tensor(np.ones([64, 64]), dtype=ms.float32) self.weight = Parameter(weight, "w") self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis self.gatherv2 = P.SparseGatherV2() def construct(self, x, b): out = self.gatherv2(self.weight, self.index, self.axis) return out _x = Tensor(np.ones([126, 64, 32]), dtype=ms.float32) _b = Tensor(np.ones([126, 64, 32]), dtype=ms.float32) def compile_net(net): optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) net = Net() compile_net(net)
34.133333
104
0.657552
7941ec507bc59e002087d8508825b95e65385c1f
14,927
py
Python
volttrontesting/platform/dbutils/test_influxdbutils.py
architpansare/volttron
ea8e7b3c8af9ce08dc736bd8a5c7b513d6b94fe9
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
volttrontesting/platform/dbutils/test_influxdbutils.py
architpansare/volttron
ea8e7b3c8af9ce08dc736bd8a5c7b513d6b94fe9
[ "Apache-2.0", "BSD-2-Clause" ]
4
2021-05-28T19:12:54.000Z
2022-02-18T03:07:40.000Z
volttrontesting/platform/dbutils/test_influxdbutils.py
architpansare/volttron
ea8e7b3c8af9ce08dc736bd8a5c7b513d6b94fe9
[ "Apache-2.0", "BSD-2-Clause" ]
3
2021-06-12T19:49:56.000Z
2022-02-12T20:14:38.000Z
from time import time import os from gevent import sleep import pytest try: from influxdb import InfluxDBClient except ImportError: pytest.skip( "Required imports for testing are not installed; thus, not running tests. " "If on Ubuntu or Debian OS, install imports with: services/core/InfluxdbHistorian/scripts/install-influx.sh " "Otherwise, see https://docs.influxdata.com/influxdb/v1.4/introduction/installation/.", allow_module_level=True, ) import volttron.platform.dbutils.influxdbutils as influxdbutils from volttrontesting.fixtures.docker_wrapper import create_container from volttrontesting.utils.utils import get_rand_port IMAGES = ["influxdb:1.7"] if "CI" not in os.environ: IMAGES.extend(["influxdb:1.8.1", "influxdb:1.7.10"]) TEST_DATABASE = "test_historian" ENV_INFLUXDB = {"INFLUXDB_DB": TEST_DATABASE} ALLOW_CONNECTION_TIME = 10 @pytest.mark.dbutils @pytest.mark.influxdbutils def test_get_all_topics(get_container_func, ports_config): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) points = [ { "measurement": "meta", "tags": {"topic_id": "sometopic_id"}, "time": 1465839830100400200, "fields": { "topic": "some_topic_name", "meta_dict": str({"metadata1": "foobar"}), }, } ] add_data_to_measurement(ports_config, points) expected_topics = ["some_topic_name"] actual_topics = influxdbutils.get_all_topics(influxdb_client(ports_config)) assert actual_topics == expected_topics @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "topic_id", [("a^p"), ("a[p-z]"), ("\\w+\\b"), ("fgfd$"), ("\\/foobar\\/")] ) def test_get_topic_values_raises_value_error_on_regex( get_container_func, ports_config, topic_id ): with pytest.raises(ValueError): influxdbutils.get_topic_values( None, topic_id, None, None, None, None, None, None, None, None ) @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "points, topic_id, start, end, agg_type, agg_period, skip, count, order,use_calendar_time_periods, expected_topic_values", [ ( [ { "measurement": "power_kw", "tags": { "device": "device1", "building": "building1", "campus": "campusa", }, "fields": {"value": "somevalue"}, "time": 1465839830100400200, } ], "CampusA/Building1/Device1/Power_KW".lower(), None, None, None, None, 0, 1000, "FIRST_TO_LAST", False, [("2016-06-13T17:43:50.100400+00:00", "somevalue")], ) ], ) def test_get_topic_values( get_container_func, ports_config, points, topic_id, start, end, agg_type, agg_period, skip, count, order, use_calendar_time_periods, expected_topic_values, ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) add_data_to_measurement(ports_config, points) actual_topic_values = influxdbutils.get_topic_values( influxdb_client(ports_config), topic_id, start, end, agg_type, agg_period, skip, count, order, use_calendar_time_periods, ) assert actual_topic_values == expected_topic_values @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "points, topic_id, expected_meta", [ ( [ { "measurement": "meta", "tags": {"topic_id": "sometopic_id"}, "time": 1465839830100400200, "fields": { "topic": "some_topic_name", "meta_dict": str({"metadata1": "foobar", "metadata2": 42}), "last_updated": "1465839830100400200", }, } ], "sometopic_id", {"metadata1": "foobar", "metadata2": 42}, ) ], ) def test_get_topic_meta( get_container_func, ports_config, points, topic_id, expected_meta ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) add_data_to_measurement(ports_config, points) actual_meta = influxdbutils.get_topic_meta( influxdb_client(ports_config), topic_id ) assert actual_meta == expected_meta @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "points, expected_results", [ ( [ { "measurement": "meta", "tags": {"topic_id": "sometopic_id"}, "fields": { "topic": "actual_topic_name", "meta_dict": str({"metadata1": "foobar"}), }, } ], ( {"sometopic_id": "actual_topic_name"}, {"sometopic_id": {"metadata1": "foobar"}}, ), ), ( [ { "measurement": "meta", "tags": {"topic_id": "sometopic_id"}, "fields": { "topic": "actual_topic_name1", "meta_dict": str({"metadata1": "foobar"}), }, }, { "measurement": "meta", "tags": {"topic_id": "other_id"}, "fields": { "topic": "actual_topic_name2", "meta_dict": str({"metadata2": 42}), }, }, ], ( { "sometopic_id": "actual_topic_name1", "other_id": "actual_topic_name2", }, { "sometopic_id": {"metadata1": "foobar"}, "other_id": {"metadata2": 42}, }, ), ), ], ) def test_get_all_topic_id_and_meta( get_container_func, ports_config, points, expected_results ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) add_data_to_measurement(ports_config, points) actual_results = influxdbutils.get_all_topic_id_and_meta( influxdb_client(ports_config) ) assert actual_results == expected_results @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "topic_id, topic, meta, updated_time, expected_data", [ ( "sometopic_id", "actual_topic_name", {"metadata1": "foobar"}, "1465839830100400200", [ { "time": "1970-01-01T00:00:00Z", "last_updated": "1465839830100400200", "meta_dict": "{'metadata1': 'foobar'}", "topic": "actual_topic_name", "topic_id": "sometopic_id", } ], ) ], ) def test_insert_meta( get_container_func, ports_config, topic_id, topic, meta, updated_time, expected_data ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) assert get_data(ports_config, "meta") == [] influxdbutils.insert_meta( influxdb_client(ports_config), topic_id, topic, meta, updated_time ) actual_results = get_data(ports_config, "meta") assert actual_results == expected_data @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "measurement, updatedtime, topic_id, source, value, value_string, expected_data", [ ( "POWER_KW", "2017-12-28T20:41:00.004260096Z", "CampusA/Building1/Device1/POWER_KW", "scrape", "123.4", "foobar", [ { "time": "2017-12-28T20:41:00.004260Z", "building": "Building1", "campus": "CampusA", "device": "Device1", "source": "scrape", "value": "123.4", "value_string": "foobar", } ], ), ( "OutsideAirTemperature", "2017-12-28T20:41:00.004260096Z", "CampusA/Building1/LAB/Device/OutsideAirTemperature", "scrape", "123.4", "foobar", [ { "time": "2017-12-28T20:41:00.004260Z", "building": "LAB", "campus": "CampusA/Building1", "device": "Device", "source": "scrape", "value": "123.4", "value_string": "foobar", } ], ), ( "temp", "2017-12-28T20:41:00.004260096Z", "LAB/Device/temp", "scrape", "123.4", "foobar", [ { "time": "2017-12-28T20:41:00.004260Z", "building": "LAB", "device": "Device", "source": "scrape", "value": "123.4", "value_string": "foobar", } ], ), ], ) def test_insert_data_point( get_container_func, ports_config, measurement, updatedtime, topic_id, source, value, value_string, expected_data, ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) assert get_data(ports_config, measurement) == [] influxdbutils.insert_data_point( influxdb_client(ports_config), updatedtime, topic_id, source, value, value_string, ) actual_data = get_data(ports_config, measurement) assert actual_data == expected_data @pytest.mark.dbutils @pytest.mark.influxdbutils @pytest.mark.parametrize( "pattern, expected_topics", [ ("actual", [{"actual_topic_name": "sometopic_id"}]), ( "topic", [ {"actual_topic_name": "sometopic_id"}, {"snafu_topic": "ghsfjkhkjf_ID"}, {"topic_snafu_2": "topic_id_42"}, ], ), ("foo", []), ( "^(snafu).*", [{"snafu_Topic2": "other_topic_id"}, {"snafu_topic": "ghsfjkhkjf_ID"}], ), ("(name)$", [{"actual_topic_name": "sometopic_id"}]), ], ) def test_get_topics_by_pattern( get_container_func, ports_config, pattern, expected_topics ): get_container, image = get_container_func with get_container( image, ports=ports_config["ports"], env=ENV_INFLUXDB ) as container: wait_for_connection(container) points = [ { "measurement": "meta", "tags": {"topic_id": "sometopic_id"}, "fields": { "topic": "actual_topic_name", "meta_dict": str({"metadata1": "foobar"}), }, }, { "measurement": "meta", "tags": {"topic_id": "ghsfjkhkjf_ID"}, "fields": { "topic": "snafu_topic", "meta_dict": str({"metadata42": "foobar"}), }, }, { "measurement": "meta", "tags": {"topic_id": "topic_id_42"}, "fields": { "topic": "topic_snafu_2", "meta_dict": str({"metadata42": "foobar"}), }, }, { "measurement": "meta", "tags": {"topic_id": "other_topic_id"}, "fields": { "topic": "snafu_Topic2", "meta_dict": str({"metadata42": "foobar"}), }, }, ] add_data_to_measurement(ports_config, points) actual_topics = influxdbutils.get_topics_by_pattern( influxdb_client(ports_config), pattern ) assert actual_topics == expected_topics @pytest.fixture(params=IMAGES) def get_container_func(request): return create_container, request.param @pytest.fixture() def ports_config(): port_on_host = get_rand_port(ip="8086") return {"port_on_host": port_on_host, "ports": {"8086/tcp": port_on_host}} def influxdb_client(ports_config): connection_params = { "host": "localhost", "port": ports_config["port_on_host"], "database": TEST_DATABASE, } return influxdbutils.get_client(connection_params) def wait_for_connection(container): sleep(ALLOW_CONNECTION_TIME) query_database(container, f"use {TEST_DATABASE}") def query_database(container, query): cmd = f'influx -execute "{query}" -database test_historian' start_time = time() while time() - start_time < ALLOW_CONNECTION_TIME: r = container.exec_run(cmd=cmd, tty=True) print(r) if r[0] != 0: continue else: return return RuntimeError(r) def add_data_to_measurement(ports_config, points): client = InfluxDBClient( host="localhost", port=ports_config["port_on_host"], database=TEST_DATABASE ) client.write_points(points) def get_data(ports_config, measurement): client = InfluxDBClient( host="localhost", port=ports_config["port_on_host"], database=TEST_DATABASE ) res = client.query(f"""SELECT * from {measurement}""", database=TEST_DATABASE) return list(res.get_points())
29.21135
126
0.521337
7941ecad8e09ba911447c83dad5cd6e27dc30684
1,868
py
Python
tutorials/tutorial_code/debugging_info/custom_metrics.py
xuweichn/docs
794227e1b7d2dcbf3fc82cd203d32c59c6b933c6
[ "Apache-2.0", "CC-BY-4.0" ]
1
2021-02-08T14:07:25.000Z
2021-02-08T14:07:25.000Z
tutorials/tutorial_code/debugging_info/custom_metrics.py
xuweichn/docs
794227e1b7d2dcbf3fc82cd203d32c59c6b933c6
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
tutorials/tutorial_code/debugging_info/custom_metrics.py
xuweichn/docs
794227e1b7d2dcbf3fc82cd203d32c59c6b933c6
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """use metrics The sample can be run on CPU/GPU/Ascend. """ import mindspore.nn as nn from mindspore.nn import Momentum, SoftmaxCrossEntropyWithLogits from mindspore import Model, context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from src.dataset import create_train_dataset, create_eval_dataset from src.net import Net if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE) ds_train = create_train_dataset() ds_eval = create_eval_dataset() net = Net() net_opt = Momentum(net.trainable_params(), 0.01, 0.9) net_loss = SoftmaxCrossEntropyWithLogits(reduction='mean') metrics = { 'Accuracy': nn.Accuracy(), 'Loss': nn.Loss(), 'Precision': nn.Precision(), 'Recall': nn.Recall(), 'F1_score': nn.F1() } config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10) ckpoint = ModelCheckpoint(prefix="CKPT", config=config_ck) model = Model(network=net, loss_fn=net_loss, optimizer=net_opt, metrics=metrics) model.train(epoch=2, train_dataset=ds_train, callbacks=[ckpoint, LossMonitor()]) result = model.eval(ds_eval) print(result)
39.744681
84
0.707709
7941ee29faaa1d81c4a590a2c30b76d8330dd495
3,205
py
Python
options/train_options.py
joverwey/Diverse-Motion-Stylization
4791914046a953158f7430541670b8537924e893
[ "MIT" ]
7
2021-11-02T16:56:10.000Z
2022-03-23T05:11:42.000Z
options/train_options.py
joverwey/Diverse-Motion-Stylization
4791914046a953158f7430541670b8537924e893
[ "MIT" ]
null
null
null
options/train_options.py
joverwey/Diverse-Motion-Stylization
4791914046a953158f7430541670b8537924e893
[ "MIT" ]
2
2022-03-04T01:10:40.000Z
2022-03-24T10:56:15.000Z
import os from .base_options import BaseOptions class TrainOptions(BaseOptions): def __init__(self): BaseOptions.__init__(self) def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # dataset parameter parser.add_argument('--num_workers', type=int, default=0) parser.add_argument('--train_dataroot', type=str, default='./datasets/styletransfer_generate.npz', help='path to training set') parser.add_argument('--preproot', type=str, default='./datasets/preprocess_styletransfer_generate.npz', help='path to preprocess') parser.add_argument('--clip_size', type=int, nargs='+', default=[64, 21]) # training parameters parser.add_argument('--batch_size', type=int, default=8) parser.add_argument('--resume_iter', type=int, default=0) parser.add_argument('--total_iters', type=int, default=100000) parser.add_argument('--g_lr', type=float, default=1e-4, help='learning rate for G') parser.add_argument('--d_lr', type=float, default=1e-6, help='learning rate for D') parser.add_argument('--e_lr', type=float, default=1e-6, help='learning rate for E') parser.add_argument('--f_lr', type=float, default=1e-5, help='learning rate for F') parser.add_argument('--lr_decay_every', type=int, default=100, help='learning rate decay step size') parser.add_argument('--beta1', type=float, default=0.9) parser.add_argument('--beta2', type=float, default=0.99) parser.add_argument('--weight_decay', type=float, default=1e-4) parser.add_argument('--lambda_adv', type=float, default=1.0) parser.add_argument('--lambda_reg', type=float, default=1.0, help='weight for R1 regularization') parser.add_argument('--lambda_con', type=float, default=1.0, help='weight for content reconstruction loss') parser.add_argument('--lambda_sty', type=float, default=1.0, help='weight for style reconstruction loss') parser.add_argument('--lambda_ds', type=float, default=1.0, help='weight for style diversification loss') parser.add_argument('--lambda_cyc', type=float, default=1.0, help='weight for cycle loss') parser.add_argument('--lambda_feet', type=float, default=1.0) parser.add_argument('--ds_iter', type=int, default=100000) # saving & loading parser.add_argument('--net_print', type=bool, default=True) parser.add_argument('--print_every', type=int, default=10) parser.add_argument('--save_every', type=int, default=5000) parser.add_argument('--save_latest_every', type=int, default=100) parser.add_argument('--load_latest', action='store_true') return parser def check(self, opt): assert opt.mode == 'train', 'Not a train mode!' assert opt.num_domains == len(opt.domains), 'Number of domains does not match!' def print_options(self, opt): message = BaseOptions.print_options(self, opt) file_name = os.path.join(opt.save_dir, '%s_opt.txt' % opt.mode) with open(file_name, 'a') as opt_file: opt_file.write(message) opt_file.write('\n')
54.322034
138
0.671139
7941ee5e74935bab16b9ee91538200dace1c1509
7,479
py
Python
plugins/aha.plugin.twitteroauth/twitteroauth/twitter.py
Letractively/aha-gae
e1209f7d44d1c59ff9d373b7d89d414f31a9c28b
[ "BSD-3-Clause" ]
null
null
null
plugins/aha.plugin.twitteroauth/twitteroauth/twitter.py
Letractively/aha-gae
e1209f7d44d1c59ff9d373b7d89d414f31a9c28b
[ "BSD-3-Clause" ]
null
null
null
plugins/aha.plugin.twitteroauth/twitteroauth/twitter.py
Letractively/aha-gae
e1209f7d44d1c59ff9d373b7d89d414f31a9c28b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ tipfy.ext.auth.twitter ~~~~~~~~~~~~~~~~~~~~~~ Implementation of Twitter authentication scheme. Ported from `tornado.auth <http://github.com/facebook/tornado/blob/master/tornado/auth.py>`_. :copyright: 2009 Facebook. :copyright: 2010 tipfy.org. :license: Apache License Version 2.0, see LICENSE.txt for more details. """ from __future__ import absolute_import import functools import logging import urllib from google.appengine.api import urlfetch from django.utils import simplejson #from tipfy import REQUIRED_VALUE from plugin.twitteroauth.oauth import OAuthMixin #: Default configuration values for this module. Keys are: #: #: - ``consumer_key``: Key provided when you register an application with #: Twitter. #: - ``consumer_secret``: Secret provided when you register an application #: with Twitter. #default_config = { # 'consumer_key': REQUIRED_VALUE, # 'consumer_secret': REQUIRED_VALUE, #} import aha config = aha.Config() class TwitterMixin(OAuthMixin): """A :class:`tipfy.RequestHandler` mixin that implements Twitter OAuth authentication. To authenticate with Twitter, register your application with Twitter at http://twitter.com/apps. Then copy your Consumer Key and Consumer Secret to the config: <<code python>> config['tipfy.ext.auth.twitter'] = { 'consumer_key': 'XXXXXXXXXXXXXXX', 'consumer_secret': 'XXXXXXXXXXXXXXX', } <</code>> When your application is set up, you can use the TwitterMixin to authenticate the user with Twitter and get access to their stream. You must use the mixin on the handler for the URL you registered as your application's Callback URL. For example: <<code python>> from tipfy import RequestHandler, abort from tipfy.ext.auth.twitter import TwitterMixin from tipfy.ext.session import CookieMixin, SessionMiddleware class TwitterHandler(RequestHandler, CookieMixin, TwitterMixin): middleware = [SessionMiddleware] def get(self): if self.request.args.get('oauth_token', None): return self.get_authenticated_user(self._on_auth) return self.authorize_redirect() def _on_auth(self, user): if not user: abort(403) # Set the user in the session. # ... <</code>> The user object returned by get_authenticated_user() includes the attributes 'username', 'name', and all of the custom Twitter user attributes describe at http://apiwiki.twitter.com/Twitter-REST-API-Method%3A-users%C2%A0show in addition to 'access_token'. You should save the access token with the user; it is required to make requests on behalf of the user later with twitter_request(). """ _OAUTH_REQUEST_TOKEN_URL = 'http://api.twitter.com/oauth/request_token' _OAUTH_ACCESS_TOKEN_URL = 'http://api.twitter.com/oauth/access_token' _OAUTH_AUTHORIZE_URL = 'http://api.twitter.com/oauth/authorize' _OAUTH_AUTHENTICATE_URL = 'http://api.twitter.com/oauth/authenticate' _OAUTH_NO_CALLBACKS = True def _twitter_consumer_key(self): return config.consumer_key def _twitter_consumer_secret(self): return config.consumer_secret def _oauth_consumer_token(self): return dict( key = self._twitter_consumer_key(), secret = self._twitter_consumer_secret()) def authenticate_redirect(self): """Just like authorize_redirect(), but auto-redirects if authorized. This is generally the right interface to use if you are using Twitter for single-sign on. """ url = self._oauth_request_token_url() try: response = urlfetch.fetch(url, deadline = 10) except urlfetch.DownloadError, e: logging.exception(e) response = None return self._on_request_token(self._OAUTH_AUTHENTICATE_URL, None, response) def twitter_request(self, path, callback, access_token = None, post_args = None, **args): """Fetches the given API path, e.g., '/statuses/user_timeline/btaylor' The path should not include the format (we automatically append '.json' and parse the JSON output). If the request is a POST, post_args should be provided. Query string arguments should be given as keyword arguments. All the Twitter methods are documented at http://apiwiki.twitter.com/Twitter-API-Documentation. Many methods require an OAuth access token which you can obtain through authorize_redirect() and get_authenticated_user(). The user returned through that process includes an 'access_token' attribute that can be used to make authenticated requests via this method. Example usage: from tipfy import RequestHandler from tipfy.ext.auth.twitter import TwitterMixin class MainHandler(RequestHandler, TwitterMixin): def get(self): return self.twitter_request( '/statuses/update', post_args = {'status': 'Testing Twitter Mixin'}, access_token = user['access_token'], callback = self._on_post) def _on_post(self, new_entry): if not new_entry: # Call failed; perhaps missing permission? return self.authorize_redirect() return Response('Posted a message!') """ # Add the OAuth resource request signature if we have credentials url = 'http://api.twitter.com/1' + path + '.json' if access_token: all_args = {} all_args.update(args) all_args.update(post_args or {}) method = 'POST' if post_args is not None else 'GET' oauth = self._oauth_request_parameters( url, access_token, all_args, method = method) args.update(oauth) if args: url += '?' + urllib.urlencode(args) try: if post_args is not None: response = urlfetch.fetch(url, method = 'POST', payload = urllib.urlencode(post_args), deadline = 10) else: response = urlfetch.fetch(url, deadline = 10) except urlfetch.DownloadError, e: logging.exception(e) response = None return self._on_twitter_request(callback, response) def _on_twitter_request(self, callback, response): if not response: logging.warning('Could not get Twitter request token.') return callback(None) elif response.status_code < 200 or response.status_code >= 300: logging.warning('Invalid Twitter response (%d): %s', response.status_code, response.content) return callback(None) return callback(simplejson.loads(response.content)) def _oauth_get_user(self, access_token, callback): callback = functools.partial(self._parse_user_response, callback) return self.twitter_request( '/users/show/' + access_token['screen_name'], access_token = access_token, callback = callback) def _parse_user_response(self, callback, user): if user: user['username'] = user['screen_name'] return callback(user)
35.614286
97
0.649151
7941eec5004d0b5d1a61f495f98eee698dc9ab1d
44,959
py
Python
tests/python/unittest/test_module.py
connorgoggins/incubator-mxnet
37280e4ddf00cacdac50c1e798fd2a14da38ae8d
[ "Apache-2.0" ]
null
null
null
tests/python/unittest/test_module.py
connorgoggins/incubator-mxnet
37280e4ddf00cacdac50c1e798fd2a14da38ae8d
[ "Apache-2.0" ]
null
null
null
tests/python/unittest/test_module.py
connorgoggins/incubator-mxnet
37280e4ddf00cacdac50c1e798fd2a14da38ae8d
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import mxnet as mx import mxnet.ndarray as nd from mxnet.test_utils import * import numpy as np from functools import reduce from mxnet.module.executor_group import DataParallelExecutorGroup from common import setup_module, with_seed, assertRaises, teardown_module from collections import namedtuple curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) sys.path.insert(0, os.path.join(curr_path, "../train")) from test_bucketing import train_model, prepare_bucketing_data @with_seed() def test_module_dtype(): dtype = np.float16 dshape = (3, 8, 7) sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, dtype, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape, dtype=dtype)], label=None)) mod.backward([mx.nd.ones(dshape, dtype=dtype)]) for x in mod.get_outputs(): assert x.dtype == dtype def test_module_bind(): sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) assertRaises(TypeError, mod.bind, data_shapes=[('data', mx.nd.array([10,10]))]) assert mod.binded == False mod.bind(data_shapes=[('data', (10,10))]) assert mod.binded == True @with_seed() def test_module_input_grads(): a = mx.sym.Variable('a', __layout__='NC') b = mx.sym.Variable('b', __layout__='NC') c = mx.sym.Variable('c', __layout__='NC') c = a + 2 * b + 3 * c net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None, context=[mx.cpu(0), mx.cpu(1)]) net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]], label_shapes=None, inputs_need_grad=True) net.init_params() net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)), nd.ones((5, 5)), nd.ones((5, 5))])) net.backward(out_grads=[nd.ones((5, 5))]) input_grads = net.get_input_grads() b_grad = input_grads[0].asnumpy() c_grad = input_grads[1].asnumpy() a_grad = input_grads[2].asnumpy() assert np.all(a_grad == 1), a_grad assert np.all(b_grad == 2), b_grad assert np.all(c_grad == 3), c_grad @with_seed() def test_module_ctx_group(): def check_module_ctx_group(ctxs, group2ctxs, grad_ctxs=None): with mx.AttrScope(ctx_group='dev1'): a = mx.symbol.Variable('a') a = a * 2 with mx.AttrScope(ctx_group='dev2'): b = mx.symbol.Variable('b') c = a + b shape = (2, 5) mod1 = mx.mod.Module(c, context=ctxs, data_names=['a', 'b'], label_names=None, group2ctxs=group2ctxs) mod1.bind(data_shapes=[['a', shape], ['b', shape]], inputs_need_grad=True) mod1.init_params() mod1.forward(data_batch=mx.io.DataBatch(data=[mx.nd.ones(shape), mx.nd.ones(shape)]), is_train=True) mod1.backward([mx.nd.ones(shape)]) mod1_input_grads = mod1.get_input_grads() mod2 = mx.mod.Module(c, context=ctxs, data_names=['a', 'b'], label_names=None) mod2.bind(data_shapes=[['a', shape], ['b', shape]], inputs_need_grad=True) mod2.init_params() mod2.forward(data_batch=mx.io.DataBatch(data=[mx.nd.ones(shape), mx.nd.ones(shape)]), is_train=True) mod2.backward([mx.nd.ones(shape)]) mod2_input_grads = mod2.get_input_grads() if grad_ctxs is not None: assert(mod1_input_grads[0].context == grad_ctxs[0]) assert(mod1_input_grads[1].context == grad_ctxs[1]) assert(np.all(mod1_input_grads[0].asnumpy() == mod2_input_grads[0].asnumpy())) assert(np.all(mod1_input_grads[1].asnumpy() == mod2_input_grads[1].asnumpy())) check_module_ctx_group([mx.cpu(0)], {'dev1': mx.cpu(1), 'dev2': mx.cpu(2)}, grad_ctxs=[mx.cpu(1), mx.cpu(2)]) check_module_ctx_group([mx.cpu(0), mx.cpu(1)], [{'dev1': mx.cpu(2), 'dev2': mx.cpu(3)}, {'dev1': mx.cpu(4), 'dev2': mx.cpu(5)}]) check_module_ctx_group([mx.cpu(0), mx.cpu(1)], {'dev1': mx.cpu(2), 'dev2': mx.cpu(3)}) check_module_ctx_group([mx.cpu(0), mx.cpu(1)], {'dev1': mx.cpu(2), 'dev2': [mx.cpu(3)]}) check_module_ctx_group([mx.cpu(0), mx.cpu(1)], {'dev1':mx.cpu(2), 'dev2':[mx.cpu(3), mx.cpu(3)]}) check_module_ctx_group([mx.cpu(0), mx.cpu(1)], {'dev1':[mx.cpu(2), mx.cpu(2)], 'dev2':[mx.cpu(3), mx.cpu(3)]}) @with_seed() def test_bucket_module_ctx_group(): num_hidden = 10 batch_size = 5 def sym_gen(seq_len): with mx.AttrScope(ctx_group='dev1'): data = mx.symbol.Variable('data') weight = mx.symbol.Variable('dev1_weight') bias = mx.symbol.Variable('dev1_bias') fc = data for i in range(seq_len): fc = mx.symbol.FullyConnected(data=fc, weight=weight, bias=bias, name='dev1_fc_%d' % i, num_hidden=num_hidden) with mx.AttrScope(ctx_group='dev2'): label = mx.symbol.Variable('label') weight = mx.symbol.Variable('dev2_weight') bias = mx.symbol.Variable('dev2_bias') for i in range(seq_len): fc = mx.symbol.FullyConnected(data=fc, weight=weight, bias=bias, name='dev2_fc_%d' % i, num_hidden=num_hidden) sym = mx.symbol.SoftmaxOutput(fc, label, name='softmax') return sym, ('data',), ('label',) mod = mx.mod.BucketingModule(sym_gen=sym_gen, default_bucket_key=10, context=[mx.cpu(0)], group2ctxs=[{'dev1': mx.cpu(1), 'dev2': mx.cpu(2)}]) mod.bind(data_shapes=[['data', (batch_size, num_hidden)]], label_shapes=[['label', (batch_size,)]], for_training=True, inputs_need_grad=True) assert(mod.binded) @with_seed() def test_module_layout(): sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') dshape = (3, 8, 7) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) assert mod.get_outputs()[0].shape == dshape hdshape = (3, 4, 7) for x in mod.get_outputs(merge_multi_context=False)[0]: assert x.shape == hdshape @with_seed() def test_save_load(): previous_update_on_kvstore = os.getenv('MXNET_UPDATE_ON_KVSTORE', "1") os.putenv('MXNET_UPDATE_ON_KVSTORE', '1') def dict_equ(a, b): assert set(a) == set(b) for k in a: assert (a[k].asnumpy() == b[k].asnumpy()).all() sym = mx.sym.Variable('data') sym = mx.sym.FullyConnected(sym, num_hidden=100) # single device mod = mx.mod.Module(sym, ('data',)) mod.bind(data_shapes=[('data', (10, 10))]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate':0.1, 'momentum':0.9}) mod.update() mod.save_checkpoint('test', 0, save_optimizer_states=True) mod2 = mx.mod.Module.load('test', 0, load_optimizer_states=True, data_names=('data',)) mod2.bind(data_shapes=[('data', (10, 10))]) mod2.init_optimizer(optimizer_params={'learning_rate':0.1, 'momentum':0.9}) assert mod._symbol.tojson() == mod2._symbol.tojson() dict_equ(mod.get_params()[0], mod2.get_params()[0]) dict_equ(mod._updater.states, mod2._updater.states) # multi device mod = mx.mod.Module(sym, ('data',), context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[('data', (10, 10))]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate':0.1, 'momentum':0.9}) mod.update() mod.save_checkpoint('test', 0, save_optimizer_states=True) mod2 = mx.mod.Module.load('test', 0, load_optimizer_states=True, data_names=('data',)) mod2.bind(data_shapes=[('data', (10, 10))]) mod2.init_optimizer(optimizer_params={'learning_rate':0.1, 'momentum':0.9}) assert mod._symbol.tojson() == mod2._symbol.tojson() dict_equ(mod.get_params()[0], mod2.get_params()[0]) dict_equ(mod._kvstore._updater.states, mod2._updater.states) os.putenv('MXNET_UPDATE_ON_KVSTORE', previous_update_on_kvstore) @with_seed() def test_bucketing_save_load(): previous_update_on_kvstore = os.getenv('MXNET_UPDATE_ON_KVSTORE', "1") os.putenv('MXNET_UPDATE_ON_KVSTORE', '1') def dict_equ(a, b): assert set(a) == set(b) for k in a: assert (a[k].asnumpy() == b[k].asnumpy()).all() len_vocab = 50 num_embed = 25 num_epochs = 5 batch_size = 128 num_layers = 2 num_hidden = 25 buckets = [5, 10, 20, 30, 40] invalid_label = -1 num_sentence=1000 stack = mx.rnn.SequentialRNNCell() for i in range(num_layers): stack.add(mx.rnn.LSTMCell(num_hidden=num_hidden, prefix='lstm_l%d_' % i)) def sym_gen(seq_len): data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label') embed = mx.sym.Embedding(data=data, input_dim=len_vocab, output_dim=num_embed, name='embed') stack.reset() outputs, states = stack.unroll(seq_len, inputs=embed, merge_outputs=True) pred = mx.sym.Reshape(outputs, shape=(-1, num_hidden)) pred = mx.sym.FullyConnected(data=pred, num_hidden=len_vocab, name='pred') label = mx.sym.Reshape(label, shape=(-1,)) loss = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax') return loss, ('data',), ('softmax_label',) model = train_model(context=mx.current_context()) model.save_checkpoint("test", 0) data_train, data_val = prepare_bucketing_data(buckets, len_vocab, batch_size, invalid_label, num_sentence) mod2 = mx.mod.BucketingModule.load('test', 0, sym_gen=sym_gen, default_bucket_key=data_train.default_bucket_key) mod2.bind(data_shapes=data_train.provide_data, label_shapes=data_train.provide_label) for bucket_key in model._buckets.keys(): dict_equ(model._buckets[model._default_bucket_key].get_params()[0], mod2._buckets[mod2._default_bucket_key].get_params()[0]) mod2.fit( train_data=data_train, eval_data=data_val, eval_metric=mx.gluon.metric.Perplexity(invalid_label), # Use Perplexity for multiclass classification. kvstore='device', optimizer='sgd', optimizer_params={'learning_rate': 0.01, 'momentum': 0, 'wd': 0.00001}, initializer=mx.init.Xavier(factor_type="in", magnitude=2.34), num_epoch=num_epochs, batch_end_callback=mx.callback.Speedometer(batch_size, 50)) os.putenv('MXNET_UPDATE_ON_KVSTORE', previous_update_on_kvstore) @with_seed() def test_module_reshape(): data = mx.sym.Variable('data') sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc') dshape = (7, 20) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[('data', dshape)]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate': 1}) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all() dshape = (14, 20) mod.reshape(data_shapes=[('data', dshape)]) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all() @with_seed() def test_module_states(): stack = mx.rnn.SequentialRNNCell() for i in range(2): stack.add(mx.rnn.LSTMCell(num_hidden=20, prefix='lstm_l%d_'%i)) begin_state = stack.begin_state(func=mx.sym.Variable) _, states = stack.unroll(10, begin_state=begin_state, inputs=mx.sym.Variable('data')) state_names = [i.name for i in begin_state] mod = mx.mod.Module(mx.sym.Group(states), context=[mx.cpu(0), mx.cpu(1)], label_names=None, state_names=state_names) mod.bind(data_shapes=[('data', (5, 10))], label_shapes=None, for_training=False) mod.init_params() batch = mx.io.DataBatch(data=[mx.nd.zeros((5, 10))], label=[]) mod.set_states(value=1) mod.forward(batch) out = mod.get_outputs(merge_multi_context=False) out1 = mod.get_outputs(merge_multi_context=True) mod.set_states(states=out) mod.forward(batch) out2 = mod.get_outputs(merge_multi_context=True) for x1, x2 in zip(out1, out2): assert not mx.test_utils.almost_equal(x1.asnumpy(), x2.asnumpy(), rtol=1e-3) @with_seed() def test_module_switch_bucket(): vocab_dim = 5000 num_hidden = 100 num_embedding = 100 num_layer = 2 default_key = 10 test_key = 5 batch_size = 32 contexts = [mx.cpu(0)] initializer = mx.init.Xavier(factor_type="in", magnitude=2.34) #generate symbols for an LSTM network def sym_gen(seq_len): data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label') embed = mx.sym.Embedding(data=data, input_dim=vocab_dim, output_dim=num_embedding) stack = mx.rnn.SequentialRNNCell() for i in range(num_layer): stack.add(mx.rnn.LSTMCell(num_hidden=num_hidden, prefix='lstm_l%d_'%i)) outputs, states = stack.unroll(seq_len, inputs=embed, merge_outputs=True) pred = mx.sym.Reshape(outputs, shape=(-1, num_hidden)) pred = mx.sym.FullyConnected(data=pred, num_hidden=vocab_dim, name='pred') label = mx.sym.Reshape(label, shape=(-1,)) pred = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax') return pred, ('data',), ('softmax_label',) def create_bucketing_module(key): model = mx.mod.BucketingModule( sym_gen = sym_gen, default_bucket_key = key, context = contexts) model.bind([('data', (batch_size, key))], [('softmax_label', (batch_size, key))], True, False) model.init_params(initializer=initializer) return model #initialize the bucketing module with the default bucket key bucketing_model = create_bucketing_module(default_key) #check name assert bucketing_model.symbol.list_arguments()[1] == "embedding0_weight",\ "Error in assigning names for args in BucketingModule" #switch to test_key bucketing_model.switch_bucket(test_key, [('data', (batch_size, test_key))], [('softmax_label', (batch_size, test_key))]) total_bytes_before = bucketing_model._buckets[default_key]._total_exec_bytes #remove test_key and switch again del bucketing_model._buckets[test_key] bucketing_model.switch_bucket(test_key, [('data', (batch_size, test_key))], [('softmax_label', (batch_size, test_key))]) total_bytes_after = bucketing_model._buckets[default_key]._total_exec_bytes #the default bucket is expected to reuse the bytes allocated assert total_bytes_after == total_bytes_before # roywei: Getting rid of fixed seed as flakiness could not be reproduced, # tracked at: https://github.com/apache/incubator-mxnet/issues/11705 @with_seed() def test_module_set_params(): # data iter data = mx.nd.array([[0.05, .10]]); label = mx.nd.array([[.01, 0.99]]); train_data = mx.io.NDArrayIter(data, label, batch_size=1) # symbols x = mx.symbol.Variable('data') x = mx.symbol.FullyConnected(name='fc_0', data=x, num_hidden=2) x = mx.symbol.Activation(name="act_0", data=x, act_type='sigmoid') x = mx.symbol.FullyConnected(name='fc_1', data=x, num_hidden=2) x = mx.symbol.Activation(name="act_1", data=x, act_type='sigmoid') x = mx.symbol.LinearRegressionOutput(data=x, name='softmax', grad_scale=2) # create module mod = mx.mod.Module(x, context=[mx.cpu()]); mod.bind(train_data.provide_data, label_shapes=train_data.provide_label, for_training=True) arg_params_correct = {'fc_0_weight': mx.nd.array([[.15, .20], [.25, .30]]), 'fc_0_bias' : mx.nd.array([.35, .35]), 'fc_1_weight': mx.nd.array([[.40, .45], [.50, .55]]), 'fc_1_bias' : mx.nd.array([.60, .60])} arg_params_missing = {'fc_0_weight': mx.nd.array([[.15, .20], [.25, .30]]), 'fc_0_bias' : mx.nd.array([.35, .35]), 'fc_1_weight': mx.nd.array([[.40, .45], [.50, .55]])} arg_params_extra = {'fc_0_weight': mx.nd.array([[.15, .20], [.25, .30]]), 'fc_0_bias' : mx.nd.array([.35, .35]), 'fc_1_weight': mx.nd.array([[.40, .45], [.50, .55]]), 'fc_1_bias' : mx.nd.array([.60, .60]), 'fc_2_weight': mx.nd.array([.60, .60])} arg_params_missing_extra = {'fc_2_weight': mx.nd.array([.60, .60])} # test regular set_params mod.set_params(force_init=True, arg_params=arg_params_correct, aux_params={}) # test allow missing mod.set_params(force_init=True, arg_params=arg_params_missing, aux_params={}, allow_missing=True) assertRaises(RuntimeError, mod.set_params, force_init=True, arg_params=arg_params_missing, aux_params={}, allow_missing=False) # test allow extra mod.set_params(force_init=True, arg_params=arg_params_extra, aux_params={}, allow_missing=True, allow_extra=True) assertRaises(ValueError, mod.set_params, force_init=True, arg_params=arg_params_extra, aux_params={}, allow_missing=True, allow_extra=False) # test allow missing + extra, assertRaises(RuntimeError, mod.set_params, force_init=True, arg_params=arg_params_missing_extra, aux_params={}, allow_missing=False, allow_extra=False) # test allow missing + extra, this will throw a runtime error assertRaises(ValueError, mod.set_params, force_init=True, arg_params=arg_params_missing_extra, aux_params={}, allow_missing=True, allow_extra=False) @with_seed() def test_monitor(): # data iter data = mx.nd.array([[0.05, .10]]); label = mx.nd.array([[.01, 0.99]]); train_data = mx.io.NDArrayIter(data, label, batch_size=1) # symbols x = mx.symbol.Variable('data') x = mx.symbol.FullyConnected(name='fc_0', data=x, num_hidden=2) x = mx.symbol.Activation(name="act_0", data=x, act_type='sigmoid') x = mx.symbol.FullyConnected(name='fc_1', data=x, num_hidden=2) x = mx.symbol.Activation(name="act_1", data=x, act_type='sigmoid') x = mx.symbol.LinearRegressionOutput(data=x, name='softmax', grad_scale=2) # create monitor def mean_abs(x): sum_abs = mx.ndarray.sum(mx.ndarray.abs(x)) return mx.ndarray.divide(sum_abs, reduce(lambda x, y: x * y, x.shape)) mon = mx.mon.Monitor(1, stat_func=mean_abs, pattern='.*', sort=True) # create module mod = mx.mod.Module(x, context=[mx.cpu()]); mod.bind(train_data.provide_data, label_shapes=train_data.provide_label, for_training=True) mod.install_monitor(mon) arg_params = {'fc_0_weight': mx.nd.array([[.15, .20], [.25, .30]]), 'fc_0_bias' : mx.nd.array([.35, .35]), 'fc_1_weight': mx.nd.array([[.40, .45], [.50, .55]]), 'fc_1_bias' : mx.nd.array([.60, .60])} mod.init_params(arg_params=arg_params) data_iter = iter(train_data) data_batch = next(data_iter) mon.tic() mod.forward_backward(data_batch) res = mon.toc() keys = ['act_0', 'act_1', 'data', 'fc_0', 'fc_1', 'softmax'] mon_result_counts = [0, 0, 0, 0, 0, 0] assert(len(res) == 21) for n, k, v in res: for idx, key in enumerate(keys): if k.startswith(key): mon_result_counts[idx] += 1 break assert(mon_result_counts == [2, 2, 1, 6, 6, 4]) @with_seed() def test_executor_group(): def get_rnn_sym(num_layers, num_words, num_hidden, num_embed, seq_len, sparse_embedding): stack = mx.rnn.SequentialRNNCell() for i in range(num_layers): stack.add(mx.rnn.LSTMCell(num_hidden=num_hidden, prefix='lstm_l%d_' % i)) data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label') if sparse_embedding: embed_weight = mx.sym.Variable('embed_weight', stype='row_sparse') embed = mx.sym.contrib.SparseEmbedding(data=data, input_dim=num_words, weight=embed_weight, output_dim=num_embed, name='embed') else: embed = mx.sym.Embedding(data=data, input_dim=num_words, output_dim=num_embed, name='embed') stack.reset() outputs, states = stack.unroll(seq_len, inputs=embed, merge_outputs=True) pred = mx.sym.Reshape(outputs, shape=(-1, num_hidden)) pred = mx.sym.FullyConnected(data=pred, num_hidden=num_words, name='pred') label = mx.sym.Reshape(label, shape=(-1,)) pred = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax') return pred def test_shared_exec_group(exec_grp_shared, exec_grp_created, shared_arg_names=None, extra_args=None, check_shared_grad=True): # Test shared data arrays for i in range(len(exec_grp_shared.execs)): # test same shared_data_arrays for two exec groups shared_data_array1 = exec_grp_shared.shared_data_arrays[i] shared_data_array2 = exec_grp_created.shared_data_arrays[i] if extra_args is not None: assert len(shared_data_array1) == len(extra_args),\ "exec_grp_shared.shared_data_arrays[%d] should have same number of args as extra_args" assert len(shared_data_array1) == len(shared_data_array2),\ "length of shared_data_array of the shared executor group not equal to the created executor group" for k, v in shared_data_array1.items(): if extra_args is not None: assert k in extra_args, "arg %s is not in extra_args" % k assert k in shared_data_array2,\ "arg %s of the shared executor group not in the shared_data_array of the created executor group" % k assert mx.test_utils.same_array(v, shared_data_array2[k]) for data_name, array in exec_grp_shared.shared_data_arrays[i].items(): assert data_name in exec_grp_created.shared_data_arrays[i], \ "Shared input data '%s' is not in " \ "shared_data_arrays of created executor group." % (data_name) assert mx.test_utils.same_array(array, exec_grp_created.shared_data_arrays[i][data_name]), \ "Shared input data '%s' does not share memory." % (data_name) # Test shared argument arrays and gradient arrays exec_shared = exec_grp_shared.execs[i] exec_created = exec_grp_created.execs[i] if shared_arg_names is not None: # test shared arguments for arg_name in shared_arg_names: assert arg_name in exec_created.arg_dict, \ "Shared argument '%s' is not in arg_dict of created executor group." % (arg_name) assert mx.test_utils.same_array(exec_shared.arg_dict[arg_name], exec_created.arg_dict[arg_name]), \ "Shared argument '%s' does not share memory." % (arg_name) # test shared argument gradients if check_shared_grad: for arg_name in shared_arg_names: assert arg_name in exec_created.grad_dict, \ "Shared argument gradient '%s' is not in " \ "grad_dict of created executor group." % (arg_name) assert mx.test_utils.same_array(exec_shared.grad_dict[arg_name], \ exec_created.grad_dict[arg_name]), \ "Shared argument gradient '%s' does not share memory." % (arg_name) for arg_name, grad in exec_grp_shared.grad_req.items(): assert grad == exec_grp_created.grad_req[arg_name], \ "Gradient requirements for shared argument '%s' are inconsistent. " \ "Shared executor group requires '%s' while created executor group requires '%s'" \ %(arg_name, grad, exec_grp_created.grad_req[arg_name]) def check_shared_exec_group(sparse_embedding): # generate an rnn sym with #layers=5 sym = get_rnn_sym(num_layers=3, num_words=num_words, num_hidden=num_hidden, num_embed=num_embed, seq_len=max_bucket_size, sparse_embedding=sparse_embedding) arg_names1 = sym.list_arguments() input_names = [name[0] for name in data_shapes] + [name[0] for name in label_shapes] shared_arg_names = [name for name in arg_names1 if name not in input_names] exec_group1 = DataParallelExecutorGroup(symbol=sym, contexts=contexts, workload=workload, data_shapes=data_shapes, label_shapes=label_shapes, param_names=shared_arg_names, for_training=True, inputs_need_grad=False) # shared_data_arrays should only have input "data" and "softmax_label" arrays for i in range(len(contexts)): assert len(exec_group1.shared_data_arrays[i]) == len(input_names),\ "exec_group1.shared_data_arrays[%d] should have the same number of names as in input_names" % i for name in input_names: assert name in exec_group1.shared_data_arrays[i],\ "arg %s should be in exec_group1.shared_data_arrays[%d]" % (name, i) # generate an rnn sym with #layers=5 sym = get_rnn_sym(num_layers=5, num_words=num_words, num_hidden=num_hidden, num_embed=num_embed, seq_len=max_bucket_size, sparse_embedding=sparse_embedding) arg_names2 = sym.list_arguments() exec_group2 = DataParallelExecutorGroup(symbol=sym, contexts=contexts, workload=workload, data_shapes=data_shapes, label_shapes=label_shapes, param_names=shared_arg_names, for_training=True, inputs_need_grad=False, shared_group=exec_group1) extra_args = [name for name in arg_names2 if name not in shared_arg_names] check_shared_grad = not sparse_embedding test_shared_exec_group(exec_grp_shared=exec_group1, exec_grp_created=exec_group2, shared_arg_names=shared_arg_names, extra_args=extra_args, check_shared_grad=check_shared_grad) contexts = [mx.cpu(0), mx.cpu(1)] workload = [1] * len(contexts) batch_size = 32 max_bucket_size = 80 num_words = 1000 num_hidden = 100 num_embed = 200 data_shapes = [('data', (batch_size, max_bucket_size))] label_shapes = [('softmax_label', (batch_size, max_bucket_size))] sparse_embedding_opt = [True, False] for opt in sparse_embedding_opt: check_shared_exec_group(opt) @with_seed() def test_factorization_machine_module(): """ Test factorization machine model with sparse operators """ # this unit test is to test the flow, training accuracy is tested in another test def check_factorization_machine_module(num_epochs=None): print("check_factorization_machine_module") def fm(factor_size, feature_dim, init): x = mx.symbol.Variable("data", stype='csr') v = mx.symbol.Variable("v", shape=(feature_dim, factor_size), init=init, stype='row_sparse') w1_weight = mx.symbol.var('w1_weight', shape=(feature_dim, 1), init=init, stype='row_sparse') w1_bias = mx.symbol.var('w1_bias', shape=(1)) w1 = mx.symbol.broadcast_add(mx.symbol.dot(x, w1_weight), w1_bias) v_s = mx.symbol._internal._square_sum(data=v, axis=1, keepdims=True) x_s = mx.symbol.square(data=x) bd_sum = mx.sym.dot(x_s, v_s) w2 = mx.symbol.dot(x, v) w2_squared = 0.5 * mx.symbol.square(data=w2) w_all = mx.symbol.Concat(w1, w2_squared, dim=1) sum1 = mx.symbol.sum(data=w_all, axis=1, keepdims=True) sum2 = 0.5 * mx.symbol.negative(bd_sum) model = mx.sym.elemwise_add(sum1, sum2) y = mx.symbol.Variable("label") model = mx.symbol.LinearRegressionOutput(data=model, label=y) return model # model init = mx.initializer.Normal(sigma=0.01) factor_size = 4 feature_dim = 10000 model = fm(factor_size, feature_dim, init) # data iter num_batches = 5 batch_size = 64 num_samples = batch_size * num_batches # generate some random csr data csr_nd = rand_ndarray((num_samples, feature_dim), 'csr', 0.1) label = mx.nd.ones((num_samples,1)) # the alternative is to use LibSVMIter train_iter = mx.io.NDArrayIter(data=csr_nd, label={'label':label}, batch_size=batch_size, last_batch_handle='discard') # create module mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['label']) # allocate memory by given the input data and lable shapes mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label) # initialize parameters by uniform random numbers mod.init_params(initializer=init) # use Sparse SGD with learning rate 0.1 to train sgd = mx.optimizer.SGD(momentum=0.1, clip_gradient=5.0, learning_rate=0.01, rescale_grad=1.0/batch_size) mod.init_optimizer(optimizer=sgd) if num_epochs is None: num_epochs = 50 expected_accuracy = 0.02 # use accuracy as the metric metric = mx.gluon.metric.create('MSE') # train 'num_epochs' epoch for epoch in range(num_epochs): train_iter.reset() metric.reset() for batch in train_iter: mod.forward(batch, is_train=True) # compute predictions mod.update_metric(metric, batch.label) # accumulate prediction accuracy mod.backward() # compute gradients mod.update() # update parameters print('Epoch %d, Training %s' % (epoch, metric.get())) if num_epochs > 1: assert(metric.get()[1] < expected_accuracy) check_factorization_machine_module() @with_seed() def test_module_initializer(): def regression_model(m): x = mx.symbol.var("data", stype='csr') v = mx.symbol.var("v", shape=(m, 1), init=mx.init.Uniform(scale=.1), stype='row_sparse') model = mx.symbol.dot(lhs=x, rhs=v) y = mx.symbol.Variable("label") model = mx.symbol.LinearRegressionOutput(data=model, label=y, name="out") return model n, m = 128, 100 model = regression_model(m) data = mx.nd.zeros(shape=(n, m), stype='csr') label = mx.nd.zeros((n, 1)) iterator = mx.io.NDArrayIter(data=data, label={'label':label}, batch_size=n, last_batch_handle='discard') # create module mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['label']) mod.bind(data_shapes=iterator.provide_data, label_shapes=iterator.provide_label) mod.init_params() v = mod._arg_params['v'] assert(v.stype == 'row_sparse') assert(np.sum(v.asnumpy()) != 0) @with_seed() def test_forward_reshape(): num_class=10 data1 = mx.sym.Variable('data1') data2 = mx.sym.Variable('data2') conv1 = mx.sym.Convolution(data=data1, kernel=(2, 2), num_filter=2, stride=(2, 2)) conv2 = mx.sym.Convolution(data=data2, kernel=(3, 3), num_filter=3, stride=(1, 1)) pooling1 = mx.sym.Pooling(data=conv1, kernel=(2, 2), stride=(1, 1), pool_type="avg") pooling2 = mx.sym.Pooling(data=conv2, kernel=(2, 2), stride=(1, 1), pool_type="max") flatten1 = mx.sym.flatten(data=pooling1) flatten2 = mx.sym.flatten(data=pooling2) sum = mx.sym.sum(data=flatten1, axis=1) + mx.sym.sum(data=flatten2, axis=1) fc = mx.sym.FullyConnected(data=sum, num_hidden=num_class) sym = mx.sym.SoftmaxOutput(data=fc, name='softmax') dshape1 = (10, 3, 64, 64) dshape2 = (10, 3, 32, 32) lshape = (10,) mod = mx.mod.Module(symbol=sym, data_names=['data1', 'data2'], label_names=['softmax_label']) mod.bind(data_shapes=[('data1', dshape1), ('data2', dshape2)], label_shapes=[('softmax_label', lshape)]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate': 0.01}) # Train with original data shapes data_batch = mx.io.DataBatch(data=[mx.nd.random.uniform(0, 9, dshape1), mx.nd.random.uniform(5, 15, dshape2)], label=[mx.nd.ones(lshape)]) mod.forward(data_batch) assert mod.get_outputs()[0].shape == tuple([lshape[0], num_class]) mod.backward() mod.update() # Train with different batch size dshape1 = (3, 3, 64, 64) dshape2 = (3, 3, 32, 32) lshape = (3,) data_batch = mx.io.DataBatch(data=[mx.nd.random.uniform(0, 9, dshape1), mx.nd.random.uniform(5, 15, dshape2)], label=[mx.nd.ones(lshape)]) mod.forward(data_batch) assert mod.get_outputs()[0].shape == tuple([lshape[0], num_class]) mod.backward() mod.update() dshape1 = (20, 3, 64, 64) dshape2 = (20, 3, 32, 32) lshape = (20,) data_batch = mx.io.DataBatch(data=[mx.nd.random.uniform(3, 5, dshape1), mx.nd.random.uniform(10, 25, dshape2)], label=[mx.nd.ones(lshape)]) mod.forward(data_batch) assert mod.get_outputs()[0].shape == tuple([lshape[0], num_class]) mod.backward() mod.update() #Train with both different batch size and data shapes dshape1 = (20, 3, 120, 120) dshape2 = (20, 3, 32, 64) lshape = (20,) data_batch = mx.io.DataBatch(data=[mx.nd.random.uniform(0, 9, dshape1), mx.nd.random.uniform(5, 15, dshape2)], label=[mx.nd.ones(lshape)]) mod.forward(data_batch) assert mod.get_outputs()[0].shape == tuple([lshape[0], num_class]) mod.backward() mod.update() dshape1 = (5, 3, 28, 40) dshape2 = (5, 3, 24, 16) lshape = (5,) data_batch = mx.io.DataBatch(data=[mx.nd.random.uniform(0, 9, dshape1), mx.nd.random.uniform(15, 25, dshape2)], label=[mx.nd.ones(lshape)]) mod.forward(data_batch) assert mod.get_outputs()[0].shape == tuple([lshape[0], num_class]) mod.backward() mod.update() #Test score dataset_shape1 = (30, 3, 30, 30) dataset_shape2 = (30, 3, 20, 40) labelset_shape = (30,) eval_dataiter = mx.io.NDArrayIter(data=[mx.nd.random.uniform(0, 9, dataset_shape1), mx.nd.random.uniform(15, 25, dataset_shape2)], label=[mx.nd.ones(labelset_shape)], batch_size=5) assert len(mod.score(eval_data=eval_dataiter, eval_metric='acc')) == 1 #Test prediction dshape1 = (1, 3, 30, 30) dshape2 = (1, 3, 20, 40) dataset_shape1 = (10, 3, 30, 30) dataset_shape2 = (10, 3, 20, 40) pred_dataiter = mx.io.NDArrayIter(data=[mx.nd.random.uniform(0, 9, dataset_shape1), mx.nd.random.uniform(15, 25, dataset_shape2)]) mod.bind(data_shapes=[('data1', dshape1), ('data2', dshape2)], for_training=False, force_rebind=True) assert mod.predict(pred_dataiter).shape == tuple([10, num_class]) @with_seed() def test_forward_types(): #Test forward with other data batch API Batch = namedtuple('Batch', ['data']) data = mx.sym.Variable('data') out = data * 2 mod = mx.mod.Module(symbol=out, label_names=None) mod.bind(data_shapes=[('data', (1, 10))]) mod.init_params() data1 = [mx.nd.ones((1, 10))] mod.forward(Batch(data1)) assert mod.get_outputs()[0].shape == (1, 10) data2 = [mx.nd.ones((3, 5))] mod.forward(Batch(data2)) assert mod.get_outputs()[0].shape == (3, 5) #Test forward with other NDArray and np.ndarray inputs data = mx.sym.Variable('data') out = data * 2 mod = mx.mod.Module(symbol=out, label_names=None) mod.bind(data_shapes=[('data', (1, 10))]) mod.init_params() data1 = mx.nd.ones((1, 10)) assert mod.predict(data1).shape == (1, 10) data2 = np.ones((1, 10)) assert mod.predict(data1).shape == (1, 10) def test_reference_single_batch_during_fit(): """ When using C++-based iterators, it's important that only a single batch is referenced at a time. Because C++ iterators are exposed to the Python code through a C API, there is no concept of reference counting. Hence, typically C++ iterators will deallocate a batch when next() is called on them. So, we need to make sure the Python code only references a single batch at a time, otherwise the Python code will attempt to access freed memory, resulting in either (a) garbage accuracy or (b) a segmentation fault. """ current_batch_i = None class MockBatch(object): def __init__(self, i): self.i = i @property def label(self): global current_batch_i assert self.i == current_batch_i class MockTrainData(object): def __init__(self, batches): self._i = 0 self._batches = batches self.provide_data = None self.provide_label = None self.reset = lambda: None def __iter__(self): self._i = 0 return self def __next__(self): global current_batch_i if self._i < self._batches: current_batch_i = self._i self._i += 1 return MockBatch(current_batch_i) raise StopIteration def next(self): return self.__next__() mod = mx.mod.BaseModule() def empty_fn(*args, **kwargs): pass mod.bind = empty_fn mod.init_params = empty_fn mod.init_optimizer = empty_fn mod.forward = empty_fn mod.backward = empty_fn mod.update = empty_fn mod.update_metric = empty_fn mod.get_params = lambda: (None, None) train_data = MockTrainData(batches=2) mod.fit(train_data, num_epoch=1) @with_seed() def test_bucket_module_grad_req(): batch_size = 2 def sym_gen(_): data = mx.symbol.Variable('data') weight = mx.symbol.Variable('a', shape=(1,), init=mx.init.One()) sym = mx.sym.make_loss(mx.sym.broadcast_mul(data, weight)) return sym, ('data',), None mod = mx.mod.BucketingModule(sym_gen=sym_gen, default_bucket_key=10) mod.bind(data_shapes=[['data', (batch_size, )]], for_training=True, grad_req='write') mod.init_params() mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))], label=None, provide_data=[mx.io.DataDesc(name='data', shape=(batch_size, ), layout='N')], bucket_key=10)) assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size) mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))], label=None, provide_data=[mx.io.DataDesc(name='data', shape=(batch_size, ), layout='N')], bucket_key=5)) assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size) mod = mx.mod.BucketingModule(sym_gen=sym_gen, default_bucket_key=10) mod.bind(data_shapes=[['data', (batch_size, )]], for_training=True, grad_req='add') mod.init_params() mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))], label=None, provide_data=[mx.io.DataDesc(name='data', shape=(batch_size,), layout='N')], bucket_key=10)) assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size) mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))], label=None, provide_data=[mx.io.DataDesc(name='data', shape=(batch_size,), layout='N')], bucket_key=5)) assert mod._curr_module._grad_req == 'add' assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == 2 * batch_size) def test_module_update_no_pragram(): # test module to do update on layers without params data_shape = (10, 10) data = mx.sym.Variable('data') out = mx.sym.Dropout(data, 0.5) mod = mx.mod.Module(out) mod.bind(data_shapes=[('data', data_shape)]) mod.init_params() mod.init_optimizer() data_batch = mx.io.DataBatch([nd.ones(data_shape)]) mod.forward_backward(data_batch) mod.update() assert(mod.get_outputs()[0].shape == data_shape) def test_module_init_optimizer(): def get_module_idx2name(mod): idx2name = {} idx2name.update(enumerate(mod._exec_group.param_names)) return idx2name data = mx.sym.Variable('data') sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc') batch_size = 8 opt_params = {'learning_rate': 1, 'rescale_grad': 1.0 / batch_size} # Pass an optimizer str mod1 = mx.mod.Module(sym, ('data',), None, context=mx.cpu(0)) mod1.bind(data_shapes=[('data', (batch_size, 20))]) mod1.init_params() mod1.init_optimizer(optimizer='sgd', optimizer_params=opt_params) assert mod1._optimizer.idx2name == get_module_idx2name(mod1) # Pass an Optimizer object mod2 = mx.mod.Module(sym, ('data',), None, context=mx.cpu(0)) mod2.bind(data_shapes=[('data', (batch_size, 20))]) mod2.init_params() opt = mx.optimizer.SGD(**opt_params) mod2.init_optimizer(optimizer=opt) assert mod2._optimizer.idx2name == get_module_idx2name(mod2)
43.564922
120
0.608888
7941ef012dcf5f29b55a4c4879aa4704f5b3ee6b
227
py
Python
examples/jeans_damping.py
DDMGNI/viVlasov1D
901dd058711f6943eb6497b941bc115a64e822de
[ "MIT" ]
2
2018-09-13T12:39:07.000Z
2019-04-05T04:55:59.000Z
examples/jeans_damping.py
DDMGNI/viVlasov1D
901dd058711f6943eb6497b941bc115a64e822de
[ "MIT" ]
null
null
null
examples/jeans_damping.py
DDMGNI/viVlasov1D
901dd058711f6943eb6497b941bc115a64e822de
[ "MIT" ]
null
null
null
""" Jeans Damping Initial density: :math:`n(x) = 1 + A \, \cos{( k_{x} \, ( x - L_{x}/2)) }` with :math:`A = 0.1, k = 2.0` """ import numpy as np def density(x, L): return 1. + 0.1 * np.cos(2.0 * (x - 0.5 * L))
15.133333
77
0.46696
7941ef68de04d3af1c493b2d1d50cf54abb1feeb
2,887
py
Python
app/auth/services/reauthentication.py
Arjun-sna/flask-forum-api-service
9c33c10269a147d7c5225e9c9106ccc43eb31705
[ "BSD-3-Clause" ]
null
null
null
app/auth/services/reauthentication.py
Arjun-sna/flask-forum-api-service
9c33c10269a147d7c5225e9c9106ccc43eb31705
[ "BSD-3-Clause" ]
1
2021-11-25T17:25:19.000Z
2021-11-25T17:25:19.000Z
app/auth/services/reauthentication.py
Arjun-sna/flask-forum-api-service
9c33c10269a147d7c5225e9c9106ccc43eb31705
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ app.auth.services.reauthentication ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tools for handling reauthentication needs inside app. :copyright: (c) 2014-2018 the FlaskForum Team :license: BSD, see LICENSE for more details """ import logging from flask_babelplus import gettext as _ from werkzeug.security import check_password_hash from ...core.tokens import TokenActions, Token from ...core.auth.authentication import (PostReauthenticateHandler, ReauthenticateFailureHandler, ReauthenticateManager, ReauthenticateProvider, StopAuthentication) from ...utils.helpers import time_utcnow logger = logging.getLogger(__name__) class DefaultAppReauthProvider(ReauthenticateProvider): """ This is the default reauth provider in FlaskForum, it compares the provided password against the current user's hashed password. """ def reauthenticate(self, user): if user: # pragma: no branch return True class ClearFailedLoginsOnReauth(PostReauthenticateHandler): """ Handler that clears failed login attempts after a successful reauthentication. """ def handle_post_reauth(self, user): user.login_attempts = 0 class MarkFailedReauth(ReauthenticateFailureHandler): """ Failure handler that marks the failed reauth attempt as a failed login and when it occurred. """ def handle_reauth_failure(self, user): user.login_attempts += 1 user.last_failed_login = time_utcnow() class PluginReauthenticationManager(ReauthenticateManager): """ Default reauthentication manager for FlaskForum, it relies on plugin hooks to manage the reauthentication flow. """ def __init__(self, plugin_manager, session, token_serializer): self.plugin_manager = plugin_manager self.session = session self.token_serializer = token_serializer def reauthenticate(self, user): try: result = self.plugin_manager.hook.app_reauth_attempt( user=user ) if not result: raise StopAuthentication(_("Verification failed.")) self.plugin_manager.hook.app_post_reauth(user=user) token = self.token_serializer.dumps( Token(user_id=user.id, operation=TokenActions.AUTH)) return token, user except StopAuthentication: self.plugin_manager.hook.app_reauth_failed(user=user) raise finally: try: self.session.commit() except Exception: logger.exception("Exception while processing login") self.session.rollback() raise
31.725275
79
0.63353
7941efa04030bfd63e292cb3de20933c30f4773a
17,515
py
Python
musicbot/config.py
GoSeungUk/subot
e1e9b6566d20b6ed81acd646f7528437c5306f24
[ "MIT" ]
4
2020-07-14T15:06:00.000Z
2021-09-23T16:41:14.000Z
musicbot/config.py
GoSeungUk/subot
e1e9b6566d20b6ed81acd646f7528437c5306f24
[ "MIT" ]
3
2021-11-16T05:58:18.000Z
2022-03-30T11:41:19.000Z
musicbot/config.py
GoSeungUk/subot
e1e9b6566d20b6ed81acd646f7528437c5306f24
[ "MIT" ]
1
2021-09-15T00:53:02.000Z
2021-09-15T00:53:02.000Z
import os import sys import codecs import shutil import logging import configparser from .exceptions import HelpfulError log = logging.getLogger(__name__) class Config: # noinspection PyUnresolvedReferences def __init__(self, config_file): self.config_file = config_file self.find_config() config = configparser.ConfigParser(interpolation=None) config.read(config_file, encoding='utf-8') confsections = {"Credentials", "Permissions", "Chat", "MusicBot"}.difference(config.sections()) if confsections: raise HelpfulError( "One or more required config sections are missing.", "Fix your config. Each [Section] should be on its own line with " "nothing else on it. The following sections are missing: {}".format( ', '.join(['[%s]' % s for s in confsections]) ), preface="An error has occured parsing the config:\n" ) self._confpreface = "An error has occured reading the config:\n" self._confpreface2 = "An error has occured validating the config:\n" self._login_token = config.get('Credentials', 'Token', fallback=ConfigDefaults.token) self.auth = () self.spotify_clientid = config.get('Credentials', 'Spotify_ClientID', fallback=ConfigDefaults.spotify_clientid) self.spotify_clientsecret = config.get('Credentials', 'Spotify_ClientSecret', fallback=ConfigDefaults.spotify_clientsecret) self.owner_id = config.get('Permissions', 'OwnerID', fallback=ConfigDefaults.owner_id) self.dev_ids = config.get('Permissions', 'DevIDs', fallback=ConfigDefaults.dev_ids) self.bot_exception_ids = config.get("Permissions", "BotExceptionIDs", fallback=ConfigDefaults.bot_exception_ids) self.command_prefix = config.get('Chat', 'CommandPrefix', fallback=ConfigDefaults.command_prefix) self.bound_channels = config.get('Chat', 'BindToChannels', fallback=ConfigDefaults.bound_channels) self.unbound_servers = config.getboolean('Chat', 'AllowUnboundServers', fallback=ConfigDefaults.unbound_servers) self.autojoin_channels = config.get('Chat', 'AutojoinChannels', fallback=ConfigDefaults.autojoin_channels) self.dm_nowplaying = config.getboolean('Chat', 'DMNowPlaying', fallback=ConfigDefaults.dm_nowplaying) self.no_nowplaying_auto = config.getboolean('Chat', 'DisableNowPlayingAutomatic', fallback=ConfigDefaults.no_nowplaying_auto) self.nowplaying_channels = config.get('Chat', 'NowPlayingChannels', fallback=ConfigDefaults.nowplaying_channels) self.delete_nowplaying = config.getboolean('Chat', 'DeleteNowPlaying', fallback=ConfigDefaults.delete_nowplaying) self.default_volume = config.getfloat('MusicBot', 'DefaultVolume', fallback=ConfigDefaults.default_volume) self.skips_required = config.getint('MusicBot', 'SkipsRequired', fallback=ConfigDefaults.skips_required) self.skip_ratio_required = config.getfloat('MusicBot', 'SkipRatio', fallback=ConfigDefaults.skip_ratio_required) self.save_videos = config.getboolean('MusicBot', 'SaveVideos', fallback=ConfigDefaults.save_videos) self.now_playing_mentions = config.getboolean('MusicBot', 'NowPlayingMentions', fallback=ConfigDefaults.now_playing_mentions) self.auto_summon = config.getboolean('MusicBot', 'AutoSummon', fallback=ConfigDefaults.auto_summon) self.auto_playlist = config.getboolean('MusicBot', 'UseAutoPlaylist', fallback=ConfigDefaults.auto_playlist) self.auto_playlist_random = config.getboolean('MusicBot', 'AutoPlaylistRandom', fallback=ConfigDefaults.auto_playlist_random) self.auto_pause = config.getboolean('MusicBot', 'AutoPause', fallback=ConfigDefaults.auto_pause) self.delete_messages = config.getboolean('MusicBot', 'DeleteMessages', fallback=ConfigDefaults.delete_messages) self.delete_invoking = config.getboolean('MusicBot', 'DeleteInvoking', fallback=ConfigDefaults.delete_invoking) self.persistent_queue = config.getboolean('MusicBot', 'PersistentQueue', fallback=ConfigDefaults.persistent_queue) self.status_message = config.get('MusicBot', 'StatusMessage', fallback=ConfigDefaults.status_message) self.write_current_song = config.getboolean('MusicBot', 'WriteCurrentSong', fallback=ConfigDefaults.write_current_song) self.allow_author_skip = config.getboolean('MusicBot', 'AllowAuthorSkip', fallback=ConfigDefaults.allow_author_skip) self.use_experimental_equalization = config.getboolean('MusicBot', 'UseExperimentalEqualization', fallback=ConfigDefaults.use_experimental_equalization) self.embeds = config.getboolean('MusicBot', 'UseEmbeds', fallback=ConfigDefaults.embeds) self.queue_length = config.getint('MusicBot', 'QueueLength', fallback=ConfigDefaults.queue_length) self.remove_ap = config.getboolean('MusicBot', 'RemoveFromAPOnError', fallback=ConfigDefaults.remove_ap) self.show_config_at_start = config.getboolean('MusicBot', 'ShowConfigOnLaunch', fallback=ConfigDefaults.show_config_at_start) self.legacy_skip = config.getboolean('MusicBot', 'LegacySkip', fallback=ConfigDefaults.legacy_skip) self.leavenonowners = config.getboolean('MusicBot', 'LeaveServersWithoutOwner', fallback=ConfigDefaults.leavenonowners) self.usealias = config.getboolean('MusicBot', 'UseAlias', fallback=ConfigDefaults.usealias) self.debug_level = config.get('MusicBot', 'DebugLevel', fallback=ConfigDefaults.debug_level) self.debug_level_str = self.debug_level self.debug_mode = False self.blacklist_file = config.get('Files', 'BlacklistFile', fallback=ConfigDefaults.blacklist_file) self.auto_playlist_file = config.get('Files', 'AutoPlaylistFile', fallback=ConfigDefaults.auto_playlist_file) self.i18n_file = config.get('Files', 'i18nFile', fallback=ConfigDefaults.i18n_file) self.auto_playlist_removed_file = None self.run_checks() self.missing_keys = set() self.check_changes(config) self.find_autoplaylist() def get_all_keys(self, conf): """Returns all config keys as a list""" sects = dict(conf.items()) keys = [] for k in sects: s = sects[k] keys += [key for key in s.keys()] return keys def check_changes(self, conf): exfile = 'config/example_options.ini' if os.path.isfile(exfile): usr_keys = self.get_all_keys(conf) exconf = configparser.ConfigParser(interpolation=None) if not exconf.read(exfile, encoding='utf-8'): return ex_keys = self.get_all_keys(exconf) if set(usr_keys) != set(ex_keys): self.missing_keys = set(ex_keys) - set(usr_keys) # to raise this as an issue in bot.py later def run_checks(self): """ Validation logic for bot settings. """ if self.i18n_file != ConfigDefaults.i18n_file and not os.path.isfile(self.i18n_file): log.warning('i18n file does not exist. Trying to fallback to {0}.'.format(ConfigDefaults.i18n_file)) self.i18n_file = ConfigDefaults.i18n_file if not os.path.isfile(self.i18n_file): raise HelpfulError( "Your i18n file was not found, and we could not fallback.", "As a result, the bot cannot launch. Have you moved some files? " "Try pulling the recent changes from Git, or resetting your local repo.", preface=self._confpreface ) log.info('Using i18n: {0}'.format(self.i18n_file)) if not self._login_token: raise HelpfulError( "No bot token was specified in the config.", "As of v1.9.6_1, you are required to use a Discord bot account. " "See https://github.com/Just-Some-Bots/MusicBot/wiki/FAQ for info.", preface=self._confpreface ) else: self.auth = (self._login_token,) if self.owner_id: self.owner_id = self.owner_id.lower() if self.owner_id.isdigit(): if int(self.owner_id) < 10000: raise HelpfulError( "An invalid OwnerID was set: {}".format(self.owner_id), "Correct your OwnerID. The ID should be just a number, approximately " "18 characters long, or 'auto'. If you don't know what your ID is, read the " "instructions in the options or ask in the help server.", preface=self._confpreface ) self.owner_id = int(self.owner_id) elif self.owner_id == 'auto': pass # defer to async check else: self.owner_id = None if not self.owner_id: raise HelpfulError( "No OwnerID was set.", "Please set the OwnerID option in {}".format(self.config_file), preface=self._confpreface ) if self.bot_exception_ids: try: self.bot_exception_ids = set(int(x) for x in self.bot_exception_ids.replace(',', ' ').split()) except: log.warning("BotExceptionIDs data is invalid, will ignore all bots") self.bot_exception_ids = set() if self.bound_channels: try: self.bound_channels = set(x for x in self.bound_channels.replace(',', ' ').split() if x) except: log.warning("BindToChannels data is invalid, will not bind to any channels") self.bound_channels = set() if self.autojoin_channels: try: self.autojoin_channels = set(x for x in self.autojoin_channels.replace(',', ' ').split() if x) except: log.warning("AutojoinChannels data is invalid, will not autojoin any channels") self.autojoin_channels = set() if self.nowplaying_channels: try: self.nowplaying_channels = set(int(x) for x in self.nowplaying_channels.replace(',', ' ').split() if x) except: log.warning("NowPlayingChannels data is invalid, will use the default behavior for all servers") self.autojoin_channels = set() self._spotify = False if self.spotify_clientid and self.spotify_clientsecret: self._spotify = True self.delete_invoking = self.delete_invoking and self.delete_messages self.bound_channels = set(int(item) for item in self.bound_channels) self.autojoin_channels = set(int(item) for item in self.autojoin_channels) ap_path, ap_name = os.path.split(self.auto_playlist_file) apn_name, apn_ext = os.path.splitext(ap_name) self.auto_playlist_removed_file = os.path.join(ap_path, apn_name + '_removed' + apn_ext) if hasattr(logging, self.debug_level.upper()): self.debug_level = getattr(logging, self.debug_level.upper()) else: log.warning("Invalid DebugLevel option \"{}\" given, falling back to INFO".format(self.debug_level_str)) self.debug_level = logging.INFO self.debug_level_str = 'INFO' self.debug_mode = self.debug_level <= logging.DEBUG self.create_empty_file_ifnoexist('config/blacklist.txt') self.create_empty_file_ifnoexist('config/whitelist.txt') def create_empty_file_ifnoexist(self, path): if not os.path.isfile(path): open(path, 'a').close() log.warning('Creating %s' % path) # TODO: Add save function for future editing of options with commands # Maybe add warnings about fields missing from the config file async def async_validate(self, bot): log.debug("Validating options...") if self.owner_id == 'auto': if not bot.user.bot: raise HelpfulError( "Invalid parameter \"auto\" for OwnerID option.", "Only bot accounts can use the \"auto\" option. Please " "set the OwnerID in the config.", preface=self._confpreface2 ) self.owner_id = bot.cached_app_info.owner.id log.debug("Acquired owner id via API") if self.owner_id == bot.user.id: raise HelpfulError( "Your OwnerID is incorrect or you've used the wrong credentials.", "The bot's user ID and the id for OwnerID is identical. " "This is wrong. The bot needs a bot account to function, " "meaning you cannot use your own account to run the bot on. " "The OwnerID is the id of the owner, not the bot. " "Figure out which one is which and use the correct information.", preface=self._confpreface2 ) def find_config(self): config = configparser.ConfigParser(interpolation=None) if not os.path.isfile(self.config_file): if os.path.isfile(self.config_file + '.ini'): shutil.move(self.config_file + '.ini', self.config_file) log.info("Moving {0} to {1}, you should probably turn file extensions on.".format( self.config_file + '.ini', self.config_file )) elif os.path.isfile('config/example_options.ini'): shutil.copy('config/example_options.ini', self.config_file) log.warning('Options file not found, copying example_options.ini') else: raise HelpfulError( "Your config files are missing. Neither options.ini nor example_options.ini were found.", "Grab the files back from the archive or remake them yourself and copy paste the content " "from the repo. Stop removing important files!" ) if not config.read(self.config_file, encoding='utf-8'): c = configparser.ConfigParser() try: # load the config again and check to see if the user edited that one c.read(self.config_file, encoding='utf-8') if not int(c.get('Permissions', 'OwnerID', fallback=0)): # jake pls no flame print(flush=True) log.critical("Please configure config/options.ini and re-run the bot.") sys.exit(1) except ValueError: # Config id value was changed but its not valid raise HelpfulError( 'Invalid value "{}" for OwnerID, config cannot be loaded. '.format( c.get('Permissions', 'OwnerID', fallback=None) ), "The OwnerID option requires a user ID or 'auto'." ) except Exception as e: print(flush=True) log.critical("Unable to copy config/example_options.ini to {}".format(self.config_file), exc_info=e) sys.exit(2) def find_autoplaylist(self): if not os.path.exists(self.auto_playlist_file): if os.path.exists('config/_autoplaylist.txt'): shutil.copy('config/_autoplaylist.txt', self.auto_playlist_file) log.debug("Copying _autoplaylist.txt to autoplaylist.txt") else: log.warning("No autoplaylist file found.") def write_default_config(self, location): pass class ConfigDefaults: owner_id = None token = None dev_ids = set() bot_exception_ids = set() spotify_clientid = None spotify_clientsecret = None command_prefix = '!' bound_channels = set() unbound_servers = False autojoin_channels = set() dm_nowplaying = False no_nowplaying_auto = False nowplaying_channels = set() delete_nowplaying = True default_volume = 0.15 skips_required = 4 skip_ratio_required = 0.5 save_videos = True now_playing_mentions = False auto_summon = True auto_playlist = True auto_playlist_random = True auto_pause = True delete_messages = True delete_invoking = False persistent_queue = True debug_level = 'INFO' status_message = None write_current_song = False allow_author_skip = True use_experimental_equalization = False embeds = True queue_length = 10 remove_ap = True show_config_at_start = False legacy_skip = False leavenonowners = False usealias = True options_file = 'config/options.ini' blacklist_file = 'config/blacklist.txt' auto_playlist_file = 'config/autoplaylist.txt' # this will change when I add playlists i18n_file = 'config/i18n/en.json' setattr(ConfigDefaults, codecs.decode(b'ZW1haWw=', '\x62\x61\x73\x65\x36\x34').decode('ascii'), None) setattr(ConfigDefaults, codecs.decode(b'cGFzc3dvcmQ=', '\x62\x61\x73\x65\x36\x34').decode('ascii'), None) setattr(ConfigDefaults, codecs.decode(b'dG9rZW4=', '\x62\x61\x73\x65\x36\x34').decode('ascii'), None) # These two are going to be wrappers for the id lists, with add/remove/load/save functions # and id/object conversion so types aren't an issue class Blacklist: pass class Whitelist: pass
45.611979
160
0.64539
7941f01538fb161a16c91ba29d0aaaa2a518c3f4
1,058
py
Python
kubernetes_asyncio/test/test_extensions_v1beta1_scale_spec.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_extensions_v1beta1_scale_spec.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_extensions_v1beta1_scale_spec.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.14.7 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes_asyncio.client from kubernetes_asyncio.client.models.extensions_v1beta1_scale_spec import ExtensionsV1beta1ScaleSpec # noqa: E501 from kubernetes_asyncio.client.rest import ApiException class TestExtensionsV1beta1ScaleSpec(unittest.TestCase): """ExtensionsV1beta1ScaleSpec unit test stubs""" def setUp(self): pass def tearDown(self): pass def testExtensionsV1beta1ScaleSpec(self): """Test ExtensionsV1beta1ScaleSpec""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes_asyncio.client.models.extensions_v1beta1_scale_spec.ExtensionsV1beta1ScaleSpec() # noqa: E501 pass if __name__ == '__main__': unittest.main()
26.45
124
0.749527
7941f03b00f559059b0ba186cb20e7a4718b8aaf
3,149
py
Python
calculators/settings.py
nathantheinventor/calculators
32a5785cb21e313950961d7388b0d493293f5b3f
[ "Apache-2.0" ]
null
null
null
calculators/settings.py
nathantheinventor/calculators
32a5785cb21e313950961d7388b0d493293f5b3f
[ "Apache-2.0" ]
null
null
null
calculators/settings.py
nathantheinventor/calculators
32a5785cb21e313950961d7388b0d493293f5b3f
[ "Apache-2.0" ]
null
null
null
""" Django settings for calculators project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'k)qcp9$==(doowsl2x6c)^qf6*$m(c5w#o_#-^7n!_15jj3h7e' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'mycalculators.apps.MyCalculatorsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'calculators.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'calculators.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
25.811475
91
0.697682
7941f053294ae962dad8e57a0ea9004542cb60c0
6,615
py
Python
mm/src/mm.py
madmachineio/mm-sdk
e587ffd60508699283cd5fcded971ffcc124e115
[ "MIT" ]
13
2020-09-09T04:13:45.000Z
2021-10-01T10:15:31.000Z
mm/src/mm.py
madmachineio/mm-sdk
e587ffd60508699283cd5fcded971ffcc124e115
[ "MIT" ]
null
null
null
mm/src/mm.py
madmachineio/mm-sdk
e587ffd60508699283cd5fcded971ffcc124e115
[ "MIT" ]
1
2021-03-18T10:02:07.000Z
2021-03-18T10:02:07.000Z
import os, sys, platform, argparse from pathlib import Path import log, util, spm, mmp, download PROJECT_PATH = '' def init_project(args): mmp_manifest = Path(PROJECT_PATH / 'Package.mmp') spm_manifest = Path(PROJECT_PATH / 'Package.swift') if mmp_manifest.is_file(): log.die('Package.mmp already exists in this directory') board_name = args.board if not spm_manifest.is_file(): init_type = args.type if args.name: init_name = args.name else: init_name = PROJECT_PATH.name if init_type == 'executable' and board_name is None: log.die('board name is required to initialize an executable') content = spm.init_manifest(p_name=init_name, p_type=init_type) spm_manifest.write_text(content, encoding='UTF-8') else: log.wrn('Package.swift already exists, ignoring specified project type and project name') spm.initialize() init_name = spm.get_project_name() init_type = spm.get_project_type() if init_type == 'executable' and board_name is None: log.die('board name is required to initialize an executable') content = mmp.init_manifest(board=board_name, p_type=init_type) log.inf('Creating Package.mmp', level=log.VERBOSE_VERY) mmp_manifest.write_text(content, encoding='UTF-8') def build_project(args): mmp_manifest = Path(PROJECT_PATH / 'Package.mmp') if not mmp_manifest.is_file(): log.die('Package.mmp is required to build the project') content = mmp_manifest.read_text() mmp.initialize(content) mmp.clean(p_path=PROJECT_PATH) spm.initialize() p_name = spm.get_project_name() p_type = spm.get_project_type() js_data = mmp.get_destination(p_type=p_type) (PROJECT_PATH / '.build').mkdir(exist_ok=True) destination = PROJECT_PATH / '.build/destination.json' destination.write_text(js_data, encoding='UTF-8') spm.build(destination=destination, p_type=p_type) triple = mmp.get_triple() path = PROJECT_PATH / '.build' / triple / 'release' if p_type == 'executable' and (path / p_name).exists(): mmp.create_binary(path=path, name=p_name) log.inf('Done!') def download_project(args): mmp_manifest = Path(PROJECT_PATH / 'Package.mmp') if not mmp_manifest.is_file(): log.die('Package.mmp is required to download the project') system = platform.system() if system != 'Darwin': log.die(system + ' is not supported currently, please copy the binary file manually') content = mmp_manifest.read_text() mmp.initialize(content) board_name = mmp.get_board_name() if board_name is None: log.die('Board name is not specified') file_name = mmp.get_board_info('target_file') source = PROJECT_PATH / '.build' / mmp.get_triple() / 'release' / file_name if not source.is_file(): log.die('Cannot find ' + file_name) download.darwin_download(source=source) log.inf('Done!') def clean_project(args): mmp.clean(p_path=PROJECT_PATH) if args.deep: spm.clean() def get_info(args): if args.info == 'usb': mmp_manifest = Path(PROJECT_PATH / 'Package.mmp') if not mmp_manifest.is_file(): log.die('Package.mmp is required to get usb status') system = platform.system() if system != 'Darwin': log.die(system + ' is not supported currently, please copy the bin file manually') content = mmp_manifest.read_text() mmp.initialize(content) board_name = mmp.get_board_name() mount_path = download.darwin_get_mount_point() if mount_path is None: log.inf(board_name + ' not connected') else: log.inf(board_name + ' ready') else: spm_manifest = Path(PROJECT_PATH / 'Package.swift') if not spm_manifest.is_file(): log.die('Package.swift is required to get project name') spm.initialize() project_name = spm.get_project_name() log.inf(project_name) def main(): global PROJECT_PATH parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() init_parser = subparsers.add_parser('init', help = 'Initiaize a new project') init_parser.add_argument('--type', type = str, choices = ['executable', 'library'], default = 'executable', help = 'Project type, default type is executable') init_parser.add_argument('--name', type = str, help = 'Initiaize the new project with a specified name, otherwise the project name depends on the current directory name') init_parser.add_argument('-b', '--board', type = str, choices =['SwiftIOBoard', 'SwiftIOFeather'], help = 'Generate MadMachine project file by passing this parameter') init_parser.add_argument('-v', '--verbose', action = 'store_true', help = "Increase output verbosity") init_parser.set_defaults(func = init_project) build_parser = subparsers.add_parser('build', help = 'Build a project') build_parser.add_argument('-v', '--verbose', action = 'store_true', help = "Increase output verbosity") build_parser.set_defaults(func = build_project) download_parser = subparsers.add_parser('download', help = 'Download the target executable to the board\'s SD card') download_parser.add_argument('-v', '--verbose', action = 'store_true', help = "Increase output verbosity") download_parser.set_defaults(func = download_project) clean_parser = subparsers.add_parser('clean', help = 'Clean project') clean_parser.add_argument('--deep', action = 'store_true', help = "Clean all compilation outputs") clean_parser.add_argument('-v', '--verbose', action = 'store_true', help = "Increase output verbosity") clean_parser.set_defaults(func = clean_project) get_parser = subparsers.add_parser('get', help = 'Get specified information, used by IDE') get_parser.add_argument('--info', type = str, choices =['name', 'usb'], help = 'Information type') get_parser.add_argument('-v', '--verbose', action = 'store_true', help = "Increase output verbosity") get_parser.set_defaults(func = get_info) args = parser.parse_args() if vars(args).get('func') is None: log.die('subcommand is required, use \'mm --help\' to get more information') if args.verbose: log.set_verbosity(log.VERBOSE_VERY) sdk_path = Path(os.path.realpath(sys.argv[0])).parent.parent.parent util.set_sdk_path(sdk_path) PROJECT_PATH = Path('.').resolve() args.func(args) if __name__ == "__main__": main()
38.911765
174
0.674981
7941f0d06b5f7a7c38a31e929f441d0d9e436215
23,930
py
Python
src/indra_cogex/client/neo4j_client.py
bgyori/indra_cogex
04a72d7941d4acd31ebfe73568114415d43394ea
[ "BSD-2-Clause" ]
2
2021-05-27T02:44:09.000Z
2022-01-12T21:34:07.000Z
src/indra_cogex/client/neo4j_client.py
bgyori/indra_cogex
04a72d7941d4acd31ebfe73568114415d43394ea
[ "BSD-2-Clause" ]
33
2021-08-29T18:23:26.000Z
2022-03-29T21:56:08.000Z
src/indra_cogex/client/neo4j_client.py
bgyori/indra_cogex
04a72d7941d4acd31ebfe73568114415d43394ea
[ "BSD-2-Clause" ]
5
2021-06-15T09:01:23.000Z
2022-03-13T14:26:09.000Z
__all__ = ["Neo4jClient"] import logging from typing import Any, Iterable, List, Mapping, Optional, Set, Tuple, Union import neo4j import neo4j.graph from neo4j import GraphDatabase from indra.config import get_config from indra.databases import identifiers from indra.ontology.standardize import get_standard_agent from indra.statements import Agent from indra_cogex.representation import Node, Relation, norm_id, triple_query logger = logging.getLogger(__name__) class Neo4jClient: """A client to communicate with an INDRA CogEx neo4j instance Parameters ---------- url : The bolt URL to the neo4j instance to override INDRA_NEO4J_URL set as an environment variable or set in the INDRA config file. auth : A tuple consisting of the user name and password for the neo4j instance to override INDRA_NEO4J_USER and INDRA_NEO4J_PASSWORD set as environment variables or set in the INDRA config file. """ def __init__( self, url: Optional[str] = None, auth: Optional[Tuple[str, str]] = None, ): """Initialize the Neo4j client.""" self.driver = None self.session = None if not url: INDRA_NEO4J_URL = get_config("INDRA_NEO4J_URL") if INDRA_NEO4J_URL: url = INDRA_NEO4J_URL logger.info("Using configured URL for INDRA neo4j connection") else: logger.info("INDRA_NEO4J_URL not configured") if not auth: INDRA_NEO4J_USER = get_config("INDRA_NEO4J_USER") INDRA_NEO4J_PASSWORD = get_config("INDRA_NEO4J_PASSWORD") if INDRA_NEO4J_USER and INDRA_NEO4J_PASSWORD: auth = (INDRA_NEO4J_USER, INDRA_NEO4J_PASSWORD) logger.info("Using configured credentials for INDRA neo4j connection") else: logger.info("INDRA_NEO4J_USER and INDRA_NEO4J_PASSWORD not configured") self.driver = GraphDatabase.driver(url, auth=auth) def create_tx( self, query: str, query_params: Optional[Mapping[str, Any]] = None, ): """Run a transaction which writes to the neo4j instance. Parameters ---------- query : The query string to be executed. query_params : Parameters associated with the query. """ tx = self.get_session().begin_transaction() try: # logger.info(query) tx.run(query, parameters=query_params) tx.commit() except Exception as e: logger.error(e) finally: tx.close() def query_tx(self, query: str) -> Union[List[List[Any]], None]: """Run a read-only query and return the results. Parameters ---------- query : The query string to be executed. Returns ------- values : A list of results where each result is a list of one or more objects (typically neo4j nodes or relations). """ tx = self.get_session().begin_transaction() try: res = tx.run(query) except Exception as e: logger.error(e) tx.close() return values = res.values() tx.close() return values def get_session(self, renew: Optional[bool] = False) -> neo4j.Session: """Return an existing session or create one if needed. Parameters ---------- renew : If True, a new session is created. Default: False Returns ------- session A neo4j session. """ if self.session is None or renew: sess = self.driver.session() self.session = sess return self.session def has_relation( self, source: Tuple[str, str], target: Tuple[str, str], relation: str, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> bool: """Return True if there is a relation between the source and the target. Parameters ---------- source : Source namespace and identifier. target : Target namespace and identifier. relation : Relation type. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- related : True if there is a relation of the given type, otherwise False. """ res = self.get_relations( source, target, relation, limit=1, source_type=source_type, target_type=target_type, ) if res: return True else: return False def get_relations( self, source: Optional[Tuple[str, str]] = None, target: Optional[Tuple[str, str]] = None, relation: Optional[str] = None, source_type: Optional[str] = None, target_type: Optional[str] = None, limit: Optional[int] = None, ) -> List[Relation]: """Return relations based on source, target and type constraints. This is a generic function for getting relations, all of its parameters are optional, though at least a source or a target needs to be provided. Parameters ---------- source : Surce namespace and ID. target : Target namespace and ID. relation : Relation type. source_type : A constraint on the source type target_type : A constraint on the target type limit : A limit on the number of relations returned. Returns ------- rels : A list of relations matching the constraints. """ if not source and not target: raise ValueError("source or target should be specified") source = norm_id(*source) if source else None target = norm_id(*target) if target else None match = triple_query( source_id=source, source_type=source_type, relation_type=relation, target_id=target, target_type=target_type, ) query = """ MATCH p=%s RETURN DISTINCT p %s """ % ( match, "" if not limit else "LIMIT %s" % limit, ) rels = [self.neo4j_to_relation(res[0]) for res in self.query_tx(query)] return rels def get_source_relations( self, target: Tuple[str, str], relation: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Relation]: """Get relations that connect sources to the given target. Parameters ---------- target : Target namespace and identifier. relation : Relation type. Returns ------- rels : A list of relations matching the constraints. """ return self.get_relations( source=None, target=target, relation=relation, target_type=target_type ) def get_target_relations( self, source: Tuple[str, str], relation: Optional[str] = None, source_type: Optional[str] = None, ) -> List[Relation]: """Get relations that connect targets from the given source. Parameters ---------- source : Source namespace and identifier. relation : Relation type. Returns ------- rels : A list of relations matching the constraints. """ return self.get_relations( source=source, target=None, relation=relation, source_type=source_type ) def get_all_relations( self, node: Tuple[str, str], relation: Optional[str] = None, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Relation]: """Get relations that connect sources and targets with the given node. Parameters ---------- node : Node namespace and identifier. relation : Relation type. source_type : Type constraint on the sources for in-edges target_type : Type constraint on te targets for out-edges Returns ------- rels : A list of relations matching the constraints. """ source_rels = self.get_source_relations( target=node, relation=relation, source_type=source_type ) target_rels = self.get_target_relations( source=node, relation=relation, target_type=target_type ) all_rels = source_rels + target_rels return all_rels @staticmethod def get_property_from_relations(relations: List[Relation], prop: str) -> Set[str]: """Return the set of property values on given relations. Parameters ---------- relations : The relations, each of which may or may not contain a value for the given property. prop : The key/name of the property to look for on each relation. Returns ------- props A set of the values of the given property on the given list of relations. """ props = {rel.data[prop] for rel in relations if prop in rel.data} return props def get_sources( self, target: Tuple[str, str], relation: str = None, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the nodes related to the target via a given relation type. Parameters ---------- target : The target node's ID. relation : The relation label to constrain to when finding sources. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- sources A list of source nodes. """ return self.get_common_sources( [target], relation, source_type=source_type, target_type=target_type, ) def get_common_sources( self, targets: List[Tuple[str, str]], relation: str, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the common source nodes related to all the given targets via a given relation type. Parameters ---------- targets : The target nodes' IDs. relation : The relation label to constrain to when finding sources. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- sources A list of source nodes. """ parts = [ triple_query( source_name="s", source_type=source_type, relation_type=relation, target_id=norm_id(*target), target_type=target_type, ) for target in targets ] query = """ MATCH %s RETURN DISTINCT s """ % ",".join( parts ) nodes = [self.neo4j_to_node(res[0]) for res in self.query_tx(query)] return nodes def get_targets( self, source: Tuple[str, str], relation: Optional[str] = None, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the nodes related to the source via a given relation type. Parameters ---------- source : Source namespace and identifier. relation : The relation label to constrain to when finding targets. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- targets A list of target nodes. """ return self.get_common_targets( [source], relation, source_type=source_type, target_type=target_type, ) def get_common_targets( self, sources: List[Tuple[str, str]], relation: str, source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the common target nodes related to all the given sources via a given relation type. Parameters ---------- sources : Source namespace and identifier. relation : The relation label to constrain to when finding targets. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- targets A list of target nodes. """ parts = [ triple_query( source_id=norm_id(*source), source_type=source_type, relation_type=relation, target_name="t", target_type=target_type, ) for source in sources ] query = """ MATCH %s RETURN DISTINCT t """ % ",".join( parts ) nodes = [self.neo4j_to_node(res[0]) for res in self.query_tx(query)] return nodes def get_target_agents( self, source: Tuple[str, str], relation: str, source_type: Optional[str] = None, ) -> List[Agent]: """Return the nodes related to the source via a given relation type as INDRA Agents. Parameters ---------- source : Source namespace and identifier. relation : The relation label to constrain to when finding targets. source_type : A constraint on the source type Returns ------- targets A list of target nodes as INDRA Agents. """ targets = self.get_targets(source, relation, source_type=source_type) agents = [self.node_to_agent(target) for target in targets] return agents def get_source_agents(self, target: Tuple[str, str], relation: str) -> List[Agent]: """Return the nodes related to the target via a given relation type as INDRA Agents. Parameters ---------- target : Target namespace and identifier. relation : The relation label to constrain to when finding sources. Returns ------- sources A list of source nodes as INDRA Agents. """ sources = self.get_sources( target, relation, source_type="BioEntity", target_type="BioEntity", ) agents = [self.node_to_agent(source) for source in sources] return agents def get_predecessors( self, target: Tuple[str, str], relations: Iterable[str], source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the nodes that precede the given node via the given relation types. Parameters ---------- target : The target node's ID. relations : The relation labels to constrain to when finding predecessors. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- predecessors A list of predecessor nodes. """ match = triple_query( source_name="s", source_type=source_type, relation_type="%s*1.." % "|".join(relations), target_id=norm_id(*target), target_type=target_type, ) query = ( """ MATCH %s RETURN DISTINCT s """ % match ) nodes = [self.neo4j_to_node(res[0]) for res in self.query_tx(query)] return nodes def get_successors( self, source: Tuple[str, str], relations: Iterable[str], source_type: Optional[str] = None, target_type: Optional[str] = None, ) -> List[Node]: """Return the nodes that precede the given node via the given relation types. Parameters ---------- source : The source node's ID. relations : The relation labels to constrain to when finding successors. source_type : A constraint on the source type target_type : A constraint on the target type Returns ------- predecessors A list of predecessor nodes. """ match = triple_query( source_id=norm_id(*source), source_type=source_type, relation_type="%s*1.." % "|".join(relations), target_name="t", target_type=target_type, ) query = ( """ MATCH %s RETURN DISTINCT t """ % match ) nodes = [self.neo4j_to_node(res[0]) for res in self.query_tx(query)] return nodes @staticmethod def neo4j_to_node(neo4j_node: neo4j.graph.Node) -> Node: """Return a Node from a neo4j internal node. Parameters ---------- neo4j_node : A neo4j internal node using its internal data structure and identifier scheme. Returns ------- node : A Node object with the INDRA standard identifier scheme. """ props = dict(neo4j_node) node_id = props.pop("id") db_ns, db_id = process_identifier(node_id) return Node(db_ns, db_id, neo4j_node.labels, props) @staticmethod def neo4j_to_relation(neo4j_path: neo4j.graph.Path) -> Relation: """Return a Relation from a neo4j internal single-relation path. Parameters ---------- neo4j_path : A neo4j internal single-edge path using its internal data structure and identifier scheme. Returns ------- relation : A Relation object with the INDRA standard identifier scheme. """ return Neo4jClient.neo4j_to_relations(neo4j_path)[0] @staticmethod def neo4j_to_relations(neo4j_path: neo4j.graph.Path) -> List[Relation]: """Return a list of Relations from a neo4j internal multi-relation path. Parameters ---------- neo4j_path : A neo4j internal single-edge path using its internal data structure and identifier scheme. Returns ------- : A list of Relation objects with the INDRA standard identifier scheme. """ relations = [] for neo4j_relation in neo4j_path.relationships: rel_type = neo4j_relation.type props = dict(neo4j_relation) source_ns, source_id = process_identifier(neo4j_relation.start_node["id"]) target_ns, target_id = process_identifier(neo4j_relation.end_node["id"]) rel = Relation(source_ns, source_id, target_ns, target_id, rel_type, props) relations.append(rel) return relations @staticmethod def node_to_agent(node: Node) -> Agent: """Return an INDRA Agent from a Node. Parameters ---------- node : A Node object. Returns ------- agent : An INDRA Agent with standardized name and expanded/standardized db_refs. """ name = node.data.get("name") if not name: name = f"{node.db_ns}:{node.db_id}" return get_standard_agent(name, {node.db_ns: node.db_id}) def delete_all(self): """Delete everything in the neo4j database.""" query = """MATCH(n) DETACH DELETE n""" return self.create_tx(query) def create_nodes(self, nodes: List[Node]): """Create a set of new graph nodes.""" nodes_str = ",\n".join([str(n) for n in nodes]) query = """CREATE %s""" % nodes_str return self.create_tx(query) def add_nodes(self, nodes: List[Node]): """Merge a set of graph nodes (create or update).""" if not nodes: return prop_str = ",\n".join(["n.%s = node.%s" % (k, k) for k in nodes[0].data]) # labels_str = ':'.join(nodes[0].labels) query = ( """ UNWIND $nodes AS node MERGE (n {id: node.id}) SET %s WITH n, node CALL apoc.create.addLabels(n, node.labels) YIELD n """ % prop_str ) return self.create_tx( query, query_params={ "nodes": [dict(**n.to_json()["data"], labels=n.labels) for n in nodes] }, ) def add_relations(self, relations: List[Relation]): """Merge a set of graph relations (create or update).""" if not relations: return None labels_str = relations[0].rel_type prop_str = ",\n".join( ["rel.%s = relation.%s" % (k, k) for k in relations[0].data] ) query = """ UNWIND $relations AS relation MATCH (e1 {id: relation.source_id}), (e2 {id: relation.target_id}) MERGE (e1)-[rel:%s]->(e2) SET %s """ % ( labels_str, prop_str, ) rel_params = [] for rel in relations: rd = dict(source_id=rel.source_id, target_id=rel.target_id, **rel.data) rel_params.append(rd) return self.create_tx(query, query_params={"relations": rel_params}) def add_node(self, node: Node): """Merge a single node into the graph.""" prop_str = ",\n".join(["n.%s = '%s'" % (k, v) for k, v in node.data.items()]) query = """ MERGE (n:%s {id: '%s'}) SET %s """ % ( node.labels, norm_id(node.db_ns, node.db_id), prop_str, ) return self.create_tx(query) def process_identifier(identifier: str) -> Tuple[str, str]: """Process a neo4j-internal identifier string into an INDRA namespace and ID. Parameters ---------- identifier : An identifier string (containing both prefix and ID) corresponding to an internal neo4j graph node. Returns ------- db_ns: An INDRA-standard namespace corresponding to the input identifier. db_id: An INDRA-standard identifier corresponding to the input identifier. """ graph_ns, graph_id = identifier.split(":", maxsplit=1) db_ns, db_id = identifiers.get_ns_id_from_identifiers(graph_ns, graph_id) # This is a corner case where the prefix is not in the registry # and in those cases we just use the upper case version of the prefix # in the graph to revert it to the INDRA-compatible key. if not db_ns: db_ns = graph_ns.upper() db_id = graph_id else: db_id = identifiers.ensure_prefix_if_needed(db_ns, db_id) return db_ns, db_id
30.100629
92
0.547263
7941f2119393f0343f05fa480a555cdddad49f29
2,040
py
Python
syft_proto/types/syft/v1/shape_pb2.py
gmuraru/syft-proto
b78d9a7ae91cb040b7aaacaf0a0b73589e1f37a1
[ "Apache-2.0" ]
null
null
null
syft_proto/types/syft/v1/shape_pb2.py
gmuraru/syft-proto
b78d9a7ae91cb040b7aaacaf0a0b73589e1f37a1
[ "Apache-2.0" ]
null
null
null
syft_proto/types/syft/v1/shape_pb2.py
gmuraru/syft-proto
b78d9a7ae91cb040b7aaacaf0a0b73589e1f37a1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: syft_proto/types/syft/v1/shape.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='syft_proto/types/syft/v1/shape.proto', package='syft_proto.types.syft.v1', syntax='proto3', serialized_options=None, serialized_pb=_b('\n$syft_proto/types/syft/v1/shape.proto\x12\x18syft_proto.types.syft.v1\"\x1b\n\x05Shape\x12\x12\n\x04\x64ims\x18\x01 \x03(\x05R\x04\x64imsb\x06proto3') ) _SHAPE = _descriptor.Descriptor( name='Shape', full_name='syft_proto.types.syft.v1.Shape', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dims', full_name='syft_proto.types.syft.v1.Shape.dims', index=0, number=1, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='dims', file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=66, serialized_end=93, ) DESCRIPTOR.message_types_by_name['Shape'] = _SHAPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Shape = _reflection.GeneratedProtocolMessageType('Shape', (_message.Message,), { 'DESCRIPTOR' : _SHAPE, '__module__' : 'syft_proto.types.syft.v1.shape_pb2' # @@protoc_insertion_point(class_scope:syft_proto.types.syft.v1.Shape) }) _sym_db.RegisterMessage(Shape) # @@protoc_insertion_point(module_scope)
28.732394
172
0.748529
7941f28e8ba987850b922cf33e0e0a2f20b9e87d
214
py
Python
Python/04. Sets/011. The Captain's Room.py
H2u-Hwng/HackerRank-Practice
abe02d04b3e60d30637403204b8735b2b13888a3
[ "MIT" ]
null
null
null
Python/04. Sets/011. The Captain's Room.py
H2u-Hwng/HackerRank-Practice
abe02d04b3e60d30637403204b8735b2b13888a3
[ "MIT" ]
null
null
null
Python/04. Sets/011. The Captain's Room.py
H2u-Hwng/HackerRank-Practice
abe02d04b3e60d30637403204b8735b2b13888a3
[ "MIT" ]
null
null
null
# Problem: https://www.hackerrank.com/challenges/py-the-captains-room/problem # Score: 10.0 k = int(input()) arr = list(map(int, input().split())) s = set(arr) result = (sum(s)*k - sum(arr))//(k-1) print(result)
21.4
77
0.649533
7941f366b8942a5f32bd77e91dd4551066a1090e
380
py
Python
apps/Application/views/htmlview.py
flowl/django-init
ee6cefe2ee14ab5fd2dcdc3deabbbcfdd040f36c
[ "MIT" ]
null
null
null
apps/Application/views/htmlview.py
flowl/django-init
ee6cefe2ee14ab5fd2dcdc3deabbbcfdd040f36c
[ "MIT" ]
null
null
null
apps/Application/views/htmlview.py
flowl/django-init
ee6cefe2ee14ab5fd2dcdc3deabbbcfdd040f36c
[ "MIT" ]
null
null
null
from django.views.generic import TemplateView class HtmlView(TemplateView): template_name = 'sites/hello_world.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['page_title'] = 'HTML Title' # context['headline'] = 'Headline' # context['subheadline'] = 'Subheadline' return context
27.142857
52
0.663158
7941f41f19cac86591be7302ca905c44a33d4a6b
9,729
py
Python
torch/nn/utils/parametrizations.py
raven38/pytorch
3a56758e1fdbc928be3754d5b60e63c7fc55ea45
[ "Intel" ]
5
2021-08-17T17:44:20.000Z
2021-08-21T05:03:42.000Z
torch/nn/utils/parametrizations.py
raven38/pytorch
3a56758e1fdbc928be3754d5b60e63c7fc55ea45
[ "Intel" ]
1
2021-09-03T09:35:27.000Z
2021-09-03T09:35:27.000Z
torch/nn/utils/parametrizations.py
raven38/pytorch
3a56758e1fdbc928be3754d5b60e63c7fc55ea45
[ "Intel" ]
null
null
null
import torch from ..utils import parametrize from ..modules import Module from .. import functional as F from typing import Optional class _SpectralNorm(Module): def __init__( self, weight: torch.Tensor, n_power_iterations: int = 1, dim: int = 0, eps: float = 1e-12 ) -> None: super().__init__() ndim = weight.ndim if dim >= ndim or dim < -ndim: raise IndexError("Dimension out of range (expected to be in range of " f"[-{ndim}, {ndim - 1}] but got {dim})") if n_power_iterations <= 0: raise ValueError('Expected n_power_iterations to be positive, but ' 'got n_power_iterations={}'.format(n_power_iterations)) self.dim = dim if dim >= 0 else dim + ndim self.eps = eps if ndim > 1: # For ndim == 1 we do not need to approximate anything (see _SpectralNorm.forward) self.n_power_iterations = n_power_iterations weight_mat = self._reshape_weight_to_matrix(weight) h, w = weight_mat.size() u = weight_mat.new_empty(h).normal_(0, 1) v = weight_mat.new_empty(w).normal_(0, 1) self.register_buffer('_u', F.normalize(u, dim=0, eps=self.eps)) self.register_buffer('_v', F.normalize(v, dim=0, eps=self.eps)) # Start with u, v initialized to some reasonable values by performing a number # of iterations of the power method self._power_method(weight_mat, 15) def _reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor: # Precondition assert weight.ndim > 1 if self.dim != 0: # permute dim to front weight = weight.permute(self.dim, *(d for d in range(weight.dim()) if d != self.dim)) return weight.flatten(1) @torch.autograd.no_grad() def _power_method(self, weight_mat: torch.Tensor, n_power_iterations: int) -> None: # See original note at torch/nn/utils/spectral_norm.py # NB: If `do_power_iteration` is set, the `u` and `v` vectors are # updated in power iteration **in-place**. This is very important # because in `DataParallel` forward, the vectors (being buffers) are # broadcast from the parallelized module to each module replica, # which is a new module object created on the fly. And each replica # runs its own spectral norm power iteration. So simply assigning # the updated vectors to the module this function runs on will cause # the update to be lost forever. And the next time the parallelized # module is replicated, the same randomly initialized vectors are # broadcast and used! # # Therefore, to make the change propagate back, we rely on two # important behaviors (also enforced via tests): # 1. `DataParallel` doesn't clone storage if the broadcast tensor # is already on correct device; and it makes sure that the # parallelized module is already on `device[0]`. # 2. If the out tensor in `out=` kwarg has correct shape, it will # just fill in the values. # Therefore, since the same power iteration is performed on all # devices, simply updating the tensors in-place will make sure that # the module replica on `device[0]` will update the _u vector on the # parallized module (by shared storage). # # However, after we update `u` and `v` in-place, we need to **clone** # them before using them to normalize the weight. This is to support # backproping through two forward passes, e.g., the common pattern in # GAN training: loss = D(real) - D(fake). Otherwise, engine will # complain that variables needed to do backward for the first forward # (i.e., the `u` and `v` vectors) are changed in the second forward. # Precondition assert weight_mat.ndim > 1 for _ in range(n_power_iterations): # Spectral norm of weight equals to `u^T W v`, where `u` and `v` # are the first left and right singular vectors. # This power iteration produces approximations of `u` and `v`. self._u = F.normalize(torch.mv(weight_mat, self._v), # type: ignore[has-type] dim=0, eps=self.eps, out=self._u) # type: ignore[has-type] self._v = F.normalize(torch.mv(weight_mat.t(), self._u), dim=0, eps=self.eps, out=self._v) # type: ignore[has-type] # See above on why we need to clone self._u = self._u.clone(memory_format=torch.contiguous_format) self._v = self._v.clone(memory_format=torch.contiguous_format) def forward(self, weight: torch.Tensor) -> torch.Tensor: if weight.ndim == 1: # Faster and more exact path, no need to approximate anything return F.normalize(weight, dim=0, eps=self.eps) else: weight_mat = self._reshape_weight_to_matrix(weight) if self.training: self._power_method(weight_mat, self.n_power_iterations) # The proper way of computing this should be through F.bilinear, but # it seems to have some efficiency issues: # https://github.com/pytorch/pytorch/issues/58093 sigma = torch.dot(self._u, torch.mv(weight_mat, self._v)) return weight / sigma def right_inverse(self, value: torch.Tensor) -> torch.Tensor: # we may want to assert here that the passed value already # satisfies constraints return value def spectral_norm(module: Module, name: str = 'weight', n_power_iterations: int = 1, eps: float = 1e-12, dim: Optional[int] = None) -> Module: r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})}, \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} When applied on a vector, it simplifies to .. math:: \mathbf{x}_{SN} = \dfrac{\mathbf{x}}{\|\mathbf{x}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generative Adversarial Networks (GANs) by reducing the Lipschitz constant of the model. :math:`\sigma` is approximated performing one iteration of the `power method`_ every time the weight is accessed. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`power method`: https://en.wikipedia.org/wiki/Power_iteration .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 .. note:: This function is implemented using the new parametrization functionality in :func:`torch.nn.utils.parametrize.register_parametrization`. It is a reimplementation of :func:`torch.nn.utils.spectral_norm`. .. note:: When this constraint is registered, the singular vectors associated to the largest singular value are estimated rather than sampled at random. These are then updated performing :attr:`n_power_iterations` of the `power method`_ whenever the tensor is accessed with the module on `training` mode. .. note:: If the `_SpectralNorm` module, i.e., `module.parametrization.weight[idx]`, is in training mode on removal, it will perform another power iteration. If you'd like to avoid this iteration, set the module to eval mode before its removal. Args: module (nn.Module): containing module name (str, optional): name of weight parameter n_power_iterations (int, optional): number of power iterations to calculate spectral norm eps (float, optional): epsilon for numerical stability in calculating norms dim (int, optional): dimension corresponding to number of outputs, the default is ``0``, except for modules that are instances of ConvTranspose{1,2,3}d, when it is ``1`` Returns: The original module with a new parametrization registered to the specified weight Example:: >>> snm = spectral_norm(nn.Linear(20, 40)) >>> snm ParametrizedLinear( in_features=20, out_features=40, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): _SpectralNorm() ) ) ) >>> torch.linalg.matrix_norm(snm.weight, 2) tensor(1.0000, grad_fn=<CopyBackwards>) """ if not hasattr(module, name): raise ValueError( "Module '{}' has no attribute with name '{}'".format(module, name) ) # getattr should get the correct parametrized weight if there # is already an parametrization registered weight = getattr(module, name) if dim is None: if isinstance(module, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d)): dim = 1 else: dim = 0 parametrize.register_parametrization(module, name, _SpectralNorm(weight, n_power_iterations, dim, eps)) return module
45.891509
118
0.62031
7941f5fcd3fec70be9521e4a5ff72675827a5bfc
593
py
Python
project_euler/problem_01/sol4.py
ELR424/Python
a212efee5b44312c8b4b626ae412bacc5f4117fd
[ "MIT" ]
1,568
2019-04-25T11:54:45.000Z
2022-03-31T23:35:23.000Z
project_euler/problem_01/sol4.py
rayenough/Python
2fc2ae3f32fad16226c88358cb7c9e4e5c790a8f
[ "MIT" ]
58
2019-02-20T10:45:50.000Z
2020-09-30T12:18:45.000Z
project_euler/problem_01/sol4.py
rayenough/Python
2fc2ae3f32fad16226c88358cb7c9e4e5c790a8f
[ "MIT" ]
464
2019-04-17T04:57:16.000Z
2022-03-31T04:12:57.000Z
def mulitples(limit): xmulti = [] zmulti = [] z = 3 x = 5 temp = 1 while True: result = z * temp if (result < limit): zmulti.append(result) temp += 1 else: temp = 1 break while True: result = x * temp if (result < limit): xmulti.append(result) temp += 1 else: break collection = list(set(xmulti+zmulti)) return (sum(collection)) print (mulitples(1000))
19.129032
42
0.403035
7941f6b5d72f23868dc32feab18a943f1f0c948d
170,326
py
Python
tensorflow/python/keras/backend.py
santhoshkumarvs/tensorflow
5581b91ada226f1ec20f55cd6423853072b2813c
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/backend.py
santhoshkumarvs/tensorflow
5581b91ada226f1ec20f55cd6423853072b2813c
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/backend.py
santhoshkumarvs/tensorflow
5581b91ada226f1ec20f55cd6423853072b2813c
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access # pylint: disable=redefined-outer-name # pylint: disable=redefined-builtin """Keras backend API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import itertools import json import os import threading import weakref import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as session_module from tensorflow.python.distribute import distribute_coordinator as dc from tensorflow.python.distribute import distribute_coordinator_context as dc_context from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.eager import context from tensorflow.python.eager import function as eager_function from tensorflow.python.eager import lift_to_graph from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import constant_op from tensorflow.python.framework import device as tfdev from tensorflow.python.framework import dtypes as dtypes_module from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend_config from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import ctc_ops as ctc from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gradients as gradients_module from tensorflow.python.ops import image_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import map_fn as map_fn_lib from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import tensor_array_grad # pylint: disable=unused-import from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variables as variables_module from tensorflow.python.training import server_lib from tensorflow.python.util import nest from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_inspect from tensorflow.python.util.tf_export import keras_export py_all = all py_sum = sum # INTERNAL UTILS # The internal graph maintained by Keras and used by the symbolic Keras APIs # while executing eagerly (such as the functional API for model-building). _GRAPH = None # A graph which is used for constructing functions in eager mode. _CURRENT_SCRATCH_GRAPH = None # This is a thread local object that will hold the default internal TF session # used by Keras. It can be set manually via `set_session(sess)`. _SESSION = threading.local() # This dictionary holds a mapping {graph: learning_phase}. # A learning phase is a bool tensor used to run Keras models in # either train mode (learning_phase == 1) or test mode (learning_phase == 0). _GRAPH_LEARNING_PHASES = weakref.WeakKeyDictionary() # _DUMMY_EAGER_GRAPH is used as a key in _GRAPH_LEARNING_PHASES. # We keep a separate reference to it to make sure it does not get removed from # _GRAPH_LEARNING_PHASES. _DUMMY_EAGER_GRAPH = threading.local() # This boolean flag can be set to True to leave variable initialization # up to the user. # Change its value via `manual_variable_initialization(value)`. _MANUAL_VAR_INIT = False # This list holds the available devices. # It is populated when `_get_available_gpus()` is called for the first time. # We assume our devices don't change henceforth. _LOCAL_DEVICES = None # This dictionary holds a mapping between a graph and variables to initialize # in the graph. _GRAPH_VARIABLES = weakref.WeakKeyDictionary() # This dictionary holds a mapping between a graph and TF optimizers created in # the graph. _GRAPH_TF_OPTIMIZERS = weakref.WeakKeyDictionary() # The below functions are kept accessible from backend for compatibility. epsilon = backend_config.epsilon floatx = backend_config.floatx image_data_format = backend_config.image_data_format set_epsilon = backend_config.set_epsilon set_floatx = backend_config.set_floatx set_image_data_format = backend_config.set_image_data_format @keras_export('keras.backend.backend') def backend(): """Publicly accessible method for determining the current backend. Only exists for API compatibility with multi-backend Keras. Returns: The string "tensorflow". """ return 'tensorflow' @keras_export('keras.backend.cast_to_floatx') def cast_to_floatx(x): """Cast a Numpy array to the default Keras float type. Arguments: x: Numpy array. Returns: The same Numpy array, cast to its new type. Example: ```python >>> from keras import backend as K >>> K.floatx() 'float32' >>> arr = numpy.array([1.0, 2.0], dtype='float64') >>> arr.dtype dtype('float64') >>> new_arr = K.cast_to_floatx(arr) >>> new_arr array([ 1., 2.], dtype=float32) >>> new_arr.dtype dtype('float32') ``` """ return np.asarray(x, dtype=floatx()) # A global dictionary mapping graph objects to an index of counters used # for various layer names in each graph. # Allows to give unique autogenerated names to layers, in a graph-specific way. PER_GRAPH_LAYER_NAME_UIDS = weakref.WeakKeyDictionary() @keras_export('keras.backend.get_uid') def get_uid(prefix=''): """Associates a string prefix with an integer counter in a TensorFlow graph. Arguments: prefix: String prefix to index. Returns: Unique integer ID. Example: ``` >>> get_uid('dense') 1 >>> get_uid('dense') 2 ``` """ graph = get_graph() if graph not in PER_GRAPH_LAYER_NAME_UIDS: PER_GRAPH_LAYER_NAME_UIDS[graph] = collections.defaultdict(int) layer_name_uids = PER_GRAPH_LAYER_NAME_UIDS[graph] layer_name_uids[prefix] += 1 return layer_name_uids[prefix] @keras_export('keras.backend.reset_uids') def reset_uids(): """Resets graph identifiers. """ per_graph_layer_name_uids = PER_GRAPH_LAYER_NAME_UIDS keys = list(per_graph_layer_name_uids.keys()) for key in keys: del per_graph_layer_name_uids[key] @keras_export('keras.backend.clear_session') def clear_session(): """Destroys the current TF graph and creates a new one. Useful to avoid clutter from old models / layers. """ global _SESSION global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned global _GRAPH_VARIABLES # pylint: disable=global-variable-not-assigned global _GRAPH_TF_OPTIMIZERS # pylint: disable=global-variable-not-assigned ops.reset_default_graph() reset_uids() _SESSION.session = None graph = get_graph() with graph.as_default(): with ops.name_scope(''): phase = array_ops.placeholder_with_default( False, shape=(), name='keras_learning_phase') _GRAPH_LEARNING_PHASES = {} _GRAPH_LEARNING_PHASES[graph] = phase _GRAPH_VARIABLES.pop(graph, None) _GRAPH_TF_OPTIMIZERS.pop(graph, None) @keras_export('keras.backend.manual_variable_initialization') def manual_variable_initialization(value): """Sets the manual variable initialization flag. This boolean flag determines whether variables should be initialized as they are instantiated (default), or if the user should handle the initialization (e.g. via `tf.initialize_all_variables()`). Arguments: value: Python boolean. """ global _MANUAL_VAR_INIT _MANUAL_VAR_INIT = value @keras_export('keras.backend.learning_phase') def learning_phase(): """Returns the learning phase flag. The learning phase flag is a bool tensor (0 = test, 1 = train) to be passed as input to any Keras function that uses a different behavior at train time and test time. Returns: Learning phase (scalar integer tensor or Python integer). """ if ops.get_default_graph() is _GRAPH: # Don't enter an init_scope for the learning phase if eager execution # is enabled but we're inside the Keras workspace graph. return symbolic_learning_phase() with ops.init_scope(): # We always check & set the learning phase inside the init_scope, # otherwise the wrong default_graph will be used to look up the learning # phase inside of functions & defuns. # # This is because functions & defuns (both in graph & in eager mode) # will always execute non-eagerly using a function-specific default # subgraph. if context.executing_eagerly(): if _DUMMY_EAGER_GRAPH not in _GRAPH_LEARNING_PHASES: # Fallback to inference mode as default. return 0 return _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] return symbolic_learning_phase() def symbolic_learning_phase(): graph = get_graph() with graph.as_default(): if graph not in _GRAPH_LEARNING_PHASES: with ops.name_scope(''): phase = array_ops.placeholder_with_default( False, shape=(), name='keras_learning_phase') _GRAPH_LEARNING_PHASES[graph] = phase return _GRAPH_LEARNING_PHASES[graph] @keras_export('keras.backend.set_learning_phase') def set_learning_phase(value): """Sets the learning phase to a fixed value. Arguments: value: Learning phase value, either 0 or 1 (integers). Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned if value not in {0, 1}: raise ValueError('Expected learning phase to be 0 or 1.') with ops.init_scope(): if context.executing_eagerly(): # In an eager context, the learning phase values applies to both the eager # context and the internal Keras graph. _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = value _GRAPH_LEARNING_PHASES[get_graph()] = value def set_eager_learning_phase(value): """Internal utility that sets the learning phase in eager execution only. Arguments: value: Learning phase value, either 0 or 1 (integers). """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned assert value in {0, 1} assert context.executing_eagerly() _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = value @keras_export('keras.backend.learning_phase_scope') @tf_contextlib.contextmanager def learning_phase_scope(value): """Provides a scope within which the learning phase is equal to `value`. The learning phase gets restored to its original value upon exiting the scope. Arguments: value: Learning phase value, either 0 or 1 (integers). Yields: None. Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned if value not in {0, 1}: raise ValueError('Expected learning phase to be 0 or 1.') with ops.init_scope(): if context.executing_eagerly(): previous_eager_value = _GRAPH_LEARNING_PHASES.get( _DUMMY_EAGER_GRAPH, None) previous_graph_value = _GRAPH_LEARNING_PHASES.get(get_graph(), None) try: set_learning_phase(value) yield finally: # Restore learning phase to initial value. with ops.init_scope(): if context.executing_eagerly(): if previous_eager_value is not None: _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = previous_eager_value elif _DUMMY_EAGER_GRAPH in _GRAPH_LEARNING_PHASES: del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] graph = get_graph() if previous_graph_value is not None: _GRAPH_LEARNING_PHASES[graph] = previous_graph_value elif graph in _GRAPH_LEARNING_PHASES: del _GRAPH_LEARNING_PHASES[graph] @tf_contextlib.contextmanager def eager_learning_phase_scope(value): """Internal scope that sets the learning phase in eager execution only. Arguments: value: Learning phase value, either 0 or 1 (integers). Yields: None. Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned assert value in {0, 1} assert context.executing_eagerly() previous_value = learning_phase() try: _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = value yield finally: # Restore learning phase to initial value. _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = previous_value def _current_graph(op_input_list): """Return the graph members of `op_input_list`, or the current graph.""" return ops._get_graph_from_inputs(op_input_list) def _get_session(op_input_list=()): """Returns the session object for the current thread.""" global _SESSION default_session = ops.get_default_session() if default_session is not None: session = default_session else: if ops.inside_function(): raise RuntimeError('Cannot get session inside Tensorflow graph function.') # If we don't have a session, or that session does not match the current # graph, create and cache a new session. if (getattr(_SESSION, 'session', None) is None or _SESSION.session.graph is not _current_graph(op_input_list)): # If we are creating the Session inside a tf.distribute.Strategy scope, # we ask the strategy for the right session options to use. if distribution_strategy_context.has_strategy(): configure_and_create_distributed_session( distribution_strategy_context.get_strategy()) else: _SESSION.session = session_module.Session( config=get_default_session_config()) session = _SESSION.session return session @keras_export(v1=['keras.backend.get_session']) def get_session(op_input_list=()): """Returns the TF session to be used by the backend. If a default TensorFlow session is available, we will return it. Else, we will return the global Keras session assuming it matches the current graph. If no global Keras session exists at this point: we will create a new global session. Note that you can manually set the global session via `K.set_session(sess)`. Arguments: op_input_list: An option sequence of tensors or ops, which will be used to determine the current graph. Otherwise the default graph will be used. Returns: A TensorFlow session. """ session = _get_session(op_input_list) if not _MANUAL_VAR_INIT: with session.graph.as_default(): _initialize_variables(session) return session def get_graph(): if context.executing_eagerly(): global _GRAPH if _GRAPH is None: _GRAPH = func_graph.FuncGraph('keras_graph') return _GRAPH else: return ops.get_default_graph() @tf_contextlib.contextmanager def _scratch_graph(graph=None): """Retrieve a shared and temporary func graph. The eager execution path lifts a subgraph from the keras global graph into a scratch graph in order to create a function. DistributionStrategies, in turn, constructs multiple functions as well as a final combined function. In order for that logic to work correctly, all of the functions need to be created on the same scratch FuncGraph. Args: graph: A graph to be used as the current scratch graph. If not set then a scratch graph will either be retrieved or created: Yields: The current scratch graph. """ global _CURRENT_SCRATCH_GRAPH if (_CURRENT_SCRATCH_GRAPH is not None and graph is not None and _CURRENT_SCRATCH_GRAPH is not graph): raise ValueError('Multiple scratch graphs specified.') if _CURRENT_SCRATCH_GRAPH: yield _CURRENT_SCRATCH_GRAPH return graph = graph or func_graph.FuncGraph('keras_scratch_graph') try: _CURRENT_SCRATCH_GRAPH = graph yield graph finally: _CURRENT_SCRATCH_GRAPH = None @keras_export('keras.backend.set_session') def set_session(session): """Sets the global TensorFlow session. Arguments: session: A TF Session. """ global _SESSION _SESSION.session = session def get_default_session_config(): if not os.environ.get('OMP_NUM_THREADS'): config = config_pb2.ConfigProto(allow_soft_placement=True) else: num_thread = int(os.environ.get('OMP_NUM_THREADS')) config = config_pb2.ConfigProto( intra_op_parallelism_threads=num_thread, inter_op_parallelism_threads=num_thread, allow_soft_placement=True) return config # DEVICE MANIPULATION class _TfDeviceCaptureOp(object): """Class for capturing the TF device scope.""" def __init__(self): self.device = None def _set_device(self, device): """This method captures TF's explicit device scope setting.""" if tfdev.is_device_spec(device): device = device.to_string() self.device = device def _set_device_from_string(self, device_str): self.device = device_str def _get_current_tf_device(): """Return explicit device of current context, otherwise returns `None`. Returns: If the current device scope is explicitly set, it returns a string with the device (`CPU` or `GPU`). If the scope is not explicitly set, it will return `None`. """ graph = get_graph() op = _TfDeviceCaptureOp() graph._apply_device_functions(op) return tfdev.DeviceSpec.from_string(op.device) def _is_current_explicit_device(device_type): """Check if the current device is explicitly set on the device type specified. Arguments: device_type: A string containing `GPU` or `CPU` (case-insensitive). Returns: A boolean indicating if the current device scope is explicitly set on the device type. Raises: ValueError: If the `device_type` string indicates an unsupported device. """ device_type = device_type.upper() if device_type not in ['CPU', 'GPU']: raise ValueError('`device_type` should be either "CPU" or "GPU".') device = _get_current_tf_device() return device is not None and device.device_type == device_type.upper() def _get_available_gpus(): """Get a list of available gpu devices (formatted as strings). Returns: A list of available GPU devices. """ if ops.executing_eagerly_outside_functions(): # Returns names of devices directly. return [name for name in context.list_devices() if 'GPU' in name] global _LOCAL_DEVICES if _LOCAL_DEVICES is None: _LOCAL_DEVICES = get_session().list_devices() return [x.name for x in _LOCAL_DEVICES if x.device_type == 'GPU'] def _has_nchw_support(): """Check whether the current scope supports NCHW ops. TensorFlow does not support NCHW on CPU. Therefore we check if we are not explicitly put on CPU, and have GPUs available. In this case there will be soft-placing on the GPU device. Returns: bool: if the current scope device placement would support nchw """ explicitly_on_cpu = _is_current_explicit_device('CPU') gpus_available = bool(_get_available_gpus()) return not explicitly_on_cpu and gpus_available # VARIABLE MANIPULATION def _constant_to_tensor(x, dtype): """Convert the input `x` to a tensor of type `dtype`. This is slightly faster than the _to_tensor function, at the cost of handling fewer cases. Arguments: x: An object to be converted (numpy arrays, floats, ints and lists of them). dtype: The destination type. Returns: A tensor. """ return constant_op.constant(x, dtype=dtype) def _to_tensor(x, dtype): """Convert the input `x` to a tensor of type `dtype`. Arguments: x: An object to be converted (numpy array, list, tensors). dtype: The destination type. Returns: A tensor. """ return ops.convert_to_tensor(x, dtype=dtype) @keras_export('keras.backend.is_sparse') def is_sparse(tensor): """Returns whether a tensor is a sparse tensor. Arguments: tensor: A tensor instance. Returns: A boolean. Example: ```python >>> from keras import backend as K >>> a = K.placeholder((2, 2), sparse=False) >>> print(K.is_sparse(a)) False >>> b = K.placeholder((2, 2), sparse=True) >>> print(K.is_sparse(b)) True ``` """ return isinstance(tensor, sparse_tensor.SparseTensor) @keras_export('keras.backend.to_dense') def to_dense(tensor): """Converts a sparse tensor into a dense tensor and returns it. Arguments: tensor: A tensor instance (potentially sparse). Returns: A dense tensor. Examples: ```python >>> from keras import backend as K >>> b = K.placeholder((2, 2), sparse=True) >>> print(K.is_sparse(b)) True >>> c = K.to_dense(b) >>> print(K.is_sparse(c)) False ``` """ if is_sparse(tensor): return sparse_ops.sparse_tensor_to_dense(tensor) else: return tensor name_scope = ops.name_scope @keras_export('keras.backend.variable') def variable(value, dtype=None, name=None, constraint=None): """Instantiates a variable and returns it. Arguments: value: Numpy array, initial value of the tensor. dtype: Tensor type. name: Optional name string for the tensor. constraint: Optional projection function to be applied to the variable after an optimizer update. Returns: A variable instance (with Keras metadata included). Examples: ```python >>> import numpy as np >>> from keras import backend as K >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val, dtype='float64', name='example_var') >>> K.dtype(kvar) 'float64' >>> print(kvar) example_var >>> kvar.eval() array([[ 1., 2.], [ 3., 4.]]) ``` """ if dtype is None: dtype = floatx() if hasattr(value, 'tocoo'): sparse_coo = value.tocoo() indices = np.concatenate((np.expand_dims(sparse_coo.row, 1), np.expand_dims( sparse_coo.col, 1)), 1) v = sparse_tensor.SparseTensor( indices=indices, values=sparse_coo.data, dense_shape=sparse_coo.shape) v._keras_shape = sparse_coo.shape return v v = resource_variable_ops.ResourceVariable( value, dtype=dtypes_module.as_dtype(dtype), name=name, constraint=constraint) if isinstance(value, np.ndarray): v._keras_shape = value.shape elif hasattr(value, 'shape'): v._keras_shape = int_shape(value) track_variable(v) return v def track_tf_optimizer(tf_optimizer): """Tracks the given TF optimizer for initialization of its variables.""" if context.executing_eagerly(): return graph = get_graph() optimizers = _GRAPH_TF_OPTIMIZERS.setdefault(graph, weakref.WeakSet()) optimizers.add(tf_optimizer) def track_variable(v): """Tracks the given variable for initialization.""" if context.executing_eagerly(): return graph = v.graph if hasattr(v, 'graph') else get_graph() if graph not in _GRAPH_VARIABLES: _GRAPH_VARIABLES[graph] = weakref.WeakSet() _GRAPH_VARIABLES[graph].add(v) def _get_variables(graph=None): """Returns variables corresponding to the given graph for initialization.""" assert not context.executing_eagerly() variables = _GRAPH_VARIABLES.setdefault(graph, weakref.WeakSet()) for opt in _GRAPH_TF_OPTIMIZERS.get(graph, set()): variables.update(opt.optimizer.variables()) return variables def _initialize_variables(session): """Utility to initialize uninitialized variables on the fly.""" variables = _get_variables(get_graph()) candidate_vars = [] for v in variables: if not getattr(v, '_keras_initialized', False): candidate_vars.append(v) if candidate_vars: # This step is expensive, so we only run it on variables not already # marked as initialized. is_initialized = session.run( [variables_module.is_variable_initialized(v) for v in candidate_vars]) uninitialized_vars = [] for flag, v in zip(is_initialized, candidate_vars): if not flag: uninitialized_vars.append(v) v._keras_initialized = True if uninitialized_vars: session.run(variables_module.variables_initializer(uninitialized_vars)) @keras_export('keras.backend.constant') def constant(value, dtype=None, shape=None, name=None): """Creates a constant tensor. Arguments: value: A constant value (or list) dtype: The type of the elements of the resulting tensor. shape: Optional dimensions of resulting tensor. name: Optional name for the tensor. Returns: A Constant Tensor. """ if dtype is None: dtype = floatx() # If the outer context is eager but we are executing under the keras # FuncGraph, we create EagerTensors and use them as constants. if (ops.executing_eagerly_outside_functions() and getattr(get_graph(), 'name', '') == 'keras_graph'): with ops.init_scope(): return constant_op.constant(value, dtype=dtype, shape=shape, name=name) return constant_op.constant(value, dtype=dtype, shape=shape, name=name) def is_keras_tensor(x): """Returns whether `x` is a Keras tensor. A "Keras tensor" is a tensor that was returned by a Keras layer, (`Layer` class) or by `Input`. Arguments: x: A candidate tensor. Returns: A boolean: Whether the argument is a Keras tensor. Raises: ValueError: In case `x` is not a symbolic tensor. Examples: ```python >>> import tensorflow as tf >>> import numpy >>> from keras import backend as K >>> from keras.layers import Input, Dense >>> np_var = numpy.array([1, 2]) >>> K.is_keras_tensor(np_var) # A numpy array is not a symbolic tensor. ValueError >>> k_var = tf.placeholder('float32', shape=(1,1)) >>> K.is_keras_tensor(k_var) # A variable indirectly created outside of keras is not a Keras tensor. False >>> keras_var = K.variable(np_var) >>> K.is_keras_tensor(keras_var) # A variable created with the keras backend is not a Keras tensor. False >>> keras_placeholder = K.placeholder(shape=(2, 4, 5)) >>> K.is_keras_tensor(keras_placeholder) # A placeholder is not a Keras tensor. False >>> keras_input = Input([10]) >>> K.is_keras_tensor(keras_input) # An Input is a Keras tensor. True >>> keras_layer_output = Dense(10)(keras_input) >>> K.is_keras_tensor(keras_layer_output) # Any Keras layer output is a Keras tensor. True ``` """ if not isinstance(x, (ops.Tensor, variables_module.Variable, sparse_tensor.SparseTensor)): raise ValueError('Unexpectedly found an instance of type `' + str(type(x)) + '`. Expected a symbolic tensor instance.') return hasattr(x, '_keras_history') @keras_export('keras.backend.placeholder') def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None): """Instantiates a placeholder tensor and returns it. Arguments: shape: Shape of the placeholder (integer tuple, may include `None` entries). ndim: Number of axes of the tensor. At least one of {`shape`, `ndim`} must be specified. If both are specified, `shape` is used. dtype: Placeholder type. sparse: Boolean, whether the placeholder should have a sparse type. name: Optional name string for the placeholder. Raises: ValueError: If called with eager execution. Returns: Tensor instance (with Keras metadata included). Examples: ```python >>> from keras import backend as K >>> input_ph = K.placeholder(shape=(2, 4, 5)) >>> input_ph <tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32> ``` """ if dtype is None: dtype = floatx() if not shape: if ndim: shape = tuple([None for _ in range(ndim)]) with get_graph().as_default(): if sparse: x = array_ops.sparse_placeholder(dtype, shape=shape, name=name) else: x = array_ops.placeholder(dtype, shape=shape, name=name) return x def is_placeholder(x): """Returns whether `x` is a placeholder. Arguments: x: A candidate placeholder. Returns: Boolean. """ try: return x.op.type == 'Placeholder' except AttributeError: return False @keras_export('keras.backend.shape') def shape(x): """Returns the symbolic shape of a tensor or variable. Arguments: x: A tensor or variable. Returns: A symbolic shape (which is itself a tensor). Examples: ```python # TensorFlow example >>> from keras import backend as K >>> tf_session = K.get_session() >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> input = keras.backend.placeholder(shape=(2, 4, 5)) >>> K.shape(kvar) <tf.Tensor 'Shape_8:0' shape=(2,) dtype=int32> >>> K.shape(input) <tf.Tensor 'Shape_9:0' shape=(3,) dtype=int32> # To get integer shape (Instead, you can use K.int_shape(x)) >>> K.shape(kvar).eval(session=tf_session) array([2, 2], dtype=int32) >>> K.shape(input).eval(session=tf_session) array([2, 4, 5], dtype=int32) ``` """ return array_ops.shape(x) @keras_export('keras.backend.int_shape') def int_shape(x): """Returns the shape of tensor or variable as a tuple of int or None entries. Arguments: x: Tensor or variable. Returns: A tuple of integers (or None entries). Examples: ```python >>> from keras import backend as K >>> input = K.placeholder(shape=(2, 4, 5)) >>> K.int_shape(input) (2, 4, 5) >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> K.int_shape(kvar) (2, 2) ``` """ try: shape = x.shape if not isinstance(shape, tuple): shape = tuple(shape.as_list()) return shape except ValueError: return None @keras_export('keras.backend.ndim') def ndim(x): """Returns the number of axes in a tensor, as an integer. Arguments: x: Tensor or variable. Returns: Integer (scalar), number of axes. Examples: ```python >>> from keras import backend as K >>> input = K.placeholder(shape=(2, 4, 5)) >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> K.ndim(input) 3 >>> K.ndim(kvar) 2 ``` """ dims = x.shape._dims if dims is not None: return len(dims) return None @keras_export('keras.backend.dtype') def dtype(x): """Returns the dtype of a Keras tensor or variable, as a string. Arguments: x: Tensor or variable. Returns: String, dtype of `x`. Examples: ```python >>> from keras import backend as K >>> K.dtype(K.placeholder(shape=(2,4,5))) 'float32' >>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float32')) 'float32' >>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float64')) 'float64' # Keras variable >>> kvar = K.variable(np.array([[1, 2], [3, 4]])) >>> K.dtype(kvar) 'float32' >>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32') >>> K.dtype(kvar) 'float32' ``` """ return x.dtype.base_dtype.name @keras_export('keras.backend.eval') def eval(x): """Evaluates the value of a variable. Arguments: x: A variable. Returns: A Numpy array. Examples: ```python >>> from keras import backend as K >>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32') >>> K.eval(kvar) array([[ 1., 2.], [ 3., 4.]], dtype=float32) ``` """ return get_value(to_dense(x)) @keras_export('keras.backend.zeros') def zeros(shape, dtype=None, name=None): """Instantiates an all-zeros variable and returns it. Arguments: shape: Tuple of integers, shape of returned Keras variable dtype: String, data type of returned Keras variable name: String, name of returned Keras variable Returns: A variable (including Keras metadata), filled with `0.0`. Note that if `shape` was symbolic, we cannot return a variable, and will return a dynamically-shaped tensor instead. Example: ```python >>> from keras import backend as K >>> kvar = K.zeros((3,4)) >>> K.eval(kvar) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]], dtype=float32) ``` """ with ops.init_scope(): if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) v = array_ops.zeros(shape=shape, dtype=tf_dtype, name=name) if py_all(v.shape.as_list()): return variable(v, dtype=dtype, name=name) track_variable(v) return v @keras_export('keras.backend.ones') def ones(shape, dtype=None, name=None): """Instantiates an all-ones variable and returns it. Arguments: shape: Tuple of integers, shape of returned Keras variable. dtype: String, data type of returned Keras variable. name: String, name of returned Keras variable. Returns: A Keras variable, filled with `1.0`. Note that if `shape` was symbolic, we cannot return a variable, and will return a dynamically-shaped tensor instead. Example: ```python >>> from keras import backend as K >>> kvar = K.ones((3,4)) >>> K.eval(kvar) array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]], dtype=float32) ``` """ with ops.init_scope(): if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) v = array_ops.ones(shape=shape, dtype=tf_dtype, name=name) if py_all(v.shape.as_list()): return variable(v, dtype=dtype, name=name) track_variable(v) return v @keras_export('keras.backend.eye') def eye(size, dtype=None, name=None): """Instantiate an identity matrix and returns it. Arguments: size: Integer, number of rows/columns. dtype: String, data type of returned Keras variable. name: String, name of returned Keras variable. Returns: A Keras variable, an identity matrix. Example: ```python >>> from keras import backend as K >>> kvar = K.eye(3) >>> K.eval(kvar) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) return variable(linalg_ops.eye(size, dtype=tf_dtype), dtype, name) @keras_export('keras.backend.zeros_like') def zeros_like(x, dtype=None, name=None): """Instantiates an all-zeros variable of the same shape as another tensor. Arguments: x: Keras variable or Keras tensor. dtype: String, dtype of returned Keras variable. None uses the dtype of x. name: String, name for the variable to create. Returns: A Keras variable with the shape of x filled with zeros. Example: ```python >>> from keras import backend as K >>> kvar = K.variable(np.random.random((2,3))) >>> kvar_zeros = K.zeros_like(kvar) >>> K.eval(kvar_zeros) array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) ``` """ return array_ops.zeros_like(x, dtype=dtype, name=name) @keras_export('keras.backend.ones_like') def ones_like(x, dtype=None, name=None): """Instantiates an all-ones variable of the same shape as another tensor. Arguments: x: Keras variable or tensor. dtype: String, dtype of returned Keras variable. None uses the dtype of x. name: String, name for the variable to create. Returns: A Keras variable with the shape of x filled with ones. Example: ```python >>> from keras import backend as K >>> kvar = K.variable(np.random.random((2,3))) >>> kvar_ones = K.ones_like(kvar) >>> K.eval(kvar_ones) array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) ``` """ return array_ops.ones_like(x, dtype=dtype, name=name) def identity(x, name=None): """Returns a tensor with the same content as the input tensor. Arguments: x: The input tensor. name: String, name for the variable to create. Returns: A tensor of the same shape, type and content. """ return array_ops.identity(x, name=name) @keras_export('keras.backend.random_uniform_variable') def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None): """Instantiates a variable with values drawn from a uniform distribution. Arguments: shape: Tuple of integers, shape of returned Keras variable. low: Float, lower boundary of the output interval. high: Float, upper boundary of the output interval. dtype: String, dtype of returned Keras variable. name: String, name of returned Keras variable. seed: Integer, random seed. Returns: A Keras variable, filled with drawn samples. Example: ```python # TensorFlow example >>> kvar = K.random_uniform_variable((2,3), 0, 1) >>> kvar <tensorflow.python.ops.variables.Variable object at 0x10ab40b10> >>> K.eval(kvar) array([[ 0.10940075, 0.10047495, 0.476143 ], [ 0.66137183, 0.00869417, 0.89220798]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e8) value = init_ops.random_uniform_initializer( low, high, dtype=tf_dtype, seed=seed)(shape) return variable(value, dtype=dtype, name=name) @keras_export('keras.backend.random_normal_variable') def random_normal_variable(shape, mean, scale, dtype=None, name=None, seed=None): """Instantiates a variable with values drawn from a normal distribution. Arguments: shape: Tuple of integers, shape of returned Keras variable. mean: Float, mean of the normal distribution. scale: Float, standard deviation of the normal distribution. dtype: String, dtype of returned Keras variable. name: String, name of returned Keras variable. seed: Integer, random seed. Returns: A Keras variable, filled with drawn samples. Example: ```python # TensorFlow example >>> kvar = K.random_normal_variable((2,3), 0, 1) >>> kvar <tensorflow.python.ops.variables.Variable object at 0x10ab12dd0> >>> K.eval(kvar) array([[ 1.19591331, 0.68685907, -0.63814116], [ 0.92629528, 0.28055015, 1.70484698]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e8) value = init_ops.random_normal_initializer( mean, scale, dtype=tf_dtype, seed=seed)(shape) return variable(value, dtype=dtype, name=name) @keras_export('keras.backend.count_params') def count_params(x): """Returns the static number of elements in a variable or tensor. Arguments: x: Variable or tensor. Returns: Integer, the number of scalars in `x`. Example: ```python >>> kvar = K.zeros((2,3)) >>> K.count_params(kvar) 6 >>> K.eval(kvar) array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) ``` """ return np.prod(x.shape.as_list()) @keras_export('keras.backend.cast') def cast(x, dtype): """Casts a tensor to a different dtype and returns it. You can cast a Keras variable but it still returns a Keras tensor. Arguments: x: Keras tensor (or variable). dtype: String, either (`'float16'`, `'float32'`, or `'float64'`). Returns: Keras tensor with dtype `dtype`. Example: ```python >>> from keras import backend as K >>> input = K.placeholder((2, 3), dtype='float32') >>> input <tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32> # It doesn't work in-place as below. >>> K.cast(input, dtype='float16') <tf.Tensor 'Cast_1:0' shape=(2, 3) dtype=float16> >>> input <tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32> # you need to assign it. >>> input = K.cast(input, dtype='float16') >>> input <tf.Tensor 'Cast_2:0' shape=(2, 3) dtype=float16> ``` """ return math_ops.cast(x, dtype) # UPDATES OPS @keras_export('keras.backend.update') def update(x, new_x): return state_ops.assign(x, new_x) @keras_export('keras.backend.update_add') def update_add(x, increment): """Update the value of `x` by adding `increment`. Arguments: x: A Variable. increment: A tensor of same shape as `x`. Returns: The variable `x` updated. """ return state_ops.assign_add(x, increment) @keras_export('keras.backend.update_sub') def update_sub(x, decrement): """Update the value of `x` by subtracting `decrement`. Arguments: x: A Variable. decrement: A tensor of same shape as `x`. Returns: The variable `x` updated. """ return state_ops.assign_sub(x, decrement) @keras_export('keras.backend.moving_average_update') def moving_average_update(x, value, momentum): """Compute the moving average of a variable. Arguments: x: A Variable. value: A tensor with the same shape as `variable`. momentum: The moving average momentum. Returns: An Operation to update the variable. """ # `training` is higher-up than the Keras backend in the abstraction hierarchy. # In particular, `training` depends on layers, and thus on Keras. # moving_averages, being low-level ops, should not be part of the training # module. from tensorflow.python.training import moving_averages # pylint: disable=g-import-not-at-top return moving_averages.assign_moving_average( x, value, momentum, zero_debias=True) # LINEAR ALGEBRA @keras_export('keras.backend.dot') def dot(x, y): """Multiplies 2 tensors (and/or variables) and returns a *tensor*. When attempting to multiply a nD tensor with a nD tensor, it reproduces the Theano behavior. (e.g. `(2, 3) * (4, 3, 5) -> (2, 4, 5)`) Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor, dot product of `x` and `y`. Examples: ```python # dot product between tensors >>> x = K.placeholder(shape=(2, 3)) >>> y = K.placeholder(shape=(3, 4)) >>> xy = K.dot(x, y) >>> xy <tf.Tensor 'MatMul_9:0' shape=(2, 4) dtype=float32> ``` ```python # dot product between tensors >>> x = K.placeholder(shape=(32, 28, 3)) >>> y = K.placeholder(shape=(3, 4)) >>> xy = K.dot(x, y) >>> xy <tf.Tensor 'MatMul_9:0' shape=(32, 28, 4) dtype=float32> ``` ```python # Theano-like behavior example >>> x = K.random_uniform_variable(shape=(2, 3), low=0, high=1) >>> y = K.ones((4, 3, 5)) >>> xy = K.dot(x, y) >>> K.int_shape(xy) (2, 4, 5) ``` """ if ndim(x) is not None and (ndim(x) > 2 or ndim(y) > 2): x_shape = [] for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))): if i is not None: x_shape.append(i) else: x_shape.append(s) x_shape = tuple(x_shape) y_shape = [] for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))): if i is not None: y_shape.append(i) else: y_shape.append(s) y_shape = tuple(y_shape) y_permute_dim = list(range(ndim(y))) y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim xt = array_ops.reshape(x, [-1, x_shape[-1]]) yt = array_ops.reshape( array_ops.transpose(y, perm=y_permute_dim), [y_shape[-2], -1]) return array_ops.reshape( math_ops.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:]) if is_sparse(x): out = sparse_ops.sparse_tensor_dense_matmul(x, y) else: out = math_ops.matmul(x, y) return out @keras_export('keras.backend.batch_dot') def batch_dot(x, y, axes=None): """Batchwise dot product. `batch_dot` is used to compute dot product of `x` and `y` when `x` and `y` are data in batch, i.e. in a shape of `(batch_size, :)`. `batch_dot` results in a tensor or variable with less dimensions than the input. If the number of dimensions is reduced to 1, we use `expand_dims` to make sure that ndim is at least 2. Arguments: x: Keras tensor or variable with `ndim >= 2`. y: Keras tensor or variable with `ndim >= 2`. axes: list of (or single) int with target dimensions. The lengths of `axes[0]` and `axes[1]` should be the same. Returns: A tensor with shape equal to the concatenation of `x`'s shape (less the dimension that was summed over) and `y`'s shape (less the batch dimension and the dimension that was summed over). If the final rank is 1, we reshape it to `(batch_size, 1)`. Examples: Assume `x = [[1, 2], [3, 4]]` and `y = [[5, 6], [7, 8]]` `batch_dot(x, y, axes=1) = [[17, 53]]` which is the main diagonal of `x.dot(y.T)`, although we never have to calculate the off-diagonal elements. Shape inference: Let `x`'s shape be `(100, 20)` and `y`'s shape be `(100, 30, 20)`. If `axes` is (1, 2), to find the output shape of resultant tensor, loop through each dimension in `x`'s shape and `y`'s shape: * `x.shape[0]` : 100 : append to output shape * `x.shape[1]` : 20 : do not append to output shape, dimension 1 of `x` has been summed over. (`dot_axes[0]` = 1) * `y.shape[0]` : 100 : do not append to output shape, always ignore first dimension of `y` * `y.shape[1]` : 30 : append to output shape * `y.shape[2]` : 20 : do not append to output shape, dimension 2 of `y` has been summed over. (`dot_axes[1]` = 2) `output_shape` = `(100, 30)` ```python >>> x_batch = K.ones(shape=(32, 20, 1)) >>> y_batch = K.ones(shape=(32, 30, 20)) >>> xy_batch_dot = K.batch_dot(x_batch, y_batch, axes=[1, 2]) >>> K.int_shape(xy_batch_dot) (32, 1, 30) ``` """ if isinstance(axes, int): axes = (axes, axes) x_ndim = ndim(x) y_ndim = ndim(y) if axes is None: # behaves like tf.batch_matmul as default axes = [x_ndim - 1, y_ndim - 2] if x_ndim > y_ndim: diff = x_ndim - y_ndim y = array_ops.reshape(y, array_ops.concat( [array_ops.shape(y), [1] * (diff)], axis=0)) elif y_ndim > x_ndim: diff = y_ndim - x_ndim x = array_ops.reshape(x, array_ops.concat( [array_ops.shape(x), [1] * (diff)], axis=0)) else: diff = 0 if ndim(x) == 2 and ndim(y) == 2: if axes[0] == axes[1]: out = math_ops.reduce_sum(math_ops.multiply(x, y), axes[0]) else: out = math_ops.reduce_sum( math_ops.multiply(array_ops.transpose(x, [1, 0]), y), axes[1]) else: adj_x = None if axes[0] == ndim(x) - 1 else True adj_y = True if axes[1] == ndim(y) - 1 else None out = math_ops.matmul(x, y, adjoint_a=adj_x, adjoint_b=adj_y) if diff: if x_ndim > y_ndim: idx = x_ndim + y_ndim - 3 else: idx = x_ndim - 1 out = array_ops.squeeze(out, list(range(idx, idx + diff))) if ndim(out) == 1: out = expand_dims(out, 1) return out @keras_export('keras.backend.transpose') def transpose(x): """Transposes a tensor and returns it. Arguments: x: Tensor or variable. Returns: A tensor. Examples: ```python >>> var = K.variable([[1, 2, 3], [4, 5, 6]]) >>> K.eval(var) array([[ 1., 2., 3.], [ 4., 5., 6.]], dtype=float32) >>> var_transposed = K.transpose(var) >>> K.eval(var_transposed) array([[ 1., 4.], [ 2., 5.], [ 3., 6.]], dtype=float32) ``` ```python >>> input = K.placeholder((2, 3)) >>> input <tf.Tensor 'Placeholder_11:0' shape=(2, 3) dtype=float32> >>> input_transposed = K.transpose(input) >>> input_transposed <tf.Tensor 'transpose_4:0' shape=(3, 2) dtype=float32> ``` """ return array_ops.transpose(x) @keras_export('keras.backend.gather') def gather(reference, indices): """Retrieves the elements of indices `indices` in the tensor `reference`. Arguments: reference: A tensor. indices: An integer tensor of indices. Returns: A tensor of same type as `reference`. """ return array_ops.gather(reference, indices) # ELEMENT-WISE OPERATIONS @keras_export('keras.backend.max') def max(x, axis=None, keepdims=False): """Maximum value in a tensor. Arguments: x: A tensor or variable. axis: An integer, the axis to find maximum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with maximum values of `x`. """ return math_ops.reduce_max(x, axis, keepdims) @keras_export('keras.backend.min') def min(x, axis=None, keepdims=False): """Minimum value in a tensor. Arguments: x: A tensor or variable. axis: An integer, the axis to find minimum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with minimum values of `x`. """ return math_ops.reduce_min(x, axis, keepdims) @keras_export('keras.backend.sum') def sum(x, axis=None, keepdims=False): """Sum of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to sum over. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with sum of `x`. """ return math_ops.reduce_sum(x, axis, keepdims) @keras_export('keras.backend.prod') def prod(x, axis=None, keepdims=False): """Multiplies the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the product. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the product of elements of `x`. """ return math_ops.reduce_prod(x, axis, keepdims) @keras_export('keras.backend.cumsum') def cumsum(x, axis=0): """Cumulative sum of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the sum. Returns: A tensor of the cumulative sum of values of `x` along `axis`. """ return math_ops.cumsum(x, axis=axis) @keras_export('keras.backend.cumprod') def cumprod(x, axis=0): """Cumulative product of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the product. Returns: A tensor of the cumulative product of values of `x` along `axis`. """ return math_ops.cumprod(x, axis=axis) @keras_export('keras.backend.var') def var(x, axis=None, keepdims=False): """Variance of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the variance. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the variance of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_variance(x, axis=axis, keepdims=keepdims) @keras_export('keras.backend.std') def std(x, axis=None, keepdims=False): """Standard deviation of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the standard deviation. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the standard deviation of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_std(x, axis=axis, keepdims=keepdims) @keras_export('keras.backend.mean') def mean(x, axis=None, keepdims=False): """Mean of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: A list of integer. Axes to compute the mean. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keepdims` is `True`, the reduced dimensions are retained with length 1. Returns: A tensor with the mean of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_mean(x, axis, keepdims) @keras_export('keras.backend.any') def any(x, axis=None, keepdims=False): """Bitwise reduction (logical OR). Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. keepdims: whether the drop or broadcast the reduction axes. Returns: A uint8 tensor (0s and 1s). """ x = math_ops.cast(x, dtypes_module.bool) return math_ops.reduce_any(x, axis, keepdims) @keras_export('keras.backend.all') def all(x, axis=None, keepdims=False): """Bitwise reduction (logical AND). Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. keepdims: whether the drop or broadcast the reduction axes. Returns: A uint8 tensor (0s and 1s). """ x = math_ops.cast(x, dtypes_module.bool) return math_ops.reduce_all(x, axis, keepdims) @keras_export('keras.backend.argmax') def argmax(x, axis=-1): """Returns the index of the maximum value along an axis. Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. Returns: A tensor. """ return math_ops.argmax(x, axis) @keras_export('keras.backend.argmin') def argmin(x, axis=-1): """Returns the index of the minimum value along an axis. Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. Returns: A tensor. """ return math_ops.argmin(x, axis) @keras_export('keras.backend.square') def square(x): """Element-wise square. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.square(x) @keras_export('keras.backend.abs') def abs(x): """Element-wise absolute value. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.abs(x) @keras_export('keras.backend.sqrt') def sqrt(x): """Element-wise square root. Arguments: x: Tensor or variable. Returns: A tensor. """ zero = _constant_to_tensor(0., x.dtype.base_dtype) inf = _constant_to_tensor(np.inf, x.dtype.base_dtype) x = clip_ops.clip_by_value(x, zero, inf) return math_ops.sqrt(x) @keras_export('keras.backend.exp') def exp(x): """Element-wise exponential. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.exp(x) @keras_export('keras.backend.log') def log(x): """Element-wise log. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.log(x) def logsumexp(x, axis=None, keepdims=False): """Computes log(sum(exp(elements across dimensions of a tensor))). This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. Arguments: x: A tensor or variable. axis: An integer, the axis to reduce over. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: The reduced tensor. """ return math_ops.reduce_logsumexp(x, axis, keepdims) @keras_export('keras.backend.round') def round(x): """Element-wise rounding to the closest integer. In case of tie, the rounding mode used is "half to even". Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.round(x) @keras_export('keras.backend.sign') def sign(x): """Element-wise sign. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.sign(x) @keras_export('keras.backend.pow') def pow(x, a): """Element-wise exponentiation. Arguments: x: Tensor or variable. a: Python integer. Returns: A tensor. """ return math_ops.pow(x, a) @keras_export('keras.backend.clip') def clip(x, min_value, max_value): """Element-wise value clipping. Arguments: x: Tensor or variable. min_value: Python float or integer. max_value: Python float or integer. Returns: A tensor. """ if max_value is not None and max_value < min_value: max_value = min_value if max_value is None: max_value = np.inf min_value = _constant_to_tensor(min_value, x.dtype.base_dtype) max_value = _constant_to_tensor(max_value, x.dtype.base_dtype) return clip_ops.clip_by_value(x, min_value, max_value) @keras_export('keras.backend.equal') def equal(x, y): """Element-wise equality between two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.equal(x, y) @keras_export('keras.backend.not_equal') def not_equal(x, y): """Element-wise inequality between two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.not_equal(x, y) @keras_export('keras.backend.greater') def greater(x, y): """Element-wise truth value of (x > y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.greater(x, y) @keras_export('keras.backend.greater_equal') def greater_equal(x, y): """Element-wise truth value of (x >= y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.greater_equal(x, y) @keras_export('keras.backend.less') def less(x, y): """Element-wise truth value of (x < y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.less(x, y) @keras_export('keras.backend.less_equal') def less_equal(x, y): """Element-wise truth value of (x <= y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.less_equal(x, y) @keras_export('keras.backend.maximum') def maximum(x, y): """Element-wise maximum of two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor. """ return math_ops.maximum(x, y) @keras_export('keras.backend.minimum') def minimum(x, y): """Element-wise minimum of two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor. """ return math_ops.minimum(x, y) @keras_export('keras.backend.sin') def sin(x): """Computes sin of x element-wise. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.sin(x) @keras_export('keras.backend.cos') def cos(x): """Computes cos of x element-wise. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.cos(x) def _regular_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Non-fused version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ mean, var = nn.moments(x, reduction_axes, None, None, False) normed = nn.batch_normalization(x, mean, var, beta, gamma, epsilon) return normed, mean, var def _broadcast_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Non-fused, broadcast version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ mean, var = nn.moments(x, reduction_axes, None, None, False) target_shape = [] for axis in range(ndim(x)): if axis in reduction_axes: target_shape.append(1) else: target_shape.append(array_ops.shape(x)[axis]) target_shape = array_ops.stack(target_shape) broadcast_mean = array_ops.reshape(mean, target_shape) broadcast_var = array_ops.reshape(var, target_shape) if gamma is None: broadcast_gamma = None else: broadcast_gamma = array_ops.reshape(gamma, target_shape) if beta is None: broadcast_beta = None else: broadcast_beta = array_ops.reshape(beta, target_shape) normed = nn.batch_normalization(x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon) return normed, mean, var def _fused_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Fused version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ if list(reduction_axes) == [0, 1, 2]: normalization_axis = 3 tf_data_format = 'NHWC' else: normalization_axis = 1 tf_data_format = 'NCHW' if gamma is None: gamma = constant_op.constant( 1.0, dtype=x.dtype, shape=[x.shape[normalization_axis]]) if beta is None: beta = constant_op.constant( 0.0, dtype=x.dtype, shape=[x.shape[normalization_axis]]) return nn.fused_batch_norm( x, gamma, beta, epsilon=epsilon, data_format=tf_data_format) @keras_export('keras.backend.normalize_batch_in_training') def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Computes mean and std for batch then apply batch_normalization on batch. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ if ndim(x) == 4 and list(reduction_axes) in [[0, 1, 2], [0, 2, 3]]: if not _has_nchw_support() and list(reduction_axes) == [0, 2, 3]: return _broadcast_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) return _fused_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) else: if sorted(reduction_axes) == list(range(ndim(x)))[:-1]: return _regular_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) else: return _broadcast_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) @keras_export('keras.backend.batch_normalization') def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3): """Applies batch normalization on x given mean, var, beta and gamma. I.e. returns: `output = (x - mean) / (sqrt(var) + epsilon) * gamma + beta` Arguments: x: Input tensor or variable. mean: Mean of batch. var: Variance of batch. beta: Tensor with which to center the input. gamma: Tensor by which to scale the input. axis: Integer, the axis that should be normalized. (typically the features axis). epsilon: Fuzz factor. Returns: A tensor. """ if ndim(x) == 4: # The CPU implementation of `fused_batch_norm` only supports NHWC if axis == 1 or axis == -3: tf_data_format = 'NCHW' elif axis == 3 or axis == -1: tf_data_format = 'NHWC' else: tf_data_format = None if (tf_data_format == 'NHWC' or tf_data_format == 'NCHW' and _has_nchw_support()): # The mean / var / beta / gamma tensors may be broadcasted # so they may have extra axes of size 1, which should be squeezed. if ndim(mean) > 1: mean = array_ops.reshape(mean, [-1]) if ndim(var) > 1: var = array_ops.reshape(var, [-1]) if beta is None: beta = zeros_like(mean) elif ndim(beta) > 1: beta = array_ops.reshape(beta, [-1]) if gamma is None: gamma = ones_like(mean) elif ndim(gamma) > 1: gamma = array_ops.reshape(gamma, [-1]) y, _, _ = nn.fused_batch_norm( x, gamma, beta, epsilon=epsilon, mean=mean, variance=var, data_format=tf_data_format, is_training=False ) return y return nn.batch_normalization(x, mean, var, beta, gamma, epsilon) # SHAPE OPERATIONS @keras_export('keras.backend.concatenate') def concatenate(tensors, axis=-1): """Concatenates a list of tensors alongside the specified axis. Arguments: tensors: list of tensors to concatenate. axis: concatenation axis. Returns: A tensor. """ if axis < 0: rank = ndim(tensors[0]) if rank: axis %= rank else: axis = 0 if py_all(is_sparse(x) for x in tensors): return sparse_ops.sparse_concat(axis, tensors) else: return array_ops.concat([to_dense(x) for x in tensors], axis) @keras_export('keras.backend.reshape') def reshape(x, shape): """Reshapes a tensor to the specified shape. Arguments: x: Tensor or variable. shape: Target shape tuple. Returns: A tensor. """ return array_ops.reshape(x, shape) @keras_export('keras.backend.permute_dimensions') def permute_dimensions(x, pattern): """Permutes axes in a tensor. Arguments: x: Tensor or variable. pattern: A tuple of dimension indices, e.g. `(0, 2, 1)`. Returns: A tensor. """ return array_ops.transpose(x, perm=pattern) @keras_export('keras.backend.resize_images') def resize_images(x, height_factor, width_factor, data_format, interpolation='nearest'): """Resizes the images contained in a 4D tensor. Arguments: x: Tensor or variable to resize. height_factor: Positive integer. width_factor: Positive integer. data_format: One of `"channels_first"`, `"channels_last"`. interpolation: A string, one of `nearest` or `bilinear`. Returns: A tensor. Raises: ValueError: in case of incorrect value for `data_format` or `interpolation`. """ if data_format == 'channels_first': rows, cols = 2, 3 elif data_format == 'channels_last': rows, cols = 1, 2 else: raise ValueError('Invalid `data_format` argument: %s' % (data_format,)) original_shape = int_shape(x) new_shape = array_ops.shape(x)[rows:cols + 1] new_shape *= constant_op.constant( np.array([height_factor, width_factor], dtype='int32')) if data_format == 'channels_first': x = permute_dimensions(x, [0, 2, 3, 1]) if interpolation == 'nearest': x = image_ops.resize_nearest_neighbor(x, new_shape) elif interpolation == 'bilinear': x = image_ops.resize_bilinear(x, new_shape) else: raise ValueError('interpolation should be one ' 'of "nearest" or "bilinear".') if data_format == 'channels_first': x = permute_dimensions(x, [0, 3, 1, 2]) if original_shape[rows] is None: new_height = None else: new_height = original_shape[rows] * height_factor if original_shape[cols] is None: new_width = None else: new_width = original_shape[cols] * width_factor if data_format == 'channels_first': output_shape = (None, None, new_height, new_width) else: output_shape = (None, new_height, new_width, None) x.set_shape(output_shape) return x @keras_export('keras.backend.resize_volumes') def resize_volumes(x, depth_factor, height_factor, width_factor, data_format): """Resizes the volume contained in a 5D tensor. Arguments: x: Tensor or variable to resize. depth_factor: Positive integer. height_factor: Positive integer. width_factor: Positive integer. data_format: One of `"channels_first"`, `"channels_last"`. Returns: A tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format == 'channels_first': output = repeat_elements(x, depth_factor, axis=2) output = repeat_elements(output, height_factor, axis=3) output = repeat_elements(output, width_factor, axis=4) return output elif data_format == 'channels_last': output = repeat_elements(x, depth_factor, axis=1) output = repeat_elements(output, height_factor, axis=2) output = repeat_elements(output, width_factor, axis=3) return output else: raise ValueError('Invalid data_format: ' + str(data_format)) @keras_export('keras.backend.repeat_elements') def repeat_elements(x, rep, axis): """Repeats the elements of a tensor along an axis, like `np.repeat`. If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output will have shape `(s1, s2 * rep, s3)`. Arguments: x: Tensor or variable. rep: Python integer, number of times to repeat. axis: Axis along which to repeat. Returns: A tensor. """ x_shape = x.shape.as_list() # For static axis if x_shape[axis] is not None: # slices along the repeat axis splits = array_ops.split(value=x, num_or_size_splits=x_shape[axis], axis=axis) # repeat each slice the given number of reps x_rep = [s for s in splits for _ in range(rep)] return concatenate(x_rep, axis) # Here we use tf.tile to mimic behavior of np.repeat so that # we can handle dynamic shapes (that include None). # To do that, we need an auxiliary axis to repeat elements along # it and then merge them along the desired axis. # Repeating auxiliary_axis = axis + 1 x_shape = array_ops.shape(x) x_rep = array_ops.expand_dims(x, axis=auxiliary_axis) reps = np.ones(len(x.shape) + 1) reps[auxiliary_axis] = rep x_rep = array_ops.tile(x_rep, reps) # Merging reps = np.delete(reps, auxiliary_axis) reps[axis] = rep reps = array_ops.constant(reps, dtype='int32') x_shape *= reps x_rep = array_ops.reshape(x_rep, x_shape) # Fix shape representation x_shape = x.shape.as_list() x_rep.set_shape(x_shape) x_rep._keras_shape = tuple(x_shape) return x_rep @keras_export('keras.backend.repeat') def repeat(x, n): """Repeats a 2D tensor. if `x` has shape (samples, dim) and `n` is `2`, the output will have shape `(samples, 2, dim)`. Arguments: x: Tensor or variable. n: Python integer, number of times to repeat. Returns: A tensor. """ assert ndim(x) == 2 x = array_ops.expand_dims(x, 1) pattern = array_ops.stack([1, n, 1]) return array_ops.tile(x, pattern) @keras_export('keras.backend.arange') def arange(start, stop=None, step=1, dtype='int32'): """Creates a 1D tensor containing a sequence of integers. The function arguments use the same convention as Theano's arange: if only one argument is provided, it is in fact the "stop" argument and "start" is 0. The default type of the returned tensor is `'int32'` to match TensorFlow's default. Arguments: start: Start value. stop: Stop value. step: Difference between two successive values. dtype: Integer dtype to use. Returns: An integer tensor. """ # Match the behavior of numpy and Theano by returning an empty sequence. if stop is None and start < 0: start = 0 result = math_ops.range(start, limit=stop, delta=step, name='arange') if dtype != 'int32': result = cast(result, dtype) return result @keras_export('keras.backend.tile') def tile(x, n): """Creates a tensor by tiling `x` by `n`. Arguments: x: A tensor or variable n: A list of integer. The length must be the same as the number of dimensions in `x`. Returns: A tiled tensor. """ if isinstance(n, int): n = [n] return array_ops.tile(x, n) @keras_export('keras.backend.flatten') def flatten(x): """Flatten a tensor. Arguments: x: A tensor or variable. Returns: A tensor, reshaped into 1-D """ return array_ops.reshape(x, [-1]) @keras_export('keras.backend.batch_flatten') def batch_flatten(x): """Turn a nD tensor into a 2D tensor with same 0th dimension. In other words, it flattens each data samples of a batch. Arguments: x: A tensor or variable. Returns: A tensor. """ x = array_ops.reshape(x, array_ops.stack([-1, prod(shape(x)[1:])])) return x @keras_export('keras.backend.expand_dims') def expand_dims(x, axis=-1): """Adds a 1-sized dimension at index "axis". Arguments: x: A tensor or variable. axis: Position where to add a new axis. Returns: A tensor with expanded dimensions. """ return array_ops.expand_dims(x, axis) @keras_export('keras.backend.squeeze') def squeeze(x, axis): """Removes a 1-dimension from the tensor at index "axis". Arguments: x: A tensor or variable. axis: Axis to drop. Returns: A tensor with the same data as `x` but reduced dimensions. """ return array_ops.squeeze(x, [axis]) @keras_export('keras.backend.temporal_padding') def temporal_padding(x, padding=(1, 1)): """Pads the middle dimension of a 3D tensor. Arguments: x: Tensor or variable. padding: Tuple of 2 integers, how many zeros to add at the start and end of dim 1. Returns: A padded 3D tensor. """ assert len(padding) == 2 pattern = [[0, 0], [padding[0], padding[1]], [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.spatial_2d_padding') def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None): """Pads the 2nd and 3rd dimensions of a 4D tensor. Arguments: x: Tensor or variable. padding: Tuple of 2 tuples, padding pattern. data_format: One of `channels_last` or `channels_first`. Returns: A padded 4D tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ assert len(padding) == 2 assert len(padding[0]) == 2 assert len(padding[1]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if data_format == 'channels_first': pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])] else: pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.spatial_3d_padding') def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None): """Pads 5D tensor with zeros along the depth, height, width dimensions. Pads these dimensions with respectively "padding[0]", "padding[1]" and "padding[2]" zeros left and right. For 'channels_last' data_format, the 2nd, 3rd and 4th dimension will be padded. For 'channels_first' data_format, the 3rd, 4th and 5th dimension will be padded. Arguments: x: Tensor or variable. padding: Tuple of 3 tuples, padding pattern. data_format: One of `channels_last` or `channels_first`. Returns: A padded 5D tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ assert len(padding) == 3 assert len(padding[0]) == 2 assert len(padding[1]) == 2 assert len(padding[2]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if data_format == 'channels_first': pattern = [[0, 0], [0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]]] else: pattern = [[0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]], [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.stack') def stack(x, axis=0): """Stacks a list of rank `R` tensors into a rank `R+1` tensor. Arguments: x: List of tensors. axis: Axis along which to perform stacking. Returns: A tensor. """ return array_ops.stack(x, axis=axis) @keras_export('keras.backend.one_hot') def one_hot(indices, num_classes): """Computes the one-hot representation of an integer tensor. Arguments: indices: nD integer tensor of shape `(batch_size, dim1, dim2, ... dim(n-1))` num_classes: Integer, number of classes to consider. Returns: (n + 1)D one hot representation of the input with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)` Returns: The one-hot tensor. """ return array_ops.one_hot(indices, depth=num_classes, axis=-1) @keras_export('keras.backend.reverse') def reverse(x, axes): """Reverse a tensor along the specified axes. Arguments: x: Tensor to reverse. axes: Integer or iterable of integers. Axes to reverse. Returns: A tensor. """ if isinstance(axes, int): axes = [axes] return array_ops.reverse(x, axes) # VALUE MANIPULATION @keras_export('keras.backend.get_value') def get_value(x): """Returns the value of a variable. Arguments: x: input variable. Returns: A Numpy array. """ if not tensor_util.is_tensor(x): return x if context.executing_eagerly(): return x.numpy() if not getattr(x, '_in_graph_mode', True): # This is a variable which was created in an eager context, but is being # evaluated from a Graph. with context.eager_mode(): return x.numpy() if ops.executing_eagerly_outside_functions(): # This method of evaluating works inside the Keras FuncGraph. return function([], x)(x) return x.eval(session=get_session((x,))) @keras_export('keras.backend.batch_get_value') def batch_get_value(tensors): """Returns the value of more than one tensor variable. Arguments: tensors: list of ops to run. Returns: A list of Numpy arrays. Raises: RuntimeError: If this method is called inside defun. """ if context.executing_eagerly(): return [x.numpy() for x in tensors] elif ops.inside_function(): # pylint: disable=protected-access raise RuntimeError('Cannot get value inside Tensorflow graph function.') if tensors: return get_session(tensors).run(tensors) else: return [] @keras_export('keras.backend.set_value') def set_value(x, value): """Sets the value of a variable, from a Numpy array. Arguments: x: Tensor to set to a new value. value: Value to set the tensor to, as a Numpy array (of the same shape). """ value = np.asarray(value, dtype=dtype(x)) if ops.executing_eagerly_outside_functions(): x.assign(value) else: with get_graph().as_default(): tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0]) if hasattr(x, '_assign_placeholder'): assign_placeholder = x._assign_placeholder assign_op = x._assign_op else: assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape) assign_op = x.assign(assign_placeholder) x._assign_placeholder = assign_placeholder x._assign_op = assign_op get_session().run(assign_op, feed_dict={assign_placeholder: value}) @keras_export('keras.backend.batch_set_value') def batch_set_value(tuples): """Sets the values of many tensor variables at once. Arguments: tuples: a list of tuples `(tensor, value)`. `value` should be a Numpy array. """ if ops.executing_eagerly_outside_functions(): for x, value in tuples: x.assign(np.asarray(value, dtype=dtype(x))) else: with get_graph().as_default(): if tuples: assign_ops = [] feed_dict = {} for x, value in tuples: value = np.asarray(value, dtype=dtype(x)) tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0]) if hasattr(x, '_assign_placeholder'): assign_placeholder = x._assign_placeholder assign_op = x._assign_op else: assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape) assign_op = x.assign(assign_placeholder) x._assign_placeholder = assign_placeholder x._assign_op = assign_op assign_ops.append(assign_op) feed_dict[assign_placeholder] = value get_session().run(assign_ops, feed_dict=feed_dict) @keras_export('keras.backend.print_tensor') def print_tensor(x, message=''): """Prints `message` and the tensor value when evaluated. Note that `print_tensor` returns a new tensor identical to `x` which should be used in the following code. Otherwise the print operation is not taken into account during evaluation. Example: ```python >>> x = K.print_tensor(x, message="x is: ") ``` Arguments: x: Tensor to print. message: Message to print jointly with the tensor. Returns: The same tensor `x`, unchanged. """ return logging_ops.Print(x, [x], message) # GRAPH MANIPULATION class GraphExecutionFunction(object): """Runs a computation graph. It's possible to pass arguments to `tf.Session.run()` via `session_kwargs`. In particular additional operations via `fetches` argument and additional tensor substitutions via `feed_dict` arguments. Note that given substitutions are merged with substitutions from `inputs`. Even though `feed_dict` is passed once in the constructor (called in `model.compile()`) we can modify the values in the dictionary. Through this feed_dict we can provide additional substitutions besides Keras inputs. Arguments: inputs: Feed placeholders to the computation graph. outputs: Output tensors to fetch. updates: Additional update ops to be run at function call. name: A name to help users identify what this function does. session_kwargs: Arguments to `tf.Session.run()`: `fetches`, `feed_dict`, `options`, `run_metadata`. """ def __init__(self, inputs, outputs, updates=None, name=None, **session_kwargs): updates = updates or [] if not isinstance(updates, (list, tuple)): raise TypeError('`updates` in a Keras backend function ' 'should be a list or tuple.') self.inputs = nest.flatten(inputs) self._outputs_structure = outputs self.outputs = cast_variables_to_tensor( nest.flatten(outputs, expand_composites=True)) # TODO(b/127668432): Consider using autograph to generate these # dependencies in call. # Index 0 = total loss or model output for `predict`. with ops.control_dependencies([self.outputs[0]]): updates_ops = [] for update in updates: if isinstance(update, tuple): p, new_p = update updates_ops.append(state_ops.assign(p, new_p)) else: # assumed already an op updates_ops.append(update) self.updates_op = control_flow_ops.group(*updates_ops) self.name = name # additional tensor substitutions self.feed_dict = session_kwargs.pop('feed_dict', None) # additional operations self.fetches = session_kwargs.pop('fetches', []) if not isinstance(self.fetches, list): self.fetches = [self.fetches] self.run_options = session_kwargs.pop('options', None) self.run_metadata = session_kwargs.pop('run_metadata', None) # The main use case of `fetches` being passed to a model is the ability # to run custom updates # This requires us to wrap fetches in `identity` ops. self.fetches = [array_ops.identity(x) for x in self.fetches] self.session_kwargs = session_kwargs # This mapping keeps track of the function that should receive the # output from a fetch in `fetches`: { fetch: function(fetch_output) } # A Callback can use this to register a function with access to the # output values for a fetch it added. self.fetch_callbacks = {} if session_kwargs: raise ValueError('Some keys in session_kwargs are not supported at this ' 'time: %s' % (session_kwargs.keys(),)) self._callable_fn = None self._feed_arrays = None self._feed_symbols = None self._symbol_vals = None self._fetches = None self._session = None def _make_callable(self, feed_arrays, feed_symbols, symbol_vals, session): """Generates a callable that runs the graph. Arguments: feed_arrays: List of input tensors to be fed Numpy arrays at runtime. feed_symbols: List of input tensors to be fed symbolic tensors at runtime. symbol_vals: List of symbolic tensors to be fed to `feed_symbols`. session: Session to use to generate the callable. Returns: Function that runs the graph according to the above options. """ # Prepare callable options. callable_opts = config_pb2.CallableOptions() # Handle external-data feed. for x in feed_arrays: callable_opts.feed.append(x.name) if self.feed_dict: for key in sorted(self.feed_dict.keys()): callable_opts.feed.append(key.name) # Handle symbolic feed. for x, y in zip(feed_symbols, symbol_vals): connection = callable_opts.tensor_connection.add() if x.dtype != y.dtype: y = math_ops.cast(y, dtype=x.dtype) from_tensor = ops._as_graph_element(y) if from_tensor is None: from_tensor = y connection.from_tensor = from_tensor.name # Data tensor connection.to_tensor = x.name # Placeholder # Handle fetches. for x in self.outputs + self.fetches: callable_opts.fetch.append(x.name) # Handle updates. callable_opts.target.append(self.updates_op.name) # Handle run_options. if self.run_options: callable_opts.run_options.CopyFrom(self.run_options) # Create callable. callable_fn = session._make_callable_from_options(callable_opts) # Cache parameters corresponding to the generated callable, so that # we can detect future mismatches and refresh the callable. self._callable_fn = callable_fn self._feed_arrays = feed_arrays self._feed_symbols = feed_symbols self._symbol_vals = symbol_vals self._fetches = list(self.fetches) self._session = session def _call_fetch_callbacks(self, fetches_output): for fetch, output in zip(self._fetches, fetches_output): if fetch in self.fetch_callbacks: self.fetch_callbacks[fetch](output) def _eval_if_composite(self, tensor): """Helper method which evaluates any CompositeTensors passed to it.""" # We need to evaluate any composite tensor objects that have been # reconstructed in 'pack_sequence_as', since otherwise they'll be output as # actual CompositeTensor objects instead of the value(s) contained in the # CompositeTensors. E.g., if output_structure contains a SparseTensor, then # this ensures that we return its value as a SparseTensorValue rather than # a SparseTensor. if isinstance(tensor, composite_tensor.CompositeTensor): return self._session.run(tensor) else: return tensor def __call__(self, inputs): inputs = nest.flatten(inputs) session = get_session(inputs) feed_arrays = [] array_vals = [] feed_symbols = [] symbol_vals = [] for tensor, value in zip(self.inputs, inputs): if value is None: continue if is_sparse(tensor): sparse_coo = value.tocoo() indices = np.concatenate((np.expand_dims(sparse_coo.row, 1), np.expand_dims(sparse_coo.col, 1)), 1) value = (indices, sparse_coo.data, sparse_coo.shape) if tensor_util.is_tensor(value): # Case: feeding symbolic tensor. feed_symbols.append(tensor) symbol_vals.append(value) else: # Case: feeding Numpy array. feed_arrays.append(tensor) # We need to do array conversion and type casting at this level, since # `callable_fn` only supports exact matches. tensor_type = dtypes_module.as_dtype(tensor.dtype) array_vals.append(np.asarray(value, dtype=tensor_type.as_numpy_dtype)) if self.feed_dict: for key in sorted(self.feed_dict.keys()): array_vals.append( np.asarray(self.feed_dict[key], dtype=key.dtype.base_dtype.name)) # Refresh callable if anything has changed. if (self._callable_fn is None or feed_arrays != self._feed_arrays or symbol_vals != self._symbol_vals or feed_symbols != self._feed_symbols or self.fetches != self._fetches or session != self._session): self._make_callable(feed_arrays, feed_symbols, symbol_vals, session) fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata) self._call_fetch_callbacks(fetched[-len(self._fetches):]) output_structure = nest.pack_sequence_as( self._outputs_structure, fetched[:len(self.outputs)], expand_composites=True) # We need to evaluate any composite tensor objects that have been # reconstructed in 'pack_sequence_as', since otherwise they'll be output as # actual CompositeTensor objects instead of the value(s) contained in the # CompositeTensors. E.g., if output_structure contains a SparseTensor, then # this ensures that we return its value as a SparseTensorValue rather than # a SparseTensor. return nest.map_structure(self._eval_if_composite, output_structure) class EagerExecutionFunction(object): """Helper class for constructing a TF graph function from the Keras graph. Arguments: inputs: Feed placeholders to the computation graph. outputs: Output tensors to fetch. updates: Additional update ops to be run at function call. name: A name to help users identify what this function does. session_kwargs: Unsupported. """ def __init__(self, inputs, outputs, updates=None, name=None): self.name = name self._outputs_structure = outputs inputs = nest.flatten(inputs) outputs = nest.flatten(outputs, expand_composites=True) updates = updates or [] if not isinstance(updates, (list, tuple)): raise TypeError('`updates` in a Keras backend function ' 'should be a list or tuple.') if updates and not outputs: # Edge case; never happens in practice raise ValueError('Cannot create a Keras backend function with updates' ' but no outputs during eager execution.') graphs = {i.graph for i in nest.flatten([inputs, outputs, updates]) if hasattr(i, 'graph')} if len(graphs) > 1: raise ValueError('Cannot create an execution function which is comprised ' 'of elements from multiple graphs.') source_graph = graphs.pop() global_graph = get_graph() updates_ops = [] legacy_update_ops = [] for update in updates: # For legacy reasons it is allowed to pass an update as a tuple # `(variable, new_value)` (this maps to an assign op). Otherwise it # is assumed to already be an op -- we cannot control its execution # order. if isinstance(update, tuple): legacy_update_ops.append(update) else: if hasattr(update, 'op'): update = update.op updates_ops.append(update) with _scratch_graph() as exec_graph: global_graph = get_graph() if source_graph not in (exec_graph, global_graph): raise ValueError('Unknown graph. Aborting.') if source_graph is global_graph and exec_graph is not global_graph: init_tensors = ( outputs + updates_ops + [p for [p, _] in legacy_update_ops] + [p_new for [_, p_new] in legacy_update_ops if isinstance(p_new, ops.Tensor)]) lifted_map = lift_to_graph.lift_to_graph( init_tensors=init_tensors, graph=exec_graph, sources=inputs, add_sources=True, handle_captures=True, base_graph=source_graph) inputs = [lifted_map[i] for i in inputs] outputs = [lifted_map[i] for i in outputs] updates_ops = [lifted_map[i] for i in updates_ops] legacy_update_ops = [(lifted_map[p], lifted_map.get(p_new, p_new)) for p, p_new in legacy_update_ops] # Consolidate updates with exec_graph.as_default(): outputs = cast_variables_to_tensor(outputs) with ops.control_dependencies(outputs): for p, p_new in legacy_update_ops: updates_ops.append(state_ops.assign(p, p_new)) self.inputs, self.outputs = inputs, outputs with ops.control_dependencies(updates_ops): self.outputs[0] = array_ops.identity(self.outputs[0]) exec_graph.inputs = self.inputs + list(exec_graph.captures.values()) exec_graph.outputs = self.outputs graph_fn = eager_function.ConcreteFunction(exec_graph) graph_fn._num_positional_args = len(self.inputs) graph_fn._arg_keywords = [] self._graph_fn = graph_fn # Handle placeholders with default # (treated as required placeholder by graph functions) self._placeholder_default_values = {} with exec_graph.as_default(): for x in self.inputs: if x.op.type == 'PlaceholderWithDefault': self._placeholder_default_values[x] = tensor_util.constant_value( x.op.inputs[0]) def __call__(self, inputs): inputs = nest.flatten(inputs) converted_inputs = [] for tensor, value in zip(self.inputs, inputs): if value is None: # Assume `value` is a placeholder with default value = self._placeholder_default_values.get(tensor, None) if value is None: raise ValueError( 'You must feed a value for placeholder %s' % (tensor,)) if not isinstance(value, ops.Tensor): value = ops.convert_to_tensor(value, dtype=tensor.dtype) if value.dtype != tensor.dtype: # Temporary workaround due to `convert_to_tensor` not casting floats. # See b/119637405 value = math_ops.cast(value, tensor.dtype) converted_inputs.append(value) outputs = self._graph_fn(*converted_inputs) return nest.pack_sequence_as( self._outputs_structure, [x.numpy() for x in outputs], expand_composites=True) @keras_export('keras.backend.function') def function(inputs, outputs, updates=None, name=None, **kwargs): """Instantiates a Keras function. Arguments: inputs: List of placeholder tensors. outputs: List of output tensors. updates: List of update ops. name: String, name of function. **kwargs: Passed to `tf.Session.run`. Returns: Output values as Numpy arrays. Raises: ValueError: if invalid kwargs are passed in or if in eager execution. """ if ops.executing_eagerly_outside_functions(): if kwargs: raise ValueError('Session keyword arguments are not support during ' 'eager execution. You passed: %s' % (kwargs,)) return EagerExecutionFunction(inputs, outputs, updates=updates, name=name) if kwargs: for key in kwargs: if (key not in tf_inspect.getfullargspec(session_module.Session.run)[0] and key not in ['inputs', 'outputs', 'updates', 'name']): msg = ('Invalid argument "%s" passed to K.function with TensorFlow ' 'backend') % key raise ValueError(msg) return GraphExecutionFunction(inputs, outputs, updates=updates, **kwargs) @keras_export('keras.backend.gradients') def gradients(loss, variables): """Returns the gradients of `loss` w.r.t. `variables`. Arguments: loss: Scalar tensor to minimize. variables: List of variables. Returns: A gradients tensor. """ return gradients_module.gradients( loss, variables, colocate_gradients_with_ops=True) @keras_export('keras.backend.stop_gradient') def stop_gradient(variables): """Returns `variables` but with zero gradient w.r.t. every other variable. Arguments: variables: Tensor or list of tensors to consider constant with respect to any other variable. Returns: A single tensor or a list of tensors (depending on the passed argument) that has no gradient with respect to any other variable. """ if isinstance(variables, (list, tuple)): return map(array_ops.stop_gradient, variables) return array_ops.stop_gradient(variables) # CONTROL FLOW @keras_export('keras.backend.rnn') def rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None, time_major=False, zero_output_for_mask=False): """Iterates over the time dimension of a tensor. Arguments: step_function: RNN step function. Args; input; Tensor with shape `(samples, ...)` (no time dimension), representing input for the batch of samples at a certain time step. states; List of tensors. Returns; output; Tensor with shape `(samples, output_dim)` (no time dimension). new_states; List of tensors, same length and shapes as 'states'. The first state in the list must be the output tensor at the previous timestep. inputs: Tensor of temporal data of shape `(samples, time, ...)` (at least 3D), or nested tensors, and each of which has shape `(samples, time, ...)`. initial_states: Tensor with shape `(samples, state_size)` (no time dimension), containing the initial values for the states used in the step function. In the case that state_size is in a nested shape, the shape of initial_states will also follow the nested structure. go_backwards: Boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence. mask: Binary tensor with shape `(samples, time, 1)`, with a zero for every element that is masked. constants: List of constant values passed at each step. unroll: Whether to unroll the RNN or to use a symbolic `while_loop`. input_length: If specified, assume time dimension is of this length. time_major: Boolean. If true, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. zero_output_for_mask: Boolean. If True, the output for masked timestep will be zeros, whereas in the False case, output from previous timestep is returned. Returns: A tuple, `(last_output, outputs, new_states)`. last_output: the latest output of the rnn, of shape `(samples, ...)` outputs: tensor with shape `(samples, time, ...)` where each entry `outputs[s, t]` is the output of the step function at time `t` for sample `s`. new_states: list of tensors, latest states returned by the step function, of shape `(samples, ...)`. Raises: ValueError: if input dimension is less than 3. ValueError: if `unroll` is `True` but input timestep is not a fixed number. ValueError: if `mask` is provided (not `None`) but states is not provided (`len(states)` == 0). """ def swap_batch_timestep(input_t): # Swap the batch and timestep dim for the incoming tensor. axes = list(range(len(input_t.shape))) axes[0], axes[1] = 1, 0 return array_ops.transpose(input_t, axes) if not time_major: inputs = nest.map_structure(swap_batch_timestep, inputs) flatted_inputs = nest.flatten(inputs) time_steps = flatted_inputs[0].shape[0] batch = flatted_inputs[0].shape[1] time_steps_t = array_ops.shape(flatted_inputs[0])[0] for input_ in flatted_inputs: input_.shape.with_rank_at_least(3) if mask is not None: if mask.dtype != dtypes_module.bool: mask = math_ops.cast(mask, dtypes_module.bool) if len(mask.shape) == 2: mask = expand_dims(mask) if not time_major: mask = swap_batch_timestep(mask) if constants is None: constants = [] # tf.where needs its condition tensor to be the same shape as its two # result tensors, but in our case the condition (mask) tensor is # (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. # So we need to broadcast the mask to match the shape of inputs. # That's what the tile call does, it just repeats the mask along its # second dimension n times. def _expand_mask(mask_t, input_t, fixed_dim=1): assert not nest.is_sequence(mask_t) assert not nest.is_sequence(input_t) rank_diff = len(input_t.shape) - len(mask_t.shape) for _ in range(rank_diff): mask_t = array_ops.expand_dims(mask_t, -1) multiples = [1] * fixed_dim + input_t.shape.as_list()[fixed_dim:] return array_ops.tile(mask_t, multiples) if unroll: if not time_steps: raise ValueError('Unrolling requires a fixed number of timesteps.') states = tuple(initial_states) successive_states = [] successive_outputs = [] # Process the input tensors. The input tensor need to be split on the # time_step dim, and reverse if go_backwards is True. In the case of nested # input, the input is flattened and then transformed individually. # The result of this will be a tuple of lists, each of the item in tuple is # list of the tensor with shape (batch, feature) def _process_single_input_t(input_t): input_t = array_ops.unstack(input_t) # unstack for time_step dim if go_backwards: input_t.reverse() return input_t if nest.is_sequence(inputs): processed_input = nest.map_structure(_process_single_input_t, inputs) else: processed_input = (_process_single_input_t(inputs),) def _get_input_tensor(time): inp = [t_[time] for t_ in processed_input] return nest.pack_sequence_as(inputs, inp) if mask is not None: mask_list = array_ops.unstack(mask) if go_backwards: mask_list.reverse() for i in range(time_steps): inp = _get_input_tensor(i) mask_t = mask_list[i] output, new_states = step_function(inp, tuple(states) + tuple(constants)) tiled_mask_t = _expand_mask(mask_t, output) if not successive_outputs: prev_output = zeros_like(output) else: prev_output = successive_outputs[-1] output = array_ops.where(tiled_mask_t, output, prev_output) return_states = [] for state, new_state in zip(states, new_states): # (see earlier comment for tile explanation) tiled_mask_t = _expand_mask(mask_t, new_state) return_states.append(array_ops.where(tiled_mask_t, new_state, state)) states = return_states successive_outputs.append(output) successive_states.append(states) last_output = successive_outputs[-1] new_states = successive_states[-1] outputs = array_ops.stack(successive_outputs) if zero_output_for_mask: last_output = array_ops.where( _expand_mask(mask_list[-1], last_output), last_output, zeros_like(last_output)) outputs = array_ops.where( _expand_mask(mask, outputs, fixed_dim=2), outputs, zeros_like(outputs)) else: for i in range(time_steps): inp = _get_input_tensor(i) output, states = step_function(inp, tuple(states) + tuple(constants)) successive_outputs.append(output) successive_states.append(states) last_output = successive_outputs[-1] new_states = successive_states[-1] outputs = array_ops.stack(successive_outputs) else: states = tuple(initial_states) # Create input tensor array, if the inputs is nested tensors, then it will # be flattened first, and tensor array will be created one per flattened # tensor. input_ta = tuple( tensor_array_ops.TensorArray( dtype=inp.dtype, size=time_steps_t, tensor_array_name='input_ta_%s' % i) for i, inp in enumerate(flatted_inputs)) input_ta = tuple( ta.unstack(input_) if not go_backwards else ta .unstack(reverse(input_, 0)) for ta, input_ in zip(input_ta, flatted_inputs)) # Get the time(0) input and compute the output for that, the output will be # used to determine the dtype of output tensor array. Don't read from # input_ta due to TensorArray clear_after_read default to True. input_time_zero = nest.pack_sequence_as(inputs, [inp[0] for inp in flatted_inputs]) # output_time_zero is used to determine the cell output shape and its dtype. # the value is discarded. output_time_zero, _ = step_function(input_time_zero, initial_states + constants) output_ta = tuple( tensor_array_ops.TensorArray( dtype=out.dtype, size=time_steps_t, tensor_array_name='output_ta_%s' % i) for i, out in enumerate(nest.flatten(output_time_zero))) time = constant_op.constant(0, dtype='int32', name='time') while_loop_kwargs = { 'cond': lambda time, *_: time < time_steps_t, 'maximum_iterations': input_length, 'parallel_iterations': 32, 'swap_memory': True, } if mask is not None: if not states: raise ValueError('No initial states provided! ' 'When using masking in an RNN, you should ' 'provide initial states ' '(and your step function should return ' 'as its first state at time `t` ' 'the output at time `t-1`).') if go_backwards: mask = reverse(mask, 0) mask_ta = tensor_array_ops.TensorArray( dtype=dtypes_module.bool, size=time_steps_t, tensor_array_name='mask_ta') mask_ta = mask_ta.unstack(mask) # Mask for the T output will be base on the output of T - 1. In the case # T = 0, a zero filled tensor will be used. flat_zero_output = tuple(array_ops.zeros_like(o) for o in nest.flatten(output_time_zero)) def _step(time, output_ta_t, prev_output, *states): """RNN step function. Arguments: time: Current timestep value. output_ta_t: TensorArray. prev_output: tuple of outputs from time - 1. *states: List of states. Returns: Tuple: `(time + 1, output_ta_t, output) + tuple(new_states)` """ current_input = tuple(ta.read(time) for ta in input_ta) # maybe set shape. current_input = nest.pack_sequence_as(inputs, current_input) mask_t = mask_ta.read(time) output, new_states = step_function(current_input, tuple(states) + tuple(constants)) # mask output flat_output = nest.flatten(output) flat_mask_output = (flat_zero_output if zero_output_for_mask else nest.flatten(prev_output)) tiled_mask_t = tuple(_expand_mask(mask_t, o) for o in flat_output) flat_new_output = tuple( array_ops.where(m, o, zo) for m, o, zo in zip( tiled_mask_t, flat_output, flat_mask_output)) # mask states flat_state = nest.flatten(states) flat_new_state = nest.flatten(new_states) for state, new_state in zip(flat_state, flat_new_state): if hasattr(new_state, 'set_shape'): new_state.set_shape(state.shape) tiled_mask_t = tuple(_expand_mask(mask_t, s) for s in flat_state) flat_final_state = tuple( array_ops.where(m, s, ps) for m, s, ps in zip(tiled_mask_t, flat_new_state, flat_state)) new_states = nest.pack_sequence_as(new_states, flat_final_state) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, flat_new_output)) return (time + 1, output_ta_t, tuple(flat_new_output)) + tuple(new_states) final_outputs = control_flow_ops.while_loop( body=_step, loop_vars=(time, output_ta, flat_zero_output) + states, **while_loop_kwargs) # Skip final_outputs[2] which is the output for final timestep. new_states = final_outputs[3:] else: def _step(time, output_ta_t, *states): """RNN step function. Arguments: time: Current timestep value. output_ta_t: TensorArray. *states: List of states. Returns: Tuple: `(time + 1,output_ta_t) + tuple(new_states)` """ current_input = tuple(ta.read(time) for ta in input_ta) current_input = nest.pack_sequence_as(inputs, current_input) output, new_states = step_function(current_input, tuple(states) + tuple(constants)) flat_state = nest.flatten(states) flat_new_state = nest.flatten(new_states) for state, new_state in zip(flat_state, flat_new_state): if hasattr(new_state, 'set_shape'): new_state.set_shape(state.shape) flat_output = nest.flatten(output) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, flat_output)) new_states = nest.pack_sequence_as(initial_states, flat_new_state) return (time + 1, output_ta_t) + tuple(new_states) final_outputs = control_flow_ops.while_loop( body=_step, loop_vars=(time, output_ta) + states, **while_loop_kwargs) new_states = final_outputs[2:] output_ta = final_outputs[1] outputs = tuple(o.stack() for o in output_ta) last_output = tuple(o[-1] for o in outputs) outputs = nest.pack_sequence_as(output_time_zero, outputs) last_output = nest.pack_sequence_as(output_time_zero, last_output) # static shape inference def set_shape(output_): if hasattr(output_, 'set_shape'): shape = output_.shape.as_list() shape[0] = time_steps shape[1] = batch output_.set_shape(shape) return output_ outputs = nest.map_structure(set_shape, outputs) if not time_major: outputs = nest.map_structure(swap_batch_timestep, outputs) return last_output, outputs, new_states @keras_export('keras.backend.switch') def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value. Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. Arguments: condition: tensor (`int` or `bool`). then_expression: either a tensor, or a callable that returns a tensor. else_expression: either a tensor, or a callable that returns a tensor. Returns: The selected tensor. Raises: ValueError: If rank of `condition` is greater than rank of expressions. """ if condition.dtype != dtypes_module.bool: condition = math_ops.cast(condition, 'bool') cond_ndim = ndim(condition) if not cond_ndim: if not callable(then_expression): def then_expression_fn(): return then_expression else: then_expression_fn = then_expression if not callable(else_expression): def else_expression_fn(): return else_expression else: else_expression_fn = else_expression x = control_flow_ops.cond(condition, then_expression_fn, else_expression_fn) else: # tf.where needs its condition tensor # to be the same shape as its two # result tensors if callable(then_expression): then_expression = then_expression() if callable(else_expression): else_expression = else_expression() expr_ndim = ndim(then_expression) if cond_ndim > expr_ndim: raise ValueError('Rank of `condition` should be less than or' ' equal to rank of `then_expression` and ' '`else_expression`. ndim(condition)=' + str(cond_ndim) + ', ndim(then_expression)' '=' + str(expr_ndim)) if cond_ndim > 1: ndim_diff = expr_ndim - cond_ndim cond_shape = array_ops.concat( [array_ops.shape(condition), [1] * ndim_diff], axis=0) condition = array_ops.reshape(condition, cond_shape) expr_shape = array_ops.shape(then_expression) shape_diff = expr_shape - cond_shape tile_shape = array_ops.where(shape_diff > 0, expr_shape, array_ops.ones_like(expr_shape)) condition = array_ops.tile(condition, tile_shape) x = array_ops.where(condition, then_expression, else_expression) return x @keras_export('keras.backend.in_train_phase') def in_train_phase(x, alt, training=None): """Selects `x` in train phase, and `alt` otherwise. Note that `alt` should have the *same shape* as `x`. Arguments: x: What to return in train phase (tensor or callable that returns a tensor). alt: What to return otherwise (tensor or callable that returns a tensor). training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase. Returns: Either `x` or `alt` based on the `training` flag. the `training` flag defaults to `K.learning_phase()`. """ if training is None: training = learning_phase() if training == 1 or training is True: if callable(x): return x() else: return x elif training == 0 or training is False: if callable(alt): return alt() else: return alt # else: assume learning phase is a placeholder tensor. x = switch(training, x, alt) return x @keras_export('keras.backend.in_test_phase') def in_test_phase(x, alt, training=None): """Selects `x` in test phase, and `alt` otherwise. Note that `alt` should have the *same shape* as `x`. Arguments: x: What to return in test phase (tensor or callable that returns a tensor). alt: What to return otherwise (tensor or callable that returns a tensor). training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase. Returns: Either `x` or `alt` based on `K.learning_phase`. """ return in_train_phase(alt, x, training=training) # NN OPERATIONS @keras_export('keras.backend.relu') def relu(x, alpha=0., max_value=None, threshold=0): """Rectified linear unit. With default values, it returns element-wise `max(x, 0)`. Otherwise, it follows: `f(x) = max_value` for `x >= max_value`, `f(x) = x` for `threshold <= x < max_value`, `f(x) = alpha * (x - threshold)` otherwise. Arguments: x: A tensor or variable. alpha: A scalar, slope of negative section (default=`0.`). max_value: float. Saturation threshold. threshold: float. Threshold value for thresholded activation. Returns: A tensor. """ if alpha != 0.: if max_value is None and threshold == 0: return nn.leaky_relu(x, alpha=alpha) if threshold != 0: negative_part = nn.relu(-x + threshold) else: negative_part = nn.relu(-x) clip_max = max_value is not None if threshold != 0: # computes x for x > threshold else 0 x = x * math_ops.cast(math_ops.greater(x, threshold), floatx()) elif max_value == 6: # if no threshold, then can use nn.relu6 native TF op for performance x = nn.relu6(x) clip_max = False else: x = nn.relu(x) if clip_max: max_value = _constant_to_tensor(max_value, x.dtype.base_dtype) zero = _constant_to_tensor(0., x.dtype.base_dtype) x = clip_ops.clip_by_value(x, zero, max_value) if alpha != 0.: alpha = _to_tensor(alpha, x.dtype.base_dtype) x -= alpha * negative_part return x @keras_export('keras.backend.elu') def elu(x, alpha=1.): """Exponential linear unit. Arguments: x: A tensor or variable to compute the activation function for. alpha: A scalar, slope of negative section. Returns: A tensor. """ res = nn.elu(x) if alpha == 1: return res else: return array_ops.where(x > 0, res, alpha * res) @keras_export('keras.backend.softmax') def softmax(x, axis=-1): """Softmax of a tensor. Arguments: x: A tensor or variable. axis: The dimension softmax would be performed on. The default is -1 which indicates the last dimension. Returns: A tensor. """ return nn.softmax(x, axis=axis) @keras_export('keras.backend.softplus') def softplus(x): """Softplus of a tensor. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.softplus(x) @keras_export('keras.backend.softsign') def softsign(x): """Softsign of a tensor. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.softsign(x) @keras_export('keras.backend.categorical_crossentropy') def categorical_crossentropy(target, output, from_logits=False, axis=-1): """Categorical crossentropy between an output tensor and a target tensor. Arguments: target: A tensor of the same shape as `output`. output: A tensor resulting from a softmax (unless `from_logits` is True, in which case `output` is expected to be the logits). from_logits: Boolean, whether `output` is the result of a softmax, or is a tensor of logits. axis: Int specifying the channels axis. `axis=-1` corresponds to data format `channels_last', and `axis=1` corresponds to data format `channels_first`. Returns: Output tensor. Raises: ValueError: if `axis` is neither -1 nor one of the axes of `output`. """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Softmax'): axis = axis % len(output.shape) # scale preds so that the class probas of each sample sum to 1 output = output / math_ops.reduce_sum(output, axis, True) # Compute cross entropy from probabilities. epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_) return -math_ops.reduce_sum(target * math_ops.log(output), axis) else: # When softmax activation function is used for output operation, we # use logits from the softmax function directly to compute loss in order # to prevent collapsing zero when training. # See b/117284466 assert len(output.op.inputs) == 1 output = output.op.inputs[0] return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output) @keras_export('keras.backend.sparse_categorical_crossentropy') def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1): """Categorical crossentropy with integer targets. Arguments: target: An integer tensor. output: A tensor resulting from a softmax (unless `from_logits` is True, in which case `output` is expected to be the logits). from_logits: Boolean, whether `output` is the result of a softmax, or is a tensor of logits. axis: Int specifying the channels axis. `axis=-1` corresponds to data format `channels_last', and `axis=1` corresponds to data format `channels_first`. Returns: Output tensor. Raises: ValueError: if `axis` is neither -1 nor one of the axes of `output`. """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Softmax'): epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_) output = math_ops.log(output) else: # When softmax activation function is used for output operation, we # use logits from the softmax function directly to compute loss in order # to prevent collapsing zero when training. # See b/117284466 assert len(output.op.inputs) == 1 output = output.op.inputs[0] rank = len(output.shape) axis = axis % rank if axis != rank - 1: permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis] output = array_ops.transpose(output, perm=permutation) output_shape = output.shape targets = cast(flatten(target), 'int64') logits = array_ops.reshape(output, [-1, int(output_shape[-1])]) res = nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits) if len(output_shape) >= 3: # If our output includes timesteps or spatial dimensions we need to reshape return array_ops.reshape(res, array_ops.shape(output)[:-1]) else: return res @keras_export('keras.backend.binary_crossentropy') def binary_crossentropy(target, output, from_logits=False): """Binary crossentropy between an output tensor and a target tensor. Arguments: target: A tensor with the same shape as `output`. output: A tensor. from_logits: Whether `output` is expected to be a logits tensor. By default, we consider that `output` encodes a probability distribution. Returns: A tensor. """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Sigmoid'): epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_) # Compute cross entropy from probabilities. bce = target * math_ops.log(output + epsilon()) bce += (1 - target) * math_ops.log(1 - output + epsilon()) return -bce else: # When sigmoid activation function is used for output operation, we # use logits from the sigmoid function directly to compute loss in order # to prevent collapsing zero when training. assert len(output.op.inputs) == 1 output = output.op.inputs[0] return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) @keras_export('keras.backend.sigmoid') def sigmoid(x): """Element-wise sigmoid. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.sigmoid(x) @keras_export('keras.backend.hard_sigmoid') def hard_sigmoid(x): """Segment-wise linear approximation of sigmoid. Faster than sigmoid. Returns `0.` if `x < -2.5`, `1.` if `x > 2.5`. In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`. Arguments: x: A tensor or variable. Returns: A tensor. """ point_two = _constant_to_tensor(0.2, x.dtype.base_dtype) point_five = _constant_to_tensor(0.5, x.dtype.base_dtype) x = math_ops.mul(x, point_two) x = math_ops.add(x, point_five) x = clip_ops.clip_by_value(x, 0., 1.) return x @keras_export('keras.backend.tanh') def tanh(x): """Element-wise tanh. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.tanh(x) @keras_export('keras.backend.dropout') def dropout(x, level, noise_shape=None, seed=None): """Sets entries in `x` to zero at random, while scaling the entire tensor. Arguments: x: tensor level: fraction of the entries in the tensor that will be set to 0. noise_shape: shape for randomly generated keep/drop flags, must be broadcastable to the shape of `x` seed: random seed to ensure determinism. Returns: A tensor. """ if seed is None: seed = np.random.randint(10e6) return nn.dropout_v2(x, rate=level, noise_shape=noise_shape, seed=seed) @keras_export('keras.backend.l2_normalize') def l2_normalize(x, axis=None): """Normalizes a tensor wrt the L2 norm alongside the specified axis. Arguments: x: Tensor or variable. axis: axis along which to perform normalization. Returns: A tensor. """ return nn.l2_normalize(x, axis=axis) @keras_export('keras.backend.in_top_k') def in_top_k(predictions, targets, k): """Returns whether the `targets` are in the top `k` `predictions`. Arguments: predictions: A tensor of shape `(batch_size, classes)` and type `float32`. targets: A 1D tensor of length `batch_size` and type `int32` or `int64`. k: An `int`, number of top elements to consider. Returns: A 1D tensor of length `batch_size` and type `bool`. `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k` values of `predictions[i]`. """ return nn.in_top_k(predictions, targets, k) # CONVOLUTIONS def _preprocess_conv1d_input(x, data_format): """Transpose and cast the input before the conv1d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. Returns: A tensor. """ tf_data_format = 'NWC' # to pass TF Conv2dNative operations if data_format == 'channels_first': if not _has_nchw_support(): x = array_ops.transpose(x, (0, 2, 1)) # NCW -> NWC else: tf_data_format = 'NCW' return x, tf_data_format def _preprocess_conv2d_input(x, data_format, force_transpose=False): """Transpose and cast the input before the conv2d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. force_transpose: Boolean. If True, the input will always be transposed from NCHW to NHWC if `data_format` is `"channels_first"`. If False, the transposition only occurs on CPU (GPU ops are assumed to support NCHW). Returns: A tensor. """ tf_data_format = 'NHWC' if data_format == 'channels_first': if not _has_nchw_support() or force_transpose: x = array_ops.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC else: tf_data_format = 'NCHW' return x, tf_data_format def _preprocess_conv3d_input(x, data_format): """Transpose and cast the input before the conv3d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. Returns: A tensor. """ tf_data_format = 'NDHWC' if data_format == 'channels_first': if not _has_nchw_support(): x = array_ops.transpose(x, (0, 2, 3, 4, 1)) else: tf_data_format = 'NCDHW' return x, tf_data_format def _preprocess_padding(padding): """Convert keras' padding to TensorFlow's padding. Arguments: padding: string, one of 'same' , 'valid' Returns: a string, one of 'SAME', 'VALID'. Raises: ValueError: if invalid `padding'` """ if padding == 'same': padding = 'SAME' elif padding == 'valid': padding = 'VALID' else: raise ValueError('Invalid padding: ' + str(padding)) return padding @keras_export('keras.backend.conv1d') def conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): """1D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: stride integer. padding: string, `"same"`, `"causal"` or `"valid"`. data_format: string, one of "channels_last", "channels_first". dilation_rate: integer dilate rate. Returns: A tensor, result of 1D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) kernel_shape = kernel.shape.as_list() if padding == 'causal': # causal (dilated) convolution: left_pad = dilation_rate * (kernel_shape[0] - 1) x = temporal_padding(x, (left_pad, 0)) padding = 'valid' padding = _preprocess_padding(padding) x, tf_data_format = _preprocess_conv1d_input(x, data_format) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NWC': x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW return x @keras_export('keras.backend.conv2d') def conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: `"channels_last"` or `"channels_first"`. Whether to use Theano or TensorFlow data format for inputs/kernels/outputs. dilation_rate: tuple of 2 integers. Returns: A tensor, result of 2D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.conv2d_transpose') def conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D deconvolution (i.e. transposed convolution). Arguments: x: Tensor or variable. kernel: kernel tensor. output_shape: 1D int tensor for the output shape. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. dilation_rate: Tuple of 2 integers. Returns: A tensor, result of transposed 2D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if isinstance(output_shape, (tuple, list)): output_shape = array_ops.stack(output_shape) # `atrous_conv2d_transpose` only supports NHWC format, even on GPU. if data_format == 'channels_first' and dilation_rate != (1, 1): force_transpose = True else: force_transpose = False x, tf_data_format = _preprocess_conv2d_input(x, data_format, force_transpose) if data_format == 'channels_first' and tf_data_format == 'NHWC': output_shape = (output_shape[0], output_shape[2], output_shape[3], output_shape[1]) if output_shape[0] is None: output_shape = (array_ops.shape(x)[0],) + tuple(output_shape[1:]) output_shape = array_ops.stack(list(output_shape)) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides if dilation_rate == (1, 1): x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding, data_format=tf_data_format) else: assert dilation_rate[0] == dilation_rate[1] x = nn.atrous_conv2d_transpose( x, kernel, output_shape, rate=dilation_rate[0], padding=padding) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x def separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): """1D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. pointwise_kernel: kernel for the 1x1 convolution. strides: stride integer. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: integer dilation rate. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if isinstance(strides, int): strides = (strides,) if isinstance(dilation_rate, int): dilation_rate = (dilation_rate,) x, tf_data_format = _preprocess_conv1d_input(x, data_format) padding = _preprocess_padding(padding) if not isinstance(strides, tuple): strides = tuple(strides) if tf_data_format == 'NWC': spatial_start_dim = 1 strides = (1,) + strides * 2 + (1,) else: spatial_start_dim = 2 strides = (1, 1) + strides * 2 x = array_ops.expand_dims(x, spatial_start_dim) depthwise_kernel = array_ops.expand_dims(depthwise_kernel, 0) pointwise_kernel = array_ops.expand_dims(pointwise_kernel, 0) dilation_rate = (1,) + dilation_rate x = nn.separable_conv2d( x, depthwise_kernel, pointwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) x = array_ops.squeeze(x, [spatial_start_dim]) if data_format == 'channels_first' and tf_data_format == 'NWC': x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW return x @keras_export('keras.backend.separable_conv2d') def separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. pointwise_kernel: kernel for the 1x1 convolution. strides: strides tuple (length 2). padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of integers, dilation rates for the separable convolution. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. ValueError: if `strides` is not a tuple of 2 integers. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if len(strides) != 2: raise ValueError('`strides` must be a tuple of 2 integers.') x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if not isinstance(strides, tuple): strides = tuple(strides) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.separable_conv2d( x, depthwise_kernel, pointwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. strides: strides tuple (length 2). padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of integers, dilation rates for the separable convolution. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.depthwise_conv2d( x, depthwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.conv3d') def conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1)): """3D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. dilation_rate: tuple of 3 integers. Returns: A tensor, result of 3D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv3d_input(x, data_format) padding = _preprocess_padding(padding) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x def conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None): """3D deconvolution (i.e. transposed convolution). Arguments: x: input tensor. kernel: kernel tensor. output_shape: 1D int tensor for the output shape. strides: strides tuple. padding: string, "same" or "valid". data_format: string, `"channels_last"` or `"channels_first"`. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. Returns: A tensor, result of transposed 3D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if isinstance(output_shape, (tuple, list)): output_shape = array_ops.stack(output_shape) x, tf_data_format = _preprocess_conv3d_input(x, data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': output_shape = (output_shape[0], output_shape[2], output_shape[3], output_shape[4], output_shape[1]) if output_shape[0] is None: output_shape = (array_ops.shape(x)[0],) + tuple(output_shape[1:]) output_shape = array_ops.stack(list(output_shape)) padding = _preprocess_padding(padding) if tf_data_format == 'NDHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.conv3d_transpose( x, kernel, output_shape, strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x @keras_export('keras.backend.pool2d') def pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max'): """2D Pooling. Arguments: x: Tensor or variable. pool_size: tuple of 2 integers. strides: tuple of 2 integers. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. pool_mode: string, `"max"` or `"avg"`. Returns: A tensor, result of 2D pooling. Raises: ValueError: if `data_format` is neither `"channels_last"` or `"channels_first"`. ValueError: if `pool_size` is not a tuple of 2 integers. ValueError: if `strides` is not a tuple of 2 integers. ValueError: if `pool_mode` is neither `"max"` or `"avg"`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if len(pool_size) != 2: raise ValueError('`pool_size` must be a tuple of 2 integers.') if len(strides) != 2: raise ValueError('`strides` must be a tuple of 2 integers.') x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) pool_size = (1,) + pool_size + (1,) else: strides = (1, 1) + strides pool_size = (1, 1) + pool_size if pool_mode == 'max': x = nn.max_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format) elif pool_mode == 'avg': x = nn.avg_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.pool3d') def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max'): """3D Pooling. Arguments: x: Tensor or variable. pool_size: tuple of 3 integers. strides: tuple of 3 integers. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. pool_mode: string, `"max"` or `"avg"`. Returns: A tensor, result of 3D pooling. Raises: ValueError: if `data_format` is neither `"channels_last"` or `"channels_first"`. ValueError: if `pool_mode` is neither `"max"` or `"avg"`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv3d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NDHWC': strides = (1,) + strides + (1,) pool_size = (1,) + pool_size + (1,) else: strides = (1, 1) + strides pool_size = (1, 1) + pool_size if pool_mode == 'max': x = nn.max_pool3d( x, pool_size, strides, padding=padding, data_format=tf_data_format) elif pool_mode == 'avg': x = nn.avg_pool3d( x, pool_size, strides, padding=padding, data_format=tf_data_format) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x def local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format=None): """Apply N-D convolution with un-shared weights. Arguments: inputs: (N+2)-D tensor with shape (batch_size, channels_in, d_in1, ..., d_inN) if data_format='channels_first', or (batch_size, d_in1, ..., d_inN, channels_in) if data_format='channels_last'. kernel: the unshared weight for N-D convolution, with shape (output_items, feature_dim, channels_out), where feature_dim = np.prod(kernel_size) * channels_in, output_items = np.prod(output_shape). kernel_size: a tuple of N integers, specifying the spatial dimensions of the N-D convolution window. strides: a tuple of N integers, specifying the strides of the convolution along the spatial dimensions. output_shape: a tuple of (d_out1, ..., d_outN) specifying the spatial dimensionality of the output. data_format: string, "channels_first" or "channels_last". Returns: An (N+2)-D tensor with shape: (batch_size, channels_out) + output_shape if data_format='channels_first', or: (batch_size,) + output_shape + (channels_out,) if data_format='channels_last'. Raises: ValueError: if `data_format` is neither `channels_last` nor `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) kernel_shape = int_shape(kernel) feature_dim = kernel_shape[1] channels_out = kernel_shape[-1] ndims = len(output_shape) spatial_dimensions = list(range(ndims)) xs = [] output_axes_ticks = [range(axis_max) for axis_max in output_shape] for position in itertools.product(*output_axes_ticks): slices = [slice(None)] if data_format == 'channels_first': slices.append(slice(None)) slices.extend([slice(position[d] * strides[d], position[d] * strides[d] + kernel_size[d]) for d in spatial_dimensions]) if data_format == 'channels_last': slices.append(slice(None)) xs.append(reshape(inputs[slices], (1, -1, feature_dim))) x_aggregate = concatenate(xs, axis=0) output = batch_dot(x_aggregate, kernel) output = reshape(output, output_shape + (-1, channels_out)) if data_format == 'channels_first': permutation = [ndims, ndims + 1] + spatial_dimensions else: permutation = [ndims] + spatial_dimensions + [ndims + 1] return permute_dimensions(output, permutation) @keras_export('keras.backend.local_conv1d') def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None): """Apply 1D conv with un-shared weights. Arguments: inputs: 3D tensor with shape: (batch_size, steps, input_dim) if data_format is "channels_last" or (batch_size, input_dim, steps) if data_format is "channels_first". kernel: the unshared weight for convolution, with shape (output_length, feature_dim, filters). kernel_size: a tuple of a single integer, specifying the length of the 1D convolution window. strides: a tuple of a single integer, specifying the stride length of the convolution. data_format: the data format, channels_first or channels_last. Returns: A 3d tensor with shape: (batch_size, output_length, filters) if data_format='channels_first' or 3D tensor with shape: (batch_size, filters, output_length) if data_format='channels_last'. """ output_shape = (kernel.shape[0],) return local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format) @keras_export('keras.backend.local_conv2d') def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None): """Apply 2D conv with un-shared weights. Arguments: inputs: 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. kernel: the unshared weight for convolution, with shape (output_items, feature_dim, filters). kernel_size: a tuple of 2 integers, specifying the width and height of the 2D convolution window. strides: a tuple of 2 integers, specifying the strides of the convolution along the width and height. output_shape: a tuple with (output_row, output_col). data_format: the data format, channels_first or channels_last. Returns: A 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. """ return local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format) @keras_export('keras.backend.bias_add') def bias_add(x, bias, data_format=None): """Adds a bias vector to a tensor. Arguments: x: Tensor or variable. bias: Bias tensor to add. data_format: string, `"channels_last"` or `"channels_first"`. Returns: Output tensor. Raises: ValueError: In one of the two cases below: 1. invalid `data_format` argument. 2. invalid bias shape. the bias should be either a vector or a tensor with ndim(x) - 1 dimension """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) bias_shape = int_shape(bias) if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1: raise ValueError( 'Unexpected bias dimensions %d, expect to be 1 or %d dimensions' % (len(bias_shape), ndim(x))) # pylint: disable=g-no-augmented-assignment if ndim(x) == 5: if data_format == 'channels_first': if len(bias_shape) == 1: x = x + reshape(bias, (1, bias_shape[0], 1, 1, 1)) else: x = x + reshape(bias, (1, bias_shape[3]) + bias_shape[:3]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = x + reshape(bias, (1, 1, 1, bias_shape[0])) else: x = x + reshape(bias, (1,) + bias_shape) elif ndim(x) == 4: if data_format == 'channels_first': if len(bias_shape) == 1: if _has_nchw_support(): x = nn.bias_add(x, bias, data_format='NCHW') else: x = x + reshape(bias, (1, bias_shape[0], 1, 1)) else: x = x + reshape(bias, (1, bias_shape[2]) + bias_shape[:2]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = nn.bias_add(x, bias, data_format='NHWC') else: x = x + reshape(bias, (1,) + bias_shape) elif ndim(x) == 3: if data_format == 'channels_first': if len(bias_shape) == 1: x = x + reshape(bias, (1, bias_shape[0], 1)) else: x = x + reshape(bias, (1, bias_shape[1], bias_shape[0])) elif data_format == 'channels_last': if len(bias_shape) == 1: x = x + reshape(bias, (1, 1, bias_shape[0])) else: x = x + reshape(bias, (1,) + bias_shape) else: x = nn.bias_add(x, bias) # pylint: enable=g-no-augmented-assignment return x # RANDOMNESS @keras_export('keras.backend.random_normal') def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with normal distribution of values. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: A float, mean of the normal distribution to draw samples. stddev: A float, standard deviation of the normal distribution to draw samples. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.random_normal( shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed) @keras_export('keras.backend.random_uniform') def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): """Returns a tensor with uniform distribution of values. Arguments: shape: A tuple of integers, the shape of tensor to create. minval: A float, lower boundary of the uniform distribution to draw samples. maxval: A float, upper boundary of the uniform distribution to draw samples. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.random_uniform( shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed) @keras_export('keras.backend.random_binomial') def random_binomial(shape, p=0.0, dtype=None, seed=None): """Returns a tensor with random binomial distribution of values. Arguments: shape: A tuple of integers, the shape of tensor to create. p: A float, `0. <= p <= 1`, probability of binomial distribution. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return array_ops.where( random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p, array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype)) @keras_export('keras.backend.truncated_normal') def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with truncated random normal distribution of values. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than two standard deviations from the mean are dropped and re-picked. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: Mean of the values. stddev: Standard deviation of the values. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.truncated_normal( shape, mean, stddev, dtype=dtype, seed=seed) # CTC # TensorFlow has a native implementation, but it uses sparse tensors # and therefore requires a wrapper for Keras. The functions below convert # dense to sparse tensors and also wraps up the beam search code that is # in TensorFlow's CTC implementation @keras_export('keras.backend.ctc_label_dense_to_sparse') def ctc_label_dense_to_sparse(labels, label_lengths): """Converts CTC labels from dense to sparse. Arguments: labels: dense CTC labels. label_lengths: length of the labels. Returns: A sparse tensor representation of the labels. """ label_shape = array_ops.shape(labels) num_batches_tns = array_ops.stack([label_shape[0]]) max_num_labels_tns = array_ops.stack([label_shape[1]]) def range_less_than(_, current_input): return array_ops.expand_dims( math_ops.range(label_shape[1]), 0) < array_ops.fill( max_num_labels_tns, current_input) init = math_ops.cast( array_ops.fill([1, label_shape[1]], 0), dtypes_module.bool) dense_mask = functional_ops.scan( range_less_than, label_lengths, initializer=init, parallel_iterations=1) dense_mask = dense_mask[:, 0, :] label_array = array_ops.reshape( array_ops.tile(math_ops.range(0, label_shape[1]), num_batches_tns), label_shape) label_ind = array_ops.boolean_mask(label_array, dense_mask) batch_array = array_ops.transpose( array_ops.reshape( array_ops.tile(math_ops.range(0, label_shape[0]), max_num_labels_tns), reverse(label_shape, 0))) batch_ind = array_ops.boolean_mask(batch_array, dense_mask) indices = array_ops.transpose( array_ops.reshape(concatenate([batch_ind, label_ind], axis=0), [2, -1])) vals_sparse = array_ops.gather_nd(labels, indices) return sparse_tensor.SparseTensor( math_ops.cast(indices, dtypes_module.int64), vals_sparse, math_ops.cast(label_shape, dtypes_module.int64)) @keras_export('keras.backend.ctc_batch_cost') def ctc_batch_cost(y_true, y_pred, input_length, label_length): """Runs CTC loss algorithm on each batch element. Arguments: y_true: tensor `(samples, max_string_length)` containing the truth labels. y_pred: tensor `(samples, time_steps, num_categories)` containing the prediction, or output of the softmax. input_length: tensor `(samples, 1)` containing the sequence length for each batch item in `y_pred`. label_length: tensor `(samples, 1)` containing the sequence length for each batch item in `y_true`. Returns: Tensor with shape (samples,1) containing the CTC loss of each element. """ label_length = math_ops.cast( array_ops.squeeze(label_length, axis=-1), dtypes_module.int32) input_length = math_ops.cast( array_ops.squeeze(input_length, axis=-1), dtypes_module.int32) sparse_labels = math_ops.cast( ctc_label_dense_to_sparse(y_true, label_length), dtypes_module.int32) y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon()) return array_ops.expand_dims( ctc.ctc_loss( inputs=y_pred, labels=sparse_labels, sequence_length=input_length), 1) @keras_export('keras.backend.ctc_decode') def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1): """Decodes the output of a softmax. Can use either greedy search (also known as best path) or a constrained dictionary search. Arguments: y_pred: tensor `(samples, time_steps, num_categories)` containing the prediction, or output of the softmax. input_length: tensor `(samples, )` containing the sequence length for each batch item in `y_pred`. greedy: perform much faster best-path search if `true`. This does not use a dictionary. beam_width: if `greedy` is `false`: a beam search decoder will be used with a beam of this width. top_paths: if `greedy` is `false`, how many of the most probable paths will be returned. Returns: Tuple: List: if `greedy` is `true`, returns a list of one element that contains the decoded sequence. If `false`, returns the `top_paths` most probable decoded sequences. Important: blank labels are returned as `-1`. Tensor `(top_paths, )` that contains the log probability of each decoded sequence. """ y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon()) input_length = math_ops.cast(input_length, dtypes_module.int32) if greedy: (decoded, log_prob) = ctc.ctc_greedy_decoder( inputs=y_pred, sequence_length=input_length) else: (decoded, log_prob) = ctc.ctc_beam_search_decoder( inputs=y_pred, sequence_length=input_length, beam_width=beam_width, top_paths=top_paths) decoded_dense = [ sparse_ops.sparse_to_dense( st.indices, st.dense_shape, st.values, default_value=-1) for st in decoded ] return (decoded_dense, log_prob) # HIGH ORDER FUNCTIONS @keras_export('keras.backend.map_fn') def map_fn(fn, elems, name=None, dtype=None): """Map the function fn over the elements elems and return the outputs. Arguments: fn: Callable that will be called upon each element in elems elems: tensor name: A string name for the map node in the graph dtype: Output data type. Returns: Tensor with dtype `dtype`. """ return map_fn_lib.map_fn(fn, elems, name=name, dtype=dtype) @keras_export('keras.backend.foldl') def foldl(fn, elems, initializer=None, name=None): """Reduce elems using fn to combine them from left to right. Arguments: fn: Callable that will be called upon each element in elems and an accumulator, for instance `lambda acc, x: acc + x` elems: tensor initializer: The first value used (`elems[0]` in case of None) name: A string name for the foldl node in the graph Returns: Tensor with same type and shape as `initializer`. """ return functional_ops.foldl(fn, elems, initializer=initializer, name=name) @keras_export('keras.backend.foldr') def foldr(fn, elems, initializer=None, name=None): """Reduce elems using fn to combine them from right to left. Arguments: fn: Callable that will be called upon each element in elems and an accumulator, for instance `lambda acc, x: acc + x` elems: tensor initializer: The first value used (`elems[-1]` in case of None) name: A string name for the foldr node in the graph Returns: Same type and shape as initializer """ return functional_ops.foldr(fn, elems, initializer=initializer, name=name) # Load Keras default configuration from config file if present. # Set Keras base dir path given KERAS_HOME env variable, if applicable. # Otherwise either ~/.keras or /tmp. if 'KERAS_HOME' in os.environ: _keras_dir = os.environ.get('KERAS_HOME') else: _keras_base_dir = os.path.expanduser('~') _keras_dir = os.path.join(_keras_base_dir, '.keras') _config_path = os.path.expanduser(os.path.join(_keras_dir, 'keras.json')) if os.path.exists(_config_path): try: _config = json.load(open(_config_path)) except ValueError: _config = {} _floatx = _config.get('floatx', floatx()) assert _floatx in {'float16', 'float32', 'float64'} _epsilon = _config.get('epsilon', epsilon()) assert isinstance(_epsilon, float) _image_data_format = _config.get('image_data_format', image_data_format()) assert _image_data_format in {'channels_last', 'channels_first'} set_floatx(_floatx) set_epsilon(_epsilon) set_image_data_format(_image_data_format) # Save config file. if not os.path.exists(_keras_dir): try: os.makedirs(_keras_dir) except OSError: # Except permission denied and potential race conditions # in multi-threaded environments. pass if not os.path.exists(_config_path): _config = { 'floatx': floatx(), 'epsilon': epsilon(), 'backend': 'tensorflow', 'image_data_format': image_data_format() } try: with open(_config_path, 'w') as f: f.write(json.dumps(_config, indent=4)) except IOError: # Except permission denied. pass def in_multi_worker_mode(): """Whether we are operating in a Multi-Worker setting.""" tf_config = json.loads(os.environ.get('TF_CONFIG', '{}')) cluster_spec = server_lib.ClusterSpec(tf_config.get('cluster', {})) return tf_config and 'master' not in cluster_spec.jobs def configure_and_create_distributed_session(distribution_strategy): """Configure session config and create a session with it.""" def _create_session(distribution_strategy): """Create the Distributed Strategy session.""" session_config = get_default_session_config() # If a session already exists, merge in its config; in the case there is a # conflict, take values of the existing config. global _SESSION if getattr(_SESSION, 'session', None) and _SESSION.session._config: session_config.MergeFrom(_SESSION.session._config) if is_tpu_strategy(distribution_strategy): # TODO(priyag, yuefengz): Remove this workaround when Distribute # Coordinator is integrated with keras and we can create a session from # there. distribution_strategy.configure(session_config) master = distribution_strategy.extended._tpu_cluster_resolver.master() # pylint: disable=protected-access session = session_module.Session(config=session_config, target=master) else: worker_context = dc_context.get_current_worker_context() if worker_context: dc_session_config = worker_context.session_config # Merge the default session config to the one from distribute # coordinator, which is fine for now since they don't have # conflicting configurations. dc_session_config.MergeFrom(session_config) session = session_module.Session( config=dc_session_config, target=worker_context.master_target) else: distribution_strategy.configure(session_config) session = session_module.Session(config=session_config) set_session(session) if in_multi_worker_mode(): dc.run_distribute_coordinator( _create_session, distribution_strategy, mode=dc.CoordinatorMode.INDEPENDENT_WORKER) else: _create_session(distribution_strategy) def is_tpu_strategy(strategy): """We're executing TPU Strategy.""" return (strategy is not None and strategy.__class__.__name__.startswith('TPUStrategy')) def cast_variables_to_tensor(tensors): def _cast_variables_to_tensor(tensor): if isinstance(tensor, variables_module.Variable): return array_ops.identity(tensor) return tensor return nest.map_structure(_cast_variables_to_tensor, tensors)
31.304172
112
0.662829
7941f762528b4b8f00d12a834fc791b54d351b32
4,984
py
Python
actionserver/actions/action_complaintform.py
Ajju2211/Restaurant-Bot-Automation
64eed75f26bebaf7cf755790d3f6d012b452c2d3
[ "Apache-2.0" ]
null
null
null
actionserver/actions/action_complaintform.py
Ajju2211/Restaurant-Bot-Automation
64eed75f26bebaf7cf755790d3f6d012b452c2d3
[ "Apache-2.0" ]
null
null
null
actionserver/actions/action_complaintform.py
Ajju2211/Restaurant-Bot-Automation
64eed75f26bebaf7cf755790d3f6d012b452c2d3
[ "Apache-2.0" ]
null
null
null
from typing import Any, Text, Dict, List, Union from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher from rasa_sdk.forms import FormAction from rasa_sdk.events import UserUtteranceReverted, UserUttered, FollowupAction # from rasa_core.events import (UserUtteranceReverted, UserUttered, # ActionExecuted, Event) from rasa_sdk.events import AllSlotsReset, SlotSet from rasa.core.constants import REQUESTED_SLOT from rasa.core.slots import Slot import pandas as pd import json from actionserver.utils import utilities as util from actionserver.controllers.faqs.faq import FAQ from actionserver.controllers.constants.orderForm import * import logging from actionserver.utils.utilities import INVALID_VALUE dish_list = [] quant_list = [] # takes quantity from user logger = logging.getLogger(__name__) with open(r'.\actionserver\custom_payload.json') as f: restaurant_menu = json.load(f) def query_back(dispatcher): dispatcher.utter_message("Going back to queries!!!") greet_utter = UserUttered(text="/greet", parse_data={ "intent": {"confidence": 1.0, "name": "greet"}, "entities": [] }) query_utter = UserUttered(text="/query_init", parse_data={ "intent": {"confidence": 1.0, "name": "query_init"}, "entities": [] }) return [ greet_utter, FollowupAction(name="utter_greet"), query_utter, FollowupAction(name="utter_query_type") ] def greet_back(dispatcher): dispatcher.utter_message("Going back!!!") return [UserUttered(text="/greet", parse_data={ "intent": {"confidence": 1.0, "name": "greet"}, "entities": [] }), FollowupAction(name="utter_greet")] class ComplainForm(FormAction): def name(self): return "complain_form" @staticmethod def required_slots(tracker): if tracker.get_slot("complain_type"): return ["complain_type", "complain_text"] else: return ["complain_type"] def slot_mappings(self) -> Dict[Text, Union[Dict, List[Dict]]]: """A dictionary to map required slots to - an extracted entity - intent: value pairs - a whole message or a list of them, where a first match will be picked""" return {"complain_type": [self.from_entity("complain_type"), self.from_text()], "complain_text": [self.from_entity(entity="navigation"), self.from_text()]} # return {"complain_type": self.from_entity("complain_type"),"complain_text": self.from_entity(entity="any_thing")} def validate_complain_type( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> List[Dict]: complaints = ["food quality", "delivery", "naaniz app", "other"] value = value.strip().lower() if value == "back1" or value == "back": return {"complain_type": INVALID_VALUE, "complain_text": INVALID_VALUE} elif value in complaints: return {"complain_type": value} else: dispatcher.utter_message("please type valid option.") return {"complain_type": None} def validate_complain_text( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> List[Dict]: if value == "back2" or value.lower() == "back": return {"complain_type": None, "complain_text": None} else: return {"complain_text": value} def submit( self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> List[Dict]: if tracker.get_slot("complain_type") != INVALID_VALUE: # saving with open("./actionserver/customer_queries.json", "r") as queriesRef: comp_type = tracker.get_slot("complain_type") comp = tracker.get_slot("complain_text") compObj = json.load(queriesRef) compObj["complaints"].append({ "createdOn": util.timestamp(), "complaint_area": comp_type, "complaint": comp }) with open("./actionserver/customer_queries.json", "w") as queriesRefWrite: json.dump(compObj, queriesRefWrite, indent=4) dispatcher.utter_message("Your Complaint :\n Complaint Area:{comp_type}\n Complaint: '{comp}' \n has been registered!".format( comp_type=comp_type, comp=comp)) else: dispatcher.utter_message("Complaints Form is closed") li = [SlotSet("complain_type", None), SlotSet("complain_text", None)] li.extend(query_back(dispatcher)) return li return [SlotSet("complain_type", None), SlotSet("complain_text", None)]
35.347518
163
0.626003
7941f77ef781fe41ec398d9da1f9e75100b44022
5,575
py
Python
seq2seq/encoders/rnn_encoder.py
Aniruddha-Tapas/seq2seq
29e4557860a7c6e997c039251195d9104a15585c
[ "Apache-2.0" ]
53
2018-01-03T09:18:09.000Z
2022-03-24T22:47:19.000Z
seq2seq/encoders/rnn_encoder.py
liyc7711/seq2seq
1592b842b652ae648b96c164bead38eb089ce08e
[ "Apache-2.0" ]
9
2018-01-29T19:14:54.000Z
2020-11-03T23:41:05.000Z
seq2seq/encoders/rnn_encoder.py
liyc7711/seq2seq
1592b842b652ae648b96c164bead38eb089ce08e
[ "Apache-2.0" ]
31
2018-11-19T15:52:08.000Z
2021-12-04T13:35:29.000Z
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Collection of RNN encoders. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import tensorflow as tf from tensorflow.contrib.rnn.python.ops import rnn from seq2seq.encoders.encoder import Encoder, EncoderOutput from seq2seq.training import utils as training_utils def _unpack_cell(cell): """Unpack the cells because the stack_bidirectional_dynamic_rnn expects a list of cells, one per layer.""" if isinstance(cell, tf.contrib.rnn.MultiRNNCell): return cell._cells #pylint: disable=W0212 else: return [cell] def _default_rnn_cell_params(): """Creates default parameters used by multiple RNN encoders. """ return { "cell_class": "BasicLSTMCell", "cell_params": { "num_units": 128 }, "dropout_input_keep_prob": 1.0, "dropout_output_keep_prob": 1.0, "num_layers": 1, "residual_connections": False, "residual_combiner": "add", "residual_dense": False } def _toggle_dropout(cell_params, mode): """Disables dropout during eval/inference mode """ cell_params = copy.deepcopy(cell_params) if mode != tf.contrib.learn.ModeKeys.TRAIN: cell_params["dropout_input_keep_prob"] = 1.0 cell_params["dropout_output_keep_prob"] = 1.0 return cell_params class UnidirectionalRNNEncoder(Encoder): """ A unidirectional RNN encoder. Stacking should be performed as part of the cell. Args: cell: An instance of tf.contrib.rnn.RNNCell name: A name for the encoder """ def __init__(self, params, mode, name="forward_rnn_encoder"): super(UnidirectionalRNNEncoder, self).__init__(params, mode, name) self.params["rnn_cell"] = _toggle_dropout(self.params["rnn_cell"], mode) @staticmethod def default_params(): return {"rnn_cell": _default_rnn_cell_params()} def encode(self, inputs, sequence_length, **kwargs): cell = training_utils.get_rnn_cell(**self.params["rnn_cell"]) outputs, state = tf.nn.dynamic_rnn( cell=cell, inputs=inputs, sequence_length=sequence_length, dtype=tf.float32, **kwargs) return EncoderOutput( outputs=outputs, final_state=state, attention_values=outputs, attention_values_length=sequence_length) class BidirectionalRNNEncoder(Encoder): """ A bidirectional RNN encoder. Uses the same cell for both the forward and backward RNN. Stacking should be performed as part of the cell. Args: cell: An instance of tf.contrib.rnn.RNNCell name: A name for the encoder """ def __init__(self, params, mode, name="bidi_rnn_encoder"): super(BidirectionalRNNEncoder, self).__init__(params, mode, name) self.params["rnn_cell"] = _toggle_dropout(self.params["rnn_cell"], mode) @staticmethod def default_params(): return {"rnn_cell": _default_rnn_cell_params()} def encode(self, inputs, sequence_length, **kwargs): cell_fw = training_utils.get_rnn_cell(**self.params["rnn_cell"]) cell_bw = training_utils.get_rnn_cell(**self.params["rnn_cell"]) outputs, states = tf.nn.bidirectional_dynamic_rnn( cell_fw=cell_fw, cell_bw=cell_bw, inputs=inputs, sequence_length=sequence_length, dtype=tf.float32, **kwargs) # Concatenate outputs and states of the forward and backward RNNs outputs_concat = tf.concat(outputs, 2) return EncoderOutput( outputs=outputs_concat, final_state=states, attention_values=outputs_concat, attention_values_length=sequence_length) class StackBidirectionalRNNEncoder(Encoder): """ A stacked bidirectional RNN encoder. Uses the same cell for both the forward and backward RNN. Stacking should be performed as part of the cell. Args: cell: An instance of tf.contrib.rnn.RNNCell name: A name for the encoder """ def __init__(self, params, mode, name="stacked_bidi_rnn_encoder"): super(StackBidirectionalRNNEncoder, self).__init__(params, mode, name) self.params["rnn_cell"] = _toggle_dropout(self.params["rnn_cell"], mode) @staticmethod def default_params(): return {"rnn_cell": _default_rnn_cell_params()} def encode(self, inputs, sequence_length, **kwargs): cell_fw = training_utils.get_rnn_cell(**self.params["rnn_cell"]) cell_bw = training_utils.get_rnn_cell(**self.params["rnn_cell"]) cells_fw = _unpack_cell(cell_fw) cells_bw = _unpack_cell(cell_bw) result = rnn.stack_bidirectional_dynamic_rnn( cells_fw=cells_fw, cells_bw=cells_bw, inputs=inputs, dtype=tf.float32, sequence_length=sequence_length, **kwargs) outputs_concat, _output_state_fw, _output_state_bw = result final_state = (_output_state_fw, _output_state_bw) return EncoderOutput( outputs=outputs_concat, final_state=final_state, attention_values=outputs_concat, attention_values_length=sequence_length)
31.145251
76
0.717668
7941f7839c3c76d1ccf1f1a4c4f3b6dec269fa4a
2,515
py
Python
bayesian-ab-django/bayesian_ab/abtest/models.py
robinsonkwame/csdt_fora_experiments
fd3f9b208feac5c26457d69ed54e3fe39158614b
[ "MIT" ]
null
null
null
bayesian-ab-django/bayesian_ab/abtest/models.py
robinsonkwame/csdt_fora_experiments
fd3f9b208feac5c26457d69ed54e3fe39158614b
[ "MIT" ]
null
null
null
bayesian-ab-django/bayesian_ab/abtest/models.py
robinsonkwame/csdt_fora_experiments
fd3f9b208feac5c26457d69ed54e3fe39158614b
[ "MIT" ]
null
null
null
import uuid import numpy as np import scipy.stats from django.utils import timezone from django.db import models class Campaign(models.Model): ''' Record for AB Tests conducted ''' timestamp = models.DateTimeField( default=timezone.now, help_text='timestamp of creation of campaign' ) code = models.UUIDField( default=uuid.uuid4, editable=False, help_text='AB test campaign code' ) name = models.CharField( unique=True, max_length=255, help_text='Name of AB test' ) description = models.TextField( blank=True, default='', help_text='Description of AB test' ) active = models.BooleanField( default=True, help_text='True if campaign is active' ) allow_repeat = models.BooleanField( default=True, help_text='True if repeat impressions/conversions allowed by the same user' ) def __str__(self): return f'AB Test Campaign: {self.code}, {self.name}' class Variant(models.Model): ''' Model to store variants (treatments) within an AB test campaign. Variants are the different versions served to users (A/B/C...) ''' campaign = models.ForeignKey( Campaign, related_name='variants', on_delete=models.CASCADE, ) code = models.CharField( max_length=32, help_text='Variant code, (i.e., A, B, C etc)' ) name = models.CharField( max_length=64, help_text='Name of variant' ) impressions = models.IntegerField( default=1, help_text='Number of times variant was shown/visited' ) conversions = models.IntegerField( default=1, help_text='Number of conversions for variant' ) conversion_rate = models.FloatField( default=1.0, help_text='conversions / impressions' ) html_template = models.FilePathField( null=True, help_text='Path to HTML template for variant View' ) def beta_pdf(self, x_vals): # Get beta distribution values given corresponding X values where 0 < X <1 # Where alpha = conversions and beta = impressions - conversions y_vals = list(scipy.stats.beta.pdf( x_vals, max(self.conversions, 1), max(self.impressions-self.conversions, 1) ) ) return y_vals def __str__(self): return f'Variant: {self.code} | {self.campaign.code} '
27.637363
83
0.6167
7941f7ccd12200d0df5cfab83740581efb0eee71
2,662
py
Python
app/utils6L/utils6L.py
bvbgrad/fpq02
4bd4017913dd2bcb0d39e24002f5ddbe4cde3c09
[ "MIT" ]
null
null
null
app/utils6L/utils6L.py
bvbgrad/fpq02
4bd4017913dd2bcb0d39e24002f5ddbe4cde3c09
[ "MIT" ]
null
null
null
app/utils6L/utils6L.py
bvbgrad/fpq02
4bd4017913dd2bcb0d39e24002f5ddbe4cde3c09
[ "MIT" ]
null
null
null
""" Copyright 6L LLC (2021) - See MIT LICENSE Cross project features or decorators, similar to Spring Aspect-Oriented Programming(AOP) https://docs.spring.io/spring-framework/docs/4.3.12.RELEASE/spring-framework-reference/html/aop.html usage - copy/paste package directory into the project file structure and Special considerations for the logging setup and decorator Logger name is defined as an environment variable. __init__.py module of the main package needs to ingest the .env file from dotenv import load_dotenv load_dotenv() ensure the following import statement is added to the rest of the project modules. import app.utils6L.utils6L as utils import logging import os logger_name = os.getenv("LOGGER_NAME") logger = logging.getLogger(logger_name) Then, for example, reference the log_wrap decorator as follows @utils.log_wrap or, directly invoke a log message logger.info("log message") """ import logging from logging.handlers import RotatingFileHandler import os logger_name = os.getenv("LOGGER_NAME") logger = logging.getLogger(logger_name) def log_wrap(func): def wrapped(*args, **kwargs): logger.info(f"enter {func.__name__}()") result = func(*args, **kwargs) logger.info(f"exit {func.__name__}()") return result return wrapped def setup_logging(): if not os.path.exists('logs'): os.mkdir('logs') # use environment variables to set each logging channel level logger_level_base = os.getenv("LOGGER_LEVEL_BASE") logger_level_file = os.getenv("LOGGER_LEVEL_FILE") logger_level_stream = os.getenv("LOGGER_LEVEL_STREAM") logger.setLevel(logger_level_base) # create file handler which logs even debug messages fh = RotatingFileHandler(f"logs/{logger_name}.log", maxBytes=1000000, backupCount=10) fh.setLevel(logger_level_file) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logger_level_stream) # create formatter and add it to the handlers formatter = logging.Formatter( '%(asctime)s %(levelname)s: %(message)s [%(pathname)s:%(lineno)d]') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) # logger.debug(f'setup_logging():{logger_name}: example debug message') # logger.info(f"setup_logging():{logger_name}: example info message") # logger.warning(f'setup_logging():{logger_name}: example warn message') # logger.error(f'setup_logging():{logger_name}: example error message') # logger.critical(f'setup_logging():{logger_name}: example critical message')
32.864198
100
0.739669
7941f8656f09ac1fd4fcbae6a4d62a52c76b7b57
563
py
Python
Leetcode/0244. Shortest Word Distance II/0244.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/0244. Shortest Word Distance II/0244.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/0244. Shortest Word Distance II/0244.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
class WordDistance: def __init__(self, wordsDict: List[str]): self.wordToIndices = defaultdict(list) for i, word in enumerate(wordsDict): self.wordToIndices[word].append(i) def shortest(self, word1: str, word2: str) -> int: indices1 = self.wordToIndices[word1] indices2 = self.wordToIndices[word2] ans = math.inf i = 0 j = 0 while i < len(indices1) and j < len(indices2): ans = min(ans, abs(indices1[i] - indices2[j])) if indices1[i] < indices2[j]: i += 1 else: j += 1 return ans
25.590909
52
0.609236
7941f8a979178c61230a588ad0dc604992638b46
5,424
py
Python
migrations/versions/017bc688b20f_.py
CatsAreEvil/box-office-studio
0fcf19ccd4f65622d94c6cf0c6ac2ef4fd1bd5f8
[ "MIT" ]
null
null
null
migrations/versions/017bc688b20f_.py
CatsAreEvil/box-office-studio
0fcf19ccd4f65622d94c6cf0c6ac2ef4fd1bd5f8
[ "MIT" ]
1
2019-06-12T01:25:39.000Z
2019-06-12T01:25:40.000Z
migrations/versions/017bc688b20f_.py
CatsAreEvil/box-office-studio
0fcf19ccd4f65622d94c6cf0c6ac2ef4fd1bd5f8
[ "MIT" ]
null
null
null
"""empty message Revision ID: 017bc688b20f Revises: 270947efbfd8 Create Date: 2019-03-15 19:17:26.979166 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '017bc688b20f' down_revision = '270947efbfd8' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('results', sa.Column('movie_10', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_10_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_11', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_11_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_12', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_12_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_13', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_13_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_14', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_14_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_15', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_15_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_16', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_16_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_17', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_17_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_18', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_18_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_19', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_19_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_2', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_20', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_20_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_2_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_3', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_3_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_4', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_4_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_5', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_5_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_6', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_6_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_7', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_7_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_8', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_8_results', sa.Float(), nullable=True)) op.add_column('results', sa.Column('movie_9', sa.String(), nullable=True)) op.add_column('results', sa.Column('movie_9_results', sa.Float(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('results', 'movie_9_results') op.drop_column('results', 'movie_9') op.drop_column('results', 'movie_8_results') op.drop_column('results', 'movie_8') op.drop_column('results', 'movie_7_results') op.drop_column('results', 'movie_7') op.drop_column('results', 'movie_6_results') op.drop_column('results', 'movie_6') op.drop_column('results', 'movie_5_results') op.drop_column('results', 'movie_5') op.drop_column('results', 'movie_4_results') op.drop_column('results', 'movie_4') op.drop_column('results', 'movie_3_results') op.drop_column('results', 'movie_3') op.drop_column('results', 'movie_2_results') op.drop_column('results', 'movie_20_results') op.drop_column('results', 'movie_20') op.drop_column('results', 'movie_2') op.drop_column('results', 'movie_19_results') op.drop_column('results', 'movie_19') op.drop_column('results', 'movie_18_results') op.drop_column('results', 'movie_18') op.drop_column('results', 'movie_17_results') op.drop_column('results', 'movie_17') op.drop_column('results', 'movie_16_results') op.drop_column('results', 'movie_16') op.drop_column('results', 'movie_15_results') op.drop_column('results', 'movie_15') op.drop_column('results', 'movie_14_results') op.drop_column('results', 'movie_14') op.drop_column('results', 'movie_13_results') op.drop_column('results', 'movie_13') op.drop_column('results', 'movie_12_results') op.drop_column('results', 'movie_12') op.drop_column('results', 'movie_11_results') op.drop_column('results', 'movie_11') op.drop_column('results', 'movie_10_results') op.drop_column('results', 'movie_10') # ### end Alembic commands ###
52.660194
86
0.696718
7941f91e26de2aac163060b5e0be558e7a97c99a
4,317
py
Python
examples/seismic/cemeai/dados_marmousi.py
pedrospeixoto/devito
7abc42202214c534eb962c27cf294ec9893615e1
[ "MIT" ]
1
2021-03-25T21:23:03.000Z
2021-03-25T21:23:03.000Z
examples/seismic/cemeai/dados_marmousi.py
pedrospeixoto/devito
7abc42202214c534eb962c27cf294ec9893615e1
[ "MIT" ]
40
2021-04-09T07:57:02.000Z
2022-03-21T08:15:33.000Z
examples/seismic/cemeai/dados_marmousi.py
pedrospeixoto/devito
7abc42202214c534eb962c27cf294ec9893615e1
[ "MIT" ]
null
null
null
#============================================================================== # Bibliotecas Python #============================================================================== import numpy as np import segyio import sys from scipy.interpolate import CubicSpline from scipy.interpolate import interp1d import matplotlib.pyplot as plot import matplotlib.ticker as mticker from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import cm from matplotlib import ticker #============================================================================== #============================================================================== # Manipulando Dados do Marmousi #============================================================================== with segyio.open('vel_models_file/marmousi_perfil1.segy') as segyfile: vel = segyio.tools.cube(segyfile)[0,:,:] nptxvel = vel.shape[0] nptyvel = vel.shape[1] x0vel = 0. x1vel = 17000. y0vel = 0. y1vel = 3500. hxvel = (x1vel-x0vel)/(nptxvel-1) hyvel = (y1vel-y0vel)/(nptyvel-1) Xvel = np.linspace(x0vel,x1vel,nptxvel) Yvel = np.linspace(y0vel,y1vel,nptyvel) fscale = 10**(-3) vel = fscale*vel #============================================================================== #============================================================================== # Interpolando Dados do Marmousi #============================================================================== def inter_marmousi(teste): nptx = teste.nptx nptz = teste.nptz X0 = teste.X0 Z0 = teste.Z0 C0 = np.zeros((nptx,nptz)) C0x = np.zeros((nptx,nptyvel)) for j in range(nptyvel): x = Xvel y = vel[0:nptxvel,j] #cs = interp1d(x,y,kind='linear',fill_value="extrapolate") #cs = interp1d(x,y,kind='linear',fill_value="extrapolate") cs = interp1d(x,y,kind='nearest',fill_value="extrapolate") #cs = interp1d(x,y,kind='previous',fill_value="extrapolate") #cs = interp1d(x,y,kind='next',fill_value="extrapolate") #cs = CubicSpline(x,y) xs = X0 C0x[0:nptx,j] = cs(xs) for i in range(nptx): x = Yvel y = C0x[i,0:nptyvel] #cs = interp1d(x,y,kind='linear',fill_value="extrapolate") #cs = interp1d(x,y,kind='linear',fill_value="extrapolate") cs = interp1d(x,y,kind='nearest',fill_value="extrapolate") #cs = interp1d(x,y,kind='previous',fill_value="extrapolate") #cs = interp1d(x,y,kind='next',fill_value="extrapolate") #cs = CubicSpline(x,y) xs = Z0 C0[i,0:nptz] = cs(xs) return C0 #============================================================================== #============================================================================== # Plot Velocidades #============================================================================== def graph2dvel(vel,teste): x0 = teste.x0 x1 = teste.x1 z0 = teste.z0 z1 = teste.z1 nptx = teste.nptx nptz = teste.nptz plot.figure(figsize = (14,4)) fscale = 10**(-3) scale = np.amax(vel) extent = [fscale*x0,fscale*x1, fscale*z1, fscale*z0] fig = plot.imshow(np.transpose(vel), vmin=np.amin(vel),vmax=scale, cmap=cm.jet, extent=extent) plot.gca().xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km')) plot.gca().yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f km')) plot.title('Velocity Profile - Marmousi Interpolated') plot.grid() ax = plot.gca() divider = make_axes_locatable(ax) ax.xaxis.set_major_locator(plot.MaxNLocator(4)) ax.yaxis.set_major_locator(plot.MaxNLocator(4)) cax = divider.append_axes("right", size="4%", pad=0.025) tick_locator = ticker.MaxNLocator(nbins=4) cbar = plot.colorbar(fig, cax=cax, format='%.2e') cbar.locator = tick_locator cbar.update_ticks() cbar.set_label('Velocity [km/s]') plot.savefig('figures/vel_model/marmousi_interpolated.png',dpi=100) plot.show() plot.close() #==============================================================================
38.891892
98
0.4795
7941fdfe0526748b158f22f2562bb2a55456666d
2,088
py
Python
gym_wmgds/envs/mujoco/thrower.py
ozcell/gym_wmgds_ma
c2cb22943913361947216b908d50decc46616e99
[ "Python-2.0", "OLDAP-2.7" ]
1
2020-12-23T16:38:15.000Z
2020-12-23T16:38:15.000Z
gym_wmgds/envs/mujoco/thrower.py
ozcell/gym_wmgds_ma
c2cb22943913361947216b908d50decc46616e99
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
gym_wmgds/envs/mujoco/thrower.py
ozcell/gym_wmgds_ma
c2cb22943913361947216b908d50decc46616e99
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
import numpy as np from gym_wmgds import utils from gym_wmgds.envs.mujoco import mujoco_env class ThrowerEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): utils.EzPickle.__init__(self) self._ball_hit_ground = False self._ball_hit_location = None mujoco_env.MujocoEnv.__init__(self, 'thrower.xml', 5) def step(self, a): ball_xy = self.get_body_com("ball")[:2] goal_xy = self.get_body_com("goal")[:2] if not self._ball_hit_ground and self.get_body_com("ball")[2] < -0.25: self._ball_hit_ground = True self._ball_hit_location = self.get_body_com("ball") if self._ball_hit_ground: ball_hit_xy = self._ball_hit_location[:2] reward_dist = -np.linalg.norm(ball_hit_xy - goal_xy) else: reward_dist = -np.linalg.norm(ball_xy - goal_xy) reward_ctrl = - np.square(a).sum() reward = reward_dist + 0.002 * reward_ctrl self.do_simulation(a, self.frame_skip) ob = self._get_obs() done = False return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl) def viewer_setup(self): self.viewer.cam.trackbodyid = 0 self.viewer.cam.distance = 4.0 def reset_model(self): self._ball_hit_ground = False self._ball_hit_location = None qpos = self.init_qpos self.goal = np.array([self.np_random.uniform(low=-0.3, high=0.3), self.np_random.uniform(low=-0.3, high=0.3)]) qpos[-9:-7] = self.goal qvel = self.init_qvel + self.np_random.uniform(low=-0.005, high=0.005, size=self.model.nv) qvel[7:] = 0 self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[:7], self.sim.data.qvel.flat[:7], self.get_body_com("r_wrist_roll_link"), self.get_body_com("ball"), self.get_body_com("goal"), ])
34.229508
78
0.603927
7941ffd1968459e324946a62464c24e505ce0167
4,935
py
Python
lm_experiment.py
cbamann/language-model
d14410c2302bf42bb771abc4a6b859704847798e
[ "MIT" ]
null
null
null
lm_experiment.py
cbamann/language-model
d14410c2302bf42bb771abc4a6b859704847798e
[ "MIT" ]
null
null
null
lm_experiment.py
cbamann/language-model
d14410c2302bf42bb771abc4a6b859704847798e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import tensorflow as tf PROJECT_FOLDER = "./" # READ AND PREPROCESS LOCAL FILES exec(open(PROJECT_FOLDER + "setup.py").read()) fname_nn_out = FOLDER_NN_MODELS + "exp" BATCHES_TO_PROCESS = 500 ############################################################################### # Download word embedding path_embedding = PROJECT_FOLDER + "wordembeddings-dim100.word2vec" model_embed = KeyedVectors.load_word2vec_format( path_embedding ) # EMBEDDING MATRIX: vocab_size = len(vocab_inv) embeddings = np.zeros( ( FLAGS.vocab_size, FLAGS.embedding_dim ) ) # + 2 since added symbols <unk> and <pad> matches = 0 for k, v in vocab_dict.items(): if k in model_embed.vocab: embeddings[v] = model_embed[k] matches += 1 else: embeddings[v] = np.random.uniform(low=-0.25, high=0.25, size=FLAGS.embedding_dim ) print("%d words out of %d could be loaded" % (matches, vocab_size)) ############################################################################### #-----------------------------------------------------------------------------# # DEFINE THE GRAPH tf.reset_default_graph() # clean up just in case x_model = tf.placeholder(tf.int64 , shape = (None, FLAGS.sent_len)) # Define weights W = tf.get_variable(name = "W_out", shape = (FLAGS.hidden_units, FLAGS.vocab_size), dtype = tf.float64, initializer = tf.contrib.layers.xavier_initializer()) embedding_matrix = tf.constant(embeddings, shape = (FLAGS.vocab_size, FLAGS.embedding_dim), dtype = tf.float64) embedded_x = tf.nn.embedding_lookup(embedding_matrix, x_model) # prepare input and output sequences X_series = tf.unstack(embedded_x[:,:-1,:], axis = 1) Y_series = tf.unstack(x_model[:,1:], axis = 1) #-----------------------------------------------------------------------------# # CONSTRUCT THE NETWORK lstm = tf.nn.rnn_cell.LSTMCell(num_units = FLAGS.hidden_units, dtype= tf.float64 ) # state_is_tuple=True) _state = lstm.zero_state(dtype = tf.float64, batch_size = FLAGS.batch_size ) # unrolling outputs = [] for i in range(len(X_series)): (cell_output, _state) = lstm(X_series[i], _state) outputs.append(cell_output) #-----------------------------------------------------------------------------# # COMPUTE THE LOSS loss = 0.0 for i in range(len(X_series) ): # time dimension labels_i = Y_series[i] out = outputs[i] # This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. # Do not call this op with the output of softmax, as it will produce incorrect results. prob_unnorm = tf.matmul(out, W) loss_temp = tf.nn.sparse_softmax_cross_entropy_with_logits( labels = labels_i, logits = prob_unnorm) is_padded = tf.dtypes.cast(tf.not_equal(labels_i, vocab_dict["<pad>"]), dtype=tf.float64 ) loss_temp = tf.math.multiply(loss_temp, is_padded) loss += loss_temp # is_padded*loss_temp #-----------------------------------------------------------------------------# # OPTIMIZER params = tf.trainable_variables() # tf.reset_default_graph() # if something is wrong optimizer = tf.train.AdamOptimizer(learning_rate = FLAGS.learning_rate) # default rate gradients, variables = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, FLAGS.clip_gradient) train_op = optimizer.apply_gradients(zip(gradients, variables)) ############################################################################### # Train the network # Input parameters test_mode = True train_df = train_df_enc fname_nn = fname_nn_out #-----------------------------------------------------------------------------# init = tf.global_variables_initializer() saver = tf.train.Saver() batches_total = int(len(train_df_enc)/ FLAGS.batch_size) test_mode = True if test_mode: sess = tf.Session(config=session_conf_cluster) #train_df_loc = train_df[:NUM_FOR_TEST] no_of_batches = min([BATCHES_TO_PROCESS, batches_total]) else: sess = tf.Session(config=session_conf_cluster) no_of_batches = batches_total # run session with sess.as_default(): sess.run(init) # feed batches to network print("No of batches: {}".format(no_of_batches)) learning_errors = [] ptr = 0 for j in range(no_of_batches): print("Batch: {}".format(j)) x_train = train_df_enc[ptr: min([ptr + FLAGS.batch_size, len(train_df_enc)-1 ])] x_train , added = prepare_batch(x_train) _ , l = sess.run([train_op, loss], feed_dict = {x_model: x_train }) ptr += FLAGS.batch_size # save the session parameters saver.save(sess, fname_nn)
32.045455
104
0.581155
7942041aff96367e77da0611a309d4a2f7844726
5,724
py
Python
examples/model_compression/distill_lstm/bert_distill.py
zhengya01/PaddleNLP
b28bfb7b864781cc871e2fb910bd55ea705d3fec
[ "Apache-2.0" ]
null
null
null
examples/model_compression/distill_lstm/bert_distill.py
zhengya01/PaddleNLP
b28bfb7b864781cc871e2fb910bd55ea705d3fec
[ "Apache-2.0" ]
null
null
null
examples/model_compression/distill_lstm/bert_distill.py
zhengya01/PaddleNLP
b28bfb7b864781cc871e2fb910bd55ea705d3fec
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import paddle import paddle.nn as nn from paddle.metric import Accuracy from paddlenlp.transformers import BertForSequenceClassification from paddlenlp.metrics import AccuracyAndF1 from paddlenlp.datasets import GlueSST2, GlueQQP, ChnSentiCorp from args import parse_args from small import BiLSTM from data import create_distill_loader TASK_CLASSES = { "sst-2": (GlueSST2, Accuracy), "qqp": (GlueQQP, AccuracyAndF1), "senta": (ChnSentiCorp, Accuracy), } class TeacherModel(object): def __init__(self, model_name, param_path): self.model = BertForSequenceClassification.from_pretrained(model_name) self.model.set_state_dict(paddle.load(param_path)) self.model.eval() def evaluate(task_name, model, metric, data_loader): model.eval() metric.reset() for i, batch in enumerate(data_loader): if task_name == 'qqp': _, _, student_input_ids_1, seq_len_1, student_input_ids_2, seq_len_2, labels = batch logits = model(student_input_ids_1, seq_len_1, student_input_ids_2, seq_len_2) else: _, _, student_input_ids, seq_len, labels = batch logits = model(student_input_ids, seq_len) correct = metric.compute(logits, labels) metric.update(correct) res = metric.accumulate() if isinstance(metric, AccuracyAndF1): print( "acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s, " % ( res[0], res[1], res[2], res[3], res[4], ), end='') else: print("acc: %s, " % (res), end='') model.train() def do_train(agrs): train_data_loader, dev_data_loader = create_distill_loader( args.task_name, model_name=args.model_name, vocab_path=args.vocab_path, batch_size=args.batch_size, max_seq_length=args.max_seq_length, n_iter=args.n_iter, whole_word_mask=args.whole_word_mask, seed=args.seed) model = BiLSTM(args.emb_dim, args.hidden_size, args.vocab_size, args.output_dim, args.vocab_path, args.padding_idx, args.num_layers, args.dropout_prob, args.init_scale, args.embedding_name) if args.optimizer == 'adadelta': optimizer = paddle.optimizer.Adadelta( learning_rate=args.lr, rho=0.95, parameters=model.parameters()) else: optimizer = paddle.optimizer.Adam( learning_rate=args.lr, parameters=model.parameters()) ce_loss = nn.CrossEntropyLoss() mse_loss = nn.MSELoss() klloss = nn.KLDivLoss() metric_class = TASK_CLASSES[args.task_name][1] metric = metric_class() teacher = TeacherModel( model_name=args.model_name, param_path=args.teacher_path) print("Start to distill student model.") global_step = 0 tic_train = time.time() for epoch in range(args.max_epoch): model.train() for i, batch in enumerate(train_data_loader): if args.task_name == 'qqp': bert_input_ids, bert_segment_ids, student_input_ids_1, seq_len_1, student_input_ids_2, seq_len_2, labels = batch else: bert_input_ids, bert_segment_ids, student_input_ids, seq_len, labels = batch # Calculate teacher model's forward. with paddle.no_grad(): teacher_logits = teacher.model(bert_input_ids, bert_segment_ids) # Calculate student model's forward. if args.task_name == 'qqp': logits = model(student_input_ids_1, seq_len_1, student_input_ids_2, seq_len_2) else: logits = model(student_input_ids, seq_len) loss = args.alpha * ce_loss(logits, labels) + ( 1 - args.alpha) * mse_loss(logits, teacher_logits) loss.backward() optimizer.step() optimizer.clear_grad() if i % args.log_freq == 0: print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.4f step/s" % (global_step, epoch, i, loss, args.log_freq / (time.time() - tic_train))) tic_eval = time.time() acc = evaluate(args.task_name, model, metric, dev_data_loader) print("eval done total : %s s" % (time.time() - tic_eval)) tic_train = time.time() if i % args.save_steps == 0: paddle.save( model.state_dict(), os.path.join(args.output_dir, "step_" + str(global_step) + ".pdparams")) paddle.save(optimizer.state_dict(), os.path.join(args.output_dir, "step_" + str(global_step) + ".pdopt")) global_step += 1 if __name__ == '__main__': args = parse_args() print(args) paddle.seed(args.seed) do_train(args)
35.116564
128
0.608491
794204381a4bba89b40b82dc0f329c68012f0d0a
3,552
py
Python
alipay/aop/api/domain/SaleProduct.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/SaleProduct.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/SaleProduct.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.ProductProvider import ProductProvider class SaleProduct(object): def __init__(self): self._channel_type = None self._id = None self._market_price = None self._product_provider = None self._sale_price = None self._status = None @property def channel_type(self): return self._channel_type @channel_type.setter def channel_type(self, value): self._channel_type = value @property def id(self): return self._id @id.setter def id(self, value): self._id = value @property def market_price(self): return self._market_price @market_price.setter def market_price(self, value): self._market_price = value @property def product_provider(self): return self._product_provider @product_provider.setter def product_provider(self, value): if isinstance(value, ProductProvider): self._product_provider = value else: self._product_provider = ProductProvider.from_alipay_dict(value) @property def sale_price(self): return self._sale_price @sale_price.setter def sale_price(self, value): self._sale_price = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value def to_alipay_dict(self): params = dict() if self.channel_type: if hasattr(self.channel_type, 'to_alipay_dict'): params['channel_type'] = self.channel_type.to_alipay_dict() else: params['channel_type'] = self.channel_type if self.id: if hasattr(self.id, 'to_alipay_dict'): params['id'] = self.id.to_alipay_dict() else: params['id'] = self.id if self.market_price: if hasattr(self.market_price, 'to_alipay_dict'): params['market_price'] = self.market_price.to_alipay_dict() else: params['market_price'] = self.market_price if self.product_provider: if hasattr(self.product_provider, 'to_alipay_dict'): params['product_provider'] = self.product_provider.to_alipay_dict() else: params['product_provider'] = self.product_provider if self.sale_price: if hasattr(self.sale_price, 'to_alipay_dict'): params['sale_price'] = self.sale_price.to_alipay_dict() else: params['sale_price'] = self.sale_price if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status return params @staticmethod def from_alipay_dict(d): if not d: return None o = SaleProduct() if 'channel_type' in d: o.channel_type = d['channel_type'] if 'id' in d: o.id = d['id'] if 'market_price' in d: o.market_price = d['market_price'] if 'product_provider' in d: o.product_provider = d['product_provider'] if 'sale_price' in d: o.sale_price = d['sale_price'] if 'status' in d: o.status = d['status'] return o
29.6
83
0.589245
7942046203526ad9416db1b07c180a6da49a45f9
1,070
py
Python
savepagenow/exceptions.py
palewire/savepagenow
33c57916393e9697cf31dae485efc3f4cfbe21d4
[ "MIT" ]
8
2021-10-04T17:20:34.000Z
2022-03-27T23:57:20.000Z
savepagenow/exceptions.py
palewire/savepagenow
33c57916393e9697cf31dae485efc3f4cfbe21d4
[ "MIT" ]
5
2021-10-03T23:11:02.000Z
2022-03-28T23:37:08.000Z
savepagenow/exceptions.py
palewire/savepagenow
33c57916393e9697cf31dae485efc3f4cfbe21d4
[ "MIT" ]
3
2021-12-12T17:57:09.000Z
2022-01-28T15:25:52.000Z
class CachedPage(Exception): """Raised when archive.org declines to make a new capture and instead returns the cached version of most recent archive.""" pass class WaybackRuntimeError(Exception): """An error returned by the Wayback Machine.""" pass class BlockedByRobots(WaybackRuntimeError): """Raised when archive.org has been blocked by the site's robots.txt access control instructions.""" pass class BadGateway(WaybackRuntimeError): """Raised when archive.org when you receive a 502 bad gateway status code in response to your request.""" pass class Forbidden(WaybackRuntimeError): """Raised when archive.org when you receive a 403 forbidden status code in response to your request.""" pass class TooManyRequests(WaybackRuntimeError): """Raised when archive.org when you have exceeded its throttle on request frequency. Slow it down.""" pass class UnknownError(WaybackRuntimeError): """Raised when archive.org when you receive a 520 unknown status code in response to your request.""" pass
26.097561
127
0.740187
794204a0687ab68af88e0c22e037b4d8e173452b
874
py
Python
tensorflow_datasets/core/community/__init__.py
sumanthd17/datasets-1
6c84ccca956d8f134a42aa12c0b4caa18c730ed0
[ "Apache-2.0" ]
1
2021-02-04T10:07:18.000Z
2021-02-04T10:07:18.000Z
tensorflow_datasets/core/community/__init__.py
sumanthd17/datasets-1
6c84ccca956d8f134a42aa12c0b4caa18c730ed0
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/core/community/__init__.py
sumanthd17/datasets-1
6c84ccca956d8f134a42aa12c0b4caa18c730ed0
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Community dataset API.""" from tensorflow_datasets.core.community.load import builder_cls_from_module from tensorflow_datasets.core.community.register_package import community_register __all__ = [ 'builder_cls_from_module', 'community_register', ]
33.615385
82
0.776888
794205d539a94144f88cfe00a601e3baf9d210d0
1,388
py
Python
src/dispatch/metrics.py
roor0/dispatch
12c4f567096411abe62abaf61c7c124496764346
[ "Apache-2.0" ]
3,417
2020-02-23T22:54:47.000Z
2022-03-31T13:01:01.000Z
src/dispatch/metrics.py
roor0/dispatch
12c4f567096411abe62abaf61c7c124496764346
[ "Apache-2.0" ]
607
2020-02-24T14:27:02.000Z
2022-03-30T19:15:39.000Z
src/dispatch/metrics.py
roor0/dispatch
12c4f567096411abe62abaf61c7c124496764346
[ "Apache-2.0" ]
359
2020-02-24T19:04:43.000Z
2022-03-29T06:48:12.000Z
import logging from dispatch.plugins.base import plugins from .config import METRIC_PROVIDERS log = logging.getLogger(__file__) class Metrics(object): _providers = [] def __init__(self): if not METRIC_PROVIDERS: log.info( "No metric providers defined via METRIC_PROVIDERS env var. Metrics will not be sent." ) else: self._providers = METRIC_PROVIDERS def gauge(self, name, value, tags=None): for provider in self._providers: log.debug( f"Sending gauge metric {name} to provider {provider}. Value: {value} Tags: {tags}" ) p = plugins.get(provider) p.gauge(name, value, tags=tags) def counter(self, name, value=None, tags=None): for provider in self._providers: log.debug( f"Sending counter metric {name} to provider {provider}. Value: {value} Tags: {tags}" ) p = plugins.get(provider) p.counter(name, value=value, tags=tags) def timer(self, name, value, tags=None): for provider in self._providers: log.debug( f"Sending timer metric {name} to provider {provider}. Value: {value} Tags: {tags}" ) p = plugins.get(provider) p.timer(name, value, tags=tags) provider = Metrics()
29.531915
101
0.581412
794207a0f1402180cd7a47948ed10aea9066378a
63
py
Python
Other_AIMA_Scripts/test.py
erensezener/aima-based-irl
fbbe28986cec0b5e58fef0f00338a180ed03759a
[ "MIT" ]
12
2015-06-17T05:15:40.000Z
2021-05-18T15:39:33.000Z
Other_AIMA_Scripts/test.py
erensezener/aima-based-irl
fbbe28986cec0b5e58fef0f00338a180ed03759a
[ "MIT" ]
1
2020-03-14T08:45:49.000Z
2020-03-14T08:45:49.000Z
Other_AIMA_Scripts/test.py
erensezener/aima-based-irl
fbbe28986cec0b5e58fef0f00338a180ed03759a
[ "MIT" ]
5
2016-09-10T19:16:56.000Z
2018-10-10T05:09:03.000Z
__author__ = 'erensezener' def print_test(): print "test"
12.6
26
0.68254
794208a86d66398d6117b7f8230bd7f2bd9cd4fa
68,962
py
Python
openstack/tests/unit/cloud/test_baremetal_node.py
gouthampacha/openstacksdk
f4dd6fe5fd21fb866b43330ecbbafee5cf553ded
[ "Apache-2.0" ]
null
null
null
openstack/tests/unit/cloud/test_baremetal_node.py
gouthampacha/openstacksdk
f4dd6fe5fd21fb866b43330ecbbafee5cf553ded
[ "Apache-2.0" ]
null
null
null
openstack/tests/unit/cloud/test_baremetal_node.py
gouthampacha/openstacksdk
f4dd6fe5fd21fb866b43330ecbbafee5cf553ded
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ test_baremetal_node ---------------------------------- Tests for baremetal node related operations """ import uuid from testscenarios import load_tests_apply_scenarios as load_tests # noqa from openstack.cloud import exc from openstack import exceptions from openstack.tests import fakes from openstack.tests.unit import base class TestBaremetalNode(base.IronicTestCase): def setUp(self): super(TestBaremetalNode, self).setUp() self.fake_baremetal_node = fakes.make_fake_machine( self.name, self.uuid) # TODO(TheJulia): Some tests below have fake ports, # since they are required in some processes. Lets refactor # them at some point to use self.fake_baremetal_port. self.fake_baremetal_port = fakes.make_fake_port( '00:01:02:03:04:05', node_id=self.uuid) def test_list_machines(self): fake_baremetal_two = fakes.make_fake_machine('two', str(uuid.uuid4())) self.register_uris([ dict(method='GET', uri=self.get_mock_url(resource='nodes'), json={'nodes': [self.fake_baremetal_node, fake_baremetal_two]}), ]) machines = self.cloud.list_machines() self.assertEqual(2, len(machines)) self.assertSubdict(self.fake_baremetal_node, machines[0]) self.assertSubdict(fake_baremetal_two, machines[1]) self.assert_calls() def test_get_machine(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) machine = self.cloud.get_machine(self.fake_baremetal_node['uuid']) self.assertEqual(machine['uuid'], self.fake_baremetal_node['uuid']) self.assert_calls() def test_get_machine_by_mac(self): mac_address = '00:01:02:03:04:05' node_uuid = self.fake_baremetal_node['uuid'] self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='ports', append=['detail'], qs_elements=['address=%s' % mac_address]), json={'ports': [{'address': mac_address, 'node_uuid': node_uuid}]}), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) machine = self.cloud.get_machine_by_mac(mac_address) self.assertEqual(machine['uuid'], self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine(self): # NOTE(TheJulia): Note: These are only the interfaces # that are validated, and all must be true for an # exception to not be raised. validate_return = { 'boot': { 'result': True, }, 'deploy': { 'result': True, }, 'management': { 'result': True, }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine_not_for_deploy(self): validate_return = { 'deploy': { 'result': False, 'reason': 'Not ready', }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_machine(self.fake_baremetal_node['uuid'], for_deploy=False) self.assert_calls() def test_deprecated_validate_node(self): validate_return = { 'deploy': { 'result': True, }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_node(self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine_raises_exception(self): validate_return = { 'deploy': { 'result': False, 'reason': 'error!', }, 'power': { 'result': True, 'reason': None, }, 'foo': { 'result': True }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.assertRaises( exceptions.ValidationException, self.cloud.validate_machine, self.fake_baremetal_node['uuid']) self.assert_calls() def test_patch_machine(self): test_patch = [{ 'op': 'remove', 'path': '/instance_info'}] self.fake_baremetal_node['instance_info'] = {} self.register_uris([ dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) result = self.cloud.patch_machine( self.fake_baremetal_node['uuid'], test_patch) self.assertEqual(self.fake_baremetal_node['uuid'], result['uuid']) self.assert_calls() def test_set_node_instance_info(self): test_patch = [{ 'op': 'add', 'path': '/foo', 'value': 'bar'}] self.register_uris([ dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) self.cloud.set_node_instance_info( self.fake_baremetal_node['uuid'], test_patch) self.assert_calls() def test_purge_node_instance_info(self): test_patch = [{ 'op': 'remove', 'path': '/instance_info'}] self.fake_baremetal_node['instance_info'] = {} self.register_uris([ dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) self.cloud.purge_node_instance_info( self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_fail_active(self): self.fake_baremetal_node['provision_state'] = 'active' self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_fail_associated(self): self.fake_baremetal_node['provision_state'] = 'available' self.fake_baremetal_node['instance_uuid'] = '1234' self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaisesRegex( exc.OpenStackCloudException, 'associated with an instance', self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_failed(self): inspecting_node = self.fake_baremetal_node.copy() self.fake_baremetal_node['provision_state'] = 'inspect failed' self.fake_baremetal_node['last_error'] = 'kaboom!' inspecting_node['provision_state'] = 'inspecting' finished_node = self.fake_baremetal_node.copy() finished_node['provision_state'] = 'manageable' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=finished_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_manageable(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_available(self): available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_available_wait(self): available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) self.cloud.inspect_machine( self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_wait(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.inspect_machine( self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_inspect_failed(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' inspect_fail_node = self.fake_baremetal_node.copy() inspect_fail_node['provision_state'] = 'inspect failed' inspect_fail_node['last_error'] = 'Earth Imploded' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspect_fail_node), ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_set_machine_maintenace_state(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance']), validate=dict(json={'reason': 'no reason'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.set_machine_maintenance_state( self.fake_baremetal_node['uuid'], True, reason='no reason') self.assert_calls() def test_set_machine_maintenace_state_false(self): self.register_uris([ dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance'])), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.set_machine_maintenance_state( self.fake_baremetal_node['uuid'], False) self.assert_calls def test_remove_machine_from_maintenance(self): self.register_uris([ dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance'])), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.remove_machine_from_maintenance( self.fake_baremetal_node['uuid']) self.assert_calls() def test_set_machine_power_on(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), ]) return_value = self.cloud.set_machine_power_on( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_on_with_retires(self): # NOTE(TheJulia): This logic ends up testing power on/off and reboot # as they all utilize the same helper method. self.register_uris([ dict( method='PUT', status_code=503, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), dict( method='PUT', status_code=409, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), ]) return_value = self.cloud.set_machine_power_on( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_off(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power off'})), ]) return_value = self.cloud.set_machine_power_off( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_reboot(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'rebooting'})), ]) return_value = self.cloud.set_machine_power_reboot( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_reboot_failure(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), status_code=400, json={'error': 'invalid'}, validate=dict(json={'target': 'rebooting'})), ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.set_machine_power_reboot, self.fake_baremetal_node['uuid']) self.assert_calls() def test_node_set_provision_state(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) result = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', configdrive='http://host/file') self.assertEqual(self.fake_baremetal_node['uuid'], result['uuid']) self.assert_calls() def test_node_set_provision_state_with_retries(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', status_code=409, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict( method='PUT', status_code=503, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', configdrive='http://host/file') self.assert_calls() def test_node_set_provision_state_wait_timeout(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=deploy_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=active_node), ]) return_value = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', wait=True) self.assertSubdict(active_node, return_value) self.assert_calls() def test_node_set_provision_state_wait_timeout_fails(self): # Intentionally time out. self.fake_baremetal_node['provision_state'] = 'deploy wait' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.node_set_provision_state, self.fake_baremetal_node['uuid'], 'active', wait=True, timeout=0.001) self.assert_calls() def test_node_set_provision_state_wait_success(self): self.fake_baremetal_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) return_value = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', wait=True) self.assertSubdict(self.fake_baremetal_node, return_value) self.assert_calls() def test_node_set_provision_state_wait_failure_cases(self): self.fake_baremetal_node['provision_state'] = 'foo failed' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.node_set_provision_state, self.fake_baremetal_node['uuid'], 'active', wait=True, timeout=300) self.assert_calls() def test_node_set_provision_state_wait_provide(self): self.fake_baremetal_node['provision_state'] = 'manageable' available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) return_value = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'provide', wait=True) self.assertSubdict(available_node, return_value) self.assert_calls() def test_wait_for_baremetal_node_lock_locked(self): self.fake_baremetal_node['reservation'] = 'conductor0' unlocked_node = self.fake_baremetal_node.copy() unlocked_node['reservation'] = None self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=unlocked_node), ]) self.assertIsNone( self.cloud.wait_for_baremetal_node_lock( self.fake_baremetal_node, timeout=1)) self.assert_calls() def test_wait_for_baremetal_node_lock_not_locked(self): self.fake_baremetal_node['reservation'] = None self.assertIsNone( self.cloud.wait_for_baremetal_node_lock( self.fake_baremetal_node, timeout=1)) # NOTE(dtantsur): service discovery apparently requires 3 calls self.assertEqual(3, len(self.adapter.request_history)) def test_wait_for_baremetal_node_lock_timeout(self): self.fake_baremetal_node['reservation'] = 'conductor0' self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.wait_for_baremetal_node_lock, self.fake_baremetal_node, timeout=0.001) self.assert_calls() def test_activate_node(self): self.fake_baremetal_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) return_value = self.cloud.activate_node( self.fake_baremetal_node['uuid'], configdrive='http://host/file', wait=True) self.assertIsNone(return_value) self.assert_calls() def test_deactivate_node(self): self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'deleted'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) return_value = self.cloud.deactivate_node( self.fake_baremetal_node['uuid'], wait=True) self.assertIsNone(return_value) self.assert_calls() def test_register_machine(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] # TODO(TheJulia): There is a lot of duplication # in testing creation. Surely this hsould be a helper # or something. We should fix this. node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'available' if 'provision_state' in node_to_post: node_to_post.pop('provision_state') self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), json=self.fake_baremetal_node, validate=dict(json=node_to_post)), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), ]) return_value = self.cloud.register_machine(nics, **node_to_post) self.assertDictEqual(self.fake_baremetal_node, return_value) self.assert_calls() # TODO(TheJulia): We need to de-duplicate these tests. # Possibly a dedicated class, although we should do it # then as we may find differences that need to be # accounted for newer microversions. def test_register_machine_enroll(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'enroll' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), validate=dict(json=node_to_post), json=self.fake_baremetal_node), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) # NOTE(When we migrate to a newer microversion, this test # may require revision. It was written for microversion # ?1.13?, which accidently got reverted to 1.6 at one # point during code being refactored soon after the # change landed. Presently, with the lock at 1.6, # this code is never used in the current code path. return_value = self.cloud.register_machine(nics, **node_to_post) self.assertSubdict(available_node, return_value) self.assert_calls() def test_register_machine_enroll_wait(self): mac_address = self.fake_baremetal_port nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'enroll' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), validate=dict(json=node_to_post), json=self.fake_baremetal_node), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) return_value = self.cloud.register_machine( nics, wait=True, **node_to_post) self.assertSubdict(available_node, return_value) self.assert_calls() def test_register_machine_enroll_failure(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'enroll' failed_node = self.fake_baremetal_node.copy() failed_node['reservation'] = 'conductor0' failed_node['provision_state'] = 'verifying' failed_node['last_error'] = 'kaboom!' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), json=self.fake_baremetal_node, validate=dict(json=node_to_post)), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=failed_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=failed_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.register_machine, nics, **node_to_post) self.assert_calls() def test_register_machine_enroll_timeout(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'enroll' busy_node = self.fake_baremetal_node.copy() busy_node['reservation'] = 'conductor0' busy_node['provision_state'] = 'verifying' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), json=self.fake_baremetal_node, validate=dict(json=node_to_post)), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=busy_node), ]) # NOTE(TheJulia): This test shortcircuits the timeout loop # such that it executes only once. The very last returned # state to the API is essentially a busy state that we # want to block on until it has cleared. self.assertRaises( exc.OpenStackCloudException, self.cloud.register_machine, nics, timeout=0.001, lock_timeout=0.001, **node_to_post) self.assert_calls() def test_register_machine_enroll_timeout_wait(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'enroll' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), json=self.fake_baremetal_node, validate=dict(json=node_to_post)), dict( method='POST', uri=self.get_mock_url( resource='ports'), validate=dict(json={'address': mac_address, 'node_uuid': node_uuid}), json=self.fake_baremetal_port), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.register_machine, nics, wait=True, timeout=0.001, **node_to_post) self.assert_calls() def test_register_machine_port_create_failed(self): mac_address = '00:01:02:03:04:05' nics = [{'mac': mac_address}] node_uuid = self.fake_baremetal_node['uuid'] node_to_post = { 'chassis_uuid': None, 'driver': None, 'driver_info': None, 'name': self.fake_baremetal_node['name'], 'properties': None, 'uuid': node_uuid} self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='POST', uri=self.get_mock_url( resource='nodes'), json=self.fake_baremetal_node, validate=dict(json=node_to_post)), dict( method='POST', uri=self.get_mock_url( resource='ports'), status_code=400, json={'error': 'invalid'}, validate=dict(json={'address': mac_address, 'node_uuid': node_uuid})), dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']])), ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.register_machine, nics, **node_to_post) self.assert_calls() def test_unregister_machine(self): mac_address = self.fake_baremetal_port['address'] nics = [{'mac': mac_address}] port_uuid = self.fake_baremetal_port['uuid'] # NOTE(TheJulia): The two values below should be the same. port_node_uuid = self.fake_baremetal_port['node_uuid'] self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='ports', qs_elements=['address=%s' % mac_address]), json={'ports': [{'address': mac_address, 'node_uuid': port_node_uuid, 'uuid': port_uuid}]}), dict( method='DELETE', uri=self.get_mock_url( resource='ports', append=[self.fake_baremetal_port['uuid']])), dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']])), ]) self.cloud.unregister_machine( nics, self.fake_baremetal_node['uuid']) self.assert_calls() def test_unregister_machine_locked_timeout(self): mac_address = self.fake_baremetal_port['address'] nics = [{'mac': mac_address}] self.fake_baremetal_node['provision_state'] = 'available' self.fake_baremetal_node['reservation'] = 'conductor99' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.unregister_machine, nics, self.fake_baremetal_node['uuid'], timeout=0.001) self.assert_calls() def test_unregister_machine_retries(self): mac_address = self.fake_baremetal_port['address'] nics = [{'mac': mac_address}] port_uuid = self.fake_baremetal_port['uuid'] # NOTE(TheJulia): The two values below should be the same. port_node_uuid = self.fake_baremetal_port['node_uuid'] self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='ports', qs_elements=['address=%s' % mac_address]), json={'ports': [{'address': mac_address, 'node_uuid': port_node_uuid, 'uuid': port_uuid}]}), dict( method='DELETE', status_code=503, uri=self.get_mock_url( resource='ports', append=[self.fake_baremetal_port['uuid']])), dict( method='DELETE', status_code=409, uri=self.get_mock_url( resource='ports', append=[self.fake_baremetal_port['uuid']])), dict( method='DELETE', uri=self.get_mock_url( resource='ports', append=[self.fake_baremetal_port['uuid']])), dict( method='DELETE', status_code=409, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']])), dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']])), ]) self.cloud.unregister_machine( nics, self.fake_baremetal_node['uuid']) self.assert_calls() def test_unregister_machine_unavailable(self): # This is a list of invalid states that the method # should fail on. invalid_states = ['active', 'cleaning', 'clean wait', 'clean failed'] mac_address = self.fake_baremetal_port['address'] nics = [{'mac': mac_address}] url_list = [] for state in invalid_states: self.fake_baremetal_node['provision_state'] = state url_list.append( dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node)) self.register_uris(url_list) for state in invalid_states: self.assertRaises( exc.OpenStackCloudException, self.cloud.unregister_machine, nics, self.fake_baremetal_node['uuid']) self.assert_calls() def test_update_machine_patch_no_action(self): self.register_uris([dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) # NOTE(TheJulia): This is just testing mechanics. update_dict = self.cloud.update_machine( self.fake_baremetal_node['uuid']) self.assertIsNone(update_dict['changes']) self.assertSubdict(self.fake_baremetal_node, update_dict['node']) self.assert_calls() def test_attach_port_to_machine(self): vif_id = '953ccbee-e854-450f-95fe-fe5e40d611ec' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( service_type='network', resource='ports.json', base_url_append='v2.0'), json={'ports': [{'id': vif_id}]}), dict( method='POST', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'vifs'])), ]) self.cloud.attach_port_to_machine(self.fake_baremetal_node['uuid'], vif_id) self.assert_calls() def test_detach_port_from_machine(self): vif_id = '953ccbee-e854-450f-95fe-fe5e40d611ec' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( service_type='network', resource='ports.json', base_url_append='v2.0'), json={'ports': [{'id': vif_id}]}), dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'vifs', vif_id])), ]) self.cloud.detach_port_from_machine(self.fake_baremetal_node['uuid'], vif_id) self.assert_calls() def test_list_ports_attached_to_machine(self): vif_id = '953ccbee-e854-450f-95fe-fe5e40d611ec' fake_port = {'id': vif_id, 'name': 'test'} self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'vifs']), json={'vifs': [{'id': vif_id}]}), dict( method='GET', uri=self.get_mock_url( service_type='network', resource='ports.json', base_url_append='v2.0'), json={'ports': [fake_port]}), ]) res = self.cloud.list_ports_attached_to_machine( self.fake_baremetal_node['uuid']) self.assert_calls() self.assertEqual([fake_port], res) class TestUpdateMachinePatch(base.IronicTestCase): # NOTE(TheJulia): As appears, and mordred describes, # this class utilizes black magic, which ultimately # results in additional test runs being executed with # the scenario name appended. Useful for lots of # variables that need to be tested. def setUp(self): super(TestUpdateMachinePatch, self).setUp() self.fake_baremetal_node = fakes.make_fake_machine( self.name, self.uuid) def test_update_machine_patch(self): # The model has evolved over time, create the field if # we don't already have it. if self.field_name not in self.fake_baremetal_node: self.fake_baremetal_node[self.field_name] = None value_to_send = self.fake_baremetal_node[self.field_name] if self.changed: value_to_send = self.new_value uris = [dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ] if self.changed: test_patch = [{ 'op': 'replace', 'path': '/' + self.field_name, 'value': value_to_send}] uris.append( dict( method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch))) self.register_uris(uris) call_args = {self.field_name: value_to_send} update_dict = self.cloud.update_machine( self.fake_baremetal_node['uuid'], **call_args) if self.changed: self.assertEqual(['/' + self.field_name], update_dict['changes']) else: self.assertIsNone(update_dict['changes']) self.assertSubdict(self.fake_baremetal_node, update_dict['node']) self.assert_calls() scenarios = [ ('chassis_uuid', dict(field_name='chassis_uuid', changed=False)), ('chassis_uuid_changed', dict(field_name='chassis_uuid', changed=True, new_value='meow')), ('driver', dict(field_name='driver', changed=False)), ('driver_changed', dict(field_name='driver', changed=True, new_value='meow')), ('driver_info', dict(field_name='driver_info', changed=False)), ('driver_info_changed', dict(field_name='driver_info', changed=True, new_value={'cat': 'meow'})), ('instance_info', dict(field_name='instance_info', changed=False)), ('instance_info_changed', dict(field_name='instance_info', changed=True, new_value={'cat': 'meow'})), ('instance_uuid', dict(field_name='instance_uuid', changed=False)), ('instance_uuid_changed', dict(field_name='instance_uuid', changed=True, new_value='meow')), ('name', dict(field_name='name', changed=False)), ('name_changed', dict(field_name='name', changed=True, new_value='meow')), ('properties', dict(field_name='properties', changed=False)), ('properties_changed', dict(field_name='properties', changed=True, new_value={'cat': 'meow'})) ]
38.100552
78
0.506409
79420abd25c5129c9f8aae600cda2f0be80adb36
753
py
Python
napari/plugins/_tests/conftest.py
SaraLatif99/napari
b17235ee77d30e58492368a73d7c8d8189397fa4
[ "BSD-3-Clause" ]
null
null
null
napari/plugins/_tests/conftest.py
SaraLatif99/napari
b17235ee77d30e58492368a73d7c8d8189397fa4
[ "BSD-3-Clause" ]
null
null
null
napari/plugins/_tests/conftest.py
SaraLatif99/napari
b17235ee77d30e58492368a73d7c8d8189397fa4
[ "BSD-3-Clause" ]
null
null
null
import pytest import os import sys from napari.plugins import NapariPluginManager import napari.plugins._builtins @pytest.fixture def plugin_manager(): """PluginManager fixture that loads some test plugins""" fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures') plugin_manager = NapariPluginManager(autodiscover=fixture_path) assert fixture_path not in sys.path, 'discover path leaked into sys.path' return plugin_manager @pytest.fixture def builtin_plugin_manager(plugin_manager): for mod in plugin_manager.get_plugins(): if mod != napari.plugins._builtins: plugin_manager.unregister(mod) assert plugin_manager.get_plugins() == set([napari.plugins._builtins]) return plugin_manager
31.375
77
0.763612
79420b687945d19c0d5ddae5c3336081cc37dac9
483
py
Python
breathing.py
dotimothy/TPIOPi
13a68ca88f5a71f1d6984c5f6c3c84d107b12fd8
[ "MIT" ]
3
2020-09-24T22:33:20.000Z
2021-08-29T06:08:33.000Z
breathing.py
dotimothy/TPIOPi
13a68ca88f5a71f1d6984c5f6c3c84d107b12fd8
[ "MIT" ]
null
null
null
breathing.py
dotimothy/TPIOPi
13a68ca88f5a71f1d6984c5f6c3c84d107b12fd8
[ "MIT" ]
null
null
null
try: import RPi.GPIO as GPIO except ModuleNotFoundError: print("You don't have GPIO Pins, so you can't run this program!"), exit() import time led = input("Please Input Led '+' Pin: ") GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(led,GPIO.OUT) pwm = GPIO.PWM(led, 100) pwm.start(0) while(True): for i in range(0,100): pwm.ChangeDutyCycle(i) time.sleep(0.005) for j in range(100,0,-1): pwm.ChangeDutyCycle(j) time.sleep(0.005) pwm.stop() GPIO.cleanup()
20.125
67
0.701863
79420b6a99bd5cfb6f4b3977b635a516c2aa5821
6,677
py
Python
lib/tests/test_client.py
OneIdentity/safeguard-sessions-plugin-duo-mfa
d388e06def8ef79e56e8fcde6726fa9e4738e679
[ "MIT" ]
3
2019-04-16T12:41:36.000Z
2020-08-17T20:45:10.000Z
lib/tests/test_client.py
OneIdentity/safeguard-sessions-plugin-duo-mfa
d388e06def8ef79e56e8fcde6726fa9e4738e679
[ "MIT" ]
2
2019-11-04T11:23:25.000Z
2020-04-03T16:28:58.000Z
lib/tests/test_client.py
OneIdentity/safeguard-sessions-plugin-duo-mfa
d388e06def8ef79e56e8fcde6726fa9e4738e679
[ "MIT" ]
2
2019-04-16T12:28:52.000Z
2020-07-22T08:54:09.000Z
# # Copyright (c) 2019 One Identity # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # import pytest from ssl import SSLError from unittest.mock import patch from safeguard.sessions.plugin.mfa_client import MFAAuthenticationFailure, MFACommunicationError, MFAServiceUnreachable from safeguard.sessions.plugin import AAResponse from ..client import Client from six.moves.http_client import NotConnected @pytest.fixture def inject_connection_error(mocker): request_mock = mocker.patch("duo_client.client.Client._make_request") request_mock.side_effect = NotConnected @pytest.mark.interactive def test_otp_auth_ok(client, duo_user, interactive): otp = interactive.askforinput("Please enter OTP generated with DUO device, e.g. DUO mobile") assert client.otp_authenticate(duo_user, otp) @pytest.mark.interactive def test_otp_ask_for_new_otp_if_already_used(client, duo_user, interactive): otp = interactive.askforinput("Please enter the previous OTP") result = client.otp_authenticate(duo_user, otp) assert result == AAResponse.need_info( **{ "key": "otp", "question": "This passcode has already been used. Please generate a new passcode and try again. ", "disable_echo": False, } ) @pytest.mark.interactive def test_push_auth_ok(client, duo_user, interactive): interactive.message("Please ACCEPT the push notification in DUO application") assert client.push_authenticate(duo_user) @pytest.mark.interactive def test_push_auth_user_decline(client, duo_user, interactive): interactive.message("Please REJECT the push notification in DUO application") with pytest.raises(MFAAuthenticationFailure) as e: client.push_authenticate(duo_user) assert e.match("Login request denied") @pytest.mark.interactive def test_bypass_auth_without_bypass_code_push(client, duo_bypass_user, interactive): result = client.push_authenticate(duo_bypass_user) assert result == AAResponse.accept(reason="User configured as bypass user on Duo.") @pytest.mark.interactive def test_bypass_auth_without_bypass_code_otp(client, duo_bypass_user, interactive): otp = interactive.askforinput("Please enter OTP whatever you like") result = client.otp_authenticate(duo_bypass_user, otp) assert result == AAResponse.accept(reason="User configured as bypass user on Duo.") @patch("lib.client.Auth") def test_push_auth_timeout(patcher, duo_user, interactive): with pytest.raises(MFAAuthenticationFailure) as e: instance = patcher.return_value instance.preauth.return_value = {"result": "auth", "devices": [{"capabilities": ["push"]}]} instance.auth.side_effect = SSLError("The read operation timed out.") client = Client("ikey", "skey", "host") client.push_authenticate(duo_user) assert e.match("timed out") def test_bypass_auth_ok(client, duo_user, duo_passcode): assert client.otp_authenticate(duo_user, duo_passcode) def test_otp_auth_wrong_passcode(client, duo_user, duo_wrong_passcode): with pytest.raises(MFAAuthenticationFailure) as e: client.otp_authenticate(duo_user, duo_wrong_passcode) assert e.match("Incorrect passcode") def test_otp_auth_unknown_host(client, duo_user, duo_passcode, inject_connection_error): with pytest.raises(MFAServiceUnreachable): client.otp_authenticate(duo_user, duo_passcode) def test_otp_auth_unknown_user(client, duo_wrong_user, duo_passcode): with pytest.raises(MFAAuthenticationFailure) as e: client.otp_authenticate(duo_wrong_user, duo_passcode) assert e.match("Enroll an authentication") def test_otp_auth_invalid_apikey(client, duo_user, duo_passcode): with pytest.raises(MFACommunicationError) as e: client._duo.skey = "" client.otp_authenticate(duo_user, duo_passcode) assert e.match("Invalid signature") def test_push_auth_no_push_device(client, duo_user_without_device): with pytest.raises(MFAAuthenticationFailure) as e: client.push_authenticate(duo_user_without_device) assert e.match("No push capable") def test_push_auth_unkown_user(client, duo_wrong_user): with pytest.raises(MFAAuthenticationFailure) as e: client.push_authenticate(duo_wrong_user) assert e.match("Enroll an authentication") def test_push_auth_unknown_host(client, duo_user, inject_connection_error): with pytest.raises(MFAServiceUnreachable): client.push_authenticate(duo_user) def test_push_auth_invalid_apikey(client, duo_user): with pytest.raises(MFACommunicationError) as e: client._duo.skey = "" client.push_authenticate(duo_user) assert e.match("Invalid signature") def test_duo_set_proxy(): client = Client("ikey", "skey", "host", http_proxy_settings=dict(server="proxy", port="3128")) assert client._duo.proxy_host == "proxy" assert client._duo.proxy_port == 3128 def test_duo_proxy_is_not_set_when_settings_omitted(): client = Client("ikey", "skey", "host", http_proxy_settings=None) assert client._duo.proxy_host is None assert client._duo.proxy_port is None def test_duo_proxy_is_not_set_when_proxy_settings_not_set(): client = Client("ikey", "skey", "host", http_proxy_settings=dict(username="u", password="p")) assert client._duo.proxy_host is None assert client._duo.proxy_port is None def test_duo_set_proxy_auth(): client = Client( "ikey", "skey", "host", http_proxy_settings=dict(server="proxy", port="3128", username="u", password="p") ) # dTpw is Base64 encoded u:p assert client._duo.proxy_headers == {"Proxy-Authorization": "Basic dTpw"}
37.723164
119
0.759623
79420ba289da56d1dea625837978cc3906322fc1
8,578
py
Python
nion/ui/TreeCanvasItem.py
icbicket/nionui
d4a839d6c5978032e6b5108b058fbe62c33f632d
[ "Apache-2.0" ]
3
2018-12-18T23:05:00.000Z
2019-11-26T19:48:04.000Z
nion/ui/TreeCanvasItem.py
icbicket/nionui
d4a839d6c5978032e6b5108b058fbe62c33f632d
[ "Apache-2.0" ]
36
2017-07-15T02:07:18.000Z
2022-03-01T16:59:08.000Z
nion/ui/TreeCanvasItem.py
icbicket/nionui
d4a839d6c5978032e6b5108b058fbe62c33f632d
[ "Apache-2.0" ]
12
2017-04-03T20:05:46.000Z
2021-06-09T05:14:44.000Z
"""Display a tree of drawable cells. """ from __future__ import annotations # standard libraries import copy import dataclasses import functools import json import typing # third party libraries # none # local libraries from nion.ui import CanvasItem from nion.ui import UserInterface from nion.utils import Geometry _ValuePath = typing.Sequence[typing.Union[int, str]] @dataclasses.dataclass class TreeItem: canvas_item: CanvasItem.AbstractCanvasItem item_type: str is_expanded: bool value_path: _ValuePath class TreeCanvasItemDelegate(typing.Protocol): def build_items(self, get_font_metrics_fn: typing.Callable[[str, str], UserInterface.FontMetrics], item_width: typing.Optional[int]) -> typing.Sequence[TreeItem]: ... def toggle_is_expanded(self, value_path_key: str) -> None: ... class TreeCanvasItem(CanvasItem.CanvasItemComposition): """ Takes a delegate that supports the following properties, methods, and optional methods: Properties: None Methods: toggle_is_expanded(value_path) -> None build_items(get_font_metrics_fn, item_width) -> CanvasItem Optional methods: None Call reconstruct when data or selection changes. """ def __init__(self, get_font_metrics_fn: typing.Callable[[str, str], UserInterface.FontMetrics], delegate: TreeCanvasItemDelegate) -> None: super().__init__() self.__get_font_metrics_fn = get_font_metrics_fn self.__delegate = delegate # configure super self.wants_mouse_events = True self.focusable = True # internal variables self.__mouse_pressed = False self.__mouse_index: typing.Optional[int] = None self.__mouse_position: typing.Optional[Geometry.IntPoint] = None self.__mouse_dragging = False self.__mouse_item: typing.Optional[_ValuePath] = None self.__selected_value_paths: typing.Set[str] = set() self.layout = CanvasItem.CanvasItemColumnLayout() self.on_content_height_changed: typing.Optional[typing.Callable[[int], None]] = None def close(self) -> None: self.on_content_height_changed = None super().close() def __is_selected(self, value_path: _ValuePath) -> bool: return json.dumps(value_path) in self.__selected_value_paths def reconstruct(self) -> None: for canvas_item in copy.copy(self.canvas_items): self._remove_canvas_item(canvas_item) indent_size = 16 canvas_bounds = self.canvas_bounds item_width = int(canvas_bounds.width) if canvas_bounds else None canvas_height = 0 ITEM_HEIGHT = 18 for tree_item in self.__delegate.build_items(self.__get_font_metrics_fn, item_width): indent = (len(tree_item.value_path) - 1) * indent_size item_row = CanvasItem.CanvasItemComposition() item_row.update_sizing(item_row.sizing.with_fixed_height(ITEM_HEIGHT)) item_row.layout = CanvasItem.CanvasItemRowLayout() item_row.add_spacing(indent) if tree_item.item_type == "parent": twist_down_canvas_item = CanvasItem.TwistDownCanvasItem() twist_down_canvas_item.update_sizing(twist_down_canvas_item.sizing.with_fixed_size(Geometry.IntSize(height=ITEM_HEIGHT, width=16))) twist_down_canvas_item.checked = tree_item.is_expanded def twist_down_clicked(toggle_value_path: _ValuePath) -> None: self.__toggle_is_expanded(toggle_value_path) twist_down_canvas_item.on_button_clicked = functools.partial(twist_down_clicked, tree_item.value_path) item_row.add_canvas_item(twist_down_canvas_item) else: item_row.add_spacing(indent_size) item_row.add_canvas_item(tree_item.canvas_item) item_row.add_stretch() setattr(item_row, "value_path", tree_item.value_path) self.add_canvas_item(item_row) canvas_height += ITEM_HEIGHT self.update() if callable(self.on_content_height_changed): self.on_content_height_changed(canvas_height) def __set_selection(self, value_path: _ValuePath) -> None: self.__selected_value_paths.clear() self.__selected_value_paths.add(json.dumps(value_path)) def __extend_selection(self, value_path: _ValuePath) -> None: pass def __toggle_selection(self, value_path: _ValuePath) -> None: value_path_key = json.dumps(value_path) if value_path_key in self.__selected_value_paths: self.__selected_value_paths.remove(value_path_key) else: self.__selected_value_paths.add(value_path_key) def __toggle_is_expanded(self, value_path: _ValuePath) -> None: value_path_key = json.dumps(value_path) self.__delegate.toggle_is_expanded(value_path_key) self.reconstruct() def __context_menu_event(self, value_path: typing.Optional[_ValuePath], x: int, y: int, gx: int, gy: int) -> bool: pass def __drag_started(self, value_path: typing.Optional[_ValuePath], x: int, y: int, modifiers: UserInterface.KeyboardModifiers) -> None: pass def __delete(self) -> None: pass def __adjust_selection(self, action: str, extend: bool) -> None: pass def __value_path_at_point(self, p: Geometry.IntPoint) -> typing.Optional[_ValuePath]: for canvas_item in self.canvas_items_at_point(p.x, p.y): if hasattr(canvas_item, "value_path"): return typing.cast(_ValuePath, getattr(canvas_item, "value_path")) return None def context_menu_event(self, x: int, y: int, gx: int, gy: int) -> bool: p = Geometry.IntPoint(y=y, x=x) value_path = self.__value_path_at_point(p) if value_path: if not self.__is_selected(value_path): self.__set_selection(value_path) return self.__context_menu_event(value_path, x, y, gx, gy) return self.__context_menu_event(None, x, y, gx, gy) def mouse_pressed(self, x: int, y: int, modifiers: UserInterface.KeyboardModifiers) -> bool: p = Geometry.IntPoint(y=y, x=x) value_path = self.__value_path_at_point(p) if value_path: if modifiers.shift: self.__extend_selection(value_path) elif modifiers.control: self.__toggle_selection(value_path) else: self.__set_selection(value_path) self.__mouse_pressed = True self.__mouse_position = Geometry.IntPoint(y=y, x=x) self.__mouse_item = value_path return True return super().mouse_pressed(x, y, modifiers) def mouse_released(self, x: int, y: int, modifiers: UserInterface.KeyboardModifiers) -> bool: if self.__mouse_pressed: # double check whether mouse_released has been called explicitly as part of a drag. # see https://bugreports.qt.io/browse/QTBUG-40733 pass # leave this here for future reference self.__mouse_pressed = False self.__mouse_item = None self.__mouse_position = None self.__mouse_dragging = False return True def mouse_position_changed(self, x: int, y: int, modifiers: UserInterface.KeyboardModifiers) -> bool: if self.__mouse_pressed and self.__mouse_position: mouse_position_f = self.__mouse_position.to_float_point() point_f = Geometry.FloatPoint(y=y, x=x) if not self.__mouse_dragging and Geometry.distance(mouse_position_f, point_f) > 8: self.__mouse_dragging = True self.__drag_started(self.__mouse_item, x, y, modifiers) # once a drag starts, mouse release will not be called; call it here instead self.mouse_released(x, y, modifiers) return True return super().mouse_position_changed(x, y, modifiers) def key_pressed(self, key: UserInterface.Key) -> bool: if key.is_delete: self.__delete() return True if key.is_up_arrow: self.__adjust_selection("up", key.modifiers.shift) return True if key.is_down_arrow: self.__adjust_selection("down", key.modifiers.shift) return True return super().key_pressed(key) def handle_select_all(self) -> bool: self.__adjust_selection("all", False) return True
39.712963
147
0.671019
79420c4f6ac17b9af0afd3ab60d5c30154187af6
193
py
Python
flegeapp/flegeapp/doctype/pflege_patient/pflege_patient.py
oderao/flegeapp
5fa7ea17feb271bd84dffe45a58278a4b35813f2
[ "MIT" ]
1
2022-03-16T18:15:48.000Z
2022-03-16T18:15:48.000Z
flegeapp/flegeapp/doctype/pflege_patient/pflege_patient.py
oderao/flegeapp
5fa7ea17feb271bd84dffe45a58278a4b35813f2
[ "MIT" ]
null
null
null
flegeapp/flegeapp/doctype/pflege_patient/pflege_patient.py
oderao/flegeapp
5fa7ea17feb271bd84dffe45a58278a4b35813f2
[ "MIT" ]
null
null
null
# Copyright (c) 2021, Flege and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class PflegePatient(Document): pass
21.444444
49
0.792746
79420c905a93f413c5e25fd6ece77a65862cbc2a
718
py
Python
afm/reaction.py
lily90502/AutoFragmentModeling
c18b65e57d311c416121bdd5325bc8cae522cb55
[ "MIT" ]
3
2019-09-25T16:35:04.000Z
2021-03-16T13:15:46.000Z
afm/reaction.py
lily90502/AutoFragmentModeling
c18b65e57d311c416121bdd5325bc8cae522cb55
[ "MIT" ]
1
2019-08-29T14:13:55.000Z
2019-08-29T14:13:55.000Z
afm/reaction.py
lily90502/AutoFragmentModeling
c18b65e57d311c416121bdd5325bc8cae522cb55
[ "MIT" ]
2
2020-05-25T14:41:24.000Z
2021-04-09T06:32:17.000Z
class FragmentReaction(object): def __init__(self, index=-1, reactants=None, products=None, kinetics=None, reversible=False, pairs=None, family=None, reaction_repr=None ): self.index = index self.reactants = reactants self.products = products self.kinetics = kinetics self.reversible = reversible self.pairs = pairs self.family = family self.reaction_repr = reaction_repr def __str__(self): """ Return a string representation of the reaction, in the form 'A + B <=> C + D'. """ arrow = ' <=> ' if not self.reversible: arrow = ' => ' return arrow.join([' + '.join([str(s) for s in self.reactants]), ' + '.join([str(s) for s in self.products])])
22.4375
112
0.640669
79420d6f30388d7e7c26edf7699284fec6ee827f
48,020
py
Python
tests/components/samsungtv/test_config_flow.py
rklomp/home-assistant-core
e7b05ef452dc574a209bbbb79d008e1c85a807a7
[ "Apache-2.0" ]
null
null
null
tests/components/samsungtv/test_config_flow.py
rklomp/home-assistant-core
e7b05ef452dc574a209bbbb79d008e1c85a807a7
[ "Apache-2.0" ]
15
2021-11-23T16:10:30.000Z
2022-03-31T06:25:27.000Z
tests/components/samsungtv/test_config_flow.py
rklomp/home-assistant-core
e7b05ef452dc574a209bbbb79d008e1c85a807a7
[ "Apache-2.0" ]
null
null
null
"""Tests for Samsung TV config flow.""" import socket from unittest.mock import Mock, PropertyMock, call, patch from samsungctl.exceptions import AccessDenied, UnhandledResponse from samsungtvws.exceptions import ConnectionFailure, HttpApiError from websocket import WebSocketException, WebSocketProtocolException from homeassistant import config_entries from homeassistant.components import dhcp, zeroconf from homeassistant.components.samsungtv.const import ( CONF_MANUFACTURER, CONF_MODEL, DEFAULT_MANUFACTURER, DOMAIN, LEGACY_PORT, METHOD_LEGACY, METHOD_WEBSOCKET, RESULT_AUTH_MISSING, RESULT_CANNOT_CONNECT, RESULT_NOT_SUPPORTED, RESULT_UNKNOWN_HOST, TIMEOUT_REQUEST, TIMEOUT_WEBSOCKET, ) from homeassistant.components.ssdp import ( ATTR_SSDP_LOCATION, ATTR_UPNP_FRIENDLY_NAME, ATTR_UPNP_MANUFACTURER, ATTR_UPNP_MODEL_NAME, ATTR_UPNP_UDN, ) from homeassistant.const import ( CONF_HOST, CONF_ID, CONF_IP_ADDRESS, CONF_MAC, CONF_METHOD, CONF_NAME, CONF_PORT, CONF_TOKEN, ) from homeassistant.core import HomeAssistant from homeassistant.setup import async_setup_component from tests.common import MockConfigEntry from tests.components.samsungtv.conftest import ( RESULT_ALREADY_CONFIGURED, RESULT_ALREADY_IN_PROGRESS, ) MOCK_IMPORT_DATA = { CONF_HOST: "fake_host", CONF_NAME: "fake", CONF_PORT: 55000, } MOCK_IMPORT_DATA_WITHOUT_NAME = { CONF_HOST: "fake_host", } MOCK_IMPORT_WSDATA = { CONF_HOST: "fake_host", CONF_NAME: "fake", CONF_PORT: 8002, } MOCK_USER_DATA = {CONF_HOST: "fake_host", CONF_NAME: "fake_name"} MOCK_SSDP_DATA = { ATTR_SSDP_LOCATION: "https://fake_host:12345/test", ATTR_UPNP_FRIENDLY_NAME: "[TV] fake_name", ATTR_UPNP_MANUFACTURER: "Samsung fake_manufacturer", ATTR_UPNP_MODEL_NAME: "fake_model", ATTR_UPNP_UDN: "uuid:0d1cef00-00dc-1000-9c80-4844f7b172de", } MOCK_SSDP_DATA_NOPREFIX = { ATTR_SSDP_LOCATION: "http://fake2_host:12345/test", ATTR_UPNP_FRIENDLY_NAME: "fake2_name", ATTR_UPNP_MANUFACTURER: "Samsung fake2_manufacturer", ATTR_UPNP_MODEL_NAME: "fake2_model", ATTR_UPNP_UDN: "uuid:0d1cef00-00dc-1000-9c80-4844f7b172df", } MOCK_SSDP_DATA_WRONGMODEL = { ATTR_SSDP_LOCATION: "http://fake2_host:12345/test", ATTR_UPNP_FRIENDLY_NAME: "fake2_name", ATTR_UPNP_MANUFACTURER: "fake2_manufacturer", ATTR_UPNP_MODEL_NAME: "HW-Qfake", ATTR_UPNP_UDN: "uuid:0d1cef00-00dc-1000-9c80-4844f7b172df", } MOCK_DHCP_DATA = dhcp.DhcpServiceInfo( ip="fake_host", macaddress="aa:bb:cc:dd:ee:ff", hostname="fake_hostname" ) EXISTING_IP = "192.168.40.221" MOCK_ZEROCONF_DATA = zeroconf.ZeroconfServiceInfo( host="fake_host", port=1234, properties={ "deviceid": "aa:bb:cc:dd:ee:ff", "manufacturer": "fake_manufacturer", "model": "fake_model", "serialNumber": "fake_serial", }, ) MOCK_OLD_ENTRY = { CONF_HOST: "fake_host", CONF_ID: "0d1cef00-00dc-1000-9c80-4844f7b172de_old", CONF_IP_ADDRESS: EXISTING_IP, CONF_METHOD: "legacy", CONF_PORT: None, } MOCK_LEGACY_ENTRY = { CONF_HOST: EXISTING_IP, CONF_ID: "0d1cef00-00dc-1000-9c80-4844f7b172de_old", CONF_METHOD: "legacy", CONF_PORT: None, } MOCK_WS_ENTRY = { CONF_HOST: "fake_host", CONF_METHOD: METHOD_WEBSOCKET, CONF_PORT: 8002, CONF_MODEL: "any", CONF_NAME: "any", } MOCK_DEVICE_INFO = { "device": { "type": "Samsung SmartTV", "name": "fake_name", "modelName": "fake_model", }, "id": "123", } MOCK_DEVICE_INFO_2 = { "device": { "type": "Samsung SmartTV", "name": "fake2_name", "modelName": "fake2_model", }, "id": "345", } AUTODETECT_LEGACY = { "name": "HomeAssistant", "description": "HomeAssistant", "id": "ha.component.samsung", "method": "legacy", "port": None, "host": "fake_host", "timeout": TIMEOUT_REQUEST, } AUTODETECT_WEBSOCKET_PLAIN = { "host": "fake_host", "name": "HomeAssistant", "port": 8001, "timeout": TIMEOUT_REQUEST, "token": None, } AUTODETECT_WEBSOCKET_SSL = { "host": "fake_host", "name": "HomeAssistant", "port": 8002, "timeout": TIMEOUT_REQUEST, "token": None, } DEVICEINFO_WEBSOCKET_SSL = { "host": "fake_host", "name": "HomeAssistant", "port": 8002, "timeout": TIMEOUT_WEBSOCKET, "token": "123456789", } async def test_user_legacy(hass: HomeAssistant, remote: Mock): """Test starting a flow by user.""" # show form result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input=MOCK_USER_DATA ) # legacy tv entry created assert result["type"] == "create_entry" assert result["title"] == "fake_name" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "fake_name" assert result["data"][CONF_METHOD] == "legacy" assert result["data"][CONF_MANUFACTURER] == DEFAULT_MANUFACTURER assert result["data"][CONF_MODEL] is None assert result["result"].unique_id is None async def test_user_websocket(hass: HomeAssistant, remotews: Mock): """Test starting a flow by user.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom") ): # show form result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input=MOCK_USER_DATA ) # websocket tv entry created assert result["type"] == "create_entry" assert result["title"] == "Living Room (82GXARRS)" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "Living Room" assert result["data"][CONF_METHOD] == "websocket" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["data"][CONF_MODEL] == "82GXARRS" assert result["result"].unique_id == "be9554b9-c9fb-41f4-8920-22da015376a4" async def test_user_legacy_missing_auth( hass: HomeAssistant, remote: Mock, remotews: Mock ): """Test starting a flow by user with authentication.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=AccessDenied("Boom"), ): # legacy device missing authentication result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_AUTH_MISSING async def test_user_legacy_not_supported(hass: HomeAssistant, remote: Mock): """Test starting a flow by user for not supported device.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=UnhandledResponse("Boom"), ): # legacy device not supported result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED async def test_user_websocket_not_supported(hass: HomeAssistant, remotews: Mock): """Test starting a flow by user for not supported device.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=WebSocketProtocolException("Boom"), ): # websocket device not supported result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED async def test_user_not_successful(hass: HomeAssistant, remotews: Mock): """Test starting a flow by user but no connection found.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=OSError("Boom"), ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_CANNOT_CONNECT async def test_user_not_successful_2(hass: HomeAssistant, remotews: Mock): """Test starting a flow by user but no connection found.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=ConnectionFailure("Boom"), ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_CANNOT_CONNECT async def test_ssdp(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery.""" with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO, ), patch("getmac.get_mac_address", return_value="aa:bb:cc:dd:ee:ff"): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "create_entry" assert result["title"] == "fake_name (fake_model)" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "fake_name" assert result["data"][CONF_MANUFACTURER] == "Samsung fake_manufacturer" assert result["data"][CONF_MODEL] == "fake_model" assert result["result"].unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_ssdp_noprefix(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery without prefixes.""" with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO_2, ), patch("getmac.get_mac_address", return_value="aa:bb:cc:dd:ee:ff"): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA_NOPREFIX, ) assert result["type"] == "form" assert result["step_id"] == "confirm" with patch( "homeassistant.components.samsungtv.bridge.Remote.__enter__", return_value=True, ): # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "create_entry" assert result["title"] == "fake2_name (fake2_model)" assert result["data"][CONF_HOST] == "fake2_host" assert result["data"][CONF_NAME] == "fake2_name" assert result["data"][CONF_MANUFACTURER] == "Samsung fake2_manufacturer" assert result["data"][CONF_MODEL] == "fake2_model" assert result["result"].unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172df" async def test_ssdp_legacy_missing_auth( hass: HomeAssistant, remote: Mock, remotews: Mock ): """Test starting a flow from discovery with authentication.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=AccessDenied("Boom"), ): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" # missing authentication with patch( "homeassistant.components.samsungtv.bridge.SamsungTVLegacyBridge.try_connect", return_value=RESULT_AUTH_MISSING, ): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "abort" assert result["reason"] == RESULT_AUTH_MISSING async def test_ssdp_legacy_not_supported( hass: HomeAssistant, remote: Mock, remotews: Mock ): """Test starting a flow from discovery for not supported device.""" # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" with patch( "homeassistant.components.samsungtv.bridge.SamsungTVLegacyBridge.try_connect", return_value=RESULT_NOT_SUPPORTED, ): # device not supported result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED async def test_ssdp_websocket_success_populates_mac_address( hass: HomeAssistant, remote: Mock, remotews: Mock, ): """Test starting a flow from ssdp for a supported device populates the mac.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "create_entry" assert result["title"] == "Living Room (82GXARRS)" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "Living Room" assert result["data"][CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert result["data"][CONF_MANUFACTURER] == "Samsung fake_manufacturer" assert result["data"][CONF_MODEL] == "82GXARRS" assert result["result"].unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_ssdp_websocket_not_supported(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery for not supported device.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=WebSocketProtocolException("Boom"), ): # device not supported result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED async def test_ssdp_model_not_supported(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery.""" # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA_WRONGMODEL, ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED async def test_ssdp_not_successful( hass: HomeAssistant, remote: Mock, no_mac_address: Mock ): """Test starting a flow from discovery but no device found.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO, ): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" # device not found result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "abort" assert result["reason"] == RESULT_CANNOT_CONNECT async def test_ssdp_not_successful_2( hass: HomeAssistant, remote: Mock, no_mac_address: Mock ): """Test starting a flow from discovery but no device found.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=ConnectionFailure("Boom"), ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO, ): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" # device not found result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "abort" assert result["reason"] == RESULT_CANNOT_CONNECT async def test_ssdp_already_in_progress(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery twice.""" with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO, ), patch("getmac.get_mac_address", return_value="aa:bb:cc:dd:ee:ff"): # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" # failed as already in progress result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_ALREADY_IN_PROGRESS async def test_ssdp_already_configured(hass: HomeAssistant, remote: Mock): """Test starting a flow from discovery when already configured.""" with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWSBridge.device_info", return_value=MOCK_DEVICE_INFO, ), patch("getmac.get_mac_address", return_value="aa:bb:cc:dd:ee:ff"): # entry was added result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" entry = result["result"] assert entry.data[CONF_MANUFACTURER] == DEFAULT_MANUFACTURER assert entry.data[CONF_MODEL] is None assert entry.unique_id is None # failed as already configured result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result2["type"] == "abort" assert result2["reason"] == RESULT_ALREADY_CONFIGURED # check updated device info assert entry.unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_import_legacy(hass: HomeAssistant, remote: Mock): """Test importing from yaml with hostname.""" with patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ), patch("getmac.get_mac_address", return_value="aa:bb:cc:dd:ee:ff"): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT_DATA, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "fake" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "fake" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["result"].unique_id is None entries = hass.config_entries.async_entries(DOMAIN) assert len(entries) == 1 assert entries[0].data[CONF_METHOD] == METHOD_LEGACY assert entries[0].data[CONF_PORT] == LEGACY_PORT async def test_import_legacy_without_name( hass: HomeAssistant, remote: Mock, remotews_no_device_info: Mock, no_mac_address: Mock, ): """Test importing from yaml without a name.""" with patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT_DATA_WITHOUT_NAME, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["result"].unique_id is None entries = hass.config_entries.async_entries(DOMAIN) assert len(entries) == 1 assert entries[0].data[CONF_METHOD] == METHOD_LEGACY assert entries[0].data[CONF_PORT] == LEGACY_PORT async def test_import_websocket(hass: HomeAssistant, remotews: Mock): """Test importing from yaml with hostname.""" with patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT_WSDATA, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "fake" assert result["data"][CONF_METHOD] == METHOD_WEBSOCKET assert result["data"][CONF_PORT] == 8002 assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "fake" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["result"].unique_id is None async def test_import_websocket_without_port(hass: HomeAssistant, remotews: Mock): """Test importing from yaml with hostname by no port.""" with patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT_WSDATA, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "fake" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "fake" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["result"].unique_id is None entries = hass.config_entries.async_entries(DOMAIN) assert len(entries) == 1 assert entries[0].data[CONF_METHOD] == METHOD_WEBSOCKET assert entries[0].data[CONF_PORT] == 8002 async def test_import_unknown_host(hass: HomeAssistant, remotews: Mock): """Test importing from yaml with hostname that does not resolve.""" with patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", side_effect=socket.gaierror, ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT_DATA, ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == RESULT_UNKNOWN_HOST async def test_dhcp(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test starting a flow from dhcp.""" # confirm to add the entry result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=MOCK_DHCP_DATA, ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == "confirm" # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "create_entry" assert result["title"] == "Living Room (82GXARRS)" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "Living Room" assert result["data"][CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["data"][CONF_MODEL] == "82GXARRS" assert result["result"].unique_id == "be9554b9-c9fb-41f4-8920-22da015376a4" async def test_zeroconf(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test starting a flow from zeroconf.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == "confirm" # entry was added result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input="whatever" ) assert result["type"] == "create_entry" assert result["title"] == "Living Room (82GXARRS)" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_NAME] == "Living Room" assert result["data"][CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert result["data"][CONF_MANUFACTURER] == "Samsung" assert result["data"][CONF_MODEL] == "82GXARRS" assert result["result"].unique_id == "be9554b9-c9fb-41f4-8920-22da015376a4" async def test_zeroconf_ignores_soundbar(hass: HomeAssistant, remotews_soundbar: Mock): """Test starting a flow from zeroconf where the device is actually a soundbar.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "not_supported" async def test_zeroconf_no_device_info( hass: HomeAssistant, remote: Mock, remotews_no_device_info: Mock ): """Test starting a flow from zeroconf where device_info returns None.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "not_supported" async def test_zeroconf_and_dhcp_same_time(hass: HomeAssistant, remotews: Mock): """Test starting a flow from zeroconf and dhcp.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=MOCK_DHCP_DATA, ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == "confirm" result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "already_in_progress" async def test_autodetect_websocket(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test for send key with autodetection of protocol.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS" ) as remotews: enter = Mock() type(enter).token = PropertyMock(return_value="123456789") remote = Mock() remote.__enter__ = Mock(return_value=enter) remote.__exit__ = Mock(return_value=False) remote.rest_device_info.return_value = { "id": "uuid:be9554b9-c9fb-41f4-8920-22da015376a4", "device": { "modelName": "82GXARRS", "networkType": "wireless", "wifiMac": "aa:bb:cc:dd:ee:ff", "udn": "uuid:be9554b9-c9fb-41f4-8920-22da015376a4", "mac": "aa:bb:cc:dd:ee:ff", "name": "[TV] Living Room", "type": "Samsung SmartTV", }, } remotews.return_value = remote result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert result["data"][CONF_METHOD] == "websocket" assert result["data"][CONF_TOKEN] == "123456789" assert remotews.call_count == 2 assert remotews.call_args_list == [ call(**AUTODETECT_WEBSOCKET_SSL), call(**DEVICEINFO_WEBSOCKET_SSL), ] await hass.async_block_till_done() entries = hass.config_entries.async_entries(DOMAIN) assert len(entries) == 1 assert entries[0].data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" async def test_websocket_no_mac(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test for send key with autodetection of protocol.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ), patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ), patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS" ) as remotews, patch( "getmac.get_mac_address", return_value="gg:hh:ii:ll:mm:nn" ): enter = Mock() type(enter).token = PropertyMock(return_value="123456789") remote = Mock() remote.__enter__ = Mock(return_value=enter) remote.__exit__ = Mock(return_value=False) remote.rest_device_info.return_value = { "id": "uuid:be9554b9-c9fb-41f4-8920-22da015376a4", "device": { "modelName": "82GXARRS", "networkType": "lan", "udn": "uuid:be9554b9-c9fb-41f4-8920-22da015376a4", "name": "[TV] Living Room", "type": "Samsung SmartTV", }, } remotews.return_value = remote result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert result["data"][CONF_METHOD] == "websocket" assert result["data"][CONF_TOKEN] == "123456789" assert result["data"][CONF_MAC] == "gg:hh:ii:ll:mm:nn" assert remotews.call_count == 2 assert remotews.call_args_list == [ call(**AUTODETECT_WEBSOCKET_SSL), call(**DEVICEINFO_WEBSOCKET_SSL), ] await hass.async_block_till_done() entries = hass.config_entries.async_entries(DOMAIN) assert len(entries) == 1 assert entries[0].data[CONF_MAC] == "gg:hh:ii:ll:mm:nn" async def test_autodetect_auth_missing(hass: HomeAssistant, remote: Mock): """Test for send key with autodetection of protocol.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=[AccessDenied("Boom")], ) as remote, patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_AUTH_MISSING assert remote.call_count == 1 assert remote.call_args_list == [call(AUTODETECT_LEGACY)] async def test_autodetect_not_supported(hass: HomeAssistant, remote: Mock): """Test for send key with autodetection of protocol.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=[UnhandledResponse("Boom")], ) as remote, patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_NOT_SUPPORTED assert remote.call_count == 1 assert remote.call_args_list == [call(AUTODETECT_LEGACY)] async def test_autodetect_legacy(hass: HomeAssistant, remote: Mock): """Test for send key with autodetection of protocol.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert result["data"][CONF_METHOD] == "legacy" assert result["data"][CONF_NAME] == "fake_name" assert result["data"][CONF_MAC] is None assert result["data"][CONF_PORT] == LEGACY_PORT async def test_autodetect_none(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test for send key with autodetection of protocol.""" with patch( "homeassistant.components.samsungtv.bridge.Remote", side_effect=OSError("Boom"), ) as remote, patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=OSError("Boom"), ) as remotews, patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_CANNOT_CONNECT assert remote.call_count == 1 assert remote.call_args_list == [ call(AUTODETECT_LEGACY), ] assert remotews.call_count == 2 assert remotews.call_args_list == [ call(**AUTODETECT_WEBSOCKET_SSL), call(**AUTODETECT_WEBSOCKET_PLAIN), ] async def test_update_old_entry(hass: HomeAssistant, remote: Mock, remotews: Mock): """Test update of old entry.""" with patch("homeassistant.components.samsungtv.bridge.Remote") as remote: remote().rest_device_info.return_value = { "device": { "modelName": "fake_model2", "name": "[TV] Fake Name", "udn": "uuid:fake_serial", } } entry = MockConfigEntry(domain=DOMAIN, data=MOCK_OLD_ENTRY) entry.add_to_hass(hass) config_entries_domain = hass.config_entries.async_entries(DOMAIN) assert len(config_entries_domain) == 1 assert entry is config_entries_domain[0] assert entry.data[CONF_ID] == "0d1cef00-00dc-1000-9c80-4844f7b172de_old" assert entry.data[CONF_IP_ADDRESS] == EXISTING_IP assert not entry.unique_id assert await async_setup_component(hass, DOMAIN, {}) is True await hass.async_block_till_done() # failed as already configured result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == "abort" assert result["reason"] == RESULT_ALREADY_CONFIGURED config_entries_domain = hass.config_entries.async_entries(DOMAIN) assert len(config_entries_domain) == 1 entry2 = config_entries_domain[0] # check updated device info assert entry2.data.get(CONF_ID) is not None assert entry2.data.get(CONF_IP_ADDRESS) is not None assert entry2.unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_update_missing_mac_unique_id_added_from_dhcp(hass, remotews: Mock): """Test missing mac and unique id added.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_OLD_ENTRY, unique_id=None) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=MOCK_DHCP_DATA, ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id == "be9554b9-c9fb-41f4-8920-22da015376a4" async def test_update_missing_mac_unique_id_added_from_zeroconf(hass, remotews: Mock): """Test missing mac and unique id added.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_OLD_ENTRY, unique_id=None) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id == "be9554b9-c9fb-41f4-8920-22da015376a4" async def test_update_missing_mac_unique_id_added_from_ssdp(hass, remotews: Mock): """Test missing mac and unique id added via ssdp.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_OLD_ENTRY, unique_id=None) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data=MOCK_SSDP_DATA, ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_update_missing_mac_added_unique_id_preserved_from_zeroconf( hass, remotews: Mock ): """Test missing mac and unique id added.""" entry = MockConfigEntry( domain=DOMAIN, data=MOCK_OLD_ENTRY, unique_id="0d1cef00-00dc-1000-9c80-4844f7b172de", ) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=MOCK_ZEROCONF_DATA, ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_update_legacy_missing_mac_from_dhcp(hass, remote: Mock): """Test missing mac added.""" entry = MockConfigEntry( domain=DOMAIN, data=MOCK_LEGACY_ENTRY, unique_id="0d1cef00-00dc-1000-9c80-4844f7b172de", ) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=dhcp.DhcpServiceInfo( ip=EXISTING_IP, macaddress="aa:bb:cc:dd:ee:ff", hostname="fake_hostname" ), ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id == "0d1cef00-00dc-1000-9c80-4844f7b172de" async def test_update_legacy_missing_mac_from_dhcp_no_unique_id(hass, remote: Mock): """Test missing mac added when there is no unique id.""" entry = MockConfigEntry( domain=DOMAIN, data=MOCK_LEGACY_ENTRY, ) entry.add_to_hass(hass) with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS.rest_device_info", side_effect=HttpApiError, ), patch( "homeassistant.components.samsungtv.bridge.Remote.__enter__", return_value=True, ), patch( "homeassistant.components.samsungtv.async_setup", return_value=True, ) as mock_setup, patch( "homeassistant.components.samsungtv.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=dhcp.DhcpServiceInfo( ip=EXISTING_IP, macaddress="aa:bb:cc:dd:ee:ff", hostname="fake_hostname" ), ) await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result["type"] == "abort" assert result["reason"] == "not_supported" assert entry.data[CONF_MAC] == "aa:bb:cc:dd:ee:ff" assert entry.unique_id is None async def test_form_reauth_legacy(hass, remote: Mock): """Test reauthenticate legacy.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_OLD_ENTRY) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"entry_id": entry.entry_id, "source": config_entries.SOURCE_REAUTH}, data=entry.data, ) assert result["type"] == "form" assert result["errors"] == {} result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "reauth_successful" async def test_form_reauth_websocket(hass, remotews: Mock): """Test reauthenticate websocket.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_WS_ENTRY) entry.add_to_hass(hass) assert entry.state == config_entries.ConfigEntryState.NOT_LOADED result = await hass.config_entries.flow.async_init( DOMAIN, context={"entry_id": entry.entry_id, "source": config_entries.SOURCE_REAUTH}, data=entry.data, ) assert result["type"] == "form" assert result["errors"] == {} result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "reauth_successful" assert entry.state == config_entries.ConfigEntryState.LOADED async def test_form_reauth_websocket_cannot_connect(hass, remotews: Mock): """Test reauthenticate websocket when we cannot connect on the first attempt.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_WS_ENTRY) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"entry_id": entry.entry_id, "source": config_entries.SOURCE_REAUTH}, data=entry.data, ) assert result["type"] == "form" assert result["errors"] == {} with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=ConnectionFailure, ), patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["errors"] == {"base": RESULT_AUTH_MISSING} result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result3["type"] == "abort" assert result3["reason"] == "reauth_successful" async def test_form_reauth_websocket_not_supported(hass, remotews: Mock): """Test reauthenticate websocket when the device is not supported.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_WS_ENTRY) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"entry_id": entry.entry_id, "source": config_entries.SOURCE_REAUTH}, data=entry.data, ) assert result["type"] == "form" assert result["errors"] == {} with patch( "homeassistant.components.samsungtv.bridge.SamsungTVWS", side_effect=WebSocketException, ), patch( "homeassistant.components.samsungtv.config_flow.socket.gethostbyname", return_value="fake_host", ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "not_supported"
37.081081
90
0.66414
79420e8e6de3c6320ac6bbcfa2354afd7b8779fd
21
py
Python
tests/__init__.py
radiasoft/opal
28fe320c0b9f9d65e78a95df59daa5126304b184
[ "Apache-2.0" ]
1
2017-04-27T12:59:52.000Z
2017-04-27T12:59:52.000Z
tests/interpolaters_depositers/__init__.py
radiasoft/opal
28fe320c0b9f9d65e78a95df59daa5126304b184
[ "Apache-2.0" ]
null
null
null
tests/interpolaters_depositers/__init__.py
radiasoft/opal
28fe320c0b9f9d65e78a95df59daa5126304b184
[ "Apache-2.0" ]
null
null
null
__author__ = 'swebb'
10.5
20
0.714286
79420f9fb31348502c2e70ea073a43f4881c43e5
1,221
py
Python
build/mbf_simple_nav/catkin_generated/pkg.develspace.context.pc.py
6RiverSystems/darknet_ros
03c72b96afa99f7cc75f7792b51deb4a7f4ed379
[ "BSD-3-Clause" ]
null
null
null
build/mbf_simple_nav/catkin_generated/pkg.develspace.context.pc.py
6RiverSystems/darknet_ros
03c72b96afa99f7cc75f7792b51deb4a7f4ed379
[ "BSD-3-Clause" ]
null
null
null
build/mbf_simple_nav/catkin_generated/pkg.develspace.context.pc.py
6RiverSystems/darknet_ros
03c72b96afa99f7cc75f7792b51deb4a7f4ed379
[ "BSD-3-Clause" ]
null
null
null
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/kalyco/mfp_workspace/src/move_base_flex/mbf_simple_nav/include;/usr/include".split(';') if "/home/kalyco/mfp_workspace/src/move_base_flex/mbf_simple_nav/include;/usr/include" != "" else [] PROJECT_CATKIN_DEPENDS = "actionlib;actionlib_msgs;dynamic_reconfigure;geometry_msgs;mbf_abstract_nav;mbf_msgs;mbf_abstract_core;nav_msgs;pluginlib;roscpp;std_msgs;std_srvs;tf;tf2;tf2_ros".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lmbf_simple_server;/usr/lib/x86_64-linux-gnu/libboost_thread.so;/usr/lib/x86_64-linux-gnu/libboost_chrono.so;/usr/lib/x86_64-linux-gnu/libboost_system.so;/usr/lib/x86_64-linux-gnu/libboost_date_time.so;/usr/lib/x86_64-linux-gnu/libboost_atomic.so".split(';') if "-lmbf_simple_server;/usr/lib/x86_64-linux-gnu/libboost_thread.so;/usr/lib/x86_64-linux-gnu/libboost_chrono.so;/usr/lib/x86_64-linux-gnu/libboost_system.so;/usr/lib/x86_64-linux-gnu/libboost_date_time.so;/usr/lib/x86_64-linux-gnu/libboost_atomic.so" != "" else [] PROJECT_NAME = "mbf_simple_nav" PROJECT_SPACE_DIR = "/home/kalyco/mfp_workspace/devel/.private/mbf_simple_nav" PROJECT_VERSION = "0.2.4"
135.666667
562
0.812449
7942105450bf1ddce7294bffb107b17bebb5056a
19,229
py
Python
tf_slim/data/tfexample_decoder.py
englertbruno/tf-slim
d0eb4075a8e18b8c29004dd5eb3035c36a8d9784
[ "Apache-2.0" ]
9
2020-04-21T12:31:23.000Z
2020-11-20T15:07:29.000Z
tf_slim/data/tfexample_decoder.py
englertbruno/tf-slim
d0eb4075a8e18b8c29004dd5eb3035c36a8d9784
[ "Apache-2.0" ]
1
2020-11-23T07:38:07.000Z
2020-11-23T07:38:07.000Z
tf_slim/data/tfexample_decoder.py
englertbruno/tf-slim
d0eb4075a8e18b8c29004dd5eb3035c36a8d9784
[ "Apache-2.0" ]
3
2020-05-08T02:55:11.000Z
2021-12-10T07:16:28.000Z
# coding=utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the TFExampleDecoder its associated helper classes. The TFExampleDecode is a DataDecoder used to decode TensorFlow Example protos. In order to do so each requested item must be paired with one or more Example features that are parsed to produce the Tensor-based manifestation of the item. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tf_slim.data import data_decoder # pylint:disable=g-direct-tensorflow-import from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops # pylint:enable=g-direct-tensorflow-import @six.add_metaclass(abc.ABCMeta) class ItemHandler(object): """Specifies the item-to-Features mapping for tf.parse_example. An ItemHandler both specifies a list of Features used for parsing an Example proto as well as a function that post-processes the results of Example parsing. """ def __init__(self, keys): """Constructs the handler with the name of the tf.train.Feature keys to use. Args: keys: the name of the TensorFlow Example Feature. """ if not isinstance(keys, (tuple, list)): keys = [keys] self._keys = keys @property def keys(self): return self._keys @abc.abstractmethod def tensors_to_item(self, keys_to_tensors): """Maps the given dictionary of tensors to the requested item. Args: keys_to_tensors: a mapping of TF-Example keys to parsed tensors. Returns: the final tensor representing the item being handled. """ pass class ItemHandlerCallback(ItemHandler): """An ItemHandler that converts the parsed tensors via a given function. Unlike other ItemHandlers, the ItemHandlerCallback resolves its item via a callback function rather than using prespecified behavior. """ def __init__(self, keys, func): """Initializes the ItemHandler. Args: keys: a list of TF-Example keys. func: a function that takes as an argument a dictionary from `keys` to parsed Tensors. """ super(ItemHandlerCallback, self).__init__(keys) self._func = func def tensors_to_item(self, keys_to_tensors): return self._func(keys_to_tensors) class BoundingBox(ItemHandler): """An ItemHandler that concatenates a set of parsed Tensors to Bounding Boxes. """ def __init__(self, keys=None, prefix=''): """Initialize the bounding box handler. Args: keys: A list of four key names representing the ymin, xmin, ymax, mmax prefix: An optional prefix for each of the bounding box keys. If provided, `prefix` is appended to each key in `keys`. Raises: ValueError: if keys is not `None` and also not a list of exactly 4 keys """ if keys is None: keys = ['ymin', 'xmin', 'ymax', 'xmax'] elif len(keys) != 4: raise ValueError('BoundingBox expects 4 keys but got {}'.format( len(keys))) self._prefix = prefix self._keys = keys self._full_keys = [prefix + k for k in keys] super(BoundingBox, self).__init__(self._full_keys) def tensors_to_item(self, keys_to_tensors): """Maps the given dictionary of tensors to a concatenated list of bboxes. Args: keys_to_tensors: a mapping of TF-Example keys to parsed tensors. Returns: [num_boxes, 4] tensor of bounding box coordinates, i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max]. """ sides = [] for key in self._full_keys: side = keys_to_tensors[key] if isinstance(side, sparse_tensor.SparseTensor): side = side.values side = array_ops.expand_dims(side, 0) sides.append(side) bounding_box = array_ops.concat(sides, 0) return array_ops.transpose(bounding_box) class Tensor(ItemHandler): """An ItemHandler that returns a parsed Tensor.""" def __init__(self, tensor_key, shape_keys=None, shape=None, default_value=0): """Initializes the Tensor handler. Tensors are, by default, returned without any reshaping. However, there are two mechanisms which allow reshaping to occur at load time. If `shape_keys` is provided, both the `Tensor` corresponding to `tensor_key` and `shape_keys` is loaded and the former `Tensor` is reshaped with the values of the latter. Alternatively, if a fixed `shape` is provided, the `Tensor` corresponding to `tensor_key` is loaded and reshape appropriately. If neither `shape_keys` nor `shape` are provided, the `Tensor` will be returned without any reshaping. Args: tensor_key: the name of the `TFExample` feature to read the tensor from. shape_keys: Optional name or list of names of the TF-Example feature in which the tensor shape is stored. If a list, then each corresponds to one dimension of the shape. shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is reshaped accordingly. default_value: The value used when the `tensor_key` is not found in a particular `TFExample`. Raises: ValueError: if both `shape_keys` and `shape` are specified. """ if shape_keys and shape is not None: raise ValueError('Cannot specify both shape_keys and shape parameters.') if shape_keys and not isinstance(shape_keys, list): shape_keys = [shape_keys] self._tensor_key = tensor_key self._shape_keys = shape_keys self._shape = shape self._default_value = default_value keys = [tensor_key] if shape_keys: keys.extend(shape_keys) super(Tensor, self).__init__(keys) def tensors_to_item(self, keys_to_tensors): tensor = keys_to_tensors[self._tensor_key] shape = self._shape if self._shape_keys: shape_dims = [] for k in self._shape_keys: shape_dim = keys_to_tensors[k] if isinstance(shape_dim, sparse_tensor.SparseTensor): shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim) shape_dims.append(shape_dim) shape = array_ops.reshape(array_ops.stack(shape_dims), [-1]) if isinstance(tensor, sparse_tensor.SparseTensor): if shape is not None: tensor = sparse_ops.sparse_reshape(tensor, shape) tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value) else: if shape is not None: tensor = array_ops.reshape(tensor, shape) return tensor class LookupTensor(Tensor): """An ItemHandler that returns a parsed Tensor, the result of a lookup.""" def __init__(self, tensor_key, table, shape_keys=None, shape=None, default_value=''): """Initializes the LookupTensor handler. See Tensor. Simply calls a vocabulary (most often, a label mapping) lookup. Args: tensor_key: the name of the `TFExample` feature to read the tensor from. table: A tf.lookup table. shape_keys: Optional name or list of names of the TF-Example feature in which the tensor shape is stored. If a list, then each corresponds to one dimension of the shape. shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is reshaped accordingly. default_value: The value used when the `tensor_key` is not found in a particular `TFExample`. Raises: ValueError: if both `shape_keys` and `shape` are specified. """ self._table = table super(LookupTensor, self).__init__(tensor_key, shape_keys, shape, default_value) def tensors_to_item(self, keys_to_tensors): unmapped_tensor = super(LookupTensor, self).tensors_to_item(keys_to_tensors) return self._table.lookup(unmapped_tensor) class BackupHandler(ItemHandler): """An ItemHandler that tries two ItemHandlers in order.""" def __init__(self, handler, backup): """Initializes the BackupHandler handler. If the first Handler's tensors_to_item returns a Tensor with no elements, the second Handler is used. Args: handler: The primary ItemHandler. backup: The backup ItemHandler. Raises: ValueError: if either is not an ItemHandler. """ if not isinstance(handler, ItemHandler): raise ValueError('Primary handler is of type %s instead of ItemHandler' % type(handler)) if not isinstance(backup, ItemHandler): raise ValueError('Backup handler is of type %s instead of ItemHandler' % type(backup)) self._handler = handler self._backup = backup super(BackupHandler, self).__init__(handler.keys + backup.keys) def tensors_to_item(self, keys_to_tensors): item = self._handler.tensors_to_item(keys_to_tensors) return control_flow_ops.cond( pred=math_ops.equal(math_ops.reduce_prod(array_ops.shape(item)), 0), true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors), false_fn=lambda: item) class SparseTensor(ItemHandler): """An ItemHandler for SparseTensors.""" def __init__(self, indices_key=None, values_key=None, shape_key=None, shape=None, densify=False, default_value=0): """Initializes the Tensor handler. Args: indices_key: the name of the TF-Example feature that contains the ids. Defaults to 'indices'. values_key: the name of the TF-Example feature that contains the values. Defaults to 'values'. shape_key: the name of the TF-Example feature that contains the shape. If provided it would be used. shape: the output shape of the SparseTensor. If `shape_key` is not provided this `shape` would be used. densify: whether to convert the SparseTensor into a dense Tensor. default_value: Scalar value to set when making dense for indices not specified in the `SparseTensor`. """ indices_key = indices_key or 'indices' values_key = values_key or 'values' self._indices_key = indices_key self._values_key = values_key self._shape_key = shape_key self._shape = shape self._densify = densify self._default_value = default_value keys = [indices_key, values_key] if shape_key: keys.append(shape_key) super(SparseTensor, self).__init__(keys) def tensors_to_item(self, keys_to_tensors): indices = keys_to_tensors[self._indices_key] values = keys_to_tensors[self._values_key] if self._shape_key: shape = keys_to_tensors[self._shape_key] if isinstance(shape, sparse_tensor.SparseTensor): shape = sparse_ops.sparse_tensor_to_dense(shape) elif self._shape: shape = self._shape else: shape = indices.dense_shape indices_shape = array_ops.shape(indices.indices) rank = indices_shape[1] ids = math_ops.cast(indices.values, dtypes.int64) indices_columns_to_preserve = array_ops.slice( indices.indices, [0, 0], array_ops.stack([-1, rank - 1])) new_indices = array_ops.concat( [indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1) tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape) if self._densify: tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value) return tensor class Image(ItemHandler): """An ItemHandler that decodes a parsed Tensor as an image.""" def __init__(self, image_key=None, format_key=None, shape=None, channels=3, dtype=dtypes.uint8, repeated=False, dct_method=''): """Initializes the image. Args: image_key: the name of the TF-Example feature in which the encoded image is stored. format_key: the name of the TF-Example feature in which the image format is stored. shape: the output shape of the image as 1-D `Tensor` [height, width, channels]. If provided, the image is reshaped accordingly. If left as None, no reshaping is done. A shape should be supplied only if all the stored images have the same shape. channels: the number of channels in the image. dtype: images will be decoded at this bit depth. Different formats support different bit depths. See tf.image.decode_image, tf.io.decode_raw, repeated: if False, decodes a single image. If True, decodes a variable number of image strings from a 1D tensor of strings. dct_method: An optional string. Defaults to empty string. It only takes effect when image format is jpeg, used to specify a hint about the algorithm used for jpeg decompression. Currently valid values are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for example, the jpeg library does not have that specific option. """ if not image_key: image_key = 'image/encoded' if not format_key: format_key = 'image/format' super(Image, self).__init__([image_key, format_key]) self._image_key = image_key self._format_key = format_key self._shape = shape self._channels = channels self._dtype = dtype self._repeated = repeated self._dct_method = dct_method def tensors_to_item(self, keys_to_tensors): """See base class.""" image_buffer = keys_to_tensors[self._image_key] image_format = keys_to_tensors[self._format_key] if self._repeated: return map_fn.map_fn(lambda x: self._decode(x, image_format), image_buffer, dtype=self._dtype) else: return self._decode(image_buffer, image_format) def _decode(self, image_buffer, image_format): """Decodes the image buffer. Args: image_buffer: The tensor representing the encoded image tensor. image_format: The image format for the image in `image_buffer`. If image format is `raw`, all images are expected to be in this format, otherwise this op can decode a mix of `jpg` and `png` formats. Returns: A tensor that represents decoded image of self._shape, or (?, ?, self._channels) if self._shape is not specified. """ def decode_image(): """Decodes a image based on the headers.""" return math_ops.cast( image_ops.decode_image(image_buffer, channels=self._channels), self._dtype) def decode_jpeg(): """Decodes a jpeg image with specified '_dct_method'.""" return math_ops.cast( image_ops.decode_jpeg( image_buffer, channels=self._channels, dct_method=self._dct_method), self._dtype) def check_jpeg(): """Checks if an image is jpeg.""" # For jpeg, we directly use image_ops.decode_jpeg rather than decode_image # in order to feed the jpeg specify parameter 'dct_method'. return control_flow_ops.cond( image_ops.is_jpeg(image_buffer), decode_jpeg, decode_image, name='cond_jpeg') def decode_raw(): """Decodes a raw image.""" return parsing_ops.decode_raw(image_buffer, out_type=self._dtype) pred_fn_pairs = [(math_ops.logical_or( math_ops.equal(image_format, 'raw'), math_ops.equal(image_format, 'RAW')), decode_raw)] image = control_flow_ops.case( pred_fn_pairs, default=check_jpeg, exclusive=True) image.set_shape([None, None, self._channels]) if self._shape is not None: image = array_ops.reshape(image, self._shape) return image class TFExampleDecoder(data_decoder.DataDecoder): """A decoder for TensorFlow Examples. Decoding Example proto buffers is comprised of two stages: (1) Example parsing and (2) tensor manipulation. In the first stage, the tf.io.parse_example function is called with a list of FixedLenFeatures and SparseLenFeatures. These instances tell TF how to parse the example. The output of this stage is a set of tensors. In the second stage, the resulting tensors are manipulated to provide the requested 'item' tensors. To perform this decoding operation, an ExampleDecoder is given a list of ItemHandlers. Each ItemHandler indicates the set of features for stage 1 and contains the instructions for post_processing its tensors for stage 2. """ def __init__(self, keys_to_features, items_to_handlers): """Constructs the decoder. Args: keys_to_features: a dictionary from TF-Example keys to either tf.io.VarLenFeature or tf.io.FixedLenFeature instances. See tensorflow's parsing_ops.py. items_to_handlers: a dictionary from items (strings) to ItemHandler instances. Note that the ItemHandler's are provided the keys that they use to return the final item Tensors. """ self._keys_to_features = keys_to_features self._items_to_handlers = items_to_handlers def list_items(self): """See base class.""" return list(self._items_to_handlers.keys()) def decode(self, serialized_example, items=None): """Decodes the given serialized TF-example. Args: serialized_example: a serialized TF-example tensor. items: the list of items to decode. These must be a subset of the item keys in self._items_to_handlers. If `items` is left as None, then all of the items in self._items_to_handlers are decoded. Returns: the decoded items, a list of tensor. """ example = parsing_ops.parse_single_example(serialized_example, self._keys_to_features) # Reshape non-sparse elements just once, adding the reshape ops in # deterministic order. for k in sorted(self._keys_to_features): v = self._keys_to_features[k] if isinstance(v, parsing_ops.FixedLenFeature): example[k] = array_ops.reshape(example[k], v.shape) if not items: items = self._items_to_handlers.keys() outputs = [] for item in items: handler = self._items_to_handlers[item] keys_to_tensors = {key: example[key] for key in handler.keys} outputs.append(handler.tensors_to_item(keys_to_tensors)) return outputs
36.487666
80
0.690884
7942116c96121ccd6101eb2f9100e95301f497a4
4,883
py
Python
python/scannerpy/protobufs.py
agirbau/scanner
04a0c4b4196341995985acd729c0788aab823e1c
[ "Apache-2.0" ]
618
2017-02-15T02:49:25.000Z
2022-03-26T13:22:08.000Z
python/scannerpy/protobufs.py
agirbau/scanner
04a0c4b4196341995985acd729c0788aab823e1c
[ "Apache-2.0" ]
258
2017-02-14T23:37:35.000Z
2020-01-17T07:50:30.000Z
python/scannerpy/protobufs.py
agirbau/scanner
04a0c4b4196341995985acd729c0788aab823e1c
[ "Apache-2.0" ]
108
2017-02-23T01:43:33.000Z
2022-03-23T02:44:10.000Z
import os.path import imp import sys from scannerpy.common import * import scanner.metadata_pb2 as metadata_types import scanner.source_args_pb2 as source_types import scanner.sink_args_pb2 as sink_types import scanner.sampler_args_pb2 as sampler_types import scanner.engine.rpc_pb2 as rpc_types import scanner.engine.rpc_pb2_grpc as grpc_types import scanner.types_pb2 as misc_types from google.protobuf.descriptor import FieldDescriptor class ProtobufGenerator: def __init__(self): self._mods = [] self._paths = [] for mod in [ misc_types, rpc_types, grpc_types, metadata_types, source_types, sink_types, sampler_types ]: self.add_module(mod) def add_module(self, path): if path in self._paths: return if isinstance(path, str): if not os.path.isfile(path): raise ScannerException('Protobuf path does not exist: {}' .format(path)) imp.acquire_lock() mod = imp.load_source('_ignore', path) imp.release_lock() else: mod = path self._paths.append(path) self._mods.append(mod) # By default, ProtobufGenerator does not work correctly with pickle. # If you pickle something that closes over a ProtobufGenerator instance, # then pickle will save the dynamically imported modules (imp.load_source) # just as the name of module and not the path, i.e. just "_ignore". It will # then try to re-import "_ignore" upon unpickling, and that module will not exist. # # The solution is to override the default mechanism for pickling the object: # https://docs.python.org/3/library/pickle.html#object.__reduce__ # # We capture the information necessary to recreate the ProtobufGenerator (its paths) # and provide a function that creates the new instance. def __reduce__(self): def make_gen(paths): p = ProtobufGenerator() for path in paths: p.add_module(path) return (make_gen, (self._paths,)) def __getattr__(self, name): for mod in self._mods: if hasattr(mod, name): return getattr(mod, name) # This has to be an AttributeError (as opposed to an Exception) or else # APIs that use reflection like pickle will break raise AttributeError('No protobuf with name {}'.format(name)) protobufs = ProtobufGenerator() def analyze_proto(proto): def analyze(p): fields = {} for f in p.fields: child_fields = None if f.type == FieldDescriptor.TYPE_MESSAGE: child_fields = analyze(f.message_type) fields[f.name] = { 'type': f.type, 'message': getattr(protobufs, f.message_type.name) if f.message_type is not None else None, 'repeated': f.label == FieldDescriptor.LABEL_REPEATED, 'fields': child_fields, } return fields return analyze(proto.DESCRIPTOR) def python_to_proto(proto_name, obj): args_proto = getattr(protobufs, proto_name) p = analyze_proto(args_proto) def create_obj(proto, p, obj): if isinstance(obj, proto): return obj elif not isinstance(obj, dict): raise ScannerException('Attempted to bind a non-dict type to a ' 'protobuf') proto_obj = proto() for k, v in obj.items(): if k not in p: raise ScannerException( 'Protobuf {} does not have field {:s}'.format( proto_name, k)) desc = p[k] # If a message field def make_field(val): if desc['type'] == FieldDescriptor.TYPE_MESSAGE: # If a message field, we need to recursively invoke # serialization return create_obj(desc['message'], desc['fields'], val) else: return val if p[k]['repeated']: # If a repeated field, we need to set using slicing data = [] for vi in v: data.append(make_field(vi)) getattr(proto_obj, k)[:] = data elif p[k]['message'] is not None: # If a message field, have to CopyFrom, can't use direct assignment getattr(proto_obj, k).CopyFrom(make_field(v)) elif make_field(v) is not None: # Just set the regular field setattr(proto_obj, k, make_field(v)) return proto_obj return create_obj(args_proto, p, obj).SerializeToString()
34.387324
88
0.581814
79421248e97a6c2799e686dc111cb49bdac5f21f
41,181
py
Python
python/graphscope/tests/unittest/test_udf_app.py
pwrliang/GraphScope
56979ed5109ee0344fee8877460927e47147a62f
[ "Apache-2.0" ]
null
null
null
python/graphscope/tests/unittest/test_udf_app.py
pwrliang/GraphScope
56979ed5109ee0344fee8877460927e47147a62f
[ "Apache-2.0" ]
null
null
null
python/graphscope/tests/unittest/test_udf_app.py
pwrliang/GraphScope
56979ed5109ee0344fee8877460927e47147a62f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import io import logging import os import tempfile import zipfile from io import BytesIO from pathlib import Path import numpy as np import pandas as pd import pytest import yaml import graphscope from graphscope.analytical.udf.decorators import pie from graphscope.analytical.udf.decorators import pregel from graphscope.analytical.udf.utils import PregelAggregatorType from graphscope.framework.app import AppAssets from graphscope.framework.app import load_app from graphscope.framework.errors import InvalidArgumentError DEFAULT_GS_CONFIG_FILE = ".gs_conf.yaml" logger = logging.getLogger("graphscope") @pytest.fixture(scope="function") def random_gar(): path = os.path.join( "/", tempfile.gettempprefix(), "{}.gar".format(str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f"))), ) yield path os.remove(path) @pytest.fixture(scope="module") def not_exist_gar(): path = os.path.join("not_exist_dir", "not_exist.gar") return path @pytest.fixture(scope="module") def non_zipfile_gar(): path = os.path.join("/", tempfile.gettempprefix(), "test.txt") Path(path).touch() yield path os.remove(path) @pytest.fixture(scope="module") def empty_gar(): path = os.path.join( "/", tempfile.gettempprefix(), "{}.gar".format(str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f"))), ) empty_zip_data = b"PK\x05\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" with open(path, "wb") as f: f.write(empty_zip_data) yield path os.remove(path) def invalid_configfile_gar(): path = os.path.join( "/", tempfile.gettempprefix(), "{}.gar".format(str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f"))), ) config = {"a": 10} in_memory_buffer = BytesIO() zip_file = zipfile.ZipFile(in_memory_buffer, "a", zipfile.ZIP_DEFLATED, False) zip_file.writestr(DEFAULT_GS_CONFIG_FILE, yaml.dump(config)) zip_file.close() with open(path, "wb") as f: f.write(in_memory_buffer.getvalue()) yield path os.remove(path) # Example of pregel sssp @pregel(vd_type="double", md_type="double") class SSSP_Pregel(AppAssets): @staticmethod def Init(v, context): v.set_value(1000000000.0) @staticmethod def Compute(messages, v, context): src_id = context.get_config(b"src") cur_dist = v.value() new_dist = 1000000000.0 if v.id() == src_id: new_dist = 0 for message in messages: new_dist = min(message, new_dist) if new_dist < cur_dist: v.set_value(new_dist) for e_label_id in range(context.edge_label_num()): edges = v.outgoing_edges(e_label_id) for e in edges: v.send(e.vertex(), new_dist + e.get_int(2)) v.vote_to_halt() # Example of pie sssp @pie(vd_type="string", md_type="string") class PIE_API_Test(AppAssets): """PIE API Test on ldbc sample graph.""" @staticmethod def Init(frag, context): pass @staticmethod def PEval(frag, context): graphscope.declare(graphscope.Vertex, node) fid = frag.fid() if fid == 0: # This is not stable, as it depend on worker's number # assert frag.fnum() == 4 assert frag.vertex_label_num() == 8 assert frag.edge_label_num() == 15 assert frag.get_total_nodes_num() == 190376 v_label_num = frag.vertex_label_num() for v_label_id in range(v_label_num): assert frag.get_nodes_num(v_label_id) == ( frag.get_inner_nodes_num(v_label_id) + frag.get_outer_nodes_num(v_label_id) ) nodes = frag.nodes(v_label_id) assert nodes.size() == frag.get_nodes_num(v_label_id) inner_nodes = frag.inner_nodes(v_label_id) assert inner_nodes.size() == frag.get_inner_nodes_num(v_label_id) outer_nodes = frag.outer_nodes(v_label_id) assert outer_nodes.size() == frag.get_outer_nodes_num(v_label_id) for iv in inner_nodes: assert frag.get_node_fid(iv) == 0 assert frag.is_inner_node(iv) == True vid = frag.get_node_id(iv) assert frag.get_node(v_label_id, vid, node) == True assert frag.get_inner_node(v_label_id, vid, node) == True e_label_num = frag.edge_label_num() for e_label_id in range(e_label_num): edges = frag.get_outgoing_edges(iv, e_label_id) if edges.size() > 0: assert frag.has_child(iv, e_label_id) == True assert frag.get_outdegree(iv, e_label_id) == int(edges.size()) edges = frag.get_incoming_edges(iv, e_label_id) if edges.size() > 0: assert frag.has_parent(iv, e_label_id) == True assert frag.get_indegree(iv, e_label_id) == int(edges.size()) for ov in outer_nodes: assert frag.is_outer_node(ov) == True vid = frag.get_node_id(ov) assert frag.get_node(v_label_id, vid, node) == True assert frag.get_outer_node(v_label_id, vid, node) == True for v_label in frag.vertex_labels(): label_id = frag.get_vertex_label_id_by_name(v_label) assert frag.get_vertex_label_by_id(label_id) == v_label for prop in frag.vertex_properties(v_label): prop_id = frag.get_vertex_property_id_by_name(v_label, prop.first) assert ( frag.get_vertex_property_by_id(v_label, prop_id) == prop.first ) prop_id = frag.get_vertex_property_id_by_name(label_id, prop.first) assert ( frag.get_vertex_property_by_id(label_id, prop_id) == prop.first ) for prop in frag.vertex_properties(label_id): pass for e_label in frag.edge_labels(): e_label_id = frag.get_edge_label_id_by_name(e_label) assert frag.get_edge_label_by_id(e_label_id) == e_label for prop in frag.edge_properties(e_label): prop_id = frag.get_edge_property_id_by_name(e_label, prop.first) assert frag.get_edge_property_by_id(e_label, prop_id) == prop.first prop_id = frag.get_edge_property_id_by_name(e_label_id, prop.first) assert ( frag.get_edge_property_by_id(e_label_id, prop_id) == prop.first ) for prop in frag.edge_properties(e_label_id): pass @staticmethod def IncEval(frag, context): pass # Pregel API Test @pregel(vd_type="string", md_type="string") class Pregel_API_Test(AppAssets): """Pregel API Test on ldbc_sample graph""" @staticmethod def Init(v, context): v.set_value(b"") @staticmethod def Compute(messages, v, context): """ Test on vertex with id = 933, label = person """ v.vote_to_halt() # v.id() vid = v.id() # v.label() label = v.label() if vid == b"933" and label == b"person": # v.label_id() label_id = v.label_id() assert context.get_vertex_label_by_id(label_id) == label assert context.get_vertex_label_id_by_name(label) == label_id v.set_value(b"graphscope") assert v.value() == b"graphscope" for prop in v.properties(): prop_id = context.get_vertex_property_id_by_name(v.label(), prop.first) assert ( context.get_vertex_property_by_id(v.label(), prop_id) == prop.first ) prop_id = context.get_vertex_property_id_by_name( v.label_id(), prop.first ) assert ( context.get_vertex_property_by_id(v.label_id(), prop_id) == prop.first ) if prop.second == b"DOUBLE": # test v.get_double(v_property_name) / v.get_double(v_property_id) assert v.get_double(prop.first) == v.get_double(prop_id) elif prop.second == b"LONG": # test v.get_int(v_property_name) / test v.get_int(v_property_id) assert v.get_int(prop.first) == v.get_int(prop_id) elif prop.second == b"STRING": # test v.get_str(v_property_name) / test v.get_str(v_property_id) assert v.get_str(prop.first) == v.get_str(prop_id) assert context.superstep() == 0 assert context.get_config(b"param1") == b"graphscope" assert context.get_config(b"param2") == b"graphscope2" assert context.get_total_vertices_num() == 190376 assert context.vertex_label_num() == 8 assert context.edge_label_num() == 15 assert context.vertex_property_num(v.label()) == 8 assert context.vertex_property_num(v.label_id()) == 8 for e_label in context.edge_labels(): e_label_id = context.get_edge_label_id_by_name(e_label) assert context.get_edge_label_by_id(e_label_id) == e_label edges = v.incoming_edges(e_label_id) for edge in edges: edge.vertex().id() if e_label == b"knows": assert context.edge_property_num(e_label_id) == 2 assert context.edge_property_num(e_label) == 2 for prop in context.edge_properties(e_label): prop_id = context.get_edge_property_id_by_name(e_label, prop.first) assert ( context.get_edge_property_by_id(e_label, prop_id) == prop.first ) prop_id = context.get_edge_property_id_by_name( e_label_id, prop.first ) assert ( context.get_edge_property_by_id(e_label_id, prop_id) == prop.first ) for prop in context.edge_properties(e_label_id): pass for v_label in context.vertex_labels(): v_label_id = context.get_vertex_label_id_by_name(v_label) assert context.get_vertex_label_by_id(v_label_id) == v_label if v_label == b"person": assert context.vertex_property_num(v_label_id) == 8 assert context.vertex_property_num(v_label) == 8 for prop in context.vertex_properties(v_label): prop_id = context.get_vertex_property_id_by_name( v_label, prop.first ) assert ( context.get_vertex_property_by_id(v_label, prop_id) == prop.first ) for prop in context.vertex_properties(v_label_id): pass # Example of pregel sssp (with combine) @pregel(vd_type="double", md_type="double") class SSSP_Pregel_Combine(AppAssets): @staticmethod def Init(v, context): v.set_value(1000000000.0) @staticmethod def Compute(messages, v, context): src_id = context.get_config(b"src") cur_dist = v.value() new_dist = 1000000000.0 if v.id() == src_id: new_dist = 0 for message in messages: new_dist = min(message, new_dist) if new_dist < cur_dist: v.set_value(new_dist) for e_label_id in range(context.edge_label_num()): edges = v.outgoing_edges(e_label_id) for e in edges: v.send(e.vertex(), new_dist + e.get_int(2)) v.vote_to_halt() @staticmethod def Combine(messages): ret = 1000000000.0 for m in messages: ret = min(ret, m) return ret # Example of pregel aggregator test @pregel(vd_type="double", md_type="double") class Aggregators_Pregel_Test(AppAssets): @staticmethod def Init(v, context): # int context.register_aggregator( b"int_sum_aggregator", PregelAggregatorType.kInt64SumAggregator ) context.register_aggregator( b"int_max_aggregator", PregelAggregatorType.kInt64MaxAggregator ) context.register_aggregator( b"int_min_aggregator", PregelAggregatorType.kInt64MinAggregator ) context.register_aggregator( b"int_product_aggregator", PregelAggregatorType.kInt64ProductAggregator ) context.register_aggregator( b"int_overwrite_aggregator", PregelAggregatorType.kInt64OverwriteAggregator ) # double context.register_aggregator( b"double_sum_aggregator", PregelAggregatorType.kDoubleSumAggregator ) context.register_aggregator( b"double_max_aggregator", PregelAggregatorType.kDoubleMaxAggregator ) context.register_aggregator( b"double_min_aggregator", PregelAggregatorType.kDoubleMinAggregator ) context.register_aggregator( b"double_product_aggregator", PregelAggregatorType.kDoubleProductAggregator ) context.register_aggregator( b"double_overwrite_aggregator", PregelAggregatorType.kDoubleOverwriteAggregator, ) # bool context.register_aggregator( b"bool_and_aggregator", PregelAggregatorType.kBoolAndAggregator ) context.register_aggregator( b"bool_or_aggregator", PregelAggregatorType.kBoolOrAggregator ) context.register_aggregator( b"bool_overwrite_aggregator", PregelAggregatorType.kBoolOverwriteAggregator ) # text context.register_aggregator( b"text_append_aggregator", PregelAggregatorType.kTextAppendAggregator ) @staticmethod def Compute(messages, v, context): if context.superstep() == 0: context.aggregate(b"int_sum_aggregator", 1) context.aggregate(b"int_max_aggregator", int(v.id())) context.aggregate(b"int_min_aggregator", int(v.id())) context.aggregate(b"int_product_aggregator", 1) context.aggregate(b"int_overwrite_aggregator", 1) context.aggregate(b"double_sum_aggregator", 1.0) context.aggregate(b"double_max_aggregator", float(v.id())) context.aggregate(b"double_min_aggregator", float(v.id())) context.aggregate(b"double_product_aggregator", 1.0) context.aggregate(b"double_overwrite_aggregator", 1.0) context.aggregate(b"bool_and_aggregator", True) context.aggregate(b"bool_or_aggregator", False) context.aggregate(b"bool_overwrite_aggregator", True) context.aggregate(b"text_append_aggregator", v.id() + b",") else: if v.id() == b"1": assert context.get_aggregated_value(b"int_sum_aggregator") == 62586 assert context.get_aggregated_value(b"int_max_aggregator") == 62586 assert context.get_aggregated_value(b"int_min_aggregator") == 1 assert context.get_aggregated_value(b"int_product_aggregator") == 1 assert context.get_aggregated_value(b"int_overwrite_aggregator") == 1 assert context.get_aggregated_value(b"double_sum_aggregator") == 62586.0 assert context.get_aggregated_value(b"double_max_aggregator") == 62586.0 assert context.get_aggregated_value(b"double_min_aggregator") == 1.0 assert context.get_aggregated_value(b"double_product_aggregator") == 1.0 assert ( context.get_aggregated_value(b"double_overwrite_aggregator") == 1.0 ) assert context.get_aggregated_value(b"bool_and_aggregator") == True assert context.get_aggregated_value(b"bool_or_aggregator") == False assert ( context.get_aggregated_value(b"bool_overwrite_aggregator") == True ) context.get_aggregated_value(b"text_append_aggregator") v.vote_to_halt() @pregel(vd_type="string", md_type="string") class PregelVertexTraversal(AppAssets): """Write Vertex properties. Formats: prop1,prop2,...,propN,id """ @staticmethod def Init(v, context): v.set_value(b"") @staticmethod def Compute(messages, v, context): rlt = string(b"") first = True for prop in v.properties(): if not first: rlt.append(b",") first = False if prop.second == b"DOUBLE": rlt.append(to_string(v.get_double(prop.first))) elif prop.second == b"LONG": rlt.append(to_string(v.get_int(prop.first))) elif prop.second == b"STRING": rlt.append(v.get_str(prop.first)) v.set_value(rlt) v.vote_to_halt() @pregel(vd_type="string", md_type="string") class PregelEdgeTraversal(AppAssets): """Write Edge properties, together with src/dst id. Formats: e_label,src_id,dst_id,prop1,...,propN """ @staticmethod def Init(v, context): v.set_value(b"") @staticmethod def Compute(messages, v, context): rlt = string(b"") e_labels = context.edge_labels() first = True for e_label in e_labels: edges = v.outgoing_edges(e_label) for e in edges: if not first: rlt.append(b"|") first = False rlt.append(e_label) rlt.append(b",") rlt.append(v.id()) rlt.append(b",") rlt.append(e.vertex().id()) for prop in context.edge_properties(e_label): rlt.append(b",") e_prop_id = context.get_edge_property_id_by_name( e_label, prop.first ) if prop.second == b"DOUBLE": rlt.append(to_string(e.get_double(e_prop_id))) elif prop.second == b"LONG": rlt.append(to_string(e.get_int(e_prop_id))) elif prop.second == b"STRING": rlt.append(e.get_str(e_prop_id)) v.set_value(rlt) v.vote_to_halt() # Example of get schema in pregel model @pregel(vd_type="string", md_type="string") class Pregel_GetSchema(AppAssets): @staticmethod def Init(v, context): v.set_value(string(b"")) @staticmethod def Compute(messages, v, context): rlt = v.value() for v_label in context.vertex_labels(): rlt.append(v_label) rlt.append(b",") for v_property in context.vertex_properties(v.label()): rlt.append(v_property.first) rlt.append(b",") rlt.append(v_property.second) rlt.append(b",") e_labels = context.edge_labels() for e_label in e_labels: rlt.append(e_label) rlt.append(b",") for e_property in context.edge_properties(e_label): rlt.append(e_property.first) rlt.append(b",") rlt.append(e_property.second) rlt.append(b",") v.set_value(rlt) v.vote_to_halt() # Example of pie sssp @pie(vd_type="double", md_type="double") class SSSP_PIE(AppAssets): @staticmethod def Init(frag, context): v_label_num = frag.vertex_label_num() for v_label_id in range(v_label_num): nodes = frag.nodes(v_label_id) context.init_value( nodes, v_label_id, 1000000000.0, PIEAggregateType.kMinAggregate ) context.register_sync_buffer(v_label_id, MessageStrategy.kSyncOnOuterVertex) @staticmethod def PEval(frag, context): src = int(context.get_config(b"src")) graphscope.declare(graphscope.Vertex, source) native_source = False v_label_num = frag.vertex_label_num() for v_label_id in range(v_label_num): if frag.get_inner_node(v_label_id, src, source): native_source = True break if native_source: context.set_node_value(source, 0) else: return e_label_num = frag.edge_label_num() for e_label_id in range(e_label_num): edges = frag.get_outgoing_edges(source, e_label_id) for e in edges: dst = e.neighbor() distv = e.get_int(2) if context.get_node_value(dst) > distv: context.set_node_value(dst, distv) @staticmethod def IncEval(frag, context): v_label_num = frag.vertex_label_num() e_label_num = frag.edge_label_num() for v_label_id in range(v_label_num): iv = frag.inner_nodes(v_label_id) for v in iv: v_dist = context.get_node_value(v) for e_label_id in range(e_label_num): es = frag.get_outgoing_edges(v, e_label_id) for e in es: u = e.neighbor() u_dist = v_dist + e.get_int(2) if context.get_node_value(u) > u_dist: context.set_node_value(u, u_dist) # Example of get schema in pie model @pie(vd_type="string", md_type="string") class PIE_GetSchema(AppAssets): @staticmethod def Init(frag, context): v_label_num = frag.vertex_label_num() for i in range(0, v_label_num): nodes = frag.nodes(i) context.init_value( nodes, i, string(b""), PIEAggregateType.kTextAppendAggregate ) @staticmethod def PEval(frag, context): v_label_num = frag.vertex_label_num() for v_label_id in range(0, v_label_num): iv = frag.inner_nodes(v_label_id) for v in iv: rlt = context.get_node_value(v) for v_label in frag.vertex_labels(): rlt.append(v_label) rlt.append(b",") for v_property in frag.vertex_properties(v_label_id): rlt.append(v_property.first) rlt.append(b",") rlt.append(v_property.second) rlt.append(b",") e_labels = frag.edge_labels() for e_label in e_labels: rlt.append(e_label) rlt.append(b",") for e_property in frag.edge_properties(e_label): rlt.append(e_property.first) rlt.append(b",") rlt.append(e_property.second) rlt.append(b",") context.set_node_value(v, rlt) @staticmethod def IncEval(frag, context): pass # Example of pregel sssp @pregel(vd_type="double", md_type="double") class MathInAlgorithm(AppAssets): @staticmethod def Init(v, context): v.set_value(context.math.log2(1000000000.0 * context.math.M_PI)) @staticmethod def Compute(messages, v, context): v.vote_to_halt() def test_error_with_missing_necessary_method(): with pytest.raises(ValueError, match="Can't find method definition"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v, context): pass with pytest.raises(ValueError, match="Can't find method definition"): @pregel(vd_type="double", md_type="double") class Pregel_2: @staticmethod def Compute(message, v, context): pass with pytest.raises(ValueError, match="Can't find method definition"): @pie(vd_type="double", md_type="double") class PIE_1: @staticmethod def Init(frag, context): pass @staticmethod def PEval(frag, context): pass with pytest.raises(ValueError, match="Can't find method definition"): @pie(vd_type="double", md_type="double") class PIE_2: @staticmethod def Init(v, context): pass @staticmethod def IncEval(frag, context): pass with pytest.raises(ValueError, match="Can't find method definition"): @pie(vd_type="double", md_type="double") class PIE_3: @staticmethod def PEval(frag, context): pass @staticmethod def IncEval(frag, context): pass def test_error_with_missing_staticmethod_keyword(): with pytest.raises(ValueError, match="Missing staticmethod decorator"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v, context): pass def Compute(message, v, context): pass with pytest.raises(ValueError, match="Missing staticmethod decorator"): @pie(vd_type="double", md_type="double") class PIE_1: def Init(frag, context): pass def PEval(frag, context): pass def IncEval(frag, context): pass def test_error_with_method_signature(): with pytest.raises(AssertionError, match="The number of parameters does not match"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v): # missing context pass @staticmethod def Compute(message, v, context): pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pregel(vd_type="double", md_type="double") class Pregel_2: @staticmethod def Init(v, context): pass @staticmethod def Compute(v, context): # misssing message pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pregel(vd_type="double", md_type="double") class Pregel_3: @staticmethod def Init(v, context, other): # more args pass @staticmethod def Compute(message, v, context): pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pie(vd_type="double", md_type="double") class PIE_1: @staticmethod def Init(frag): # missing context pass @staticmethod def PEval(frag, context): pass @staticmethod def IncEval(frag, context): pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pie(vd_type="double", md_type="double") class PIE_2: @staticmethod def Init(frag, context): pass @staticmethod def PEval(frag): # missing context pass @staticmethod def IncEval(frag, context): pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pie(vd_type="double", md_type="double") class PIE_3: @staticmethod def Init(frag, context): pass @staticmethod def PEval(frag, context): pass @staticmethod def IncEval(frag): # missing context pass with pytest.raises(AssertionError, match="The number of parameters does not match"): @pie(vd_type="double", md_type="double") class PIE_4: @staticmethod def Init(frag, context, message): # more args pass @staticmethod def PEval(frag, context): pass @staticmethod def IncEval(frag, context): pass def test_extra_method_definition(): with pytest.raises(RuntimeError, match="Not recognized method"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v, context): pass @staticmethod def Compute(message, v, context): pass @staticmethod def util(self): # extra staticmethod pass with pytest.raises(RuntimeError, match="Not recognized method"): @pie(vd_type="double", md_type="double") class PIE_1: @staticmethod def Init(frag, context): pass @staticmethod def PEval(frag, context): pass @staticmethod def IncEval(frag, context): pass @staticmethod # extra staticmethod def util(): pass def test_error_with_import_module(): with pytest.raises(RuntimeError, match="Import is not supported yet"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v, context): import random pass @staticmethod def Compute(message, v, context): pass with pytest.raises(RuntimeError, match="ImportFrom is not supported yet"): @pregel(vd_type="double", md_type="double") class Pregel_1: @staticmethod def Init(v, context): from os import path pass @staticmethod def Compute(message, v, context): pass def test_dump_gar(random_gar, not_exist_gar): SSSP_Pregel.to_gar(random_gar) # gar file already exist with pytest.raises(RuntimeError, match="Path exist"): SSSP_Pregel.to_gar(random_gar) # not exist dir, also works with permission denied with pytest.raises(FileNotFoundError, match="No such file or directory"): SSSP_Pregel.to_gar(not_exist_gar) def test_load_app_from_gar(random_gar, not_exist_gar, non_zipfile_gar): # file not exist, also works with permission denied with pytest.raises(FileNotFoundError, match="No such file or directory"): ast1 = load_app(not_exist_gar) # not a zip file with pytest.raises(ValueError, match="not a zip file"): ast2 = load_app(non_zipfile_gar) # type error with pytest.raises(ValueError, match="Wrong type"): ast3 = load_app([1, 2, 3, 4]) with pytest.raises(ValueError, match="Wrong type"): ast4 = load_app(gar=None) SSSP_Pregel.to_gar(random_gar) ast1 = load_app(random_gar) assert isinstance(ast1, AppAssets) def test_error_on_create_cython_app( graphscope_session, dynamic_property_graph, random_gar, empty_gar ): SSSP_Pregel.to_gar(random_gar) with pytest.raises(InvalidArgumentError, match="App is uncompatible with graph"): a1 = load_app(random_gar) a1(dynamic_property_graph, src=4) # algo not found in gar resource with pytest.raises(InvalidArgumentError, match="App not found in gar: sssp"): a2 = load_app(algo="sssp", gar=random_gar) a2(p2p_property_graph, src=6) # no `.gs_conf.yaml` in empty gar, raise KeyError exception with pytest.raises(KeyError): a3 = load_app(algo="SSSP_Pregel", gar=empty_gar) a3(p2p_property_graph, src=6) @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_get_schema(graphscope_session, arrow_property_graph): # pregel a1 = Pregel_GetSchema() ctx1 = a1(arrow_property_graph) r1 = ctx1.to_numpy("r:v0", vertex_range={"begin": 0, "end": 7}) assert r1.tolist() == [ "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", ] # pie a2 = PIE_GetSchema() ctx2 = a2(arrow_property_graph) r2 = ctx2.to_numpy("r:v0", vertex_range={"begin": 0, "end": 7}) assert r2.tolist() == [ "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", "v0,v1,dist,DOUBLE,id,LONG,e0,weight,LONG,e1,weight,LONG,", ] @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_run_cython_pregel_app( graphscope_session, p2p_property_graph, sssp_result, random_gar ): SSSP_Pregel.to_gar(random_gar) a1 = SSSP_Pregel() ctx1 = a1(p2p_property_graph, src=6) r1 = ( ctx1.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r1[r1 == 1000000000.0] = float("inf") assert np.allclose(r1, sssp_result["directed"]) # redundant params is ok ctx2 = a1(p2p_property_graph, src=6, other="a", yet_other=[1, 2, 3]) r2 = ( ctx2.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r2[r2 == 1000000000.0] = float("inf") assert np.allclose(r2, sssp_result["directed"]) # load from gar a2 = load_app(random_gar) ctx3 = a2(p2p_property_graph, src=6) r3 = ( ctx3.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r3[r3 == 1000000000.0] = float("inf") assert np.allclose(r3, sssp_result["directed"]) # args is not supported with pytest.raises( InvalidArgumentError, match="Only support using keyword arguments in cython app" ): a3 = load_app(random_gar) ctx4 = a3(p2p_property_graph, 6, src=6) # combine a5 = SSSP_Pregel_Combine() ctx5 = a5(p2p_property_graph, src=6) r5 = ( ctx5.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r5[r5 == 1000000000.0] = float("inf") assert np.allclose(r5, sssp_result["directed"]) # aggregator test a6 = Aggregators_Pregel_Test() a6(p2p_property_graph) # math.h function test a7 = MathInAlgorithm() a7(p2p_property_graph) @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_run_cython_pie_app( graphscope_session, p2p_property_graph, sssp_result, random_gar ): SSSP_PIE.to_gar(random_gar) a1 = SSSP_PIE() ctx1 = a1(p2p_property_graph, src=6) r1 = ( ctx1.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r1[r1 == 1000000000.0] = float("inf") assert np.allclose(r1, sssp_result["directed"]) ctx2 = a1(p2p_property_graph, src=6, other="a", yet_other=[1, 2, 3]) r2 = ( ctx2.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r2[r2 == 1000000000.0] = float("inf") assert np.allclose(r2, sssp_result["directed"]) # load from gar a2 = load_app(random_gar) ctx3 = a2(p2p_property_graph, src=6) r3 = ( ctx3.to_dataframe({"node": "v:person.id", "r": "r:person"}) .sort_values(by=["node"]) .to_numpy(dtype=float) ) r3[r3 == 1000000000.0] = float("inf") assert np.allclose(r3, sssp_result["directed"]) # args is not supported with pytest.raises( InvalidArgumentError, match="Only support using keyword arguments in cython app" ): a3 = load_app(random_gar) ctx4 = a3(p2p_property_graph, 6, src=6) @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_vertex_traversal(arrow_property_graph, twitter_v_0, twitter_v_1): traversal = PregelVertexTraversal() ctx = traversal(arrow_property_graph) # to dataframe r0 = ctx.to_dataframe({"node": "v:v0.id", "r": "r:v0"}) r1 = ctx.to_dataframe({"node": "v:v1.id", "r": "r:v1"}) def compare_result(df, result_file): id_col = df["node"].astype("int64") df = ( pd.DataFrame(df.r.str.split(",").tolist(), columns=["dist", "id"]) .reindex(columns=["id", "dist"]) .astype({"id": "int64", "dist": "float64"}) ) assert id_col.equals(df["id"]) df = df.sort_values(by=["id"]).reset_index(drop=True) result_df = pd.read_csv(result_file, sep=",") assert df.equals(result_df) compare_result(r0, twitter_v_0) compare_result(r1, twitter_v_1) @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_modern_graph_vertex_traversal(arrow_modern_graph): traversal = PregelVertexTraversal() ctx = traversal(arrow_modern_graph) r0 = ctx.to_dataframe({"node": "v:person.id", "r": "r:person"}) r1 = ctx.to_dataframe({"node": "v:software.id", "r": "r:software"}) def compare_id(df, names): id_col = df["node"].astype("int64") df = ( pd.DataFrame(df.r.str.split(",").tolist(), columns=names + ["id"]) .reindex(columns=["id"] + names) .astype({"id": "int64"}) ) assert id_col.equals(df["id"]) compare_id(r0, ["name", "age"]) compare_id(r1, ["name", "lang"]) @pytest.mark.skipif("FULL-TEST-SUITE" not in os.environ, reason="Run in nightly CI") def test_edge_traversal( arrow_property_graph, twitter_e_0_0_0, twitter_e_0_1_0, twitter_e_1_0_0, twitter_e_1_1_0, twitter_e_0_0_1, twitter_e_0_1_1, twitter_e_1_0_1, twitter_e_1_1_1, ): traversal = PregelEdgeTraversal() ctx = traversal(arrow_property_graph) r0 = ctx.to_dataframe({"node": "v:v0.id", "r": "r:v0"}) r1 = ctx.to_dataframe({"node": "v:v1.id", "r": "r:v1"}) edges = [] edges.extend(r0.r.str.split("|").tolist()) edges.extend(r1.r.str.split("|").tolist()) df = pd.read_csv( io.StringIO("\n".join([item for sublist in edges for item in sublist])), sep=",", names=["label", "src", "dst", "weight"], ) def compare_result(df, *args): df = df[["src", "dst", "weight"]].astype( {"src": "int64", "dst": "int64", "weight": "float64"} ) df = df.sort_values(by=["src", "dst"]).reset_index(drop=True) result_df = pd.concat( [pd.read_csv(arg) for arg in args], ignore_index=True, copy=False ) result_df = result_df.astype( {"src": "int64", "dst": "int64", "weight": "float64"} ) result_df = result_df.sort_values(by=["src", "dst"]).reset_index(drop=True) assert df.equals(result_df) compare_result( df[df["label"] == "e0"], twitter_e_0_0_0, twitter_e_0_1_0, twitter_e_1_0_0, twitter_e_1_1_0, ) compare_result( df[df["label"] == "e1"], twitter_e_0_0_1, twitter_e_0_1_1, twitter_e_1_0_1, twitter_e_1_1_1, ) def test_pregel_api(graphscope_session, ldbc_graph): a1 = Pregel_API_Test() a1(ldbc_graph, param1="graphscope", param2="graphscope2") def test_pie_api(graphscope_session, ldbc_graph_undirected): a1 = PIE_API_Test() a1(ldbc_graph_undirected, param1="graphscope", param2="graphscope2")
34.3175
106
0.58629
794212daa58e3054b8c1671b0faac4412b1ab3cd
2,427
py
Python
1000-1100q/1034.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
990
2018-06-05T11:49:22.000Z
2022-03-31T08:59:17.000Z
1000-1100q/1034.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
1
2021-11-01T01:29:38.000Z
2021-11-01T01:29:38.000Z
1000-1100q/1034.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
482
2018-06-12T22:16:53.000Z
2022-03-29T00:23:29.000Z
''' Given a 2-dimensional grid of integers, each value in the grid represents the color of the grid square at that location. Two squares belong to the same connected component if and only if they have the same color and are next to each other in any of the 4 directions. The border of a connected component is all the squares in the connected component that are either 4-directionally adjacent to a square not in the component, or on the boundary of the grid (the first or last row or column). Given a square at location (r0, c0) in the grid and a color, color the border of the connected component of that square with the given color, and return the final grid. Example 1: Input: grid = [[1,1],[1,2]], r0 = 0, c0 = 0, color = 3 Output: [[3, 3], [3, 2]] Example 2: Input: grid = [[1,2,2],[2,3,2]], r0 = 0, c0 = 1, color = 3 Output: [[1, 3, 3], [2, 3, 3]] Example 3: Input: grid = [[1,1,1],[1,1,1],[1,1,1]], r0 = 1, c0 = 1, color = 2 Output: [[2, 2, 2], [2, 1, 2], [2, 2, 2]] Note: 1 <= grid.length <= 50 1 <= grid[0].length <= 50 1 <= grid[i][j] <= 1000 0 <= r0 < grid.length 0 <= c0 < grid[0].length 1 <= color <= 1000 ''' class Solution(object): def colorBorder(self, grid, r0, c0, color): """ :type grid: List[List[int]] :type r0: int :type c0: int :type color: int :rtype: List[List[int]] """ if not grid: return grid visited, border = [], [] m, n = len(grid), len(grid[0]) def dfs(r, c): if r < 0 or c < 0 or r >= m or c >= n or grid[r][c] != grid[r0][c0] or (r,c) in visited: return visited.append((r,c)) # check if the current row, col index is edge of the matrix # if not then check adjacent cells doesnt have same value as grid[r0][c0] then add in border if (r == 0 or c == 0 or r == m-1 or c == n-1 or (r+1 < m and grid[r+1][c] != grid[r0][c0]) or (r-1 >= 0 and grid[r-1][c] != grid[r0][c0]) or (c+1 < n and grid[r][c+1] != grid[r0][c0]) or (c-1 >= 0 and grid[r][c-1] != grid[r0][c0])): border.append((r,c)) dfs(r-1, c) dfs(r+1, c) dfs(r, c-1) dfs(r, c+1) dfs(r0, c0) for (x, y) in border: grid[x][y] = color return grid
34.671429
222
0.530284
79421477f139cbe753580f6ba988d5552b4d2f23
10,666
py
Python
models/official/unet3d/tpu_executor.py
stefsietz/tpu
1f8029b7849ccaafd121529a37a7c24613db7453
[ "Apache-2.0" ]
null
null
null
models/official/unet3d/tpu_executor.py
stefsietz/tpu
1f8029b7849ccaafd121529a37a7c24613db7453
[ "Apache-2.0" ]
null
null
null
models/official/unet3d/tpu_executor.py
stefsietz/tpu
1f8029b7849ccaafd121529a37a7c24613db7453
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Interface to run unet model.""" from __future__ import absolute_import from __future__ import division #Standard imports from __future__ import print_function import os from absl import flags from absl import logging import numpy as np import tensorflow.compat.v1 as tf from hyperparameters import params_dict FLAGS = flags.FLAGS def define_tpu_flags(): """Define common flags for TPU.""" flags.DEFINE_string( 'tpu', default=None, help='The Cloud TPU to use for training. This should be either the name ' 'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 ' 'url.') flags.DEFINE_string( 'gcp_project', default=None, help='Project name for the Cloud TPU-enabled project. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_zone', default=None, help='GCE zone where the Cloud TPU is located in. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_integer( 'num_cores', default=8, help='Number of TPU cores for training') flags.DEFINE_string( 'eval_master', default='', help='GRPC URL of the eval master. Set to an appropiate value when running ' 'on CPU/GPU') flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than CPUs') flags.DEFINE_multi_integer( 'input_partition_dims', [1], 'A list that describes the partition dims for all the tensors.') flags.DEFINE_integer('iterations_per_loop', 8, 'Number of iterations per TPU training loop') def get_tpu_flags(): """Get TPU config related FLAGS as dictionary.""" return { 'tpu': FLAGS.tpu, 'gcp_project': FLAGS.gcp_project, 'tpu_zone': FLAGS.tpu_zone, 'num_cores': FLAGS.num_cores, 'eval_master': FLAGS.eval_master, 'use_tpu': FLAGS.use_tpu, 'input_partition_dims': FLAGS.input_partition_dims, 'iterations_per_loop': FLAGS.iterations_per_loop, } def write_summary(logs, summary_writer, current_step): """Write out summaries of current training step for the checkpoint.""" with tf.Graph().as_default(): summaries = [ tf.Summary.Value(tag=tag, simple_value=value) for tag, value in logs.items() ] tf_summary = tf.Summary(value=summaries) summary_writer.add_summary(tf_summary, current_step) class TPUEstimatorExecuter(object): """An executor class for running jobs on TPUs.""" def __init__(self, model_fn, params, train_input_shapes, eval_input_shapes): self._model_dir = params.model_dir self._params = params self._train_input_shapes = train_input_shapes self._eval_input_shapes = eval_input_shapes if train_input_shapes: self._train_estimator = self._build_estimator( params.tpu_config, model_fn, params, train_input_shapes) if eval_input_shapes: self._eval_estimator = self._build_estimator( params.tpu_config, model_fn, params, eval_input_shapes) def _save_params(self): """Save parameters to config files if model_dir is defined.""" model_dir = self._model_dir if model_dir is not None: if not tf.gfile.Exists(model_dir): tf.gfile.MakeDirs(model_dir) params_dict.save_params_dict_to_yaml(self._params, model_dir + '/params.yaml') def _build_estimator(self, tpu_flags, model_fn, params, input_shapes): """Creates TPUEstimator/Estimator instance. Args: tpu_flags: FLAGS of TPU configs for constructing the TPUEstimator. model_fn: model function that returns (TPU)EstimatorSpec. params: A ParamsDict of TPU configs and dictionary to pass to Estimator `model_fn`. input_shapes: A nested tuple or list indicating the shape of each input. For example, ([128, 128, 128, 1], [128, 128, 128, 3]). Returns: TFEstimator or TPUEstimator instance. """ eval_master = tpu_flags.eval_master logging.info('debug tpu_flags %s', tpu_flags.as_dict()) if tpu_flags.use_tpu: tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu_flags.tpu, zone=tpu_flags.tpu_zone, project=tpu_flags.gcp_project) tpu_grpc_url = tpu_cluster_resolver.get_master() if not eval_master: eval_master = tpu_grpc_url tf.Session.reset(tpu_grpc_url) else: tpu_cluster_resolver = None dims_overridden = params.input_partition_dims if tpu_flags.input_partition_dims != [1]: dims_overridden = tpu_flags.input_partition_dims if dims_overridden and dims_overridden != [1]: feature_shape, label_shape = input_shapes # The input function may drop the last channel dimension. We need to do # the same for spatial partition dims as well. # Do not forget the batch dimension. feature_partition = dims_overridden[:1 + len(feature_shape)] label_partition = dims_overridden[:1 + len(label_shape)] input_partition_dims = [ feature_partition, label_partition, ] num_cores_per_replica = np.prod(dims_overridden) num_shards = tpu_flags.num_cores // num_cores_per_replica else: num_cores_per_replica = None input_partition_dims = None num_shards = tpu_flags.num_cores # Sets up config for TPUEstimator. tpu_config = tf.estimator.tpu.TPUConfig( tpu_flags.iterations_per_loop, num_shards=num_shards, num_cores_per_replica=num_cores_per_replica, input_partition_dims=input_partition_dims, per_host_input_for_training=tf.estimator.tpu.InputPipelineConfig.PER_HOST_V2 # pylint: disable=line-too-long ) run_config = tf.estimator.tpu.RunConfig( cluster=tpu_cluster_resolver, evaluation_master=eval_master, model_dir=self._model_dir, log_step_count_steps=tpu_flags.iterations_per_loop, tpu_config=tpu_config, ) model_params = dict( params.as_dict(), use_tpu=tpu_flags.use_tpu, ) return tf.estimator.tpu.TPUEstimator( model_fn=model_fn, use_tpu=tpu_flags.use_tpu, train_batch_size=params.train_batch_size, eval_batch_size=params.eval_batch_size, predict_batch_size=params.predict_batch_size, config=run_config, params=model_params) def train(self, input_fn): """Training the model with training data and labels in input_fn.""" self._save_params() self._train_estimator.train(input_fn=input_fn, max_steps=self._params.train_steps) def evaluate(self, input_fn): """Evaluating the model with data and labels in input_fn.""" output_dir = os.path.join(self._model_dir, 'eval') tf.gfile.MakeDirs(output_dir) # Summary writer writes out eval metrics. summary_writer = tf.summary.FileWriter(output_dir) def _terminate_eval(): logging.info('Terminating eval after %d seconds of ' 'no checkpoints', self._params.eval_timeout) return True eval_results = None # Run evaluation when there's a new checkpoint for ckpt in tf.train.checkpoints_iterator( self._model_dir, min_interval_secs=self._params.min_eval_interval, timeout=self._params.eval_timeout, timeout_fn=_terminate_eval): # Terminate eval job when final checkpoint is reached current_step = int(os.path.basename(ckpt).split('-')[1]) logging.info('Starting to evaluate.') try: eval_results = self._eval_estimator.evaluate( input_fn=input_fn, steps=self._params.eval_steps) # Evaluation task could start before checkpoint is written, # get preempted, or faile to write checkpoint correctly. if eval_results is not None: write_summary(eval_results, summary_writer, current_step) if current_step >= self._params.train_steps: logging.info('Evaluation finished after training step %d', current_step) break except tf.errors.NotFoundError: # Since the coordinator is on a different job than the TPU worker, # sometimes the TPU worker does not finish initializing until long after # the CPU job tells it to start evaluating. In this case, the checkpoint # file could have been deleted already. logging.info('Checkpoint %s no longer exists, skipping checkpoint', ckpt) summary_writer.close() logging.info('Evaluation results %s.', eval_results) return eval_results def train_and_eval(self, train_input_fn, eval_input_fn): """Run distributed train and eval on UNet model.""" self._save_params() output_dir = os.path.join(self._model_dir, 'eval') tf.gfile.MakeDirs(output_dir) summary_writer = tf.summary.FileWriter(output_dir) num_cycles = int(self._params.train_steps / self._params.num_steps_per_eval) for cycle in range(num_cycles): logging.info('Start training cycle %d.', cycle) self._train_estimator.train( input_fn=train_input_fn, steps=self._params.num_steps_per_eval) logging.info('Start evaluation cycle %d.', cycle) eval_results = self._eval_estimator.evaluate( input_fn=eval_input_fn, steps=self._params.eval_steps) current_step = int(cycle * self._params.num_steps_per_eval) write_summary(eval_results, summary_writer, current_step) logging.info('Starting training cycle %d.', num_cycles) self._train_estimator.train( input_fn=train_input_fn, steps=self._params.train_steps) eval_results = self._eval_estimator.evaluate( input_fn=eval_input_fn, steps=self._params.eval_steps) write_summary(eval_results, summary_writer, self._params.train_steps) summary_writer.close() logging.info('Evaluation results %s.', eval_results) return eval_results
38.229391
117
0.698387
7942148814f66eadf0bc58b4b738d4e7672e3946
1,694
py
Python
networks/cis_depth4.py
rfww/EfficientChangeDetection
42d466c56ed262980c27fd6cde6ffe65314e638f
[ "BSD-Source-Code" ]
null
null
null
networks/cis_depth4.py
rfww/EfficientChangeDetection
42d466c56ed262980c27fd6cde6ffe65314e638f
[ "BSD-Source-Code" ]
null
null
null
networks/cis_depth4.py
rfww/EfficientChangeDetection
42d466c56ed262980c27fd6cde6ffe65314e638f
[ "BSD-Source-Code" ]
null
null
null
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.utils import model_zoo from torchvision import models from utils.spp_layer import spatial_pyramid_pool class CIS_VGGBN(nn.Module): def __init__(self, backbone='vgg16_bn', pretrained=True, freeze_backbone=False): super(CIS_VGGBN, self).__init__() self.output_num = [4,2,1] vgg = models.vgg16_bn(pretrained) features = list(vgg.features.children()) self.dec1 = nn.Sequential(*features[:7]) # 160 # self.dec2 = nn.Sequential(*features[5:10]) # 80 # self.dec3 = nn.Sequential(*features[10:17]) # 40 # self.dec4 = nn.Sequential(*features[17:24]) # 20 # self.dec5 = nn.Sequential(*features[24:]) # 10 self.cis1 = nn.Sequential( nn.Conv2d(128, 64, 3, padding=1,stride=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.cis2 = nn.Sequential( nn.Linear(1344, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 2) ) self.dp = nn.Softmax() def forward(self, x, y,bt): x_f1 = self.dec1(x) y_f1 = self.dec1(y) enc = torch.cat((x_f1, y_f1), 1) clc1 = self.cis1(enc) spp = spatial_pyramid_pool(clc1,bt,[clc1.size(2),clc1.size(3)], self.output_num) clc2 = self.cis2(spp) dp = self.dp(clc2) return x_f1, y_f1, dp # def initialize(self): # self.load_state_dict(torch.load('../res/resnet50-19c8e357.pth'), strict=False)
33.215686
89
0.578512
794215fe8e739599f3a1be55fd7682d28ffc6021
4,450
py
Python
src/moveit2/moveit_demo_nodes/run_moveit_cpp/launch/run_moveit_cpp2.launch.py
iamrajee/ros2eloquent_moveit_ws
210d7d6d90c19e68a3ea17aee3a3dc9ee13c8a89
[ "MIT" ]
17
2020-03-03T14:38:20.000Z
2021-08-13T08:28:16.000Z
src/moveit2/moveit_demo_nodes/run_moveit_cpp/launch/run_moveit_cpp2.launch.py
iamrajee/ros2eloquent_moveit_ws
210d7d6d90c19e68a3ea17aee3a3dc9ee13c8a89
[ "MIT" ]
1
2020-03-12T08:10:13.000Z
2020-03-30T16:20:33.000Z
src/moveit2/moveit_demo_nodes/run_moveit_cpp/launch/run_moveit_cpp2.launch.py
iamrajee/ros2eloquent_moveit_ws
210d7d6d90c19e68a3ea17aee3a3dc9ee13c8a89
[ "MIT" ]
2
2020-04-03T06:56:01.000Z
2021-08-13T08:28:18.000Z
import os import yaml from launch import LaunchDescription from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory # Helper function to load file def load_file(package_name, file_path): package_path = get_package_share_directory(package_name) absolute_file_path = os.path.join(package_path, file_path) try: with open(absolute_file_path, 'r') as file: return file.read() except EnvironmentError: # parent of IOError, OSError *and* WindowsError where available return None # Helper function to load yaml def load_yaml(package_name, file_path): package_path = get_package_share_directory(package_name) absolute_file_path = os.path.join(package_path, file_path) try: with open(absolute_file_path, 'r') as file: return yaml.load(file) except EnvironmentError: # parent of IOError, OSError *and* WindowsError where available return None def generate_launch_description(): #main funtion # ========= load files(yaml,urdf,srdf,rviz) ========= # rviz_config_file = get_package_share_directory('run_moveit_cpp') + "/launch/run_moveit_cpp2.rviz" moveit_cpp_yaml_file_name = get_package_share_directory('run_moveit_cpp') + "/config/moveit_cpp2.yaml" ### ---- moveit_cpp.yaml is passed by filename for now since it's node specific panda_controllers_yaml = os.path.join(get_package_share_directory("run_moveit_cpp"), "config", "panda_controllers2.yaml") start_positions_yaml = os.path.join(get_package_share_directory("run_moveit_cpp"), "config", "start_positions2.yaml") controllers_yaml = load_yaml('run_moveit_cpp', 'config/controllers2.yaml') robot_description_config = load_file('moveit_resources', 'panda_description/urdf/panda.urdf') # Component yaml files are grouped in separate namespaces robot_description_semantic_config = load_file('moveit_resources', 'panda_moveit_config/config/panda.srdf') kinematics_yaml = load_yaml('moveit_resources', 'panda_moveit_config/config/kinematics.yaml') ompl_planning_yaml = load_yaml('moveit_resources', 'panda_moveit_config/config/ompl_planning.yaml') # ======== params ======== # robot_description = {'robot_description' : robot_description_config} robot_description_semantic = {'robot_description_semantic' : robot_description_semantic_config} robot_description_kinematics = { 'robot_description_kinematics' : kinematics_yaml } moveit_controllers = { 'moveit_simple_controller_manager' : controllers_yaml } ompl_planning_pipeline_config = { 'ompl' : { 'planning_plugin' : 'ompl_interface/OMPLPlanner', 'request_adapters' : """default_planner_request_adapters/AddTimeOptimalParameterization default_planner_request_adapters/FixWorkspaceBounds default_planner_request_adapters/FixStartStateBounds default_planner_request_adapters/FixStartStateCollision default_planner_request_adapters/FixStartStatePathConstraints""" , 'start_state_max_bounds_error' : 0.1 } } ompl_planning_pipeline_config['ompl'].update(ompl_planning_yaml) # ========= Nodes ========= # # --------- run_moveit_cpp node --------- run_moveit_cpp_node = Node(node_name='run_moveit_cpp', package='run_moveit_cpp', node_executable='run_moveit_cpp2', output='screen', parameters=[moveit_cpp_yaml_file_name, robot_description, robot_description_semantic, kinematics_yaml, ompl_planning_pipeline_config, moveit_controllers]) #TODO(henningkayser): add debug argument #prefix='xterm -e gdb --args', # --------- RViz --------- rviz_node = Node(package='rviz2', node_executable='rviz2', node_name='rviz2', output='log', arguments=['-d', rviz_config_file], parameters=[robot_description]) # --------- static TF --------- static_tf = Node(package='tf2_ros', node_executable='static_transform_publisher', node_name='static_transform_publisher', output='log', arguments=['0.0', '0.0', '0.0', '0.0', '0.0', '0.0', 'world', 'panda_link0']) # --------- Fake joint driver --------- fake_joint_driver_node = Node(package='fake_joint_driver', node_executable='fake_joint_driver_node', parameters=[panda_controllers_yaml, start_positions_yaml, robot_description] ) ###TODO(JafarAbdi): Why this launch the two nodes (controller manager and the fake joint driver) with the same name! # node_name='fake_joint_driver_node', return LaunchDescription( [static_tf, rviz_node, run_moveit_cpp_node, fake_joint_driver_node] )
75.423729
455
0.760225