prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" data_collection_10_Network_Centrality.py This code calcualtes centrality metrics... 1 - load in graphs - Largest weakly Connected Components!! 2 - applying HITs algorithm 4 - re-calculating centrality within my sub-graph only (4 - draw network graphs with hubs centrality metrics --> see next .py doc) @author: lizakarmannaya """ import networkx as nx import pandas as pd import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import fnmatch import os import glob from scipy.stats import skew, kurtosis, mode #### 1 - load in graphs - Largest weakly Connected Components!! #### os.chdir(os.path.expanduser("~")) L = nx.read_pajek('study2_largest_wcc_LEFT_directed.net') R = nx.read_pajek('study2_largest_wcc_RIGHT_directed.net') #this imports them as multigraph types --> convert to DiGraph L = nx.DiGraph(L) R = nx.DiGraph(R) ######################################## #### 2 - applying HITS algorithm ##### ######################################## #for LEFT hits_L_hubs, hits_L_authorities = nx.hits(L) plt.hist(hits_L_hubs.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas plt.show() #deleting elites from graph my_elites = pd.read_csv('my_elites.csv', index_col=0) my_elites['twitter_name_index'] = my_elites['twitter_name'] my_elites = my_elites.set_index('twitter_name_index') #using twitter_name = screen_name as index for later my_elites.head() elites_ids = my_elites['user_id'] #pandas series len(elites_ids) #420 ##now delete these elites from page_rank_L - LEFT: #need to create a list of strings first to_delete = [] for item in elites_ids: key = str(item) to_delete.append(key) len(to_delete) #420 ### LEFT #### to_delete_LEFT = set(L.nodes()).intersection(to_delete) len(to_delete_LEFT) #29 hits_L_hubs_noelites = hits_L_hubs ## NB this currently doesn't help distibguish them for item in to_delete_LEFT: del hits_L_hubs_noelites[item] len(hits_L_hubs_noelites) #822752 - without elites L.number_of_nodes() #822781 - with elites ##NB re-run these 3 sections below plt.hist(hits_L_hubs_noelites.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_noelites') #have to execute together with line above to avoid saving blank canvas plt.hist(hits_L_hubs_noelites.values(), 40, log=True, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_noelites_logscale') #have to execute together with line above to avoid saving blank canvas LEFT_hubs = pd.DataFrame.from_dict(data=hits_L_hubs_noelites, orient='index', columns=['hubs']) LEFT_hubs.to_csv('hubs_scores/LEFT_hubs_noelites.csv') #repeat for RIGHT hits_R_hubs, hits_R_authorities = nx.hits(R) #example hits_L_authorities['703690879'] #0 plt.hist(hits_R_hubs.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas #deleting elites from graph to_delete_RIGHT = set(R.nodes()).intersection(to_delete) len(to_delete_RIGHT) #35 hits_R_hubs_noelites = hits_R_hubs ### NB this currently doesn't help distibguish them - pointless for item in to_delete_RIGHT: del hits_R_hubs_noelites[item] len(hits_R_hubs_noelites) #1542221 - without elites #len(hits_R_hubs) #1542221 - original dict is also modified R.number_of_nodes() #1542256 - with elites #NB re-run these 3 sections below plt.hist(hits_R_hubs_noelites.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_noelites') #have to execute together with line above to avoid saving blank canvas plt.hist(hits_R_hubs_noelites.values(), 40, log=True, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_noelites_logscale') #have to execute together with line above to avoid saving blank canvas RIGHT_hubs = pd.DataFrame.from_dict(data=hits_R_hubs_noelites, orient='index', columns=['hubs']) RIGHT_hubs.to_csv('hubs_scores/RIGHT_hubs_noelites.csv') RIGHT_hubs #### calculating skew and kurtosis for entire sample's hubs centrality ## NB re-run these? L_hubs = list(hits_L_hubs.values()) #currently this is without the elites, as they were taken out above len(L_hubs) #822752 skew(L_hubs) #-0.1830900326354742 kurtosis(L_hubs) #-1.8363738717470777 np.mean(L_hubs) mode(L_hubs) np.median(L_hubs) np.std(L_hubs) R_hubs = list(hits_R_hubs.values()) #currently this is without the elites, as they were taken out above len(R_hubs) #1542221 skew(R_hubs) #-0.6376712808927192 kurtosis(R_hubs) #-1.16105655692604 np.mean(R_hubs) mode(R_hubs) np.median(R_hubs) np.std(R_hubs) entire_hubs = L_hubs+R_hubs len(entire_hubs) #2,364,973 skew(entire_hubs) #0.7903545150997883 kurtosis(entire_hubs) #-0.3640943243229504 np.mean(entire_hubs) mode(entire_hubs) np.median(entire_hubs) np.std(entire_hubs) #### save hubs & authorities values into results df #### df =
pd.read_csv('RESULTS_df_multiverse_4.csv', index_col=0)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/5/27 9:55 AM # @Author : R # @File : TMDB_Predict_Finally.py # @Software: PyCharm # coding: utf-8 # # Kaggle for TMDB # In[1]: import numpy as np import pandas as pd import warnings from tqdm import tqdm from datetime import datetime from sklearn.preprocessing import LabelEncoder from collections import Counter warnings.filterwarnings('ignore') # get_ipython().run_line_magic('matplotlib', 'inline') # Data description # id:每部电影的唯一标志 # belongs_to_collection:json格式下每部电影的tmdb id, 电影名、电影海报和电影背景的URL # budget:电影预算,数值为0表示未知 # genres:电影风格列表,json文件,包含id、name # homepage:电影官方主页的URL # imdb_id:该电影在imdb数据库中的唯一id标志 # original_language:电影制作的原始语言,长度为2的字符串 # original_title:电影的原始名称,可能与belong_to_collection中的名称不同 # overview: 剧情摘要 # popularity: 电影的受欢迎程度,float数值表示 # poster_path: 电影海报的URL # production_companies:json格式,电影制造公司的id、name # production_countries:json格式,电影制造国家 2字符简称、全称 # release_date:电影上映时间 # runtime:电影时长 # spoken_languages:电影语言版本,json格式 # status:电影是否已经发布 # tagline: 电影的标语 # title: 电影的英文名称 # keywords:电影关键字,json格式 # cast: json格式,演员列表,包括id,name,性别等 # crew:电影制作人员的信息,包括导演,作者等 # revenue:总收入,待预测值 # # EDA # EDA已做 # 特征工程以及预测 # 利用两个额外的数据集合 # 1.TMDB Competition Additional Features:本数据包含新的三个特征popularity2、rating、totalVotes # 2.TMDB Competition Additional Training Data:额外的2000个训练数据,没有给定训练集中所有的属性 # In[52]: # Feature Engineering & Prediction # 数据预处理函数,包括将非数值型属性转化为数值型 def prepare(df): global json_cols global train_dict df[['release_month', 'release_day', 'release_year']] = df['release_date'].str.split('/', expand=True).replace( np.nan, 0).astype(int) df['release_year'] = df['release_year'] df.loc[(df['release_year'] <= 19) & (df['release_year'] < 100), "release_year"] += 2000 df.loc[(df['release_year'] > 19) & (df['release_year'] < 100), "release_year"] += 1900 # 获取发行日期的星期、季度信息 releaseDate = pd.to_datetime(df['release_date']) df['release_dayofweek'] = releaseDate.dt.dayofweek df['release_quarter'] = releaseDate.dt.quarter # 对rating、totalVotes属性进行填充 rating_na = df.groupby(["release_year", "original_language"])['rating'].mean().reset_index() df[df.rating.isna()]['rating'] = df.merge(rating_na, how='left', on=["release_year", "original_language"]) vote_count_na = df.groupby(["release_year", "original_language"])['totalVotes'].mean().reset_index() df[df.totalVotes.isna()]['totalVotes'] = df.merge(vote_count_na, how='left', on=["release_year", "original_language"]) # df['rating'] = df['rating'].fillna(1.5) # df['totalVotes'] = df['totalVotes'].fillna(6) # 构建一个新属性,weightRating df['weightedRating'] = (df['rating'] * df['totalVotes'] + 6.367 * 1000) / (df['totalVotes'] + 1000) # 考虑到不同时期的面额意义不同,对其进行“通货膨胀”,通货膨胀比例为1.8%/年 df['originalBudget'] = df['budget'] df['inflationBudget'] = df['budget'] + df['budget'] * 1.8 / 100 * ( 2018 - df['release_year']) # Inflation simple formula df['budget'] = np.log1p(df['budget']) # 对crew、cast属性中人员性别构成进行统计 df['genders_0_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 0])) df['genders_1_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 1])) df['genders_2_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 2])) df['genders_0_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 0])) df['genders_1_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 1])) df['genders_2_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 2])) # 对belongs_to_collection、Keywords、cast进行统计 df['_collection_name'] = df['belongs_to_collection'].apply(lambda x: x[0]['name'] if x != {} else 0) le = LabelEncoder() le.fit(list(df['_collection_name'].fillna(''))) df['_collection_name'] = le.transform(df['_collection_name'].fillna('').astype(str)) df['_num_Keywords'] = df['Keywords'].apply(lambda x: len(x) if x != {} else 0) df['_num_cast'] = df['cast'].apply(lambda x: len(x) if x != {} else 0) df['_num_crew'] = df['crew'].apply(lambda x: len(x) if x != {} else 0) df['_popularity_mean_year'] = df['popularity'] / df.groupby("release_year")["popularity"].transform('mean') df['_budget_runtime_ratio'] = df['budget'] / df['runtime'] df['_budget_popularity_ratio'] = df['budget'] / df['popularity'] df['_budget_year_ratio'] = df['budget'] / (df['release_year'] * df['release_year']) df['_budget_year_ratio'] = df['budget'] / (df['release_year'] * df['release_year']) df['_releaseYear_popularity_ratio'] = df['release_year'] / df['popularity'] df['_releaseYear_popularity_ratio2'] = df['popularity'] / df['release_year'] df['_popularity_totalVotes_ratio'] = df['totalVotes'] / df['popularity'] df['_rating_popularity_ratio'] = df['rating'] / df['popularity'] df['_rating_totalVotes_ratio'] = df['totalVotes'] / df['rating'] df['_totalVotes_releaseYear_ratio'] = df['totalVotes'] / df['release_year'] df['_budget_rating_ratio'] = df['budget'] / df['rating'] df['_runtime_rating_ratio'] = df['runtime'] / df['rating'] df['_budget_totalVotes_ratio'] = df['budget'] / df['totalVotes'] # 对是否有homepage分类 df['has_homepage'] = 1 df.loc[pd.isnull(df['homepage']), "has_homepage"] = 0 # 对belongs_to_collection是否为空分类 df['isbelongs_to_collectionNA'] = 0 df.loc[pd.isnull(df['belongs_to_collection']), "isbelongs_to_collectionNA"] = 1 # 对tagline是否为空分类 df['isTaglineNA'] = 0 df.loc[df['tagline'] == 0, "isTaglineNA"] = 1 # 对original——langues是否为English判定 df['isOriginalLanguageEng'] = 0 df.loc[df['original_language'] == "en", "isOriginalLanguageEng"] = 1 # 对电影名是否不同判定 df['isTitleDifferent'] = 1 df.loc[df['original_title'] == df['title'], "isTitleDifferent"] = 0 # 对电影是否上映判定 df['isMovieReleased'] = 1 df.loc[df['status'] != "Released", "isMovieReleased"] = 0 # 电影是否有摘要 df['isOverviewNA'] = 0 df.loc[pd.isnull(df['overview']), 'isOverviewNA'] = 1 # 获取collection id df['collection_id'] = df['belongs_to_collection'].apply(lambda x: np.nan if len(x) == 0 else x[0]['id']) # 对original——title等属性统计长度 df['original_title_letter_count'] = df['original_title'].str.len() df['original_title_word_count'] = df['original_title'].str.split().str.len() # 对title、overview、tagline统计长度或个数 df['title_word_count'] = df['title'].str.split().str.len() df['overview_word_count'] = df['overview'].str.split().str.len() df['tagline_word_count'] = df['tagline'].str.split().str.len() df['len_title'] = df['title'].fillna('').apply(lambda x: len(str(x))) # 对production_conpany、country、cast、crew、spoken_languages统计 df['production_countries_count'] = df['production_countries'].apply(lambda x: len(x)) df['production_companies_count'] = df['production_companies'].apply(lambda x: len(x)) df['cast_count'] = df['cast'].apply(lambda x: len(x)) df['crew_count'] = df['crew'].apply(lambda x: len(x)) df['spoken_languages_count'] = df['spoken_languages'].apply(lambda x: len(x)) df['genres_count'] = df['genres'].apply(lambda x: len(x)) # 进行按年分组计算均值填充 df['meanruntimeByYear'] = df.groupby("release_year")["runtime"].aggregate('mean') df['meanPopularityByYear'] = df.groupby("release_year")["popularity"].aggregate('mean') df['meanBudgetByYear'] = df.groupby("release_year")["budget"].aggregate('mean') df['meantotalVotesByYear'] = df.groupby("release_year")["totalVotes"].aggregate('mean') df['meanTotalVotesByRating'] = df.groupby("rating")["totalVotes"].aggregate('mean') df['medianBudgetByYear'] = df.groupby("release_year")["budget"].aggregate('median') #################################################################################### df['_popularity_theatrical_ratio'] = df['theatrical'] / df['popularity'] df['_budget_theatrical_ratio'] = df['budget'] / df['theatrical'] # runtime df['runtime_cat_min_60'] = df['runtime'].apply(lambda x: 1 if (x <= 60) else 0) df['runtime_cat_61_80'] = df['runtime'].apply(lambda x: 1 if (x > 60) & (x <= 80) else 0) df['runtime_cat_81_100'] = df['runtime'].apply(lambda x: 1 if (x > 80) & (x <= 100) else 0) df['runtime_cat_101_120'] = df['runtime'].apply(lambda x: 1 if (x > 100) & (x <= 120) else 0) df['runtime_cat_121_140'] = df['runtime'].apply(lambda x: 1 if (x > 120) & (x <= 140) else 0) df['runtime_cat_141_170'] = df['runtime'].apply(lambda x: 1 if (x > 140) & (x <= 170) else 0) df['runtime_cat_171_max'] = df['runtime'].apply(lambda x: 1 if (x >= 170) else 0) lang = df['original_language'] df_more_17_samples = [x[0] for x in Counter(pd.DataFrame(lang).stack()).most_common(17)] for col in df_more_17_samples: df[col] = df['original_language'].apply(lambda x: 1 if x == col else 0) for col in range(1, 12): df['month' + str(col)] = df['release_month'].apply(lambda x: 1 if x == col else 0) # feature engeneering : Release date per quarter one hot encoding for col in range(1, 4): df['quarter' + str(col)] = df['release_quarter'].apply(lambda x: 1 if x == col else 0) for col in range(1, 7): df['dayofweek' + str(col)] = df['release_dayofweek'].apply(lambda x: 1 if x == col else 0) # 新加入属性 df['is_release_day_of_1'] = 0 df.loc[df['release_day'] == 1, 'is_release_day_of_1'] = 1 df['is_release_day_of_15'] = 0 df.loc[df['release_day'] == 15, 'is_release_day_of_15'] = 1 # 新属性加入 # df['popularity2'] = np.log1p(df['popularity2']) # df['popularity'] = np.log1p(df['popularity']) # for col in range(1, 32): # df['release_day' + str(col)] = df['release_day'].apply(lambda x: 1 if x == col else 0) df['is_release_day_of_31'] = 0 df.loc[df['release_day'] == 31, 'is_release_day_of_15'] = 1 # popularity df['popularity_cat_25'] = df['popularity'].apply(lambda x: 1 if (x <= 25) else 0) df['popularity_cat_26_50'] = df['popularity'].apply(lambda x: 1 if (x > 25) & (x <= 50) else 0) df['popularity_cat_51_100'] = df['popularity'].apply(lambda x: 1 if (x > 50) & (x <= 100) else 0) df['popularity_cat_101_150'] = df['popularity'].apply(lambda x: 1 if (x > 100) & (x <= 150) else 0) df['popularity_cat_151_200'] = df['popularity'].apply(lambda x: 1 if (x > 150) & (x <= 200) else 0) df['popularity_cat_201_max'] = df['popularity'].apply(lambda x: 1 if (x >= 200) else 0) df['_runtime_totalVotes_ratio'] = df['runtime'] / df['totalVotes'] df['_runtime_popularity_ratio'] = df['runtime'] / df['popularity'] # df['_rating_theatrical_ratio'] = df['theatrical'] / df['rating'] df['_totalVotes_theatrical_ratio'] = df['theatrical'] / df['totalVotes'] df['_budget_mean_year'] = df['budget'] / df.groupby("release_year")["budget"].transform('mean') df['_runtime_mean_year'] = df['runtime'] / df.groupby("release_year")["runtime"].transform('mean') df['_rating_mean_year'] = df['rating'] / df.groupby("release_year")["rating"].transform('mean') df['_totalVotes_mean_year'] = df['totalVotes'] / df.groupby("release_year")["totalVotes"].transform('mean') ############################################################### # 对某些json属性,具有多个值的,进行类似‘one-hot编码’ for col in ['genres', 'production_countries', 'spoken_languages', 'production_companies','Keywords']: df[col] = df[col].map(lambda x: sorted( list(set([n if n in train_dict[col] else col + '_etc' for n in [d['name'] for d in x]])))).map( lambda x: ','.join(map(str, x))) temp = df[col].str.get_dummies(sep=',') df = pd.concat([df, temp], axis=1, sort=False) # 删除非数值属性和暂时未提出有用信息的属性 df.drop(['genres_etc'], axis=1, inplace=True) df = df.drop(['id', 'revenue', 'belongs_to_collection', 'genres', 'homepage', 'imdb_id', 'overview', 'runtime' , 'poster_path', 'production_companies', 'production_countries', 'release_date', 'spoken_languages' , 'status', 'title', 'Keywords', 'cast', 'crew', 'original_language', 'original_title', 'tagline', 'collection_id' ], axis=1) # 填充缺失值 df.fillna(value=0.0, inplace=True) return df # 对train中的某些数据手动处理 # 处理包括budget、revenue # 对budget远小于revenue的情况统计,对其进行处理 # 处理原则,对于可以查询到的信息,进行真实数据填充,否则取当年同期同类型电影的均值 train = pd.read_csv('train.csv') train.loc[train['id'] == 16, 'revenue'] = 192864 # Skinning train.loc[train['id'] == 90, 'budget'] = 30000000 # Sommersby train.loc[train['id'] == 118, 'budget'] = 60000000 # Wild Hogs train.loc[train['id'] == 149, 'budget'] = 18000000 # Beethoven train.loc[train['id'] == 313, 'revenue'] = 12000000 # The Cookout train.loc[train['id'] == 451, 'revenue'] = 12000000 # Chasing Liberty train.loc[train['id'] == 464, 'budget'] = 20000000 # Parenthood train.loc[train['id'] == 470, 'budget'] = 13000000 # The Karate Kid, Part II train.loc[train['id'] == 513, 'budget'] = 930000 # From Prada to Nada train.loc[train['id'] == 797, 'budget'] = 8000000 # Welcome to Dongmakgol train.loc[train['id'] == 819, 'budget'] = 90000000 # Alvin and the Chipmunks: The Road Chip train.loc[train['id'] == 850, 'budget'] = 90000000 # Modern Times train.loc[train['id'] == 1007, 'budget'] = 2 # Zyzzyx Road train.loc[train['id'] == 1112, 'budget'] = 7500000 # An Officer and a Gentleman train.loc[train['id'] == 1131, 'budget'] = 4300000 # Smokey and the Bandit train.loc[train['id'] == 1359, 'budget'] = 10000000 # Stir Crazy train.loc[train['id'] == 1542, 'budget'] = 1 # All at Once train.loc[train['id'] == 1570, 'budget'] = 15800000 # Crocodile Dundee II train.loc[train['id'] == 1571, 'budget'] = 4000000 # Lady and the Tramp train.loc[train['id'] == 1714, 'budget'] = 46000000 # The Recruit train.loc[train['id'] == 1721, 'budget'] = 17500000 # Cocoon train.loc[train['id'] == 1865, 'revenue'] = 25000000 # Scooby-Doo 2: Monsters Unleashed train.loc[train['id'] == 1885, 'budget'] = 12 # In the Cut train.loc[train['id'] == 2091, 'budget'] = 10 # Deadfall train.loc[train['id'] == 2268, 'budget'] = 17500000 # Madea Goes to Jail budget train.loc[train['id'] == 2491, 'budget'] = 6 # Never Talk to Strangers train.loc[train['id'] == 2602, 'budget'] = 31000000 # Mr. Holland's Opus train.loc[train['id'] == 2612, 'budget'] = 15000000 # Field of Dreams train.loc[train['id'] == 2696, 'budget'] = 10000000 # Nurse 3-D train.loc[train['id'] == 2801, 'budget'] = 10000000 # Fracture train.loc[train['id'] == 335, 'budget'] = 2 train.loc[train['id'] == 348, 'budget'] = 12 train.loc[train['id'] == 470, 'budget'] = 13000000 train.loc[train['id'] == 513, 'budget'] = 1100000 train.loc[train['id'] == 640, 'budget'] = 6 train.loc[train['id'] == 696, 'budget'] = 1 train.loc[train['id'] == 797, 'budget'] = 8000000 train.loc[train['id'] == 850, 'budget'] = 1500000 train.loc[train['id'] == 1199, 'budget'] = 5 train.loc[train['id'] == 1282, 'budget'] = 9 # Death at a Funeral train.loc[train['id'] == 1347, 'budget'] = 1 train.loc[train['id'] == 1755, 'budget'] = 2 train.loc[train['id'] == 1801, 'budget'] = 5 train.loc[train['id'] == 1918, 'budget'] = 592 train.loc[train['id'] == 2033, 'budget'] = 4 train.loc[train['id'] == 2118, 'budget'] = 344 train.loc[train['id'] == 2252, 'budget'] = 130 train.loc[train['id'] == 2256, 'budget'] = 1 train.loc[train['id'] == 2696, 'budget'] = 10000000 # test异常处理 test = pd.read_csv('test.csv') # Clean Data test.loc[test['id'] == 6733, 'budget'] = 5000000 test.loc[test['id'] == 3889, 'budget'] = 15000000 test.loc[test['id'] == 6683, 'budget'] = 50000000 test.loc[test['id'] == 5704, 'budget'] = 4300000 test.loc[test['id'] == 6109, 'budget'] = 281756 test.loc[test['id'] == 7242, 'budget'] = 10000000 test.loc[test['id'] == 7021, 'budget'] = 17540562 # Two Is a Family test.loc[test['id'] == 5591, 'budget'] = 4000000 # The Orphanage test.loc[test['id'] == 4282, 'budget'] = 20000000 # Big Top Pee-wee test.loc[test['id'] == 3033, 'budget'] = 250 test.loc[test['id'] == 3051, 'budget'] = 50 test.loc[test['id'] == 3084, 'budget'] = 337 test.loc[test['id'] == 3224, 'budget'] = 4 test.loc[test['id'] == 3594, 'budget'] = 25 test.loc[test['id'] == 3619, 'budget'] = 500 test.loc[test['id'] == 3831, 'budget'] = 3 test.loc[test['id'] == 3935, 'budget'] = 500 test.loc[test['id'] == 4049, 'budget'] = 995946 test.loc[test['id'] == 4424, 'budget'] = 3 test.loc[test['id'] == 4460, 'budget'] = 8 test.loc[test['id'] == 4555, 'budget'] = 1200000 test.loc[test['id'] == 4624, 'budget'] = 30 test.loc[test['id'] == 4645, 'budget'] = 500 test.loc[test['id'] == 4709, 'budget'] = 450 test.loc[test['id'] == 4839, 'budget'] = 7 test.loc[test['id'] == 3125, 'budget'] = 25 test.loc[test['id'] == 3142, 'budget'] = 1 test.loc[test['id'] == 3201, 'budget'] = 450 test.loc[test['id'] == 3222, 'budget'] = 6 test.loc[test['id'] == 3545, 'budget'] = 38 test.loc[test['id'] == 3670, 'budget'] = 18 test.loc[test['id'] == 3792, 'budget'] = 19 test.loc[test['id'] == 3881, 'budget'] = 7 test.loc[test['id'] == 3969, 'budget'] = 400 test.loc[test['id'] == 4196, 'budget'] = 6 test.loc[test['id'] == 4221, 'budget'] = 11 test.loc[test['id'] == 4222, 'budget'] = 500 test.loc[test['id'] == 4285, 'budget'] = 11 test.loc[test['id'] == 4319, 'budget'] = 1 test.loc[test['id'] == 4639, 'budget'] = 10 test.loc[test['id'] == 4719, 'budget'] = 45 test.loc[test['id'] == 4822, 'budget'] = 22 test.loc[test['id'] == 4829, 'budget'] = 20 test.loc[test['id'] == 4969, 'budget'] = 20 test.loc[test['id'] == 5021, 'budget'] = 40 test.loc[test['id'] == 5035, 'budget'] = 1 test.loc[test['id'] == 5063, 'budget'] = 14 test.loc[test['id'] == 5119, 'budget'] = 2 test.loc[test['id'] == 5214, 'budget'] = 30 test.loc[test['id'] == 5221, 'budget'] = 50 test.loc[test['id'] == 4903, 'budget'] = 15 test.loc[test['id'] == 4983, 'budget'] = 3 test.loc[test['id'] == 5102, 'budget'] = 28 test.loc[test['id'] == 5217, 'budget'] = 75 test.loc[test['id'] == 5224, 'budget'] = 3 test.loc[test['id'] == 5469, 'budget'] = 20 test.loc[test['id'] == 5840, 'budget'] = 1 test.loc[test['id'] == 5960, 'budget'] = 30 test.loc[test['id'] == 6506, 'budget'] = 11 test.loc[test['id'] == 6553, 'budget'] = 280 test.loc[test['id'] == 6561, 'budget'] = 7 test.loc[test['id'] == 6582, 'budget'] = 218 test.loc[test['id'] == 6638, 'budget'] = 5 test.loc[test['id'] == 6749, 'budget'] = 8 test.loc[test['id'] == 6759, 'budget'] = 50 test.loc[test['id'] == 6856, 'budget'] = 10 test.loc[test['id'] == 6858, 'budget'] = 100 test.loc[test['id'] == 6876, 'budget'] = 250 test.loc[test['id'] == 6972, 'budget'] = 1 test.loc[test['id'] == 7079, 'budget'] = 8000000 test.loc[test['id'] == 7150, 'budget'] = 118 test.loc[test['id'] == 6506, 'budget'] = 118 test.loc[test['id'] == 7225, 'budget'] = 6 test.loc[test['id'] == 7231, 'budget'] = 85 test.loc[test['id'] == 5222, 'budget'] = 5 test.loc[test['id'] == 5322, 'budget'] = 90 test.loc[test['id'] == 5350, 'budget'] = 70 test.loc[test['id'] == 5378, 'budget'] = 10 test.loc[test['id'] == 5545, 'budget'] = 80 test.loc[test['id'] == 5810, 'budget'] = 8 test.loc[test['id'] == 5926, 'budget'] = 300 test.loc[test['id'] == 5927, 'budget'] = 4 test.loc[test['id'] == 5986, 'budget'] = 1 test.loc[test['id'] == 6053, 'budget'] = 20 test.loc[test['id'] == 6104, 'budget'] = 1 test.loc[test['id'] == 6130, 'budget'] = 30 test.loc[test['id'] == 6301, 'budget'] = 150 test.loc[test['id'] == 6276, 'budget'] = 100 test.loc[test['id'] == 6473, 'budget'] = 100 test.loc[test['id'] == 6842, 'budget'] = 30 release_dates = pd.read_csv('release_dates_per_country.csv') release_dates['id'] = range(1,7399) release_dates.drop(['original_title','title'],axis = 1,inplace = True) release_dates.index = release_dates['id'] train = pd.merge(train, release_dates, how='left', on=['id']) test = pd.merge(test, release_dates, how='left', on=['id']) test['revenue'] = np.nan # 将从TMDB下载的其他特征进行合并 train = pd.merge(train, pd.read_csv('TrainAdditionalFeatures.csv'), how='left', on=['imdb_id']) test = pd.merge(test, pd.read_csv('TestAdditionalFeatures.csv'), how='left', on=['imdb_id']) # 添加额外的训练集,2000条 additionalTrainData = pd.read_csv('additionalTrainData.csv') additionalTrainData['release_date'] = additionalTrainData['release_date'].astype('str') additionalTrainData['release_date'] = additionalTrainData['release_date'].str.replace('-', '/') train = pd.concat([train, additionalTrainData]) print('train.columns:', train.columns) print('train.shape:', train.shape) # 根据EDA分析结果,对revenue做数据平滑处理 train['revenue'] = np.log1p(train['revenue']) y = train['revenue'].values # json 格式属性列 json_cols = ['genres', 'production_companies', 'production_countries', 'spoken_languages', 'Keywords', 'cast', 'crew'] # 将json格式属性转化为dict格式 def get_dictionary(s): try: d = eval(s) except: d = {} return d for col in tqdm(json_cols + ['belongs_to_collection']): train[col] = train[col].apply(lambda x: get_dictionary(x)) test[col] = test[col].apply(lambda x: get_dictionary(x)) # 统计json格式属性中各个类别出现的次数 def get_json_dict(df): global json_cols result = dict() for e_col in json_cols: d = dict() rows = df[e_col].values for row in rows: if row is None: continue for i in row: if i['name'] not in d: d[i['name']] = 0 d[i['name']] += 1 result[e_col] = d return result train_dict = get_json_dict(train) test_dict = get_json_dict(test) # 对json格式列,移除异常类别和出现次数过低类别 # 首先删除非train和test共同出现的类别 # 再删除数量少于10的类别 for col in json_cols: remove = [] train_id = set(list(train_dict[col].keys())) test_id = set(list(test_dict[col].keys())) remove += list(train_id - test_id) + list(test_id - train_id) for i in train_id.union(test_id) - set(remove): if train_dict[col][i] < 10 or i == '': remove += [i] for i in remove: if i in train_dict[col]: del train_dict[col][i] if i in test_dict[col]: del test_dict[col][i] # 对数据进行预处理 all_data = prepare(pd.concat([train, test]).reset_index(drop=True)) train = all_data.loc[:train.shape[0] - 1, :] test = all_data.loc[train.shape[0]:, :] print(train.columns) train.head() # In[53]: # model 选择,使用XGBoost from sklearn.model_selection import KFold import xgboost as xgb # 参数设置,随机种子为2019,十折交叉验证 random_seed = 2019 k = 10 fold = list(KFold(k, shuffle=True, random_state=random_seed).split(train)) np.random.seed(random_seed) # XGBoost模型选择 def xgb_model(trn_x, trn_y, val_x, val_y, test, verbose): params = {'objective': 'reg:linear', 'eta': 0.01, 'max_depth': 5, 'subsample': 0.8, 'colsample_bytree': 0.7, 'eval_metric': 'rmse', 'seed': random_seed, 'silent': True, 'n_estimators':10000, 'gamma':1.45, 'colsample_bylevel':0.6, } record = dict() model = xgb.train(params , xgb.DMatrix(trn_x, trn_y) , 100000 , [(xgb.DMatrix(trn_x, trn_y), 'train'), (xgb.DMatrix(val_x, val_y), 'valid')] , verbose_eval=verbose , early_stopping_rounds=500 , callbacks=[xgb.callback.record_evaluation(record)]) best_idx = np.argmin(np.array(record['valid']['rmse'])) val_pred = model.predict(xgb.DMatrix(val_x), ntree_limit=model.best_ntree_limit) test_pred = model.predict(xgb.DMatrix(test), ntree_limit=model.best_ntree_limit) return {'val': val_pred, 'test': test_pred, 'error': record['valid']['rmse'][best_idx], 'importance': [i for k, i in model.get_score().items()]} # In[54]: # training using LightGBM import lightgbm as lgb def lgb_model(trn_x, trn_y, val_x, val_y, test, verbose): params = {'objective': 'regression', 'num_leaves': 30, 'min_data_in_leaf': 10, 'max_depth': 5, 'learning_rate': 0.01, # 'min_child_samples':100, 'feature_fraction': 0.9, "bagging_freq": 1, "bagging_fraction": 0.9, 'lambda_l1': 0.2, "bagging_seed": random_seed, "metric": 'rmse', 'subsample':.8, 'colsample_bytree':.9, "random_state": random_seed, 'n_estimators':10000, 'min_child_samples': 100, 'boosting': 'gbdt', 'importance_type': 'gain', 'use_best_model': True, "verbosity": -1} record = dict() model = lgb.train(params , lgb.Dataset(trn_x, trn_y) , num_boost_round=100000 , valid_sets=[lgb.Dataset(val_x, val_y)] , verbose_eval=verbose , early_stopping_rounds=500 , callbacks=[lgb.record_evaluation(record)] ) best_idx = np.argmin(np.array(record['valid_0']['rmse'])) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test, num_iteration=model.best_iteration) return {'val': val_pred, 'test': test_pred, 'error': record['valid_0']['rmse'][best_idx], 'importance': model.feature_importance('gain')} # In[55]: # training with catboost from catboost import CatBoostRegressor def cat_model(trn_x, trn_y, val_x, val_y, test, verbose): model = CatBoostRegressor(iterations=10000, learning_rate=0.01, depth=5, eval_metric='RMSE', colsample_bylevel=0.8, random_seed=random_seed, bagging_temperature=0.2, metric_period=None, early_stopping_rounds=200 ) model.fit(trn_x, trn_y, eval_set=(val_x, val_y), use_best_model=True, verbose=False) val_pred = model.predict(val_x) test_pred = model.predict(test) return {'val': val_pred, 'test': test_pred, 'error': model.get_best_score()['validation_0']['RMSE']} # In[56]: # use 3 model to train result_dict = dict() val_pred = np.zeros(train.shape[0]) test_pred = np.zeros(test.shape[0]) final_err = 0 verbose = False for i, (trn, val) in enumerate(fold): print(i + 1, "fold. RMSE") trn_x = train.loc[trn, :] trn_y = y[trn] val_x = train.loc[val, :] val_y = y[val] fold_val_pred = [] fold_test_pred = [] fold_err = [] # """ xgboost start = datetime.now() result = xgb_model(trn_x, trn_y, val_x, val_y, test, verbose) fold_val_pred.append(result['val'] * 0.2) fold_test_pred.append(result['test'] * 0.2) fold_err.append(result['error']) print("xgb model.", "{0:.5f}".format(result['error']), '(' + str(int((datetime.now() - start).seconds / 60)) + 'm)') # """ # """ lightgbm start = datetime.now() result = lgb_model(trn_x, trn_y, val_x, val_y, test, verbose) fold_val_pred.append(result['val'] * 0.4) fold_test_pred.append(result['test'] * 0.4) fold_err.append(result['error']) print("lgb model.", "{0:.5f}".format(result['error']), '(' + str(int((datetime.now() - start).seconds / 60)) + 'm)') # """ # """ catboost model start = datetime.now() result = cat_model(trn_x, trn_y, val_x, val_y, test, verbose) fold_val_pred.append(result['val'] * 0.4) fold_test_pred.append(result['test'] * 0.4) fold_err.append(result['error']) print("cat model.", "{0:.5f}".format(result['error']), '(' + str(int((datetime.now() - start).seconds / 60)) + 'm)') # """ # mix result of multiple models val_pred[val] += np.mean(np.array(fold_val_pred), axis=0) # print(fold_test_pred) # print(fold_test_pred.shape) # print(fold_test_pred.columns) test_pred += np.mean(np.array(fold_test_pred), axis=0) / k final_err += (sum(fold_err) / len(fold_err)) / k print("---------------------------") print("avg err.", "{0:.5f}".format(sum(fold_err) / len(fold_err))) print("blend err.", "{0:.5f}".format(np.sqrt(np.mean((np.mean(np.array(fold_val_pred), axis=0) - val_y) ** 2)))) print('') print("fianl avg err.", final_err) print("fianl blend err.", np.sqrt(np.mean((val_pred - y) ** 2))) # In[60]: sub =
pd.read_csv('sample_submission.csv')
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta import sys import os import unittest import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, DatetimeIndex, Int64Index, to_datetime, bdate_range) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import( range, long, StringIO, lrange, lmap, map, zip, cPickle as pickle, product ) from pandas import read_pickle import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat from pandas.core.datetools import BDay import pandas.core.common as com from pandas import concat from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") # infortunately, too much has changed to handle these legacy pickles # class TestLegacySupport(unittest.TestCase): class LegacySupport(object): _multiprocess_can_split_ = True @classmethod def setUpClass(cls): if compat.PY3: raise nose.SkipTest("not compatible with Python >= 3") pth, _ = os.path.split(os.path.abspath(__file__)) filepath = os.path.join(pth, 'data', 'frame.pickle') with open(filepath, 'rb') as f: cls.frame = pickle.load(f) filepath = os.path.join(pth, 'data', 'series.pickle') with open(filepath, 'rb') as f: cls.series = pickle.load(f) def test_pass_offset_warn(self): buf = StringIO() sys.stderr = buf
DatetimeIndex(start='1/1/2000', periods=10, offset='H')
pandas.DatetimeIndex
""" LCM: Linear time Closed item set Miner as described in `http://lig-membres.imag.fr/termier/HLCM/hlcm.pdf` url: https://github.com/scikit-mine/scikit-mine/blob/master/skmine/preprocessing/lcm.py """ # Author: <NAME> <<EMAIL>> # License: BSD 3 clause from collections import defaultdict import numpy as np import pandas as pd from joblib import Parallel, delayed from sortedcontainers import SortedDict from .utils import _check_min_supp from .utils import filter_maximal from .bitmaps import Bitmap class LCM: """ Linear time Closed item set Miner. LCM can be used as a preprocessing step, yielding some patterns that will be later submitted to a custom acceptance criterion. It can also be used to simply discover the set of closed itemsets from a transactional dataset. Parameters ---------- min_supp: int or float, default=0.2 The minimum support for itemsets to be rendered in the output Either an int representing the absolute support, or a float for relative support Default to 0.2 (20%) n_jobs : int, default=1 The number of jobs to use for the computation. Each single item is attributed a job to discover potential itemsets, considering this item as a root in the search space. Processes are preffered over threads. References ---------- .. [1] <NAME>, <NAME>, <NAME> "LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets", 2004 .. [2] Alexandre Termier "Pattern mining rock: more, faster, better" Examples -------- from skmine.preprocessing import LCM from skmine.datasets.fimi import fetch_chess chess = fetch_chess() lcm = LCM(min_supp=2000) patterns = lcm.fit_discover(chess) # doctest: +SKIP patterns.head() # doctest: +SKIP itemset support 0 (58) 3195 1 (11, 58) 2128 2 (15, 58) 2025 3 (17, 58) 2499 4 (21, 58) 2224 patterns[patterns.itemset.map(len) > 3] # doctest: +SKIP """ def __init__(self, *, min_supp=0.2, n_jobs=1, verbose=False): _check_min_supp(min_supp) self.min_supp = min_supp # provided by user self._min_supp = _check_min_supp(self.min_supp) self.item_to_tids = None self.n_transactions = 0 self.ctr = 0 self.n_jobs = n_jobs self.verbose = verbose def _fit(self, D): self.n_transactions = 0 # reset for safety item_to_tids = defaultdict(Bitmap) for transaction in D: for item in transaction: item_to_tids[item].add(self.n_transactions) self.n_transactions += 1 print(D) print(item_to_tids) if isinstance(self.min_supp, float): # make support absolute if needed self._min_supp = self.min_supp * self.n_transactions low_supp_items = [k for k, v in item_to_tids.items() if len(v) < self._min_supp] for item in low_supp_items: del item_to_tids[item] self.item_to_tids = SortedDict(item_to_tids) return self def fit_discover(self, D, return_tids=False): """fit LCM on the transactional database, and return the set of closed itemsets in this database, with respect to the minium support Different from ``fit_transform``, see the `Returns` section below. Parameters ---------- D : pd.Series or Iterable The input transactional database Where every entry contain singular items Items must be both hashable and comparable return_tids: bool Either to return transaction ids along with itemset. Default to False, will return supports instead Returns ------- pd.DataFrame DataFrame with the following columns ========== ================================= itemset a `tuple` of co-occured items support frequence for this itemset ========== ================================= if `return_tids=True` then ========== ================================= itemset a `tuple` of co-occured items tids a bitmap tracking positions ========== ================================= Example ------- from skmine.preprocessing import LCM D = [[1, 2, 3, 4, 5, 6], [2, 3, 5], [2, 5]] LCM(min_supp=2).fit_discover(D) itemset support 0 (2, 5) 3 1 (2, 3, 5) 2 LCM(min_supp=2).fit_discover(D, return_tids=True) # doctest: +SKIP itemset tids 0 (2, 5) [0, 1, 2] 1 (2, 3, 5) [0, 1] """ self._fit(D) empty_df =
pd.DataFrame(columns=['itemset', 'tids'])
pandas.DataFrame
#!/usr/bin/env python3 """ process output from simulations with cluster structures with no lags """ # import relevant modules and functions import pickle import pandas as pd folder = 'simulation_study/simulations_cluster_results/' theta_1_2_s = [1040, 1045, 1050, 1055, 1060] res_table = {} for j in range(len(theta_1_2_s)): source_file = open(folder+"simulation_cluster_part0" + str(j) + "_results.pkl", "rb") res_table_ = pickle.load(source_file) source_file.close() res_table[theta_1_2_s[j]] = res_table_[theta_1_2_s[j]] logit_p_s = [-i for i in range(60, 140, 10)] lambdas_s = [0, 0.2, 0.4, 0.6, 0.8] graph_type = ['rchain', 'lattice'] theta_1_2_s = [1040, 1045, 1050, 1055, 1060] # print for plot in R... pd.Series(graph_type).to_csv(folder+'simulation_clust_graph_type.csv') pd.Series(theta_1_2_s).to_csv(folder+'simulation_clust_thetas.csv')
pd.Series(logit_p_s)
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [
Timestamp('20160101', tz='US/Eastern')
pandas.Timestamp
import os import sys import pytest from shapely.geometry import Polygon, GeometryCollection from pandas import DataFrame, Timestamp from pandas.testing import assert_frame_equal from tests.fixtures import * from tests.test_core_components_route import self_looping_route, route from tests.test_core_components_service import service from genet.inputs_handler import matsim_reader, gtfs_reader from genet.inputs_handler import read from genet.schedule_elements import Schedule, Service, Route, Stop, read_vehicle_types from genet.utils import plot, spatial from genet.validate import schedule_validation from genet.exceptions import ServiceIndexError, RouteIndexError, StopIndexError, UndefinedCoordinateSystemError, \ ConflictingStopData, InconsistentVehicleModeError sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) pt2matsim_schedule_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "schedule.xml")) pt2matsim_vehicles_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "vehicles.xml")) @pytest.fixture() def schedule(): route_1 = Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='2', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) @pytest.fixture() def strongly_connected_schedule(): route_1 = Route(route_short_name='name', mode='bus', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='3', x=3, y=3, epsg='epsg:27700', name='Stop_3'), Stop(id='4', x=7, y=5, epsg='epsg:27700', name='Stop_4'), Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['1', '2'], departure_offsets=['1', '2'], id='1') route_2 = Route(route_short_name='name_2', mode='bus', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='7', x=3, y=3, epsg='epsg:27700', name='Stop_7'), Stop(id='8', x=7, y=5, epsg='epsg:27700', name='Stop_8'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['1', '2', '3', '4', '5'], departure_offsets=['1', '2', '3', '4', '5'], id='2') service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) def test_initiating_schedule(schedule): s = schedule assert_semantically_equal(dict(s._graph.nodes(data=True)), { '5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': {'service'}, 'routes': {'2'}, 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}}) assert_semantically_equal(s._graph.edges(data=True)._adjdict, {'5': {'6': {'services': {'service'}, 'routes': {'2'}}}, '6': {'7': {'services': {'service'}, 'routes': {'2'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {}, '4': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}}) log = s._graph.graph.pop('change_log') assert log.empty assert_semantically_equal(s._graph.graph, {'name': 'Schedule graph', 'routes': {'2': {'route_short_name': 'name_2', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '2', 'route': [], 'await_departure': [], 'ordered_stops': ['5', '6', '7', '8']}, '1': {'route_short_name': 'name', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '1', 'route': [], 'await_departure': [], 'ordered_stops': ['1', '2', '3', '4']}}, 'services': {'service': {'id': 'service', 'name': 'name'}}, 'route_to_service_map': {'1': 'service', '2': 'service'}, 'service_to_route_map': {'service': ['1', '2']}, 'crs': {'init': 'epsg:27700'}}) def test_initiating_schedule_with_non_uniquely_indexed_objects(): route_1 = Route(route_short_name='name', mode='bus', id='', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_2_bus', 'veh_3_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service1 = Service(id='service', routes=[route_1, route_2]) service2 = Service(id='service', routes=[route_1, route_2]) s = Schedule(epsg='epsg:27700', services=[service1, service2]) assert s.number_of_routes() == 4 assert len(s) == 2 def test__getitem__returns_a_service(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert schedule['service'] == services[0] def test_accessing_route(schedule): assert schedule.route('1') == Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['1', '2'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) def test__repr__shows_number_of_services(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) schedule = Schedule('epsg:27700') s = schedule.__repr__() assert 'instance at' in s assert 'services' in s Schedule.__len__.assert_called() def test__str__shows_info(): schedule = Schedule('epsg:27700') assert 'Number of services' in schedule.__str__() assert 'Number of routes' in schedule.__str__() def test__len__returns_the_number_of_services(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert len(schedule) == 1 def test_print_shows_info(mocker): mocker.patch.object(Schedule, 'info') schedule = Schedule('epsg:27700') schedule.print() Schedule.info.assert_called_once() def test_info_shows_number_of_services_and_routes(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) mocker.patch.object(Schedule, 'number_of_routes') schedule = Schedule('epsg:27700') schedule.print() Schedule.__len__.assert_called() Schedule.number_of_routes.assert_called_once() def test_plot_delegates_to_util_plot_plot_graph_routes(mocker, schedule): mocker.patch.object(plot, 'plot_graph') schedule.plot() plot.plot_graph.assert_called_once() def test_reproject_changes_projection_for_all_stops_in_route(): correct_x_y = {'x': -0.14967658860132668, 'y': 51.52393050617373} schedule = Schedule( 'epsg:27700', [Service(id='10314', routes=[ Route( route_short_name='12', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_1_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ])]) schedule.reproject('epsg:4326') _stops = list(schedule.stops()) stops = dict(zip([stop.id for stop in _stops], _stops)) assert_semantically_equal({'x': stops['26997928P'].x, 'y': stops['26997928P'].y}, correct_x_y) assert_semantically_equal({'x': stops['26997928P.link:1'].x, 'y': stops['26997928P.link:1'].y}, correct_x_y) def test_adding_merges_separable_schedules(route): schedule = Schedule(epsg='epsg:4326', services=[Service(id='1', routes=[route])]) before_graph_nodes = schedule.reference_nodes() before_graph_edges = schedule.reference_edges() a = Stop(id='10', x=40, y=20, epsg='epsg:27700', linkRefId='1') b = Stop(id='20', x=10, y=20, epsg='epsg:27700', linkRefId='2') c = Stop(id='30', x=30, y=30, epsg='epsg:27700', linkRefId='3') d = Stop(id='40', x=70, y=50, epsg='epsg:27700', linkRefId='4') schedule_to_be_added = Schedule(epsg='epsg:4326', services=[Service(id='2', routes=[ Route( route_short_name='name', mode='bus', stops=[a, b, c, d], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['04:40:00', '05:40:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00'], route=['1', '2', '3', '4'], id='2') ])]) tba_graph_nodes = schedule_to_be_added.reference_nodes() tba_graph_edges = schedule_to_be_added.reference_edges() schedule.add(schedule_to_be_added) assert '1' in list(schedule.service_ids()) assert '2' in list(schedule.service_ids()) assert '1' in list(schedule.route_ids()) assert '2' in list(schedule.route_ids()) assert schedule.epsg == 'epsg:4326' assert schedule.epsg == schedule_to_be_added.epsg assert set(schedule._graph.nodes()) == set(before_graph_nodes) | set(tba_graph_nodes) assert set(schedule._graph.edges()) == set(before_graph_edges) | set(tba_graph_edges) def test_adding_throws_error_when_schedules_not_separable(test_service): schedule = Schedule(epsg='epsg:4326', services=[test_service]) assert 'service' in schedule schedule_to_be_added = Schedule(epsg='epsg:4326', services=[test_service]) with pytest.raises(NotImplementedError) as e: schedule.add(schedule_to_be_added) assert 'This method only supports adding non overlapping services' in str(e.value) def test_adding_calls_on_reproject_when_schedules_dont_have_matching_epsg(test_service, different_test_service, mocker): mocker.patch.object(Schedule, 'reproject') schedule = Schedule(services=[test_service], epsg='epsg:27700') assert schedule.has_service('service') schedule_to_be_added = Schedule(services=[different_test_service], epsg='epsg:4326') schedule.add(schedule_to_be_added) schedule_to_be_added.reproject.assert_called_once_with('epsg:27700') def test_service_ids_returns_keys_of_the_services_dict(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert set(schedule.service_ids()) == {'service'} def test_routes_returns_service_ids_with_unique_routes(route, similar_non_exact_test_route): services = [Service(id='1', routes=[route]), Service(id='2', routes=[similar_non_exact_test_route])] schedule = Schedule(services=services, epsg='epsg:4326') routes = list(schedule.routes()) assert route in routes assert similar_non_exact_test_route in routes assert len(routes) == 2 def test_number_of_routes_counts_routes(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4362') assert schedule.number_of_routes() == 3 def test_service_attribute_data_under_key(schedule): df = schedule.service_attribute_data(keys='name').sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}} )) def test_service_attribute_data_under_keys(schedule): df = schedule.service_attribute_data(keys=['name', 'id']).sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}, 'id': {'service': 'service'}} )) def test_route_attribute_data_under_key(schedule): df = schedule.route_attribute_data(keys='route_short_name').sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}} )) def test_route_attribute_data_under_keys(schedule): df = schedule.route_attribute_data(keys=['route_short_name', 'mode']).sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}, 'mode': {'1': 'bus', '2': 'bus'}} )) def test_stop_attribute_data_under_key(schedule): df = schedule.stop_attribute_data(keys='x').sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}})) def test_stop_attribute_data_under_keys(schedule): df = schedule.stop_attribute_data(keys=['x', 'y']).sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}, 'y': {'1': 2.0, '2': 2.0, '3': 3.0, '4': 5.0, '5': 2.0, '6': 2.0, '7': 3.0, '8': 5.0}})) def test_extracting_services_on_condition(schedule): ids = schedule.extract_service_ids_on_attributes(conditions={'name': 'name'}) assert ids == ['service'] def test_extracting_routes_on_condition(schedule): ids = schedule.extract_route_ids_on_attributes(conditions=[{'mode': 'bus'}, {'route_short_name': 'name_2'}], how=all) assert ids == ['2'] def test_extracting_stops_on_condition(schedule): ids = schedule.extract_stop_ids_on_attributes(conditions=[{'x': (0, 4)}, {'y': (0, 2)}], how=all) assert set(ids) == {'5', '6', '1', '2'} def test_getting_services_on_modal_condition(schedule): service_ids = schedule.services_on_modal_condition(modes='bus') assert service_ids == ['service'] def test_getting_routes_on_modal_condition(schedule): route_ids = schedule.routes_on_modal_condition(modes='bus') assert set(route_ids) == {'1', '2'} def test_getting_stops_on_modal_condition(schedule): stop_ids = schedule.stops_on_modal_condition(modes='bus') assert set(stop_ids) == {'5', '6', '7', '8', '3', '1', '4', '2'} test_geojson = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "test_geojson.geojson")) def test_getting_stops_on_spatial_condition_with_geojson(schedule, mocker): mocker.patch.object(spatial, 'read_geojson_to_shapely', return_value=GeometryCollection( [Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)])])) stops = schedule.stops_on_spatial_condition(test_geojson) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_shapely_polygon(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) stops = schedule.stops_on_spatial_condition(p) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_s2_hex_region(schedule): s2_region = '4837,4839,483f5,4844,4849' stops = schedule.stops_on_spatial_condition(s2_region) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_routes_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p) assert set(routes) == {'1', '2'} def test_getting_routes_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p, how='within') assert set(routes) == {'1', '2'} def test_getting_services_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p) assert set(routes) == {'service'} def test_getting_services_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p, how='within') assert set(routes) == {'service'} def test_applying_attributes_to_service(schedule): assert schedule._graph.graph['services']['service']['name'] == 'name' assert schedule['service'].name == 'name' schedule.apply_attributes_to_services({'service': {'name': 'new_name'}}) assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_attributes_changing_id_to_service_throws_error(schedule): assert 'service' in schedule._graph.graph['services'] assert schedule._graph.graph['services']['service']['id'] == 'service' assert schedule['service'].id == 'service' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_services({'service': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_route(schedule): assert schedule._graph.graph['routes']['1']['route_short_name'] == 'name' assert schedule.route('1').route_short_name == 'name' schedule.apply_attributes_to_routes({'1': {'route_short_name': 'new_name'}}) assert schedule._graph.graph['routes']['1']['route_short_name'] == 'new_name' assert schedule.route('1').route_short_name == 'new_name' def test_applying_mode_attributes_to_route_results_in_correct_mode_methods(schedule): assert schedule.route('1').mode == 'bus' assert schedule.modes() == {'bus'} assert schedule.mode_graph_map() == { 'bus': {('3', '4'), ('2', '3'), ('1', '2'), ('6', '7'), ('5', '6'), ('7', '8')}} schedule.apply_attributes_to_routes({'1': {'mode': 'new_bus'}}) assert schedule.route('1').mode == 'new_bus' assert schedule.modes() == {'bus', 'new_bus'} assert schedule['service'].modes() == {'bus', 'new_bus'} assert schedule.mode_graph_map() == {'bus': {('7', '8'), ('6', '7'), ('5', '6')}, 'new_bus': {('3', '4'), ('1', '2'), ('2', '3')}} assert schedule['service'].mode_graph_map() == {'bus': {('6', '7'), ('7', '8'), ('5', '6')}, 'new_bus': {('3', '4'), ('2', '3'), ('1', '2')}} def test_applying_attributes_changing_id_to_route_throws_error(schedule): assert '1' in schedule._graph.graph['routes'] assert schedule._graph.graph['routes']['1']['id'] == '1' assert schedule.route('1').id == '1' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'1': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_stop(schedule): assert schedule._graph.nodes['5']['name'] == '' assert schedule.stop('5').name == '' schedule.apply_attributes_to_stops({'5': {'name': 'new_name'}}) assert schedule._graph.nodes['5']['name'] == 'new_name' assert schedule.stop('5').name == 'new_name' def test_applying_attributes_changing_id_to_stop_throws_error(schedule): assert '5' in schedule._graph.nodes assert schedule._graph.nodes['5']['id'] == '5' assert schedule.stop('5').id == '5' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'5': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def change_name(attrib): return 'new_name' def test_applying_function_to_services(schedule): schedule.apply_function_to_services(function=change_name, location='name') assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_function_to_routes(schedule): schedule.apply_function_to_routes(function=change_name, location='route_short_name') for route in schedule.routes(): assert schedule._graph.graph['routes'][route.id]['route_short_name'] == 'new_name' assert route.route_short_name == 'new_name' def test_applying_function_to_stops(schedule): schedule.apply_function_to_stops(function=change_name, location='name') for stop in schedule.stops(): assert stop.name == 'new_name' assert schedule._graph.nodes[stop.id]['name'] == 'new_name' def test_adding_service(schedule, service): service.reindex('different_service') service.route('1').reindex('different_service_1') service.route('2').reindex('different_service_2') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_route_ids(schedule, service): service.reindex('different_service') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_id_throws_error(schedule, service): with pytest.raises(ServiceIndexError) as e: schedule.add_service(service) assert 'already exists' in str(e.value) def test_adding_service_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service', 'some_id'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] s = Service(id='some_id', routes=[r]) schedule.add_service(s, force=True) assert_semantically_equal(dict(s.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(s.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'some_id', 'service'}}) assert_semantically_equal(s.graph()['2']['5'], {'routes': {'3'}, 'services': {'some_id'}}) def test_adding_service_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_service(Service(id='some_id', routes=[r])) assert 'The following stops would inherit data' in str(e.value) def test_removing_service(schedule): schedule.remove_service('service') assert not set(schedule.route_ids()) assert not set(schedule.service_ids()) assert not schedule._graph.graph['route_to_service_map'] assert not schedule._graph.graph['service_to_route_map'] def test_adding_route(schedule, route): route.reindex('new_id') schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'new_id'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'new_id': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'new_id']}) def test_adding_route_with_clashing_id(schedule, route): schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'service_3'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'service_3': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'service_3']}) def test_adding_route_to_non_existing_service_throws_error(schedule, route): with pytest.raises(ServiceIndexError) as e: schedule.add_route('service_that_doesnt_exist', route) assert 'does not exist' in str(e.value) def test_creating_a_route_to_add_using_id_references_to_existing_stops_inherits_schedule_stops_data(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['1', '2', '5'] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}}, '2': {'routes': {'3'}}, '5': {'routes': {'3'}}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_creating_a_route_to_add_giving_existing_schedule_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[schedule.stop('1'), schedule.stop('2'), schedule.stop('5')] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'routes': {'3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '5': {'routes': {'3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] schedule.add_route('service', r, force=True) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_only_flags_those_that_are_actually_different(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='')] ) assert r.ordered_stops == ['1', '2', '5'] with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert "The following stops would inherit data currently stored under those Stop IDs in the Schedule: " \ "['1', '2']" in str(e.value) def test_adding_route_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert 'The following stops would inherit data' in str(e.value) def test_extracting_epsg_from_an_intermediate_route_gives_none(): # intermediate meaning not belonging to a schedule yet but referring to stops in a schedule r = Route( route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['S1', 'S2', 'S3'] ) assert r.epsg is None def test_removing_route(schedule): schedule.remove_route('2') assert set(schedule.route_ids()) == {'1'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1']}) def test_removing_route_updates_services_on_nodes_and_edges(schedule): schedule.remove_route('2') assert_semantically_equal(dict(schedule.graph().nodes(data=True)), {'5': {'services': set(), 'routes': set(), 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': set(), 'routes': set(), 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': set(), 'routes': set(), 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': set(), 'routes': set(), 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}}) assert_semantically_equal(schedule.graph().edges(data=True)._adjdict, {'5': {'6': {'services': set(), 'routes': set()}}, '6': {'7': {'services': set(), 'routes': set()}}, '7': {'8': {'services': set(), 'routes': set()}}, '8': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}, '4': {}}) def test_removing_stop(schedule): schedule.remove_stop('5') assert {stop.id for stop in schedule.stops()} == {'1', '3', '4', '7', '8', '6', '2'} def test_removing_unused_stops(schedule): schedule.remove_route('1') schedule.remove_unsused_stops() assert {stop.id for stop in schedule.stops()} == {'6', '8', '5', '7'} def test_iter_stops_returns_stops_objects(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4326') assert set([stop.id for stop in schedule.stops()]) == {'0', '1', '2', '3', '4'} assert all([isinstance(stop, Stop) for stop in schedule.stops()]) def test_read_matsim_schedule_returns_expected_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, epsg='epsg:27700') correct_services = Service(id='10314', routes=[ Route( route_short_name='12', id='VJbd8660f05fe6f744e58a66ae12bd66acbca88b98', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ]) for val in schedule.services(): assert val == correct_services assert_semantically_equal(schedule.stop_to_service_ids_map(), {'26997928P.link:1': {'10314'}, '26997928P': {'10314'}}) assert_semantically_equal(schedule.stop_to_route_ids_map(), {'26997928P': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, '26997928P.link:1': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}}) assert_semantically_equal(schedule.route('VJbd8660f05fe6f744e58a66ae12bd66acbca88b98').trips, {'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}) assert_semantically_equal( dict(schedule.graph().nodes(data=True)), {'26997928P': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': '<NAME> (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'isBlocking'}, 'isBlocking': 'false'}, '26997928P.link:1': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P.link:1', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': 'Brunswick Place (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'linkRefId', 'isBlocking'}, 'linkRefId': '1', 'isBlocking': 'false'}} ) def test_reading_vehicles_with_a_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_reading_vehicles_after_reading_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_is_strongly_connected_with_strongly_connected_schedule(strongly_connected_schedule): assert strongly_connected_schedule.is_strongly_connected() def test_is_strongly_connected_with_not_strongly_connected_schedule(schedule): assert not schedule.is_strongly_connected() def test_has_self_loops_with_self_has_self_looping_schedule(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) assert s.has_self_loops() def test_has_self_loops_returns_self_looping_stops(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) loop_nodes = s.has_self_loops() assert loop_nodes == ['1'] def test_has_self_loops_with_non_looping_routes(schedule): assert not schedule.has_self_loops() def test_validity_of_services(self_looping_route, route): s = Schedule('epsg:27700', [Service(id='1', routes=[self_looping_route]), Service(id='2', routes=[route])]) assert not s['1'].is_valid_service() assert s['2'].is_valid_service() assert set(s.validity_of_services()) == {False, True} def test_has_valid_services(schedule): assert not schedule.has_valid_services() def test_has_valid_services_with_only_valid_services(service): s = Schedule('epsg:27700', [service]) assert s.has_valid_services() def test_invalid_services_shows_invalid_services(service): for route_id in service.route_ids(): service._graph.graph['routes'][route_id]['route'] = ['1'] s = Schedule('epsg:27700', [service]) assert s.invalid_services() == [service] def test_is_valid_with_valid_schedule(service): s = Schedule('epsg:27700', [service]) assert s.is_valid_schedule() def test_generate_validation_report_delegates_to_method_in_schedule_operations(mocker, schedule): mocker.patch.object(schedule_validation, 'generate_validation_report') schedule.generate_validation_report() schedule_validation.generate_validation_report.assert_called_once() def test_build_graph_builds_correct_graph(strongly_connected_schedule): g = strongly_connected_schedule.graph() assert_semantically_equal(dict(g.nodes(data=True)), {'5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_5'}, '2': {'services': {'service'}, 'routes': {'1', '2'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set(), 'name': 'Stop_2'}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_7'}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_8'}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_3'}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_1'}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_4'}}) assert_semantically_equal(g.edges(data=True)._adjdict, {'5': {'2': {'services': {'service'}, 'routes': {'2'}}}, '2': {'7': {'services': {'service'}, 'routes': {'2'}}, '3': {'services': {'service'}, 'routes': {'1'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {'5': {'services': {'service'}, 'routes': {'2'}}}, '4': {'1': {'services': {'service'}, 'routes': {'1'}}}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}}) def test_building_trips_dataframe(schedule): df = schedule.route_trips_with_stops_to_dataframe() correct_df = DataFrame({'departure_time': {0: Timestamp('1970-01-01 13:00:00'), 1: Timestamp('1970-01-01 13:05:00'), 2: Timestamp('1970-01-01 13:09:00'), 3: Timestamp('1970-01-01 13:30:00'), 4: Timestamp('1970-01-01 13:35:00'), 5: Timestamp('1970-01-01 13:39:00'), 6: Timestamp('1970-01-01 11:00:00'), 7: Timestamp('1970-01-01 11:05:00'), 8: Timestamp('1970-01-01 11:09:00'), 9: Timestamp('1970-01-01 13:00:00'), 10: Timestamp('1970-01-01 13:05:00'), 11: Timestamp('1970-01-01 13:09:00')}, 'arrival_time': {0: Timestamp('1970-01-01 13:03:00'), 1: Timestamp('1970-01-01 13:07:00'), 2: Timestamp('1970-01-01 13:13:00'), 3: Timestamp('1970-01-01 13:33:00'), 4: Timestamp('1970-01-01 13:37:00'), 5: Timestamp('1970-01-01 13:43:00'), 6: Timestamp('1970-01-01 11:03:00'), 7: Timestamp('1970-01-01 11:07:00'), 8: Timestamp('1970-01-01 11:13:00'), 9: Timestamp('1970-01-01 13:03:00'), 10: Timestamp('1970-01-01 13:07:00'), 11:
Timestamp('1970-01-01 13:13:00')
pandas.Timestamp
# -*- coding: utf-8 -* '''问卷数据分析工具包 Created on Tue Nov 8 20:05:36 2016 @author: JSong 1、针对问卷星数据,编写并封装了很多常用算法 2、利用report工具包,能将数据直接导出为PPTX 该工具包支持一下功能: 1、编码问卷星、问卷网等数据 2、封装描述统计和交叉分析函数 3、支持生成一份整体的报告和相关数据 ''' import os import re import sys import math import time import pandas as pd import numpy as np import matplotlib.pyplot as plt from .. import report as rpt from .. import associate __all__=['read_code', 'save_code', 'spec_rcode', 'dataText_to_code', 'dataCode_to_text', 'var_combine', 'wenjuanwang', 'wenjuanxing', 'load_data', 'read_data', 'save_data', 'data_merge', 'clean_ftime', 'data_auto_code', 'qdata_flatten', 'sample_size_cal', 'confidence_interval', 'gof_test', 'chi2_test', 'fisher_exact', 'anova', 'mca', 'cluster', 'scatter', 'sankey', 'qtable', 'association_rules', 'contingency', 'cross_chart', 'summary_chart', 'onekey_gen', 'scorpion'] #================================================================= # # # 【问卷数据处理】 # # #================================================================== def read_code(filename): '''读取code编码文件并输出为字典格式 1、支持json格式 2、支持本包规定的xlsx格式 see alse to_code ''' file_type=os.path.splitext(filename)[1][1:] if file_type == 'json': import json code=json.load(filename) return code d=pd.read_excel(filename,header=None) d=d[d.any(axis=1)]#去除空行 d.fillna('NULL',inplace=True) d=d.as_matrix() code={} for i in range(len(d)): tmp=d[i,0].strip() if tmp == 'key': # 识别题号 code[d[i,1]]={} key=d[i,1] elif tmp in ['qlist','code_order']: # 识别字典值为列表的字段 ind=np.argwhere(d[i+1:,0]!='NULL') if len(ind)>0: j=i+1+ind[0][0] else: j=len(d) tmp2=list(d[i:j,1]) # 列表中字符串的格式化,去除前后空格 for i in range(len(tmp2)): if isinstance(tmp2[i],str): tmp2[i]=tmp2[i].strip() code[key][tmp]=tmp2 elif tmp in ['code','code_r']: # 识别字典值为字典的字段 ind=np.argwhere(d[i+1:,0]!='NULL') if len(ind)>0: j=i+1+ind[0][0] else: j=len(d) tmp1=list(d[i:j,1]) tmp2=list(d[i:j,2]) for i in range(len(tmp2)): if isinstance(tmp2[i],str): tmp2[i]=tmp2[i].strip() #tmp2=[s.strip() for s in tmp2 if isinstance(s,str) else s] code[key][tmp]=dict(zip(tmp1,tmp2)) # 识别其他的列表字段 elif (tmp!='NULL') and (d[i,2]=='NULL') and ((i==len(d)-1) or (d[i+1,0]=='NULL')): ind=np.argwhere(d[i+1:,0]!='NULL') if len(ind)>0: j=i+1+ind[0][0] else: j=len(d) if i==len(d)-1: code[key][tmp]=d[i,1] else: tmp2=list(d[i:j,1]) for i in range(len(tmp2)): if isinstance(tmp2[i],str): tmp2[i]=tmp2[i].strip() code[key][tmp]=tmp2 # 识别其他的字典字段 elif (tmp!='NULL') and (d[i,2]!='NULL') and ((i==len(d)-1) or (d[i+1,0]=='NULL')): ind=np.argwhere(d[i+1:,0]!='NULL') if len(ind)>0: j=i+1+ind[0][0] else: j=len(d) tmp1=list(d[i:j,1]) tmp2=list(d[i:j,2]) for i in range(len(tmp2)): if isinstance(tmp2[i],str): tmp2[i]=tmp2[i].strip() #tmp2=[s.strip() for s in tmp2 if isinstance(s,str) else s] code[key][tmp]=dict(zip(tmp1,tmp2)) elif tmp == 'NULL': continue else: code[key][tmp]=d[i,1] return code def save_code(code,filename='code.xlsx'): '''code本地输出 1、输出为json格式,根据文件名自动识别 2、输出为Excel格式 see also read_code ''' save_type=os.path.splitext(filename)[1][1:] if save_type == 'json': code=pd.DataFrame(code) code.to_json(filename,force_ascii=False) return tmp=pd.DataFrame(columns=['name','value1','value2']) i=0 if all(['Q' in c[0] for c in code.keys()]): key_qlist=sorted(code,key=lambda c:int(re.findall('\d+',c)[0])) else: key_qlist=code.keys() for key in key_qlist: code0=code[key] tmp.loc[i]=['key',key,''] i+=1 #print(key) for key0 in code0: tmp2=code0[key0] if (type(tmp2) == list) and tmp2: tmp.loc[i]=[key0,tmp2[0],''] i+=1 for ll in tmp2[1:]: tmp.loc[i]=['',ll,''] i+=1 elif (type(tmp2) == dict) and tmp2: try: tmp2_key=sorted(tmp2,key=lambda c:float(re.findall('[\d\.]+','%s'%c)[-1])) except: tmp2_key=list(tmp2.keys()) j=0 for key1 in tmp2_key: if j==0: tmp.loc[i]=[key0,key1,tmp2[key1]] else: tmp.loc[i]=['',key1,tmp2[key1]] i+=1 j+=1 else: if tmp2: tmp.loc[i]=[key0,tmp2,''] i+=1 if sys.version>'3': tmp.to_excel(filename,index=False,header=False) else: tmp.to_csv(filename,index=False,header=False,encoding='utf-8') '''问卷数据导入和编码 对每一个题目的情形进行编码:题目默认按照Q1、Q2等给出 Qn.content: 题目内容 Qn.qtype: 题目类型,包含:单选题、多选题、填空题、排序题、矩阵单选题等 Qn.qlist: 题目列表,例如多选题对应着很多小题目 Qn.code: dict,题目选项编码 Qn.code_r: 题目对应的编码(矩阵题目专有) Qn.code_order: 题目类别的顺序,用于PPT报告的生成[一般后期添加] Qn.name: 特殊类型,包含:城市题、NPS题等 Qn.weight:dict,每个选项的权重 ''' def dataText_to_code(df,sep,qqlist=None): '''编码文本数据 ''' if sep in [';','┋']: qtype='多选题' elif sep in ['-->','→']: qtype='排序题' if not qqlist: qqlist=df.columns # 处理多选题 code={} for qq in qqlist: tmp=df[qq].map(lambda x : x.split(sep) if isinstance(x,str) else []) item_list=sorted(set(tmp.sum())) if qtype == '多选题': tmp=tmp.map(lambda x: [int(t in x) for t in item_list]) code_tmp={'code':{},'qtype':u'多选题','qlist':[],'content':qq} elif qtype == '排序题': tmp=tmp.map(lambda x:[x.index(t)+1 if t in x else np.nan for t in item_list]) code_tmp={'code':{},'qtype':u'排序题','qlist':[],'content':qq} for i,t in enumerate(item_list): column_name='{}_A{:.0f}'.format(qq,i+1) df[column_name]=tmp.map(lambda x:x[i]) code_tmp['code'][column_name]=item_list[i] code_tmp['qlist']=code_tmp['qlist']+[column_name] code[qq]=code_tmp df.drop(qq,axis=1,inplace=True) return df,code def dataCode_to_text(df,code=None): '''将按序号数据转换成文本 ''' if df.max().max()>1: sep='→' else: sep='┋' if code: df=df.rename(code) qlist=list(df.columns) df['text']=np.nan if sep in ['┋']: for i in df.index: w=df.loc[i,:]==1 df.loc[i,'text']=sep.join(list(w.index[w])) elif sep in ['→']: for i in df.index: w=df.loc[i,:] w=w[w>=1].sort_values() df.loc[i,'text']=sep.join(list(w.index)) df.drop(qlist,axis=1,inplace=True) return df def var_combine(data,code,qq1,qq2,sep=',',qnum_new=None,qname_new=None): '''将两个变量组合成一个变量 例如: Q1:'性别',Q2: 年龄 组合后生成: 1、男_16~19岁 2、男_20岁~40岁 3、女_16~19岁 4、女_20~40岁 ''' if qnum_new is None: if 'Q'==qq2[0]: qnum_new=qq1+'_'+qq2[1:] else: qnum_new=qq1+'_'+qq2 if qname_new is None: qname_new=code[qq1]['content']+'_'+code[qq2]['content'] if code[qq1]['qtype']!='单选题' or code[qq2]['qtype']!='单选题': print('只支持组合两个单选题,请检查.') raise d1=data[code[qq1]['qlist'][0]] d2=data[code[qq2]['qlist'][0]] sm=max(code[qq1]['code'].keys())# 进位制 sn=max(code[qq2]['code'].keys())# 进位制 if isinstance(sm,str) or isinstance(sn,str): print('所选择的两个变量不符合函数要求.') raise data[qnum_new]=(d1-1)*sn+d2 code[qnum_new]={'qtype':'单选题','qlist':[qnum_new],'content':qname_new} code_tmp={} for c1 in code[qq1]['code']: for c2 in code[qq2]['code']: cc=(c1-1)*sn+c2 value='{}{}{}'.format(code[qq1]['code'][c1],sep,code[qq2]['code'][c2]) code_tmp[cc]=value code[qnum_new]['code']=code_tmp print('变量已合并,新变量题号为:{}'.format(qnum_new)) return data,code def wenjuanwang(filepath='.\\data',encoding='gbk'): '''问卷网数据导入和编码 输入: filepath: 列表,[0]为按文本数据路径,[1]为按序号文本,[2]为编码文件 文件夹路径,函数会自动在文件夹下搜寻相关数据 输出: (data,code): data为按序号的数据,题目都替换成了Q_n code为数据编码,可利用函数to_code()导出为json格式或者Excel格式数据 ''' if isinstance(filepath,list): filename1=filepath[0] filename2=filepath[1] filename3=filepath[2] elif os.path.isdir(filepath): filename1=os.path.join(filepath,'All_Data_Readable.csv') filename2=os.path.join(filepath,'All_Data_Original.csv') filename3=os.path.join(filepath,'code.csv') else: print('can not dection the filepath!') d1=pd.read_csv(filename1,encoding=encoding) d1.drop([u'答题时长'],axis=1,inplace=True) d2=pd.read_csv(filename2,encoding=encoding) d3=pd.read_csv(filename3,encoding=encoding,header=None,na_filter=False) d3=d3.as_matrix() # 遍历code.csv,获取粗略的编码,暂缺qlist,矩阵单选题的code_r code={} for i in range(len(d3)): if d3[i,0]: key=d3[i,0] code[key]={} code[key]['content']=d3[i,1] code[key]['qtype']=d3[i,2] code[key]['code']={} code[key]['qlist']=[] elif d3[i,2]: tmp=d3[i,1] if code[key]['qtype'] in [u'多选题',u'排序题']: tmp=key+'_A'+'%s'%(tmp) code[key]['code'][tmp]='%s'%(d3[i,2]) code[key]['qlist'].append(tmp) elif code[key]['qtype'] in [u'单选题']: try: tmp=int(tmp) except: tmp='%s'%(tmp) code[key]['code'][tmp]='%s'%(d3[i,2]) code[key]['qlist']=[key] elif code[key]['qtype'] in [u'填空题']: code[key]['qlist']=[key] else: try: tmp=int(tmp) except: tmp='%s'%(tmp) code[key]['code'][tmp]='%s'%(d3[i,2]) # 更新矩阵单选的code_r和qlist qnames_Readable=list(d1.columns) qnames=list(d2.columns) for key in code.keys(): qlist=[] for name in qnames: if re.match(key+'_',name) or key==name: qlist.append(name) if ('qlist' not in code[key]) or (not code[key]['qlist']): code[key]['qlist']=qlist if code[key]['qtype'] in [u'矩阵单选题']: tmp=[qnames_Readable[qnames.index(q)] for q in code[key]['qlist']] code_r=[re.findall('_([^_]*?)$',t)[0] for t in tmp] code[key]['code_r']=dict(zip(code[key]['qlist'],code_r)) # 处理时间格式 d2['start']=pd.to_datetime(d2['start']) d2['finish']=pd.to_datetime(d2['finish']) tmp=d2['finish']-d2['start'] tmp=tmp.astype(str).map(lambda x:60*int(re.findall(':(\d+):',x)[0])+int(re.findall(':(\d+)\.',x)[0])) ind=np.where(d2.columns=='finish')[0][0] d2.insert(int(ind)+1,u'答题时长(秒)',tmp) return (d2,code) def wenjuanxing(filepath='.\\data',headlen=6): '''问卷星数据导入和编码 输入: filepath: 列表, filepath[0]: (23_22_0.xls)为按文本数据路径,filepath[1]: (23_22_2.xls)为按序号文本 文件夹路径,函数会自动在文件夹下搜寻相关数据,优先为\d+_\d+_0.xls和\d+_\d+_2.xls headlen: 问卷星数据基础信息的列数 输出: (data,code): data为按序号的数据,题目都替换成了Q_n code为数据编码,可利用函数to_code()导出为json格式或者Excel格式数据 ''' #filepath='.\\data' #headlen=6# 问卷从开始到第一道正式题的数目(一般包含序号,提交答卷时间的等等) if isinstance(filepath,list): filename1=filepath[0] filename2=filepath[1] elif os.path.isdir(filepath): filelist=os.listdir(filepath) n1=n2=0 for f in filelist: s1=re.findall('\d+_\d+_0.xls',f) s2=re.findall('\d+_\d+_2.xls',f) if s1: filename1=s1[0] n1+=1 if s2: filename2=s2[0] n2+=1 if n1+n2==0: print(u'在文件夹下没有找到问卷星按序号和按文本数据,请检查目录或者工作目录.') return elif n1+n2>2: print(u'存在多组问卷星数据,请检查.') return filename1=os.path.join(filepath,filename1) filename2=os.path.join(filepath,filename2) else: print('can not dection the filepath!') d1=pd.read_excel(filename1) d2=pd.read_excel(filename2) d2.replace({-2:np.nan,-3:np.nan},inplace=True) #d1.replace({u'(跳过)':np.nan},inplace=True) code={} ''' 遍历一遍按文本数据,获取题号和每个题目的类型 ''' for name in d1.columns[headlen:]: tmp=re.findall(u'^(\d{1,3})[、::]',name) # 识别多选题、排序题 if tmp: new_name='Q'+tmp[0] current_name='Q'+tmp[0] code[new_name]={} content=re.findall(u'\d{1,3}[、::](.*)',name) code[new_name]['content']=content[0] d1.rename(columns={name:new_name},inplace=True) code[new_name]['qlist']=[] code[new_name]['code']={} code[new_name]['qtype']='' code[new_name]['name']='' qcontent=str(list(d1[new_name])) # 单选题和多选题每个选项都可能有开放题,得识别出来 if ('〖' in qcontent) and ('〗' in qcontent): code[new_name]['qlist_open']=[] if '┋' in qcontent: code[new_name]['qtype']=u'多选题' elif '→' in qcontent: code[new_name]['qtype']=u'排序题' # 识别矩阵单选题 else: tmp2=re.findall(u'^第(\d{1,3})题\(.*?\)',name) if tmp2: new_name='Q'+tmp2[0] else: pass if new_name not in code.keys(): j=1 current_name=new_name new_name=new_name+'_R%s'%j code[current_name]={} code[current_name]['content']=current_name+'(问卷星数据中未找到题目具体内容)' code[current_name]['qlist']=[] code[current_name]['code']={} code[current_name]['code_r']={} code[current_name]['qtype']=u'矩阵单选题' code[current_name]['name']='' #code[current_name]['sample_len']=0 d1.rename(columns={name:new_name},inplace=True) else: j+=1 new_name=new_name+'_R%s'%j d1.rename(columns={name:new_name},inplace=True) #raise Exception(u"can not dection the NO. of question.") #print('can not dection the NO. of question') #print(name) #pass # 遍历按序号数据,完整编码 d2qlist=d2.columns[6:].tolist() for name in d2qlist: tmp1=re.findall(u'^(\d{1,3})[、::]',name)# 单选题和填空题 tmp2=re.findall(u'^第(.*?)题',name)# 多选题、排序题和矩阵单选题 if tmp1: current_name='Q'+tmp1[0]# 当前题目的题号 d2.rename(columns={name:current_name},inplace=True) code[current_name]['qlist'].append(current_name) #code[current_name]['sample_len']=d2[current_name].count() ind=d2[current_name].copy() ind=ind.notnull() c1=d1.loc[ind,current_name].unique() c2=d2.loc[ind,current_name].unique() #print('========= %s========'%current_name) if (c2.dtype == object) or ((list(c1)==list(c2)) and len(c2)>=min(15,len(d2[ind]))) or (len(c2)>50): code[current_name]['qtype']=u'填空题' else: code[current_name]['qtype']=u'单选题' #code[current_name]['code']=dict(zip(c2,c1)) if 'qlist_open' in code[current_name].keys(): tmp=d1[current_name].map(lambda x: re.findall('〖(.*?)〗',x)[0] if re.findall('〖(.*?)〗',x) else '') ind_open=np.argwhere(d2.columns.values==current_name).tolist()[0][0] d2.insert(ind_open+1,current_name+'_open',tmp) d1[current_name]=d1[current_name].map(lambda x: re.sub('〖.*?〗','',x)) #c1=d1.loc[ind,current_name].map(lambda x: re.sub('〖.*?〗','',x)).unique() code[current_name]['qlist_open']=[current_name+'_open'] #c2_tmp=d2.loc[ind,current_name].map(lambda x: int(x) if (('%s'%x!='nan') and not(isinstance(x,str)) and (int(x)==x)) else x) code[current_name]['code']=dict(zip(d2.loc[ind,current_name],d1.loc[ind,current_name])) #code[current_name]['code']=dict(zip(c2,c1)) elif tmp2: name0='Q'+tmp2[0] # 新题第一个选项 if name0 != current_name: j=1#记录多选题的小题号 current_name=name0 c2=list(d2[name].unique()) if code[current_name]['qtype'] == u'矩阵单选题': name1='Q'+tmp2[0]+'_R%s'%j c1=list(d1[name1].unique()) code[current_name]['code']=dict(zip(c2,c1)) #print(dict(zip(c2,c1))) else: name1='Q'+tmp2[0]+'_A%s'%j #code[current_name]['sample_len']=d2[name].notnull().sum() else: j+=1#记录多选题的小题号 c2=list(d2[name].unique()) if code[current_name]['qtype'] == u'矩阵单选题': name1='Q'+tmp2[0]+'_R%s'%j c1=list(d1[name1].unique()) old_dict=code[current_name]['code'].copy() new_dict=dict(zip(c2,c1)) old_dict.update(new_dict) code[current_name]['code']=old_dict.copy() else: name1='Q'+tmp2[0]+'_A%s'%j code[current_name]['qlist'].append(name1) d2.rename(columns={name:name1},inplace=True) tmp3=re.findall(u'第.*?题\((.*)\)',name)[0] if code[current_name]['qtype'] == u'矩阵单选题': code[current_name]['code_r'][name1]=tmp3 else: code[current_name]['code'][name1]=tmp3 # 识别开放题 if (code[current_name]['qtype'] == u'多选题'): openq=tmp3+'〖.*?〗' openq=re.sub('\)','\)',openq) openq=re.sub('\(','\(',openq) openq=re.compile(openq) qcontent=str(list(d1[current_name])) if re.findall(openq,qcontent): tmp=d1[current_name].map(lambda x: re.findall(openq,x)[0] if re.findall(openq,x) else '') ind=np.argwhere(d2.columns.values==name1).tolist()[0][0] d2.insert(ind+1,name1+'_open',tmp) code[current_name]['qlist_open'].append(name1+'_open') # 删除字典中的nan keys=list(code[current_name]['code'].keys()) for key in keys: if '%s'%key == 'nan': del code[current_name]['code'][key] # 处理一些特殊题目,给它们的选项固定顺序,例如年龄、收入等 for k in code.keys(): content=code[k]['content'] qtype=code[k]['qtype'] if ('code' in code[k]) and (code[k]['code']!={}): tmp1=code[k]['code'].keys() tmp2=code[k]['code'].values() # 识别选项是否是有序变量 tmp3=[len(re.findall('\d+','%s'%v))>0 for v in tmp2]#是否有数字 tmp4=[len(re.findall('-|~','%s'%v))>0 for v in tmp2]#是否有"-"或者"~" if (np.array(tmp3).sum()>=len(tmp2)-2) or (np.array(tmp4).sum()>=len(tmp2)*0.8-(1e-17)): try: tmp_key=sorted(code[k]['code'],key=lambda c:float(re.findall('[\d\.]+','%s'%c)[-1])) except: tmp_key=list(tmp1) code_order=[code[k]['code'][v] for v in tmp_key] code[k]['code_order']=code_order # 识别矩阵量表题 if qtype=='矩阵单选题': tmp3=[int(re.findall('\d+','%s'%v)[0]) for v in tmp2 if re.findall('\d+','%s'%v)] if (set(tmp3)<=set([0,1,2,3,4,5,6,7,8,9,10])) and (len(tmp3)==len(tmp2)): code[k]['weight']=dict(zip(tmp1,tmp3)) continue # 识别特殊题型 if ('性别' in content) and ('男' in tmp2) and ('女' in tmp2): code[k]['name']='性别' if ('gender' in content.lower()) and ('Male' in tmp2) and ('Female' in tmp2): code[k]['name']='性别' if (('年龄' in content) or ('age' in content.lower())) and (np.array(tmp3).sum()>=len(tmp2)-1): code[k]['name']='年龄' if ('满意度' in content) and ('整体' in content): tmp3=[int(re.findall('\d+','%s'%v)[0]) for v in tmp2 if re.findall('\d+','%s'%v)] if set(tmp3)<=set([0,1,2,3,4,5,6,7,8,9,10]): code[k]['name']='满意度' if len(tmp3)==len(tmp2): code[k]['weight']=dict(zip(tmp1,tmp3)) if ('意愿' in content) and ('推荐' in content): tmp3=[int(re.findall('\d+','%s'%v)[0]) for v in tmp2 if re.findall('\d+','%s'%v)] if set(tmp3)<=set([0,1,2,3,4,5,6,7,8,9,10]): code[k]['name']='NPS' if len(tmp3)==len(tmp2): weight=pd.Series(dict(zip(tmp1,tmp3))) weight=weight.replace(dict(zip([0,1,2,3,4,5,6,7,8,9,10],[-100,-100,-100,-100,-100,-100,-100,0,0,100,100]))) code[k]['weight']=weight.to_dict() try: d2[u'所用时间']=d2[u'所用时间'].map(lambda s: int(s[:-1])) except: pass return (d2,code) def load_data(method='filedialog',**kwargs): '''导入问卷数据 # 暂时只支持已编码的和问卷星数据 1、支持路径搜寻 2、支持自由选择文件 method: -filedialog: 打开文件窗口选择 -pathsearch:自带搜索路径,需提供filepath ''' if method=='filedialog': import tkinter as tk from tkinter.filedialog import askopenfilenames tk.Tk().withdraw(); #print(u'请选择编码所需要的数据文件(支持问卷星和已编码好的数据)') if 'initialdir' in kwargs: initialdir=kwargs['initialdir'] elif os.path.isdir('.\\data'): initialdir = ".\\data" else: initialdir = "." title =u"请选择编码所需要的数据文件(支持问卷星和已编码好的数据)" filetypes = (("Excel files","*.xls;*.xlsx"),("CSV files","*.csv"),("all files","*.*")) filenames=[] while len(filenames)<1: filenames=askopenfilenames(initialdir=initialdir,title=title,filetypes=filetypes) if len(filenames)<1: print('请至少选择一个文件.') filenames=list(filenames) elif method == 'pathsearch': if 'filepath' in kwargs: filepath=kwargs['filepath'] else : filepath='.\\data\\' if os.path.isdir(filepath): filenames=os.listdir(filepath) filenames=[os.path.join(filepath,s) for s in filenames] else: print('搜索路径错误') raise info=[] for filename in filenames: filename_nopath=os.path.split(filename)[1] data=read_data(filename) # 第一列包含的字段 field_c1=set(data.iloc[:,0].dropna().unique()) field_r1=set(data.columns) # 列名是否包含Q hqlen=[len(re.findall('^[qQ]\d+',c))>0 for c in field_r1] hqrate=hqlen.count(True)/len(field_r1) if len(field_r1)>0 else 0 rowlens,collens=data.shape # 数据中整数/浮点数的占比 rate_real=data.applymap(lambda x:isinstance(x,(int,float))).sum().sum()/rowlens/collens tmp={'filename':filename_nopath,'filenametype':'','rowlens':rowlens,'collens':collens,\ 'field_c1':field_c1,'field_r1':field_r1,'type':'','rate_real':rate_real} if len(re.findall('^data.*\.xls',filename_nopath))>0: tmp['filenametype']='data' elif len(re.findall('^code.*\.xls',filename_nopath))>0: tmp['filenametype']='code' elif len(re.findall('\d+_\d+_\d.xls',filename_nopath))>0: tmp['filenametype']='wenjuanxing' if tmp['filenametype']=='code' or set(['key','code','qlist','qtype']) < field_c1: tmp['type']='code' if tmp['filenametype']=='wenjuanxing' or len(set(['序号','提交答卷时间','所用时间','来自IP','来源','来源详情','总分'])&field_r1)>=5: tmp['type']='wenjuanxing' if tmp['filenametype']=='data' or hqrate>=0.5: tmp['type']='data' info.append(tmp) questype=[k['type'] for k in info] # 这里有一个优先级存在,优先使用已编码好的数据,其次是问卷星数据 if questype.count('data')*questype.count('code')==1: data=read_data(filenames[questype.index('data')]) code=read_code(filenames[questype.index('code')]) elif questype.count('wenjuanxing')>=2: filenames=[(f,info[i]['rate_real']) for i,f in enumerate(filenames) if questype[i]=='wenjuanxing'] tmp=[] for f,rate_real in filenames: t2=0 if rate_real<0.5 else 2 d=pd.read_excel(f) d=d.iloc[:,0] tmp.append((t2,d)) #print('添加{}'.format(t2)) tmp_equal=0 for t,d0 in tmp[:-1]: if len(d)==len(d0) and all(d==d0): tmp_equal+=1 tmp[-1]=(t2+int(t/10)*10,tmp[-1][1]) max_quesnum=max([int(t/10) for t,d in tmp]) if tmp_equal==0: tmp[-1]=(tmp[-1][0]+max_quesnum*10+10,tmp[-1][1]) #print('修改为{}'.format(tmp[-1][0])) # 重新整理所有的问卷数据 questype=[t for t,d in tmp] filenames=[f for f,r in filenames] quesnums=max([int(t/10) for t in questype])#可能存在的数据组数 filename_wjx=[] for i in range(1,quesnums+1): if questype.count(i*10)==1 and questype.count(i*10+2)==1: filename_wjx.append([filenames[questype.index(i*10)],filenames[questype.index(i*10+2)]]) if len(filename_wjx)==1: data,code=wenjuanxing(filename_wjx[0]) elif len(filename_wjx)>1: print('脚本识别出多组问卷星数据,请选择需要编码的数据:') for i,f in enumerate(filename_wjx): print('{}: {}'.format(i+1,'/'.join([os.path.split(f[0])[1],os.path.split(f[1])[1]]))) ii=input('您选择的数据是(数据前的编码,如:1):') ii=re.sub('\s','',ii) if ii.isnumeric(): data,code=wenjuanxing(filename_wjx[int(ii)-1]) else: print('您输入正确的编码.') else: print('没有找到任何问卷数据..') raise else: print('没有找到任何数据') raise return data,code def spec_rcode(data,code): city={'北京':0,'上海':0,'广州':0,'深圳':0,'成都':1,'杭州':1,'武汉':1,'天津':1,'南京':1,'重庆':1,'西安':1,'长沙':1,'青岛':1,'沈阳':1,'大连':1,'厦门':1,'苏州':1,'宁波':1,'无锡':1,\ '福州':2,'合肥':2,'郑州':2,'哈尔滨':2,'佛山':2,'济南':2,'东莞':2,'昆明':2,'太原':2,'南昌':2,'南宁':2,'温州':2,'石家庄':2,'长春':2,'泉州':2,'贵阳':2,'常州':2,'珠海':2,'金华':2,\ '烟台':2,'海口':2,'惠州':2,'乌鲁木齐':2,'徐州':2,'嘉兴':2,'潍坊':2,'洛阳':2,'南通':2,'扬州':2,'汕头':2,'兰州':3,'桂林':3,'三亚':3,'呼和浩特':3,'绍兴':3,'泰州':3,'银川':3,'中山':3,\ '保定':3,'西宁':3,'芜湖':3,'赣州':3,'绵阳':3,'漳州':3,'莆田':3,'威海':3,'邯郸':3,'临沂':3,'唐山':3,'台州':3,'宜昌':3,'湖州':3,'包头':3,'济宁':3,'盐城':3,'鞍山':3,'廊坊':3,'衡阳':3,\ '秦皇岛':3,'吉林':3,'大庆':3,'淮安':3,'丽江':3,'揭阳':3,'荆州':3,'连云港':3,'张家口':3,'遵义':3,'上饶':3,'龙岩':3,'衢州':3,'赤峰':3,'湛江':3,'运城':3,'鄂尔多斯':3,'岳阳':3,'安阳':3,\ '株洲':3,'镇江':3,'淄博':3,'郴州':3,'南平':3,'齐齐哈尔':3,'常德':3,'柳州':3,'咸阳':3,'南充':3,'泸州':3,'蚌埠':3,'邢台':3,'舟山':3,'宝鸡':3,'德阳':3,'抚顺':3,'宜宾':3,'宜春':3,'怀化':3,\ '榆林':3,'梅州':3,'呼伦贝尔':3,'临汾':4,'南阳':4,'新乡':4,'肇庆':4,'丹东':4,'德州':4,'菏泽':4,'九江':4,'江门市':4,'黄山':4,'渭南':4,'营口':4,'娄底':4,'永州市':4,'邵阳':4,'清远':4,\ '大同':4,'枣庄':4,'北海':4,'丽水':4,'孝感':4,'沧州':4,'马鞍山':4,'聊城':4,'三明':4,'开封':4,'锦州':4,'汉中':4,'商丘':4,'泰安':4,'通辽':4,'牡丹江':4,'曲靖':4,'东营':4,'韶关':4,'拉萨':4,\ '襄阳':4,'湘潭':4,'盘锦':4,'驻马店':4,'酒泉':4,'安庆':4,'宁德':4,'四平':4,'晋中':4,'滁州':4,'衡水':4,'佳木斯':4,'茂名':4,'十堰':4,'宿迁':4,'潮州':4,'承德':4,'葫芦岛':4,'黄冈':4,'本溪':4,\ '绥化':4,'萍乡':4,'许昌':4,'日照':4,'铁岭':4,'大理州':4,'淮南':4,'延边州':4,'咸宁':4,'信阳':4,'吕梁':4,'辽阳':4,'朝阳':4,'恩施州':4,'达州市':4,'益阳市':4,'平顶山':4,'六安':4,'延安':4,\ '梧州':4,'白山':4,'阜阳':4,'铜陵市':4,'河源':4,'玉溪市':4,'黄石':4,'通化':4,'百色':4,'乐山市':4,'抚州市':4,'钦州':4,'阳江':4,'池州市':4,'广元':4,'滨州':5,'阳泉':5,'周口市':5,'遂宁':5,\ '吉安':5,'长治':5,'铜仁':5,'鹤岗':5,'攀枝花':5,'昭通':5,'云浮':5,'伊犁州':5,'焦作':5,'凉山州':5,'黔西南州':5,'广安':5,'新余':5,'锡林郭勒':5,'宣城':5,'兴安盟':5,'红河州':5,'眉山':5,\ '巴彦淖尔':5,'双鸭山市':5,'景德镇市':5,'鸡西':5,'三门峡':5,'宿州':5,'汕尾':5,'阜新':5,'张掖':5,'玉林':5,'乌兰察布':5,'鹰潭':5,'黑河':5,'伊春':5,'贵港市':5,'漯河':5,'晋城':5,'克拉玛依':5,\ '随州':5,'保山':5,'濮阳':5,'文山州':5,'嘉峪关':5,'六盘水':5,'乌海':5,'自贡':5,'松原':5,'内江':5,'黔东南州':5,'鹤壁':5,'德宏州':5,'安顺':5,'资阳':5,'鄂州':5,'忻州':5,'荆门':5,'淮北':5,\ '毕节':5,'巴音郭楞':5,'防城港':5,'天水':5,'黔南州':5,'阿坝州':5,'石嘴山':5,'安康':5,'亳州市':5,'昌吉州':5,'普洱':5,'楚雄州':5,'白城':5,'贺州':5,'哈密':5,'来宾':5,'庆阳':5,'河池':5,\ '张家界 雅安':5,'辽源':5,'湘西州':5,'朔州':5,'临沧':5,'白银':5,'塔城地区':5,'莱芜':5,'迪庆州':5,'喀什地区':5,'甘孜州':5,'阿克苏':5,'武威':5,'巴中':5,'平凉':5,'商洛':5,'七台河':5,'金昌':5,\ '中卫':5,'阿勒泰':5,'铜川':5,'海西州':5,'吴忠':5,'固原':5,'吐鲁番':5,'阿拉善盟':5,'博尔塔拉州':5,'定西':5,'西双版纳':5,'陇南':5,'大兴安岭':5,'崇左':5,'日喀则':5,'临夏州':5,'林芝':5,\ '海东':5,'怒江州':5,'和田地区':5,'昌都':5,'儋州':5,'甘南州':5,'山南':5,'海南州':5,'海北州':5,'玉树州':5,'阿里地区':5,'那曲地区':5,'黄南州':5,'克孜勒苏州':5,'果洛州':5,'三沙':5} code_keys=list(code.keys()) for qq in code_keys: qlist=code[qq]['qlist'] #qtype=code[qq]['qtype'] content=code[qq]['content'] ind=list(data.columns).index(qlist[-1]) data1=data[qlist] ''' 识别问卷星中的城市题 ''' tf1=u'城市' in content tf2=data1[data1.notnull()].applymap(lambda x:'-' in '%s'%x).all().all() tf3=(qq+'a' not in data.columns) and (qq+'b' not in data.columns) if tf1 and tf2 and tf3: # 省份和城市 tmp1=data[qq].map(lambda x:x.split('-')[0]) tmp2=data[qq].map(lambda x:x.split('-')[1]) tmp2[tmp1==u'上海']=u'上海' tmp2[tmp1==u'北京']=u'北京' tmp2[tmp1==u'天津']=u'天津' tmp2[tmp1==u'重庆']=u'重庆' tmp2[tmp1==u'香港']=u'香港' tmp2[tmp1==u'澳门']=u'澳门' data.insert(ind+1,qq+'a',tmp1) data.insert(ind+2,qq+'b',tmp2) code[qq+'a']={'content':'省份','qtype':'填空题','qlist':[qq+'a']} code[qq+'b']={'content':'城市','qtype':'填空题','qlist':[qq+'b']} tmp3=data[qq+'b'].map(lambda x: city[x] if x in city.keys() else x) tmp3=tmp3.map(lambda x: 6 if isinstance(x,str) else x) data.insert(ind+3,qq+'c',tmp3) code[qq+'c']={'content':'城市分级','qtype':'单选题','qlist':[qq+'c'],\ 'code':{0:'北上广深',1:'新一线',2:'二线',3:'三线',4:'四线',5:'五线',6:'五线以下'}} return data,code def levenshtein(s, t): ''''' From Wikipedia article; Iterative with two matrix rows. ''' if s == t: return 0 elif len(s) == 0: return len(t) elif len(t) == 0: return len(s) v0 = [None] * (len(t) + 1) v1 = [None] * (len(t) + 1) for i in range(len(v0)): v0[i] = i for i in range(len(s)): v1[0] = i + 1 for j in range(len(t)): cost = 0 if s[i] == t[j] else 1 v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost) for j in range(len(v0)): v0[j] = v1[j] return v1[len(t)] def code_similar(code1,code2): ''' 题目内容相似度用最小编辑距离来度量 选项相似度分为几种 1、完全相同:1 2、单选题:暂时只考虑序号和值都相等的,且共同变量超过一半:2 2、多选题/排序题:不考虑序号,共同变量超过一半即可:3 3、矩阵单选题:code_r 暂时只考虑完全匹配 4、其他情况为0 ''' code_distance_min=pd.DataFrame(index=code1.keys(),columns=['qnum','similar_content','similar_code']) for c1 in code1: # 计算题目内容的相似度 disstance_str=pd.Series(index=code2.keys()) for c2 in code2: if code1[c1]['qtype']==code2[c2]['qtype']: disstance_str[c2]=levenshtein(code1[c1]['content'], code2[c2]['content']) c2=disstance_str.idxmin() if '%s'%c2 == 'nan': continue min_len=(len(code1[c1]['content'])+len(code2[c2]['content']))/2 similar_content=100-100*disstance_str[c2]/min_len if min_len>0 else 0 # 计算选项的相似度 qtype=code2[c2]['qtype'] if qtype == '单选题': t1=code1[c1]['code'] t2=code2[c2]['code'] inner_key=list(set(t1.keys())&set(t2.keys())) tmp=all([t1[c]==t2[c] for c in inner_key]) if t1==t2: similar_code=1 elif len(inner_key)>=0.5*len(set(t1.keys())|set(t2.keys())) and tmp: similar_code=2 else: similar_code=0 elif qtype in ['多选题','排序题']: t1=code1[c1]['code'] t2=code2[c2]['code'] t1=[t1[c] for c in code1[c1]['qlist']] t2=[t2[c] for c in code2[c2]['qlist']] inner_key=set(t1)&set(t2) if t1==t2: similar_code=1 elif len(set(t1)&set(t2))>=0.5*len(set(t1)|set(t2)): similar_code=3 else: similar_code=0 elif qtype in ['矩阵多选题']: t1=code1[c1]['code_r'] t2=code2[c2]['code_r'] t1=[t1[c] for c in code1[c1]['qlist']] t2=[t2[c] for c in code2[c2]['qlist']] inner_key=set(t1)&set(t2) if t1==t2: similar_code=1 elif len(set(t1)&set(t2))>=0.5*len(set(t1)|set(t2)): similar_code=3 else: similar_code=0 elif qtype in ['填空题']: similar_code=1 else: similar_code=0 code_distance_min.loc[c1,'qnum']=c2 code_distance_min.loc[c1,'similar_content']=similar_content code_distance_min.loc[c1,'similar_code']=similar_code # 剔除qnum中重复的值 code_distance_min=code_distance_min.sort_values(['qnum','similar_content','similar_code'],ascending=[False,False,True]) code_distance_min.loc[code_distance_min.duplicated(['qnum']),:]=np.nan code_distance_min=pd.DataFrame(code_distance_min,index=code1.keys()) return code_distance_min def data_merge(ques1,ques2,qlist1=None,qlist2=None,name1='ques1',name2='ques2',\ mergeqnum='Q0',similar_threshold=70): '''合并两份数据 ques1: 列表,[data1,code1] ques2: 列表,[data2,code2] ''' data1,code1=ques1 data2,code2=ques2 if (qlist1 is None) or (qlist2 is None): qlist1=[] qlist2=[] qqlist1=[] qqlist2=[] code_distance_min=code_similar(code1,code2) code1_key=sorted(code1,key=lambda x:int(re.findall('\d+',x)[0])) for c1 in code1_key: qtype1=code1[c1]['qtype'] #print('{}:{}'.format(c1,code1[c1]['content'])) rs_qq=code_distance_min.loc[c1,'qnum'] similar_content=code_distance_min.loc[c1,'similar_content'] similar_code=code_distance_min.loc[c1,'similar_code'] if (similar_content>=similar_threshold) and (similar_code in [1,2]): #print('推荐合并第二份数据中的{}({}), 两个题目相似度为为{:.0f}%'.format(rs_qq,code2[rs_qq]['content'],similar)) print('将自动合并: {} 和 {}'.format(c1,rs_qq)) user_qq=rs_qq qqlist1+=code1[c1]['qlist'] qqlist2+=code2[user_qq]['qlist'] qlist1.append(c1) qlist2.append(rs_qq) elif (similar_content>=similar_threshold) and (similar_code==3): # 针对非单选题,此时要调整选项顺序 t1=code1[c1]['code_r'] if qtype1 =='矩阵单选题' else code1[c1]['code'] t1_qlist=code1[c1]['qlist'] t1_value=[t1[k] for k in t1_qlist] t2=code2[rs_qq]['code_r'] if qtype1 =='矩阵单选题' else code2[rs_qq]['code'] t2_qlist=code2[rs_qq]['qlist'] t2_value=[t2[k] for k in t2_qlist] # 保留相同的选项 t1_qlist_new=[q for q in t1_qlist if t1[q] in list(set(t1_value)&set(t2_value))] t2_r=dict(zip([s[1] for s in t2.items()],[s[0] for s in t2.items()])) t2_qlist_new=[t2_r[s] for s in [t1[q] for q in t1_qlist_new]] code1[c1]['qlist']=t1_qlist_new code1[c1]['code']={k:t1[k] for k in t1_qlist_new} qqlist1+=t1_qlist_new qqlist2+=t2_qlist_new qlist1.append(c1) qlist2.append(rs_qq) print('将自动合并: {} 和 {} (只保留了相同的选项)'.format(c1,rs_qq)) elif similar_code in [1,2]: print('-'*40) print('为【 {}:{} 】自动匹配到: '.format(c1,code1[c1]['content'])) print(' 【 {}:{} 】,其相似度为{:.0f}%.'.format(rs_qq,code2[rs_qq]['content'],similar_content)) tmp=input('是否合并该组题目,请输入 yes/no (也可以输入第二份数据中其他您需要匹配的题目): ') tmp=re.sub('\s','',tmp) tmp=tmp.lower() if tmp in ['yes','y']: user_qq=rs_qq elif tmp in ['no','n']: user_qq=None else: tmp=re.sub('^q','Q',tmp) if tmp not in code2: user_qq=None elif (tmp in code2) and (tmp!=rs_qq): print('您输入的是{}:{}'.format(tmp,code2[tmp]['content'])) user_qq=tmp if user_qq==rs_qq: qqlist1+=code1[c1]['qlist'] qqlist2+=code2[user_qq]['qlist'] qlist1.append(c1) qlist2.append(user_qq) print('将自动合并: {} 和 {}'.format(c1,rs_qq)) elif user_qq is not None: # 比对两道题目的code if 'code' in code1[c1] and len(code1[c1]['code'])>0: t1=code1[c1]['code_r'] if qtype1 =='矩阵单选题' else code1[c1]['code'] t2=code2[user_qq]['code_r'] if code2[user_qq]['qtype'] =='矩阵单选题' else code2[user_qq]['code'] if set(t1.values())==set(t2.values()): qqlist1+=code1[c1]['qlist'] qqlist2+=code2[user_qq]['qlist'] qlist1.append(c1) qlist2.append(user_qq) print('将自动合并: {} 和 {}'.format(c1,user_qq)) else: print('两个题目的选项不匹配,将自动跳过.') else: qqlist1+=[code1[c1]['qlist'][0]] qqlist2+=[code2[user_qq]['qlist'][0]] qlist1.append(c1) qlist2.append(user_qq) print('将自动合并: {} 和 {}'.format(c1,user_qq)) else: print('将自动跳过: {}'.format(c1)) print('-'*40) else: print('将自动跳过: {}'.format(c1)) tmp=input('请问您需要的题目是否都已经合并? 请输入(yes / no): ') tmp=re.sub('\s','',tmp) tmp=tmp.lower() if tmp in ['no','n']: print('请确保接下来您要合并的题目类型和选项完全一样.') while 1: tmp=input('请输入您想合并的题目对,直接回车则终止输入(如: Q1,Q1 ): ') tmp=re.sub('\s','',tmp)# 去掉空格 tmp=re.sub(',',',',tmp)# 修正可能错误的逗号 tmp=tmp.split(',') tmp=[re.sub('^q','Q',qq) for qq in tmp] if len(tmp)<2: break if tmp[0] in qlist1 or tmp[1] in qlist2: print('该题已经被合并,请重新输入') continue if tmp[0] not in code1 or tmp[1] not in code2: print('输入错误, 请重新输入') continue c1=tmp[0] c2=tmp[1] print('您输入的是:') print('第一份数据中的【 {}:{} 】'.format(c1,code1[c1]['content'])) print('第二份数据中的【 {}:{} 】'.format(c2,code2[c2]['content'])) w=code_similar({c1:code1[c1]},{c2:code2[c2]}) similar_code=w.loc[c1,'similar_code'] if similar_code in [1,2] and len(code1[c1]['qlist'])==len(code2[c2]['qlist']): qqlist1+=code1[c1]['qlist'] qqlist2+=code2[c2]['qlist'] qlist1.append(c1) qlist2.append(c2) print('将自动合并: {} 和 {}'.format(c1,c2)) else: print('选项不匹配,请重新输入') else: qqlist1=[] for qq in qlist1: qqlist1=qqlist1+code1[qq]['qlist'] qqlist2=[] for qq in qlist2: qqlist2=qqlist2+code2[qq]['qlist'] # 将题号列表转化成data中的列名 if mergeqnum in qqlist1: mergeqnum=mergeqnum+'merge' data1=data1.loc[:,qqlist1] data1.loc[:,mergeqnum]=1 data2=data2.loc[:,qqlist2] data2.loc[:,mergeqnum]=2 if len(qqlist1)!=len(qqlist2): print('两份数据选项不完全匹配,请检查....') raise data2=data2.rename(columns=dict(zip(qqlist2,qqlist1))) data12=data1.append(data2,ignore_index=True) code12={} for i,cc in enumerate(qlist1): code12[cc]=code1[cc] if 'code' in code1[cc] and 'code' in code2[qlist2[i]]: code12[cc]['code'].update(code2[qlist2[i]]['code']) code12[mergeqnum]={'content':u'来源','code':{1:name1,2:name2},'qtype':u'单选题','qlist':[mergeqnum]} return data12,code12 ## =========================================================== # # # 数据清洗 # # # ## ========================================================== def clean_ftime(ftime,cut_percent=0.25): ''' ftime 是完成问卷的秒数 思路: 1、只考虑截断问卷完成时间较小的样本 2、找到完成时间变化的拐点,即需要截断的时间点 返回:r 建议截断<r的样本 ''' t_min=int(ftime.min()) t_cut=int(ftime.quantile(cut_percent)) x=np.array(range(t_min,t_cut)) y=np.array([len(ftime[ftime<=i]) for i in range(t_min,t_cut)]) z1 = np.polyfit(x, y, 4) # 拟合得到的函数 z2=np.polyder(z1,2) #求二阶导数 r=np.roots(np.polyder(z2,1)) r=int(r[0]) return r ## =========================================================== # # # 数据分析和输出 # # # ## ========================================================== def data_auto_code(data): '''智能判断问卷数据 输入 data: 数据框,列名需要满足Qi或者Qi_ 输出: code: 自动编码 ''' data=pd.DataFrame(data) columns=data.columns columns=[c for c in columns if re.match('Q\d+',c)] code={} for cc in columns: # 识别题目号 if '_' not in cc: key=cc else: key=cc.split('_')[0] # 新的题目则产生新的code if key not in code: code[key]={} code[key]['qlist']=[] code[key]['code']={} code[key]['content']=key code[key]['qtype']='' # 处理各题目列表 if key == cc: code[key]['qlist']=[key] elif re.findall('^'+key+'_[a-zA-Z]{0,}\d+$',cc): code[key]['qlist'].append(cc) else: if 'qlist_open' in code[key]: code[key]['qlist_open'].append(cc) else: code[key]['qlist_open']=[cc] for kk in code.keys(): dd=data[code[kk]['qlist']] # 单选题和填空题 if len(dd.columns)==1: tmp=dd[dd.notnull()].iloc[:,0].unique() if dd.iloc[:,0].value_counts().mean() >=2: code[kk]['qtype']=u'单选题' code[kk]['code']=dict(zip(tmp,tmp)) else: code[kk]['qtype']=u'填空题' del code[kk]['code'] else: tmp=set(dd[dd.notnull()].as_matrix().flatten()) if set(tmp)==set([0,1]): code[kk]['qtype']=u'多选题' code[kk]['code']=dict(zip(code[kk]['qlist'],code[kk]['qlist'])) elif 'R' in code[kk]['qlist'][0]: code[kk]['qtype']=u'矩阵单选题' code[kk]['code_r']=dict(zip(code[kk]['qlist'],code[kk]['qlist'])) code[kk]['code']=dict(zip(list(tmp),list(tmp))) else: code[kk]['qtype']=u'排序题' code[kk]['code']=dict(zip(code[kk]['qlist'],code[kk]['qlist'])) return code def save_data(data,filename=u'data.xlsx',code=None): '''保存问卷数据到本地 根据filename后缀选择相应的格式保存 如果有code,则保存按文本数据 ''' savetype=os.path.splitext(filename)[1][1:] data1=data.copy() if code: for qq in code.keys(): qtype=code[qq]['qtype'] qlist=code[qq]['qlist'] if qtype == u'单选题': # 将序号换成文本,题号加上具体内容 data1[qlist[0]].replace(code[qq]['code'],inplace=True) data1.rename(columns={qq:'{}({})'.format(qq,code[qq]['content'])},inplace=True) elif qtype == u'矩阵单选题': # 同单选题 data1[code[qq]['qlist']].replace(code[qq]['code'],inplace=True) tmp1=code[qq]['qlist'] tmp2=['{}({})'.format(q,code[qq]['code_r'][q]) for q in tmp1] data1.rename(columns=dict(zip(tmp1,tmp2)),inplace=True) elif qtype in [u'排序题']: # 先变成一道题,插入表中,然后再把序号变成文本 tmp=data[qlist] tmp=tmp.rename(columns=code[qq]['code']) tmp=dataCode_to_text(tmp) ind=list(data1.columns).index(qlist[0]) qqname='{}({})'.format(qq,code[qq]['content']) data1.insert(ind,qqname,tmp) tmp1=code[qq]['qlist'] tmp2=['{}_{}'.format(qq,code[qq]['code'][q]) for q in tmp1] data1.rename(columns=dict(zip(tmp1,tmp2)),inplace=True) elif qtype in [u'多选题']: # 先变成一道题,插入表中,然后再把序号变成文本 tmp=data[qlist] tmp=tmp.rename(columns=code[qq]['code']) tmp=dataCode_to_text(tmp) ind=list(data1.columns).index(qlist[0]) qqname='{}({})'.format(qq,code[qq]['content']) data1.insert(ind,qqname,tmp) for q in qlist: data1[q].replace({0:'',1:code[qq]['code'][q]},inplace=True) tmp2=['{}_{}'.format(qq,code[qq]['code'][q]) for q in qlist] data1.rename(columns=dict(zip(qlist,tmp2)),inplace=True) else: data1.rename(columns={qq:'{}({})'.format(qq,code[qq]['content'])},inplace=True) if (savetype == u'xlsx') or (savetype == u'xls'): data1.to_excel(filename,index=False) elif savetype == u'csv': data1.to_csv(filename,index=False) def read_data(filename): savetype=os.path.splitext(filename)[1][1:] if (savetype==u'xlsx') or (savetype==u'xls'): data=pd.read_excel(filename) elif savetype==u'csv': data=pd.read_csv(filename) else: print('con not read file!') return data def sa_to_ma(data): '''单选题数据转换成多选题数据 data是单选题数据, 要求非有效列别为nan 可以使用内置函数pd.get_dummies()代替 ''' if isinstance(data,pd.core.frame.DataFrame): data=data[data.columns[0]] #categorys=sorted(data[data.notnull()].unique()) categorys=data[data.notnull()].unique() try: categorys=sorted(categorys) except: pass #print('sa_to_ma function::cannot sorted') data_ma=pd.DataFrame(index=data.index,columns=categorys) for c in categorys: data_ma[c]=data.map(lambda x : int(x==c)) data_ma.loc[data.isnull(),:]=np.nan return data_ma def to_dummpy(data,code,qqlist=None,qtype_new='多选题',ignore_open=True): '''转化成哑变量 将数据中所有的单选题全部转化成哑变量,另外剔除掉开放题和填空题 返回一个很大的只有0和1的数据 ''' if qqlist is None: qqlist=sorted(code,key=lambda x:int(re.findall('\d+',x)[0])) bdata=pd.DataFrame() bcode={} for qq in qqlist: qtype=code[qq]['qtype'] data0=data[code[qq]['qlist']] if qtype=='单选题': data0=data0.iloc[:,0] categorys=data0[data0.notnull()].unique() try: categorys=sorted(categorys) except : pass categorys=[t for t in categorys if t in code[qq]['code']] cname=[code[qq]['code'][k] for k in categorys] columns_name=['{}_A{}'.format(qq,i+1) for i in range(len(categorys))] tmp=pd.DataFrame(index=data0.index,columns=columns_name) for i,c in enumerate(categorys): tmp[columns_name[i]]=data0.map(lambda x : int(x==c)) #tmp.loc[data0.isnull(),:]=0 code_tmp={'content':code[qq]['content'],'qtype':qtype_new} code_tmp['code']=dict(zip(columns_name,cname)) code_tmp['qlist']=columns_name bcode.update({qq:code_tmp}) bdata=pd.concat([bdata,tmp],axis=1) elif qtype in ['多选题','排序题','矩阵单选题']: bdata=pd.concat([bdata,data0],axis=1) bcode.update({qq:code[qq]}) bdata=bdata.fillna(0) try: bdata=bdata.astype(np.int64,raise_on_error=False) except : pass return bdata,bcode def qdata_flatten(data,code,quesid=None,userid_begin=None): '''将问卷数据展平,字段如下 userid: 用户ID quesid: 问卷ID qnum: 题号 qname: 题目内容 qtype: 题目类型 samplelen:题目的样本数 itemnum: 选项序号 itemname: 选项内容 code: 用户的选择 codename: 用户选择的具体值 count: 计数 percent(%): 计数占比(百分比) ''' if not userid_begin: userid_begin=1000000 data.index=[userid_begin+i+1 for i in range(len(data))] if '提交答卷时间' in data.columns: begin_date=pd.to_datetime(data['提交答卷时间']).min().strftime('%Y-%m-%d') end_date=pd.to_datetime(data['提交答卷时间']).max().strftime('%Y-%m-%d') else: begin_date='' end_date='' data,code=to_dummpy(data,code,qtype_new='单选题') code_item={} for qq in code: if code[qq]['qtype']=='矩阵单选题': code_item.update(code[qq]['code_r']) else : code_item.update(code[qq]['code']) qdata=data.stack().reset_index() qdata.columns=['userid','qn_an','code'] qdata['qnum']=qdata['qn_an'].map(lambda x:x.split('_')[0]) qdata['itemnum']=qdata['qn_an'].map(lambda x:'_'.join(x.split('_')[1:])) if quesid: qdata['quesid']=quesid qdata=qdata[['userid','quesid','qnum','itemnum','code']] else: qdata=qdata[['userid','qnum','itemnum','code']] # 获取描述统计信息: samplelen=qdata.groupby(['userid','qnum'])['code'].sum().map(lambda x:int(x>0)).unstack().sum() quesinfo=qdata.groupby(['qnum','itemnum','code'])['code'].count() quesinfo.name='count' quesinfo=quesinfo.reset_index() quesinfo=quesinfo[quesinfo['code']!=0] #quesinfo=qdata.groupby(['quesid','qnum','itemnum'])['code'].sum() quesinfo['samplelen']=quesinfo['qnum'].replace(samplelen.to_dict()) quesinfo['percent(%)']=0 quesinfo.loc[quesinfo['samplelen']>0,'percent(%)']=100*quesinfo.loc[quesinfo['samplelen']>0,'count']/quesinfo.loc[quesinfo['samplelen']>0,'samplelen'] quesinfo['qname']=quesinfo['qnum'].map(lambda x: code[x]['content']) quesinfo['qtype']=quesinfo['qnum'].map(lambda x: code[x]['qtype']) quesinfo['itemname']=quesinfo['qnum']+quesinfo['itemnum'].map(lambda x:'_%s'%x) quesinfo['itemname']=quesinfo['itemname'].replace(code_item) #quesinfo['itemname']=quesinfo['qn_an'].map(lambda x: code[x.split('_')[0]]['code_r'][x] if \ #code[x.split('_')[0]]['qtype']=='矩阵单选题' else code[x.split('_')[0]]['code'][x]) # 各个选项的含义 quesinfo['codename']='' quesinfo.loc[quesinfo['code']==0,'codename']='否' quesinfo.loc[quesinfo['code']==1,'codename']='是' quesinfo['tmp']=quesinfo['qnum']+quesinfo['code'].map(lambda x:'_%s'%int(x)) quesinfo['codename'].update(quesinfo.loc[(quesinfo['code']>0)&(quesinfo['qtype']=='矩阵单选题'),'tmp']\ .map(lambda x: code[x.split('_')[0]]['code'][int(x.split('_')[1])])) quesinfo['codename'].update(quesinfo.loc[(quesinfo['code']>0)&(quesinfo['qtype']=='排序题'),'tmp'].map(lambda x: 'Top{}'.format(x.split('_')[1]))) quesinfo['begin_date']=begin_date quesinfo['end_date']=end_date if quesid: quesinfo['quesid']=quesid quesinfo=quesinfo[['quesid','begin_date','end_date','qnum','qname','qtype','samplelen','itemnum','itemname','code','codename','count','percent(%)']] else: quesinfo=quesinfo[['qnum','qname','qtype','samplelen','itemnum','itemname','code','codename','count','percent(%)']] # 排序 quesinfo['qnum']=quesinfo['qnum'].astype('category') quesinfo['qnum'].cat.set_categories(sorted(list(quesinfo['qnum'].unique()),key=lambda x:int(re.findall('\d+',x)[0])), inplace=True) quesinfo['itemnum']=quesinfo['itemnum'].astype('category') quesinfo['itemnum'].cat.set_categories(sorted(list(quesinfo['itemnum'].unique()),key=lambda x:int(re.findall('\d+',x)[0])), inplace=True) quesinfo=quesinfo.sort_values(['qnum','itemnum','code']) return qdata,quesinfo def confidence_interval(p,n,alpha=0.05): import scipy.stats as stats t=stats.norm.ppf(1-alpha/2) ci=t*math.sqrt(p*(1-p)/n) #a=p-stats.norm.ppf(1-alpha/2)*math.sqrt(p*(1-p)/n) #b=p+stats.norm.ppf(1-alpha/2)*math.sqrt(p*(1-p)/n) return ci def sample_size_cal(interval,N,alpha=0.05): '''调研样本量的计算 参考:https://www.surveysystem.com/sscalc.htm sample_size_cal(interval,N,alpha=0.05) 输入: interval: 误差范围,例如0.03 N: 总体的大小,一般1万以上就没啥差别啦 alpha:置信水平,默认95% ''' import scipy.stats as stats p=stats.norm.ppf(1-alpha/2) if interval>1: interval=interval/100 samplesize=p**2/4/interval**2 if N: samplesize=samplesize*N/(samplesize+N) samplesize=int(round(samplesize)) return samplesize def gof_test(fo,fe=None,alpha=0.05): '''拟合优度检验 输入: fo:观察频数 fe:期望频数,缺省为平均数 返回: 1: 样本与总体有差异 0:样本与总体无差异 例子: gof_test(np.array([0.3,0.4,0.3])*222) ''' import scipy.stats as stats fo=np.array(fo).flatten() C=len(fo) if not fe: N=fo.sum() fe=np.array([N/C]*C) else: fe=np.array(fe).flatten() chi_value=(fo-fe)**2/fe chi_value=chi_value.sum() chi_value_fit=stats.chi2.ppf(q=1-alpha,df=C-1) #CV=np.sqrt((fo-fe)**2/fe**2/(C-1))*100 if chi_value>chi_value_fit: result=1 else: result=0 return result def chi2_test(fo,alpha=0.05): import scipy.stats as stats fo=pd.DataFrame(fo) chiStats = stats.chi2_contingency(observed=fo) #critical_value = stats.chi2.ppf(q=1-alpha,df=chiStats[2]) #observed_chi_val = chiStats[0] # p<alpha 等价于 observed_chi_val>critical_value chi2_data=(chiStats[1] <= alpha,chiStats[1]) return chi2_data def fisher_exact(fo,alpha=0.05): '''fisher_exact 显著性检验函数 此处采用的是调用R的解决方案,需要安装包 pyper python解决方案参见 https://mrnoutahi.com/2016/01/03/Fisher-exac-test-for-mxn-table/ 但还有些问题,所以没用. ''' import pyper as pr r=pr.R(use_pandas=True,use_numpy=True) r.assign('fo',fo) r("b<-fisher.test(fo)") pdata=r['b'] p_value=pdata['p.value'] if p_value<alpha: result=1 else: result=0 return (result,p_value) def anova(data,formula): '''方差分析 输入 --data: DataFrame格式,包含数值型变量和分类型变量 --formula:变量之间的关系,如:数值型变量~C(分类型变量1)[+C(分类型变量1)[+C(分类型变量1):(分类型变量1)] 返回[方差分析表] [总体的方差来源于组内方差和组间方差,通过比较组间方差和组内方差的比来推断两者的差异] --df:自由度 --sum_sq:误差平方和 --mean_sq:误差平方和/对应的自由度 --F:mean_sq之比 --PR(>F):p值,比如<0.05则代表有显著性差异 ''' import statsmodels.api as sm from statsmodels.formula.api import ols cw_lm=ols(formula, data=data).fit() #Specify C for Categorical r=sm.stats.anova_lm(cw_lm) return r def mca(X,N=2): '''对应分析函数,暂时支持双因素 X:观察频数表 N:返回的维数,默认2维 可以通过scatter函数绘制: fig=scatter([pr,pc]) fig.savefig('mca.png') ''' from scipy.linalg import diagsvd S = X.sum().sum() Z = X / S # correspondence matrix r = Z.sum(axis=1) c = Z.sum() D_r = np.diag(1/np.sqrt(r)) Z_c = Z - np.outer(r, c) # standardized residuals matrix D_c = np.diag(1/np.sqrt(c)) # another option, not pursued here, is sklearn.decomposition.TruncatedSVD P,s,Q = np.linalg.svd(np.dot(np.dot(D_r, Z_c),D_c)) #S=diagsvd(s[:2],P.shape[0],2) pr=np.dot(np.dot(D_r,P),diagsvd(s[:N],P.shape[0],N)) pc=np.dot(np.dot(D_c,Q.T),diagsvd(s[:N],Q.shape[0],N)) inertia=np.cumsum(s**2)/np.sum(s**2) inertia=inertia.tolist() if isinstance(X,pd.DataFrame): pr=pd.DataFrame(pr,index=X.index,columns=list('XYZUVW')[:N]) pc=pd.DataFrame(pc,index=X.columns,columns=list('XYZUVW')[:N]) return pr,pc,inertia ''' w=pd.ExcelWriter(u'mca_.xlsx') pr.to_excel(w,startrow=0,index_label=True) pc.to_excel(w,startrow=len(pr)+2,index_label=True) w.save() ''' def cluster(data,code,cluster_qq,n_clusters='auto',max_clusters=7): '''对态度题进行聚类 ''' from sklearn.cluster import KMeans #from sklearn.decomposition import PCA from sklearn import metrics #import prince qq_max=sorted(code,key=lambda x:int(re.findall('\d+',x)[0]))[-1] new_cluster='Q{}'.format(int(re.findall('\d+',qq_max)[0])+1) #new_cluster='Q32' qlist=code[cluster_qq]['qlist'] X=data[qlist] # 去除所有态度题选择的分数都一样的用户(含仅有两个不同) std_t=min(1.41/np.sqrt(len(qlist)),0.40) if len(qlist)>=8 else 0.10 X=X[X.T.std()>std_t] index_bk=X.index#备份,方便还原 X.fillna(0,inplace=True) X1=X.T X1=(X1-X1.mean())/X1.std() X1=X1.T.as_matrix() if n_clusters == 'auto': #聚类个数的选取和评估 silhouette_score=[]# 轮廊系数 SSE_score=[] klist=np.arange(2,15) for k in klist: est = KMeans(k) # 4 clusters est.fit(X1) tmp=np.sum((X1-est.cluster_centers_[est.labels_])**2) SSE_score.append(tmp) tmp=metrics.silhouette_score(X1, est.labels_) silhouette_score.append(tmp) ''' fig = plt.figure(1) ax = fig.add_subplot(111) fig = plt.figure(2) ax.plot(klist,np.array(silhouette_score)) ax = fig.add_subplot(111) ax.plot(klist,np.array(SSE_score)) ''' # 找轮廊系数的拐点 ss=np.array(silhouette_score) t1=[False]+list(ss[1:]>ss[:-1]) t2=list(ss[:-1]>ss[1:])+[False] k_log=[t1[i]&t2[i] for i in range(len(t1))] if True in k_log: k=k_log.index(True) else: k=1 k=k if k<=max_clusters-2 else max_clusters-2 # 限制最多分7类 k_best=klist[k] else: k_best=n_clusters est = KMeans(k_best) # 4 clusters est.fit(X1) # 系数计算 SSE=np.sqrt(np.sum((X1-est.cluster_centers_[est.labels_])**2)/len(X1)) silhouette_score=metrics.silhouette_score(X1, est.labels_) print('有效样本数:{},特征数:{},最佳分类个数:{} 类'.format(len(X1),len(qlist),k_best)) print('SSE(样本到所在类的质心的距离)为:{:.2f},轮廊系数为: {:.2f}'.format(SSE,silhouette_score)) # 绘制降维图 ''' X_PCA = PCA(2).fit_transform(X1) kwargs = dict(cmap = plt.cm.get_cmap('rainbow', 10), edgecolor='none', alpha=0.6) labels=pd.Series(est.labels_) plt.figure() plt.scatter(X_PCA[:, 0], X_PCA[:, 1], c=labels, **kwargs) ''' ''' # 三维立体图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X_PCA[:, 0], X_PCA[:, 1],X_PCA[:, 2], c=labels, **kwargs) ''' # 导出到原数据 parameters={'methods':'kmeans','inertia':est.inertia_,'SSE':SSE,'silhouette':silhouette_score,\ 'n_clusters':k_best,'n_features':len(qlist),'n_samples':len(X1),'qnum':new_cluster,\ 'data':X1,'labels':est.labels_} data[new_cluster]=pd.Series(est.labels_,index=index_bk) code[new_cluster]={'content':'态度题聚类结果','qtype':'单选题','qlist':[new_cluster], 'code':dict(zip(range(k_best),['cluster{}'.format(i+1) for i in range(k_best)]))} print('结果已经存进数据, 题号为:{}'.format(new_cluster)) return data,code,parameters ''' # 对应分析 t=data.groupby([new_cluster])[code[cluster_qq]['qlist']].mean() t.columns=['R{}'.format(i+1) for i in range(len(code[cluster_qq]['qlist']))] t=t.rename(index=code[new_cluster]['code']) ca=prince.CA(t) ca.plot_rows_columns(show_row_labels=True,show_column_labels=True) ''' def scatter(data,legend=False,title=None,font_ch=None,find_path=None): ''' 绘制带数据标签的散点图 ''' import matplotlib.font_manager as fm if font_ch is None: fontlist=['calibri.ttf','simfang.ttf','simkai.ttf','simhei.ttf','simsun.ttc','msyh.ttf','msyh.ttc'] myfont='' if not find_path: find_paths=['C:\\Windows\\Fonts',''] # fontlist 越靠后越优先,findpath越靠后越优先 for find_path in find_paths: for f in fontlist: if os.path.exists(os.path.join(find_path,f)): myfont=os.path.join(find_path,f) if len(myfont)==0: print('没有找到合适的中文字体绘图,请检查.') myfont=None else: myfont = fm.FontProperties(fname=myfont) else: myfont=fm.FontProperties(fname=font_ch) fig, ax = plt.subplots() #ax.grid('on') ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.axhline(y=0, linestyle='-', linewidth=1.2, alpha=0.6) ax.axvline(x=0, linestyle='-', linewidth=1.2, alpha=0.6) color=['blue','red','green','dark'] if not isinstance(data,list): data=[data] for i,dd in enumerate(data): ax.scatter(dd.iloc[:,0], dd.iloc[:,1], c=color[i], s=50, label=dd.columns[1]) for _, row in dd.iterrows(): ax.annotate(row.name, (row.iloc[0], row.iloc[1]), color=color[i],fontproperties=myfont,fontsize=10) ax.axis('equal') if legend: ax.legend(loc='best') if title: ax.set_title(title,fontproperties=myfont) return fig def sankey(df,filename=None): '''SanKey图绘制 df的列是左节点,行是右节点 注:暂时没找到好的Python方法,所以只生成R语言所需数据 返回links 和 nodes # R code 参考 library(networkD3) dd=read.csv('price_links.csv') links<-data.frame(source=dd$from,target=dd$to,value=dd$value) nodes=read.csv('price_nodes.csv',encoding = 'UTF-8') nodes<-nodes['name'] Energy=c(links=links,nodes=nodes) sankeyNetwork(Links = links, Nodes = nodes, Source = "source", Target = "target", Value = "value", NodeID = "name", units = "TWh",fontSize = 20,fontFamily='微软雅黑',nodeWidth=20) ''' nodes=['Total'] nodes=nodes+list(df.columns)+list(df.index) nodes=pd.DataFrame(nodes) nodes['id']=range(len(nodes)) nodes.columns=['name','id'] R,C=df.shape t1=pd.DataFrame(df.as_matrix(),columns=range(1,C+1),index=range(C+1,R+C+1)) t1.index.name='to' t1.columns.name='from' links=t1.unstack().reset_index(name='value') links0=pd.DataFrame({'from':[0]*C,'to':range(1,C+1),'value':list(df.sum())}) links=links0.append(links) if filename: links.to_csv(filename+'_links.csv',index=False,encoding='utf-8') nodes.to_csv(filename+'_nodes.csv',index=False,encoding='utf-8') return (links,nodes) def table(data,code,total=True): ''' 单个题目描述统计 code是data的编码,列数大于1 返回字典格式数据: 'fop':百分比, 对于单选题和为1,多选题分母为样本数 'fo': 观察频数表,其中添加了合计项 'fw': 加权频数表,可实现平均值、T2B等功能,仅当code中存在关键词'weight'时才有 ''' # 单选题 qtype=code['qtype'] index=code['qlist'] data=pd.DataFrame(data) sample_len=data[code['qlist']].notnull().T.any().sum() result={} if qtype == u'单选题': fo=data.iloc[:,0].value_counts() if 'weight' in code: w=pd.Series(code['weight']) fo1=fo[w.index][fo[w.index].notnull()] fw=(fo1*w).sum()/fo1.sum() result['fw']=fw fo.sort_values(ascending=False,inplace=True) fop=fo.copy() fop=fop/fop.sum()*1.0 fop[u'合计']=fop.sum() fo[u'合计']=fo.sum() if 'code' in code: fop.rename(index=code['code'],inplace=True) fo.rename(index=code['code'],inplace=True) fop.name=u'占比' fo.name=u'频数' fop=pd.DataFrame(fop) fo=pd.DataFrame(fo) result['fo']=fo result['fop']=fop elif qtype == u'多选题': fo=data.sum() fo.sort_values(ascending=False,inplace=True) fo[u'合计']=fo.sum() if 'code' in code: fo.rename(index=code['code'],inplace=True) fop=fo.copy() fop=fop/sample_len fop.name=u'占比' fo.name=u'频数' fop=pd.DataFrame(fop) fo=pd.DataFrame(fo) result['fop']=fop result['fo']=fo elif qtype == u'矩阵单选题': fo=pd.DataFrame(columns=code['qlist'],index=sorted(code['code'])) for i in fo.columns: fo.loc[:,i]=data[i].value_counts() if 'weight' not in code: code['weight']=dict(zip(code['code'].keys(),code['code'].keys())) fw=pd.DataFrame(columns=[u'加权'],index=code['qlist']) w=pd.Series(code['weight']) for c in fo.columns: t=fo[c] t=t[w.index][t[w.index].notnull()] if t.sum()>1e-17: fw.loc[c,u'加权']=(t*w).sum()/t.sum() else: fw.loc[c,u'加权']=0 fw.rename(index=code['code_r'],inplace=True) result['fw']=fw result['weight']=','.join(['{}:{}'.format(code['code'][c],code['weight'][c]) for c in code['code']]) fo.rename(columns=code['code_r'],index=code['code'],inplace=True) fop=fo.copy() fop=fop/sample_len result['fop']=fop result['fo']=fo elif qtype == u'排序题': #提供综合统计和TOP1值统计 # 其中综合的算法是当成单选题,给每个TOP分配和为1的权重 #topn=max([len(data[q][data[q].notnull()].unique()) for q in index]) #topn=len(index) topn=data[index].fillna(0).max().max() topn=int(topn) qsort=dict(zip([i+1 for i in range(topn)],[(topn-i)*2.0/(topn+1)/topn for i in range(topn)])) top1=data.applymap(lambda x:int(x==1)) data_weight=data.replace(qsort) t1=pd.DataFrame() t1['TOP1']=top1.sum() t1[u'综合']=data_weight.sum() t1.sort_values(by=u'综合',ascending=False,inplace=True) t1.rename(index=code['code'],inplace=True) t=t1.copy() t=t/sample_len result['fop']=t result['fo']=t1 # 新增topn矩阵 t_topn=pd.DataFrame() for i in range(topn): t_topn['TOP%d'%(i+1)]=data.applymap(lambda x:int(x==i+1)).sum() t_topn.sort_values(by=u'TOP1',ascending=False,inplace=True) if 'code' in code: t_topn.rename(index=code['code'],inplace=True) result['TOPN_fo']=t_topn#频数 result['TOPN']=t_topn/sample_len result['weight']='+'.join(['TOP{}*{:.2f}'.format(i+1,(topn-i)*2.0/(topn+1)/topn) for i in range(topn)]) else: result['fop']=None result['fo']=None if (not total) and not(result['fo'] is None) and (u'合计' in result['fo'].index): result['fo'].drop([u'合计'],axis=0,inplace=True) result['fop'].drop([u'合计'],axis=0,inplace=True) if not(result['fo'] is None) and ('code_order' in code): code_order=[q for q in code['code_order'] if q in result['fo'].index] if u'合计' in result['fo'].index: code_order=code_order+[u'合计'] result['fo']=pd.DataFrame(result['fo'],index=code_order) result['fop']=pd.DataFrame(result['fop'],index=code_order) return result def crosstab(data_index,data_column,code_index=None,code_column=None,qtype=None,total=True): '''适用于问卷数据的交叉统计 输入参数: data_index: 因变量,放在行中 data_column:自变量,放在列中 code_index: dict格式,指定data_index的编码等信息 code_column: dict格式,指定data_column的编码等信息 qtype: 给定两个数据的题目类型,若为字符串则给定data_index,若为列表,则给定两个的 返回字典格式数据 'fop':默认的百分比表,行是data_index,列是data_column 'fo':原始频数表,且添加了总体项 'fw': 加权平均值 简要说明: 因为要处理各类题型,这里将单选题处理为多选题 fo:观察频数表 nij是同时选择了Ri和Cj的频数 总体的频数是选择了Ri的频数,与所在行的总和无关 行变量\列变量 C1 |C2 | C3| C4|总体 R1| n11|n12|n13|n14|n1: R2| n21|n22|n23|n23|n2: R3| n31|n32|n33|n34|n3: fop: 观察百分比表(列变量) 这里比较难处理,data_column各个类别的样本量和总体的样本量不一样,各类别的样本量为同时 选择了行变量和列类别的频数。而总体的样本量为选择了行变量的频数 fw: 加权平均值 如果data_index的编码code含有weight字段,则我们会输出分组的加权平均值 ''' # 将Series转为DataFrame格式 data_index=pd.DataFrame(data_index) data_column=
pd.DataFrame(data_column)
pandas.DataFrame
import itertools import operator from os.path import dirname, join import numpy as np import pandas as pd import pytest from pandas.core import ops from pandas.tests.extension import base from pandas.tests.extension.conftest import ( # noqa: F401 as_array, as_frame, as_series, fillna_method, groupby_apply_op, use_numpy, ) from pint.errors import DimensionalityError from pint.testsuite import QuantityTestCase, helpers import pint_pandas as ppi from pint_pandas import PintArray ureg = ppi.PintType.ureg @pytest.fixture(params=[True, False]) def box_in_series(request): """Whether to box the data in a Series""" return request.param @pytest.fixture def dtype(): return ppi.PintType("pint[meter]") @pytest.fixture def data(): return ppi.PintArray.from_1darray_quantity( np.arange(start=1.0, stop=101.0) * ureg.nm ) @pytest.fixture def data_missing(): return ppi.PintArray.from_1darray_quantity([np.nan, 1] * ureg.meter) @pytest.fixture def data_for_twos(): x = [ 2.0, ] * 100 return ppi.PintArray.from_1darray_quantity(x * ureg.meter) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): if request.param == "data": return data elif request.param == "data_missing": return data_missing @pytest.fixture def data_repeated(data): """Return different versions of data for count times""" # no idea what I'm meant to put here, try just copying from https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/integer/test_integer.py def gen(count): for _ in range(count): yield data yield gen @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture def data_for_sorting(): return ppi.PintArray.from_1darray_quantity([0.3, 10, -50] * ureg.centimeter) # should probably get more sophisticated and do something like # [1 * ureg.meter, 3 * ureg.meter, 10 * ureg.centimeter] @pytest.fixture def data_missing_for_sorting(): return ppi.PintArray.from_1darray_quantity([4, np.nan, -5] * ureg.centimeter) # should probably get more sophisticated and do something like # [4 * ureg.meter, np.nan, 10 * ureg.centimeter] @pytest.fixture def na_cmp(): """Binary operator for comparing NA values.""" return lambda x, y: bool(np.isnan(x.magnitude)) & bool(np.isnan(y.magnitude)) @pytest.fixture def na_value(): return ppi.PintType("meter").na_value @pytest.fixture def data_for_grouping(): # should probably get more sophisticated here and use units on all these # quantities a = 1.0 b = 2.0 ** 32 + 1 c = 2.0 ** 32 + 10 return ppi.PintArray.from_1darray_quantity( [b, b, np.nan, np.nan, a, a, b, c] * ureg.m ) # === missing from pandas extension docs about what has to be included in tests === # copied from pandas/pandas/conftest.py _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations """ return request.param @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]) def all_compare_operators(request): """ Fixture for dunder names for common compare operations * >= * > * == * != * < * <= """ return request.param # commented functions aren't implemented _all_numeric_reductions = [ "sum", "max", "min", "mean", # "prod", # "std", # "var", "median", # "kurt", # "skew", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param # ================================================================= class TestCasting(base.BaseCastingTests): pass class TestConstructors(base.BaseConstructorsTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_no_data_with_index(self, dtype, na_value): result = pd.Series(index=[1, 2, 3], dtype=dtype) expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) # GH 33559 - empty index result = pd.Series(index=[], dtype=dtype) expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype) expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_scalar_with_index(self, data, dtype): scalar = data[0] result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype) expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) result = pd.Series(scalar, index=["foo"], dtype=dtype) expected = pd.Series([scalar], index=["foo"], dtype=dtype) self.assert_series_equal(result, expected) class TestDtype(base.BaseDtypeTests): pass class TestGetitem(base.BaseGetitemTests): def test_getitem_mask_raises(self, data): mask = np.array([True, False]) msg = f"Boolean index has wrong length: 2 instead of {len(data)}" with pytest.raises(IndexError, match=msg): data[mask] mask = pd.array(mask, dtype="boolean") with pytest.raises(IndexError, match=msg): data[mask] class TestGroupby(base.BaseGroupbyTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_groupby_apply_identity(self, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) result = df.groupby("A").B.apply(lambda x: x.array) expected = pd.Series( [ df.B.iloc[[0, 1, 6]].array, df.B.iloc[[2, 3]].array, df.B.iloc[[4, 5]].array, df.B.iloc[[7]].array, ], index=pd.Index([1, 2, 3, 4], name="A"), name="B", ) self.assert_series_equal(result, expected) class TestInterface(base.BaseInterfaceTests): pass class TestMethods(base.BaseMethodsTests): @pytest.mark.filterwarnings("ignore::pint.UnitStrippedWarning") # See test_setitem_mask_broadcast note @pytest.mark.parametrize("dropna", [True, False]) def test_value_counts(self, all_data, dropna): all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() expected = pd.Series(other).value_counts(dropna=dropna).sort_index() self.assert_series_equal(result, expected) @pytest.mark.filterwarnings("ignore::pint.UnitStrippedWarning") # See test_setitem_mask_broadcast note @pytest.mark.parametrize("box", [pd.Series, lambda x: x]) @pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique]) def test_unique(self, data, box, method): duplicated = box(data._from_sequence([data[0], data[0]])) result = method(duplicated) assert len(result) == 1 assert isinstance(result, type(data)) assert result[0] == duplicated[0] @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) assert df.A.values is not result.A.values @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values is arr @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_searchsorted(self, data_for_sorting, as_series): # noqa: F811 b, c, a = data_for_sorting arr = type(data_for_sorting)._from_sequence([a, b, c]) if as_series: arr = pd.Series(arr) assert arr.searchsorted(a) == 0 assert arr.searchsorted(a, side="right") == 1 assert arr.searchsorted(b) == 1 assert arr.searchsorted(b, side="right") == 2 assert arr.searchsorted(c) == 2 assert arr.searchsorted(c, side="right") == 3 result = arr.searchsorted(arr.take([0, 2])) expected = np.array([0, 2], dtype=np.intp) self.assert_numpy_array_equal(result, expected) # sorter sorter = np.array([1, 2, 0]) assert data_for_sorting.searchsorted(a, sorter=sorter) == 0 @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_where_series(self, data, na_value, as_frame): # noqa: F811 assert data[0] != data[1] cls = type(data) a, b = data[:2] ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) cond = np.array([True, True, False, False]) if as_frame: ser = ser.to_frame(name="a") cond = cond.reshape(-1, 1) result = ser.where(cond) expected = pd.Series( cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype) ) if as_frame: expected = expected.to_frame(name="a") self.assert_equal(result, expected) # array other cond = np.array([True, False, True, True]) other = cls._from_sequence([a, b, a, b], dtype=data.dtype) if as_frame: other = pd.DataFrame({"a": other}) cond = pd.DataFrame({"a": cond}) result = ser.where(cond, other) expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) if as_frame: expected = expected.to_frame(name="a") self.assert_equal(result, expected) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values(self, data_for_sorting, ascending, sort_by_key): ser = pd.Series(data_for_sorting) result = ser.sort_values(ascending=ascending, key=sort_by_key) expected = ser.iloc[[2, 0, 1]] if not ascending: expected = expected[::-1] self.assert_series_equal(result, expected) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values_missing( self, data_missing_for_sorting, ascending, sort_by_key ): ser = pd.Series(data_missing_for_sorting) result = ser.sort_values(ascending=ascending, key=sort_by_key) if ascending: expected = ser.iloc[[2, 0, 1]] else: expected = ser.iloc[[0, 2, 1]] self.assert_series_equal(result, expected) class TestArithmeticOps(base.BaseArithmeticOpsTests): def check_opname(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) self._check_op(s, op, other, exc) def _check_op(self, s, op, other, exc=None): if exc is None: result = op(s, other) expected = s.combine(other, op) self.assert_series_equal(result, expected) else: with pytest.raises(exc): op(s, other) def _check_divmod_op(self, s, op, other, exc=None): # divmod has multiple return values, so check separately if exc is None: result_div, result_mod = op(s, other) if op is divmod: expected_div, expected_mod = s // other, s % other else: expected_div, expected_mod = other // s, other % s self.assert_series_equal(result_div, expected_div) self.assert_series_equal(result_mod, expected_mod) else: with pytest.raises(exc): divmod(s, other) def _get_exception(self, data, op_name): if op_name in ["__pow__", "__rpow__"]: return op_name, DimensionalityError else: return op_name, None def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # series & scalar op_name, exc = self._get_exception(data, all_arithmetic_operators) s = pd.Series(data) self.check_opname(s, op_name, s.iloc[0], exc=exc) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op_name, exc = self._get_exception(data, all_arithmetic_operators) df = pd.DataFrame({"A": data}) self.check_opname(df, op_name, data[0], exc=exc) @pytest.mark.xfail(run=True, reason="s.combine does not accept arrays") def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op_name, exc = self._get_exception(data, all_arithmetic_operators) s = pd.Series(data) self.check_opname(s, op_name, data, exc=exc) # parameterise this to try divisor not equal to 1 def test_divmod(self, data): s = pd.Series(data) self._check_divmod_op(s, divmod, 1 * ureg.Mm) self._check_divmod_op(1 * ureg.Mm, ops.rdivmod, s) @pytest.mark.xfail(run=True, reason="Test is deleted in pd 1.3, pd GH #39386") def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars # TODO: work out how to make this more specific/test for the two # different possible errors here with pytest.raises(Exception): ops("foo") # TODO: work out how to make this more specific/test for the two # different possible errors here with pytest.raises(Exception): ops(pd.Timestamp("20180101")) # invalid array-likes # TODO: work out how to make this more specific/test for the two # different possible errors here # # This won't always raise exception, eg for foo % 3 m if "mod" not in op: with pytest.raises(Exception): ops(pd.Series("foo", index=s.index)) # 2d with pytest.raises(KeyError): opa(pd.DataFrame({"A": s})) with pytest.raises(ValueError): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("box", [pd.Series, pd.DataFrame]) def test_direct_arith_with_ndframe_returns_not_implemented(self, data, box): # EAs should return NotImplemented for ops with Series/DataFrame # Pandas takes care of unboxing the series and calling the EA's op. other = pd.Series(data) if box is pd.DataFrame: other = other.to_frame() if hasattr(data, "__add__"): result = data.__add__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement add") class TestComparisonOps(base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) result = op(s, other) expected = op(s.values.quantity, other) assert (result == expected).all() def test_compare_scalar(self, data, all_compare_operators): op_name = all_compare_operators s = pd.Series(data) other = data[0] self._compare_other(s, data, op_name, other) def test_compare_array(self, data, all_compare_operators): # nb this compares an quantity containing array # eg Q_([1,2],"m") op_name = all_compare_operators s = pd.Series(data) other = data self._compare_other(s, data, op_name, other) @pytest.mark.parametrize("box", [pd.Series, pd.DataFrame]) def test_direct_arith_with_ndframe_returns_not_implemented(self, data, box): # EAs should return NotImplemented for ops with Series/DataFrame # Pandas takes care of unboxing the series and calling the EA's op. other = pd.Series(data) if box is pd.DataFrame: other = other.to_frame() if hasattr(data, "__eq__"): result = data.__eq__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement __eq__") if hasattr(data, "__ne__"): result = data.__ne__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement __ne__") class TestOpsUtil(base.BaseOpsUtil): pass class TestParsing(base.BaseParsingTests): pass class TestPrinting(base.BasePrintingTests): pass class TestMissing(base.BaseMissingTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_fillna_scalar(self, data_missing): valid = data_missing[1] result = data_missing.fillna(valid) expected = data_missing.fillna(valid) self.assert_extension_array_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_fillna_series(self, data_missing): fill_value = data_missing[1] ser = pd.Series(data_missing) result = ser.fillna(fill_value) expected = pd.Series( data_missing._from_sequence( [fill_value, fill_value], dtype=data_missing.dtype ) ) self.assert_series_equal(result, expected) # Fill with a series result = ser.fillna(expected) self.assert_series_equal(result, expected) # Fill with a series not affecting the missing values result = ser.fillna(ser) self.assert_series_equal(result, ser) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_fillna_frame(self, data_missing): fill_value = data_missing[1] result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value) expected = pd.DataFrame( { "A": data_missing._from_sequence( [fill_value, fill_value], dtype=data_missing.dtype ), "B": [1, 2], } ) self.assert_series_equal(result, expected) class TestNumericReduce(base.BaseNumericReduceTests): def check_reduce(self, s, op_name, skipna): result = getattr(s, op_name)(skipna=skipna) expected_m = getattr(pd.Series(s.values.quantity._magnitude), op_name)( skipna=skipna ) expected_u = s.values.quantity.units expected = ureg.Quantity(expected_m, expected_u) assert result == expected class TestBooleanReduce(base.BaseBooleanReduceTests): def check_reduce(self, s, op_name, skipna): result = getattr(s, op_name)(skipna=skipna) expected = getattr(pd.Series(s.values.quantity._magnitude), op_name)( skipna=skipna ) assert result == expected class TestReshaping(base.BaseReshapingTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") @pytest.mark.parametrize("obj", ["series", "frame"]) def test_unstack(self, data, index, obj): data = data[: len(index)] if obj == "series": ser = pd.Series(data, index=index) else: ser = pd.DataFrame({"A": data, "B": data}, index=index) n = index.nlevels levels = list(range(n)) # [0, 1, 2] # [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] combinations = itertools.chain.from_iterable( itertools.permutations(levels, i) for i in range(1, n) ) for level in combinations: result = ser.unstack(level=level) assert all( isinstance(result[col].array, type(data)) for col in result.columns ) if obj == "series": # We should get the same result with to_frame+unstack+droplevel df = ser.to_frame() alt = df.unstack(level=level).droplevel(0, axis=1) self.assert_frame_equal(result, alt) expected = ser.astype(object).unstack(level=level) result = result.astype(object) self.assert_frame_equal(result, expected) class TestSetitem(base.BaseSetitemTests): @pytest.mark.parametrize("setter", ["loc", None]) @pytest.mark.filterwarnings("ignore::pint.UnitStrippedWarning") # Pandas performs a hasattr(__array__), which triggers the warning # Debugging it does not pass through a PintArray, so # I think this needs changing in pint quantity # eg s[[True]*len(s)]=Q_(1,"m") @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_setitem_mask_broadcast(self, data, setter): ser = pd.Series(data) mask = np.zeros(len(data), dtype=bool) mask[:2] = True if setter: # loc target = getattr(ser, setter) else: # __setitem__ target = ser operator.setitem(target, mask, data[10]) assert ser[0] == data[10] assert ser[1] == data[10] @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_setitem_sequence_broadcasts(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[[0, 1]] = data[2] assert data[0] == data[2] assert data[1] == data[2] @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") @pytest.mark.parametrize( "idx", [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])], ids=["list", "integer-array", "numpy-array"], ) def test_setitem_integer_array(self, data, idx, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[idx] = arr[0] self.assert_equal(arr, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_setitem_slice(self, data, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[:3] = data[0] self.assert_equal(arr, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_setitem_loc_iloc_slice(self, data): arr = data[:5].copy() s = pd.Series(arr, index=["a", "b", "c", "d", "e"]) expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index) result = s.copy() result.iloc[:3] = data[0] self.assert_equal(result, expected) result = s.copy() result.loc[:"c"] = data[0] self.assert_equal(result, expected) class TestOffsetUnits(object): @pytest.mark.xfail(run=True, reason="TODO untested issue that was fixed") def test_offset_concat(self): q_a = ureg.Quantity(np.arange(5), ureg.Unit("degC")) q_b = ureg.Quantity(np.arange(6), ureg.Unit("degC")) a = pd.Series(PintArray(q_a)) b = pd.Series(PintArray(q_b)) result = pd.concat([a, b], axis=1) expected = pd.Series(PintArray(np.concatenate([q_b, q_b]), dtype="pint[degC]")) self.assert_equal(result, expected) # would be ideal to just test all of this by running the example notebook # but this isn't a discussion we've had yet class TestUserInterface(object): def test_get_underlying_data(self, data): ser = pd.Series(data) # this first test creates an array of bool (which is desired, eg for indexing) assert all(ser.values == data) assert ser.values[23] == data[23] def test_arithmetic(self, data): ser = pd.Series(data) ser2 = ser + ser assert all(ser2.values == 2 * data) def test_initialisation(self, data): # fails with plain array # works with PintArray df = pd.DataFrame( { "length": pd.Series([2.0, 3.0], dtype="pint[m]"), "width": PintArray([2.0, 3.0], dtype="pint[m]"), "distance": PintArray([2.0, 3.0], dtype="m"), "height": PintArray([2.0, 3.0], dtype=ureg.m), "depth": PintArray.from_1darray_quantity( ureg.Quantity([2.0, 3.0], ureg.m) ), } ) for col in df.columns: assert all(df[col] == df.length) def test_df_operations(self): # simply a copy of what's in the notebook df = pd.DataFrame( { "torque":
pd.Series([1.0, 2.0, 2.0, 3.0], dtype="pint[lbf ft]")
pandas.Series
# encoding: utf-8 import sys import os import numpy as np import pandas as pd import torch import torch.nn as nn import torch.backends.cudnn as cudnn from util import get_trained_model, get_dataloader pd.set_option('display.max_colwidth',1000) def predict_single_model(model, dataloder): model.cuda() model.eval() pred = torch.FloatTensor().cuda() with torch.no_grad(): for i, (inp) in enumerate(dataloder): input_var = torch.autograd.Variable(inp.cuda()) output = model(input_var) pred = torch.cat((pred, output.data), 0) return pred.cpu().data.numpy() def ensemble(predictions, ratio): prediction_ensemble = np.zeros(shape = predictions[0].shape, dtype = float) for i in range(0,len(ratio)): prediction_ensemble += predictions[i]*ratio[i] return prediction_ensemble def predict_file(prediction_np, input_file, output_file): """ arguments: prediction_np:(numpy) prediction from the model input_file: (csv/txt) image path list output_file:(csv/txt) out put predicted label as a file !!modify to meet your needs!! u_one_features = ['Atelectasis', 'Edema'] u_zero_features = ['Cardiomegaly', 'Consolidation', 'Pleural Effusion'] """ def get_final_csv(df): result = pd.DataFrame(columns=['Path','Study','Atelectasis','Cardiomegaly','Pleural Effusion','Consolidation','Edema']) for Study_name in set(df['Study']): tmp = df[df['Study'].isin([Study_name])] tmp_result = tmp[0:1].copy() tmp_result['Atelectasis'] = tmp['Atelectasis'].max() tmp_result['Edema'] = tmp['Edema'].max() tmp_result['Cardiomegaly'] = tmp['Cardiomegaly'].mean() tmp_result['Pleural Effusion'] = tmp['Pleural Effusion'].mean() tmp_result['Consolidation'] = tmp['Consolidation'].mean() result =
pd.concat([result,tmp_result],axis=0)
pandas.concat
import logging import math import random import sys import numpy import pandas import openbiolink.graphProperties as graphProp from openbiolink import globalConfig from openbiolink import globalConfig as glob from openbiolink import utils from openbiolink.graph_creation.metadata_edge import edgeMetadata as meta from openbiolink.train_test_set_creation.sampler import NegativeSampler from openbiolink.train_test_set_creation.trainTestSetWriter import TrainTestSetWriter random.seed(glob.RANDOM_STATE) numpy.random.seed(glob.RANDOM_STATE) class TrainTestSetCreation(): """ Manager class for handling the creation of train test splits given a graph Attributes ---------- all_nodes : pandas.DataFrame DataFrame with all nodes, columns = globalConfig.COL_NAMES_NODES all_tp : pandas.DataFrame DataFrame with edges from the positive graph, i.e. all positive examples columns = globalConfig.COL_NAMES_EDGES + globalConfig.VALUE_COL_NAME tp_edgeTypes : [str] list of all edge types present in the positive examples all_tn : pandas.DataFrame DataFrame with edges from the negative graph, i.e. all negative examples columns = globalConfig.COL_NAMES_EDGES + globalConfig.VALUE_COL_NAME tn_edgeTypes : [str] list of all edge types present in the negative examples meta_edges_dic : {str: (str, str, str)} dictionary for all possible h,r,t combinations, mapped to their types. The key consists of %s_%s_%s'%(node1Type,edgeType,node2Type) the value (node1Type, edgeType, node2Type) tmo_nodes : pandas.DataFrame DataFrame with all nodes present in the t-1 graph, columns = globalConfig.COL_NAMES_NODES tmo_all_tp : pandas.DataFrame DataFrame with edges from the positive t-1 graph, i.e. all positive t-1 examples columns = globalConfig.COL_NAMES_EDGES + globalConfig.VALUE_COL_NAME tmo_tp_edgeTypes : [str] list of all edge types present in the positive t-1 examples tmo_all_tn : pandas.DataFrame DataFrame with edges from the negative t-1 graph, i.e. all negative t-1 examples columns = globalConfig.COL_NAMES_EDGES + globalConfig.VALUE_COL_NAME tmo_tn_edgeTypes : [str] list of all edge types present in the negative t-1 examples """ def __init__(self, graph_path, tn_graph_path, all_nodes_path, sep='\t', #meta_edge_triples=None, #nicetohave (1) split for subsample of edges, define own meta edges t_minus_one_graph_path=None, t_minus_one_tn_graph_path=None, t_minus_one_nodes_path=None): self.writer = TrainTestSetWriter() with open(all_nodes_path) as file: self.all_nodes = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_NODES) self.all_nodes = self.all_nodes.sort_values(by=globalConfig.COL_NAMES_NODES).reset_index(drop=True) with open(graph_path) as file: self.all_tp = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_EDGES) self.all_tp[globalConfig.VALUE_COL_NAME] = 1 self.all_tp = self.all_tp.sort_values(by=globalConfig.COL_NAMES_EDGES).reset_index(drop=True) self.tp_edgeTypes = list(self.all_tp[globalConfig.EDGE_TYPE_COL_NAME].unique()) with open(tn_graph_path) as file: self.all_tn = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_EDGES) self.all_tn[globalConfig.VALUE_COL_NAME] = 0 self.all_tn = self.all_tn.sort_values(by=globalConfig.COL_NAMES_EDGES).reset_index(drop=True) self.tn_edgeTypes = list(self.all_tn[globalConfig.EDGE_TYPE_COL_NAME].unique()) self.meta_edges_dic = {} for metaEdge in utils.get_leaf_subclasses(meta.EdgeMetadata): edgeType = str(metaEdge.EDGE_INMETA_CLASS.EDGE_TYPE) node1Type = str(metaEdge.EDGE_INMETA_CLASS.NODE1_TYPE) node2Type = str(metaEdge.EDGE_INMETA_CLASS.NODE2_TYPE) if edgeType in self.tp_edgeTypes: self.meta_edges_dic['%s_%s_%s'%(node1Type,edgeType,node2Type)] = (node1Type, edgeType, node2Type) #nicetohave (2) check for transient onto edges #transitiv_IS_A_edges = utils.check_for_transitive_edges(self.all_tp[self.all_tp[ttsConst.EDGE_TYPE_COL_NAME] == 'IS_A']) #transitiv_PART_OF_edges = utils.check_for_transitive_edges(self.all_tp[self.all_tp[ttsConst.EDGE_TYPE_COL_NAME] == 'PART_OF']) #if transitiv_IS_A_edges: # print('WARNING: transient edges in IS_A: ({a},b,c) for a IS_A b and a IS_A c', transitiv_IS_A_edges) #if transitiv_PART_OF_edges: # print('WARNING: transient edges in PART_OF: ({a},b,c) for a PART_OF b and a PART_OF c', # transitiv_PART_OF_edges) #for time slices if not (bool(t_minus_one_graph_path) == bool(t_minus_one_tn_graph_path) == (bool(t_minus_one_nodes_path))): logging.error('either all three or none of these variables must be provided') sys.exit() if t_minus_one_nodes_path and t_minus_one_graph_path and t_minus_one_tn_graph_path: with open(t_minus_one_nodes_path) as file: self.tmo_nodes = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_NODES) self.tmo_nodes = self.tmo_nodes.sort_values(by=globalConfig.COL_NAMES_NODES).reset_index(drop=True) with open(t_minus_one_graph_path) as file: self.tmo_all_tp = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_EDGES) self.tmo_all_tp[globalConfig.VALUE_COL_NAME] = 1 self.tmo_all_tp = self.tmo_all_tp.sort_values(by=globalConfig.COL_NAMES_EDGES).reset_index(drop=True) self.tmo_tp_edgeTypes = list(self.all_tp[globalConfig.EDGE_TYPE_COL_NAME].unique()) with open(t_minus_one_tn_graph_path) as file: self.tmo_all_tn = pandas.read_csv(file, sep=sep, names=globalConfig.COL_NAMES_EDGES) self.tmo_all_tn[globalConfig.VALUE_COL_NAME] = 0 self.tmo_all_tn = self.tmo_all_tn.sort_values(by=globalConfig.COL_NAMES_EDGES).reset_index(drop=True) self.tmo_tn_edgeTypes = list(self.all_tp[globalConfig.EDGE_TYPE_COL_NAME].unique()) def random_edge_split(self, test_frac=None, val=None, crossval=None): if not val: val = 0.2 if not test_frac: test_frac = 0.2 # create positive and negative examples positive_samples = self.all_tp.copy() negative_sampler = NegativeSampler(self.meta_edges_dic, self.tn_edgeTypes, self.all_tn.copy(), self.all_nodes) negative_samples = negative_sampler.generate_random_neg_samples(positive_samples) all_samples = (positive_samples.append(negative_samples, ignore_index=True)).reset_index(drop=True) all_samples = utils.remove_inconsistent_edges(all_samples).reset_index(drop=True) # generate, train-, test-, validation-sets test_set = all_samples.sample(frac=test_frac, random_state=glob.RANDOM_STATE) train_val_set = all_samples.drop(list(test_set.index.values)) test_set = utils.remove_parent_duplicates_and_reverses(remain_set=test_set, remove_set=train_val_set) nodes_in_train_val_set = train_val_set[globalConfig.NODE1_ID_COL_NAME].tolist() \ + train_val_set[globalConfig.NODE2_ID_COL_NAME].tolist() new_test_nodes = self.get_additional_nodes(old_nodes_list=nodes_in_train_val_set, new_nodes_list=self.all_nodes[globalConfig.ID_NODE_COL_NAME].tolist()) if new_test_nodes: logging.info('The test set contains nodes, that are not present in the trainings-set. These edges will be dropped.') #nicetohave (6): option to keep edges with new nodes test_set = self.remove_edges_with_nodes(test_set, new_test_nodes) nodes_in_test_set = test_set[globalConfig.NODE1_ID_COL_NAME].tolist() \ + test_set[globalConfig.NODE2_ID_COL_NAME].tolist() if graphProp.DIRECTED: train_val_set = utils.remove_reverse_edges(remain_set=train_val_set, remove_set=test_set) if crossval: train_val_set_tuples = self.create_cross_val(train_val_set, val) new_val_nodes = None for i, train_val_set_tuple in enumerate(train_val_set_tuples): train_set, val_set = train_val_set_tuple new_val_nodes = self.get_additional_nodes(old_nodes_list=train_set[globalConfig.NODE1_ID_COL_NAME].tolist() + train_set[globalConfig.NODE2_ID_COL_NAME].tolist(), new_nodes_list=nodes_in_train_val_set) if new_val_nodes: #nicetohave (6) logging.info('Validation set %d contains nodes, that are not present in the trainings-set. These edges will be dropped.' %i) val_set = self.remove_edges_with_nodes(val_set, new_val_nodes) train_val_set_tuples[i]=(train_set, val_set) else: train_val_set_tuples = [(train_val_set,
pandas.DataFrame()
pandas.DataFrame
from cmath import nan import os import sys import subprocess from io import StringIO import pandas as pd import argparse import re from config import * import moneyforward as mf import requests import time # Parse arguments parser = argparse.ArgumentParser(description='Retrieves expense information of PayPay card') parser.add_argument('-m', '--month', required=True, help="Month (in YYYYMM format) or 'latest'") parser.add_argument('-d', '--delete-old-file', action='store_true', help="Delete old files for month after importing to MoneyForward (2 latest files will be keeped)") parser.add_argument('-s', '--slack', action='store_true', help="Enable notification to Slack (optional)") parser.add_argument('-c', '--add-category', action='store_true', help="Add category to expense record based on store name, using pre-defined CSV (/app/category.csv)") args = parser.parse_args() asset_name = "PayPayカード" # MoneyForwardでの登録名 category_preset_path = '/app/category.csv' import pathlib def get_latest_month(): data_dir = pathlib.Path('/data') file_list = data_dir.glob('paypay_2*.tsv') file_list_str = [str(p.resolve()) for p in file_list] latest_file_name = sorted(file_list_str, reverse=True)[0] latest_month = re.findall('/data/paypay_(\d{6})_.*.tsv', latest_file_name)[0] return latest_month def load_data(target_month): data_dir = pathlib.Path('/data') file_list = data_dir.glob('paypay_{}*.tsv'.format(target_month)) file_list_str = [str(p.resolve()) for p in file_list] file_list_str = sorted(file_list_str, reverse=True) if len(file_list_str) == 1: data = file_list_str[0] print("Loading {}".format(data)) df =
pd.read_csv(data, sep="\t")
pandas.read_csv
from lxml import etree import numpy as np import pandas as pd import re from sklearn.model_selection import train_test_split import Bio from Bio import SeqIO from pathlib import Path import glob #console from tqdm import tqdm as tqdm import re import os import itertools #jupyter #from tqdm import tqdm_notebook as tqdm #not supported in current tqdm version #from tqdm.autonotebook import tqdm #import logging #logging.getLogger('proteomics_utils').addHandler(logging.NullHandler()) #logger=logging.getLogger('proteomics_utils') #for cd-hit import subprocess from sklearn.metrics import f1_score import hashlib #for mhcii datasets from utils.dataset_utils import split_clusters_single,pick_all_members_from_clusters ####################################################################################################### #Parsing all sorts of protein data ####################################################################################################### def parse_uniprot_xml(filename,max_entries=0,parse_features=[]): '''parse uniprot xml file, which contains the full uniprot information (e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz) using custom low-level https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ c.f. for full format https://www.uniprot.org/docs/uniprot.xsd parse_features: a list of strings specifying the kind of features to be parsed such as "modified residue" for phosphorylation sites etc. (see https://www.uniprot.org/help/mod_res) (see the xsd file for all possible entries) ''' context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniprot}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniprot(elem,rows,parse_features=parse_features) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def parse_func_uniprot(elem, rows, parse_features=[]): '''extracting a single record from uniprot xml''' seqs = elem.findall("{http://uniprot.org/uniprot}sequence") sequence="" #print(seqs) for s in seqs: sequence=s.text #print("sequence",sequence) if sequence =="" or str(sequence)=="None": continue else: break #Sequence & fragment sequence="" fragment_map = {"single":1, "multiple":2} fragment = 0 seqs = elem.findall("{http://uniprot.org/uniprot}sequence") for s in seqs: if 'fragment' in s.attrib: fragment = fragment_map[s.attrib["fragment"]] sequence=s.text if sequence != "": break #print("sequence:",sequence) #print("fragment:",fragment) #dataset dataset=elem.attrib["dataset"] #accession accession = "" accessions = elem.findall("{http://uniprot.org/uniprot}accession") for a in accessions: accession=a.text if accession !="":#primary accession! https://www.uniprot.org/help/accession_numbers!!! break #print("accession",accession) #protein existence (PE in plain text) proteinexistence_map = {"evidence at protein level":5,"evidence at transcript level":4,"inferred from homology":3,"predicted":2,"uncertain":1} proteinexistence = -1 accessions = elem.findall("{http://uniprot.org/uniprot}proteinExistence") for a in accessions: proteinexistence=proteinexistence_map[a.attrib["type"]] break #print("protein existence",proteinexistence) #name name = "" names = elem.findall("{http://uniprot.org/uniprot}name") for n in names: name=n.text break #print("name",name) #organism organism = "" organisms = elem.findall("{http://uniprot.org/uniprot}organism") for s in organisms: s1=s.findall("{http://uniprot.org/uniprot}name") for s2 in s1: if(s2.attrib["type"]=='scientific'): organism=s2.text break if organism !="": break #print("organism",organism) #dbReference: PMP,GO,Pfam, EC ids = elem.findall("{http://uniprot.org/uniprot}dbReference") pfams = [] gos =[] ecs = [] pdbs =[] for i in ids: #print(i.attrib["id"],i.attrib["type"]) #cf. http://geneontology.org/external2go/uniprotkb_kw2go for Uniprot Keyword<->GO mapping #http://geneontology.org/ontology/go-basic.obo for List of go terms #https://www.uniprot.org/help/keywords_vs_go keywords vs. go if(i.attrib["type"]=="GO"): tmp1 = i.attrib["id"] for i2 in i: if i2.attrib["type"]=="evidence": tmp2= i2.attrib["value"] gos.append([int(tmp1[3:]),int(tmp2[4:])]) #first value is go code, second eco evidence ID (see mapping below) elif(i.attrib["type"]=="Pfam"): pfams.append(i.attrib["id"]) elif(i.attrib["type"]=="EC"): ecs.append(i.attrib["id"]) elif(i.attrib["type"]=="PDB"): pdbs.append(i.attrib["id"]) #print("PMP: ", pmp) #print("GOs:",gos) #print("Pfams:",pfam) #print("ECs:",ecs) #print("PDBs:",pdbs) #keyword keywords = elem.findall("{http://uniprot.org/uniprot}keyword") keywords_lst = [] #print(keywords) for k in keywords: keywords_lst.append(int(k.attrib["id"][-4:]))#remove the KW- #print("keywords: ",keywords_lst) #comments = elem.findall("{http://uniprot.org/uniprot}comment") #comments_lst=[] ##print(comments) #for c in comments: # if(c.attrib["type"]=="function"): # for c1 in c: # comments_lst.append(c1.text) #print("function: ",comments_lst) #ptm etc if len(parse_features)>0: ptms=[] features = elem.findall("{http://uniprot.org/uniprot}feature") for f in features: if(f.attrib["type"] in parse_features):#only add features of the requested type locs=[] for l in f[0]: locs.append(int(l.attrib["position"])) ptms.append([f.attrib["type"],f.attrib["description"] if 'description' in f.attrib else "NaN",locs, f.attrib['evidence'] if 'evidence' in f.attrib else "NaN"]) #print(ptms) data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":proteinexistence, "fragment":fragment, "organism":organism, "ecs": ecs, "pdbs": pdbs, "pfams" : pfams, "keywords": keywords_lst, "gos": gos, "sequence": sequence} if len(parse_features)>0: data_dict["features"]=ptms #print("all children:") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) rows.append(data_dict) def parse_uniprot_seqio(filename,max_entries=0): '''parse uniprot xml file using the SeqIO parser (smaller functionality e.g. does not extract evidence codes for GO)''' sprot = SeqIO.parse(filename, "uniprot-xml") rows = [] for p in tqdm(sprot): accession = str(p.name) name = str(p.id) dataset = str(p.annotations['dataset']) organism = str(p.annotations['organism']) ecs, pdbs, pfams, gos = [],[],[],[] for ref in p.dbxrefs: k = ref.split(':') if k[0] == 'GO': gos.append(':'.join(k[1:])) elif k[0] == 'Pfam': pfams.append(k[1]) elif k[0] == 'EC': ecs.append(k[1]) elif k[0] == 'PDB': pdbs.append(k[1:]) if 'keywords' in p.annotations.keys(): keywords = p.annotations['keywords'] else: keywords = [] sequence = str(p.seq) row = { 'ID': accession, 'name':name, 'dataset':dataset, 'organism':organism, 'ecs':ecs, 'pdbs':pdbs, 'pfams':pfams, 'keywords':keywords, 'gos':gos, 'sequence':sequence} rows.append(row) if(max_entries>0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def filter_human_proteome(df_sprot): '''extracts human proteome from swissprot proteines in DataFrame with column organism ''' is_Human = np.char.find(df_sprot.organism.values.astype(str), "Human") !=-1 is_human = np.char.find(df_sprot.organism.values.astype(str), "human") !=-1 is_sapiens = np.char.find(df_sprot.organism.values.astype(str), "sapiens") !=-1 is_Sapiens = np.char.find(df_sprot.organism.values.astype(str), "Sapiens") !=-1 return df_sprot[is_Human|is_human|is_sapiens|is_Sapiens] def filter_aas(df, exclude_aas=["B","J","X","Z"]): '''excludes sequences containing exclude_aas: B = D or N, J = I or L, X = unknown, Z = E or Q''' return df[~df.sequence.apply(lambda x: any([e in x for e in exclude_aas]))] ###################################################################################################### def explode_clusters_df(df_cluster): '''aux. function to convert cluster dataframe from one row per cluster to one row per ID''' df=df_cluster.reset_index(level=0) rows = [] if('repr_accession' in df.columns):#include representative if it exists _ = df.apply(lambda row: [rows.append([nn,row['entry_id'], row['repr_accession']==nn ]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID","representative"]).set_index(['ID']) else: _ = df.apply(lambda row: [rows.append([nn,row['entry_id']]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID"]).set_index(['ID']) return df_exploded def parse_uniref(filename,max_entries=0,parse_sequence=False, df_selection=None, exploded=True): '''parse uniref (clustered sequences) xml ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/uniref50.xml.gz unzipped 100GB file using custom low-level parser https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ max_entries: only return first max_entries entries (0=all) parse_sequences: return also representative sequence df_selection: only include entries with accessions that are present in df_selection.index (None keeps all records) exploded: return one row per ID instead of one row per cluster c.f. for full format ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/README ''' #issue with long texts https://stackoverflow.com/questions/30577796/etree-incomplete-child-text #wait for end rather than start tag context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniref}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniref(elem,rows,parse_sequence=parse_sequence, df_selection=df_selection) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("entry_id") df["num_members"]=df.members.apply(len) if(exploded): return explode_clusters_df(df) return df def parse_func_uniref(elem, rows, parse_sequence=False, df_selection=None): '''extract a single uniref entry''' #entry ID entry_id = elem.attrib["id"] #print("cluster id",entry_id) #name name = "" names = elem.findall("{http://uniprot.org/uniref}name") for n in names: name=n.text[9:] break #print("cluster name",name) members=[] #representative member repr_accession = "" repr_sequence ="" repr = elem.findall("{http://uniprot.org/uniref}representativeMember") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": if(repr_accession == ""): repr_accession = s3.attrib["value"]#pick primary accession members.append(s3.attrib["value"]) if parse_sequence is True: s1=r.findall("{http://uniprot.org/uniref}sequence") for s2 in s1: repr_sequence = s2.text if repr_sequence !="": break #print("representative member accession:",repr_accession) #print("representative member sequence:",repr_sequence) #all members repr = elem.findall("{http://uniprot.org/uniref}member") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": members.append(s3.attrib["value"]) #add primary and secondary accessions #print("members", members) if(not(df_selection is None)): #apply selection filter members = [y for y in members if y in df_selection.index] #print("all children") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) if(len(members)>0): data_dict={"entry_id": entry_id, "name": name, "repr_accession":repr_accession, "members":members} if parse_sequence is True: data_dict["repr_sequence"]=repr_sequence rows.append(data_dict) ########################################################################################################################### #proteins and peptides from fasta ########################################################################################################################### def parse_uniprot_fasta(fasta_path, max_entries=0): '''parse uniprot from fasta file (which contains less information than the corresponding xml but is also much smaller e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta)''' rows=[] dataset_dict={"sp":"Swiss-Prot","tr":"TrEMBL"} for seq_record in tqdm(SeqIO.parse(fasta_path, "fasta")): sid=seq_record.id.split("|") accession = sid[1] dataset = dataset_dict[sid[0]] name = sid[2] description = seq_record.description sequence=str(seq_record.seq) #print(description) m = re.search('PE=\d', description) pe=int(m.group(0).split("=")[1]) m = re.search('OS=.* (?=OX=)', description) organism=m.group(0).split("=")[1].strip() data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":pe, "organism":organism, "sequence": sequence} rows.append(data_dict) if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def proteins_from_fasta(fasta_path): '''load proteins (as seqrecords) from fasta (just redirects)''' return seqrecords_from_fasta(fasta_path) def seqrecords_from_fasta(fasta_path): '''load seqrecords from fasta file''' seqrecords = list(SeqIO.parse(fasta_path, "fasta")) return seqrecords def seqrecords_to_sequences(seqrecords): '''converts biopythons seqrecords into a plain list of sequences''' return [str(p.seq) for p in seqrecords] def sequences_to_fasta(sequences, fasta_path, sequence_id_prefix="s"): '''save plain list of sequences to fasta''' with open(fasta_path, "w") as output_handle: for i,s in tqdm(enumerate(sequences)): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(s), id=sequence_id_prefix+str(i), description="") SeqIO.write(record, output_handle, "fasta") def df_to_fasta(df, fasta_path): '''Save column "sequence" from pandas DataFrame to fasta file using the index of the DataFrame as ID. Preserves original IDs in contrast to the function sequences_to_fasta()''' with open(fasta_path, "w") as output_handle: for row in df.iterrows(): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(row[1]["sequence"]), id=str(row[0]), description="") SeqIO.write(record, output_handle, "fasta") def sequences_to_df(sequences, sequence_id_prefix="s"): data = {'ID': [(sequence_id_prefix+str(i) if sequence_id_prefix!="" else i) for i in range(len(sequences))], 'sequence': sequences} df=pd.DataFrame.from_dict(data) return df.set_index("ID") def fasta_to_df(fasta_path): seqs=SeqIO.parse(fasta_path, "fasta") res=[] for s in seqs: res.append({"ID":s.id,"sequence":str(s.seq)}) return pd.DataFrame(res) def peptides_from_proteins(protein_seqrecords, miss_cleavage=2,min_length=5,max_length=300): '''extract peptides from proteins seqrecords by trypsin digestion min_length: only return peptides of length min_length or greater (0 for all) max_length: only return peptides of length max_length or smaller (0 for all) ''' peptides = [] for seq in tqdm(protein_seqrecords): peps = trypsin_digest(str(seq.seq), miss_cleavage) peptides.extend(peps) tmp=list(set(peptides)) if(min_length>0 and max_length>0): tmp=[t for t in tmp if (len(t)>=min_length and len(t)<=max_length)] elif(min_length==0 and max_length>0): tmp=[t for t in tmp if len(t)<=max_length] elif(min_length>0 and max_length==0): tmp=[t for t in tmp if len(t)>=min_length] print("Extracted",len(tmp),"unique peptides.") return tmp def trypsin_digest(proseq, miss_cleavage): '''trypsin digestion of protein seqrecords TRYPSIN from https://github.com/yafeng/trypsin/blob/master/trypsin.py''' peptides=[] cut_sites=[0] for i in range(0,len(proseq)-1): if proseq[i]=='K' and proseq[i+1]!='P': cut_sites.append(i+1) elif proseq[i]=='R' and proseq[i+1]!='P': cut_sites.append(i+1) if cut_sites[-1]!=len(proseq): cut_sites.append(len(proseq)) if len(cut_sites)>2: if miss_cleavage==0: for j in range(0,len(cut_sites)-1): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) elif miss_cleavage==1: for j in range(0,len(cut_sites)-2): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) elif miss_cleavage==2: for j in range(0,len(cut_sites)-3): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+3]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-2]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-1]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) else: #there is no trypsin site in the protein sequence peptides.append(proseq) return list(set(peptides)) ########################################################################### # Processing CD-HIT clusters ########################################################################### def clusters_df_from_sequence_df(df,threshold=[1.0,0.9,0.5],alignment_coverage=[0.0,0.9,0.8],memory=16000, threads=8, exploded=True, verbose=False): '''create clusters df from sequence df (using cd hit) df: dataframe with sequence information threshold: similarity threshold for clustering (pass a list for hierarchical clustering e.g [1.0, 0.9, 0.5]) alignment_coverage: required minimum coverage of the longer sequence (to mimic uniref https://www.uniprot.org/help/uniref) memory: limit available memory threads: limit number of threads exploded: return exploded view of the dataframe (one row for every member vs. one row for every cluster) uses CD-HIT for clustering https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide copy cd-hit into ~/bin TODO: extend to psi-cd-hit for thresholds smaller than 0.4 ''' if verbose: print("Exporting original dataframe as fasta...") fasta_file = "cdhit.fasta" df_original_index = list(df.index) #reindex the dataframe since cdhit can only handle 19 letters df = df.reset_index(drop=True) df_to_fasta(df, fasta_file) if(not(isinstance(threshold, list))): threshold=[threshold] alignment_coverage=[alignment_coverage] assert(len(threshold)==len(alignment_coverage)) fasta_files=[] for i,thr in enumerate(threshold): if(thr< 0.4):#use psi-cd-hit here print("thresholds lower than 0.4 require psi-cd-hit.pl require psi-cd-hit.pl (building on BLAST) which is currently not supported") return pd.DataFrame() elif(thr<0.5): wl = 2 elif(thr<0.6): wl = 3 elif(thr<0.7): wl = 4 else: wl = 5 aL = alignment_coverage[i] #cd-hit -i nr -o nr80 -c 0.8 -n 5 #cd-hit -i nr80 -o nr60 -c 0.6 -n 4 #psi-cd-hit.pl -i nr60 -o nr30 -c 0.3 if verbose: print("Clustering using cd-hit at threshold", thr, "using wordlength", wl, "and alignment coverage", aL, "...") fasta_file_new= "cdhit"+str(int(thr*100))+".fasta" command = "cd-hit -i "+fasta_file+" -o "+fasta_file_new+" -c "+str(thr)+" -n "+str(wl)+" -aL "+str(aL)+" -M "+str(memory)+" -T "+str(threads) if(verbose): print(command) process= subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) output, error = process.communicate() if(verbose): print(output) if(error !=""): print(error) fasta_files.append(fasta_file) if(i==len(threshold)-1): fasta_files.append(fasta_file_new) fasta_file= fasta_file_new #join results from all clustering steps if verbose: print("Joining results from different clustering steps...") for i,f in enumerate(reversed(fasta_files[1:])): if verbose: print("Processing",f,"...") if(i==0): df_clusters = parse_cdhit_clstr(f+".clstr",exploded=False) else: df_clusters2 = parse_cdhit_clstr(f+".clstr",exploded=False) for id,row in df_clusters.iterrows(): members = row['members'] new_members = [list(df_clusters2[df_clusters2.repr_accession==y].members)[0] for y in members] new_members = [item for sublist in new_members for item in sublist] #flattened row['members']=new_members df_clusters["members"]=df_clusters["members"].apply(lambda x:[df_original_index[int(y)] for y in x]) df_clusters["repr_accession"]=df_clusters["repr_accession"].apply(lambda x:df_original_index[int(x)]) if(exploded): return explode_clusters_df(df_clusters) return df_clusters def parse_cdhit_clstr(filename, exploded=True): '''Aux. Function (used by clusters_df_from_sequence_df) to parse CD-HITs clstr output file in a similar way as the uniref data for the format see https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide#CDHIT exploded: single row for every ID instead of single for every cluster ''' def save_cluster(rows,members,representative): if(len(members)>0): rows.append({"entry_id":filename[:-6]+"_"+representative, "members":members, "repr_accession":representative}) rows=[] with open(filename, 'r') as f: members=[] representative="" for l in tqdm(f): if(l[0]==">"): save_cluster(rows,members,representative) members=[] representative="" else: member=(l.split(">")[1]).split("...")[0] members.append(member) if "*" in l: representative = member save_cluster(rows,members,representative) df=pd.DataFrame(rows).set_index("entry_id") if(exploded): return explode_clusters_df(df) return df ########################################################################### # MHC DATA ########################################################################### ######### Helper functions ########## def _label_binder(data, threshold=500, measurement_column="meas"): # Drop entries above IC50 > 500nM with inequality < (ambiguous) to_drop = (( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold))).mean() if to_drop > 0: print('Dropping {} % because of ambiguous inequality'.format(to_drop)) data = data[~(( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold)))] # Labeling data['label'] = (1* data[measurement_column]<=threshold).astype(int) return data def _transform_ic50(data, how="log",max_ic50=50000.0, inequality_offset=True, label_column="meas"): """Transform ic50 measurements how: "log" logarithmic transform, inequality "=" mapped to [0,1], inequality ">" mapped to [2,3], inequality "<" mapped to [4,5] "norm" "cap" """ x = data[label_column] if how=="cap": x = np.minimum(x, 50000) elif how=="norm": x = np.minimum(x, 50000) x = (x - x.mean()) / x.std() elif how=="log": # log transform x = 1 - (np.log(x)/np.log(max_ic50)) x = np.minimum(1.0, np.maximum(0.0,x)) if(inequality_offset): # add offsets for loss offsets = pd.Series(data['inequality']).map({'=': 0, '>': 2, '<': 4,}).values x += offsets return x def _string_index(data): # Add prefix letter "a" to the numerical index (such that it is clearly a string in order to avoid later errors). data["ID"] = data.index data["ID"] = data["ID"].apply(lambda x: "a"+ str(x)) data = data.set_index(["ID"]) return data def _format_alleles(x): if x[:3]=='HLA': return x[:5]+'-'+x[6:8]+x[9:] if x[:4]=='Mamu': return x[:6]+'-'+x[7:] else: return x def _get_allele_ranking(data_dir='.'): ''' Allele ranking should be the same across different datasets (noMS, withMS) to avoid confusion. Thus, the ranking is based on the larger withMS dataset ''' data_dir = Path(data_dir) curated_withMS_path = data_path/'data_curated.20180219'/'curated_training_data.with_mass_spec.csv' df = pd.read_csv(curated_withMS_path) # Drop duplicates df = df.drop_duplicates(["allele", "peptide","measurement_value"]) lens = df['peptide'].apply(len) df = df[(lens>7) & (lens<16)] # Keep only alleles with min 25 peptides like MHC flurry peptides_per_allele = df.groupby('allele').size() alleles_select = peptides_per_allele[peptides_per_allele>24].index df = df[df['allele'].isin(alleles_select)] mhc_rank = df.groupby('allele').size().sort_values(ascending=False).reset_index()['allele'] return mhc_rank def netmhpan_4_0_special_allele_map(allele): minus_idx = allele.find("-") pre, post = allele[:minus_idx], allele[minus_idx+1:] if pre=="Mamu": special_map = {"A01": "A1*00101", "A02": "A1*00201", "A07": "A1*00701", "A11": "A1*01101", "A2201": "A1*02201", "A2601": "A1*02601", 'A20102': "A2*00102", # "A2*0102" "A70103": "A7*00103", # "A7*0103" "B01": "B*00101", "B03": "B*00301", "B04": "B*00401", "B08": "B*00801", "B17": "B*01701", "B52": "B*05201", "B1001": "B*01001", 'B3901': "B*03901", #? 'B6601': "B*06601", #? 'B8301': "B*08301", #? 'B8701': "B*08701", #? } if post in special_map.keys(): post = special_map[post] elif pre=="BoLA": #source: select allele menu on http://www.cbs.dtu.dk/services/NetMHCpan-4.0/ special_map = { "D18.4": "1:02301", "T2a": "2:01201", "AW10": "3:00101", "JSP.1": "3:00201", "HD6": "6:01301", "T2b": "6:04101" } if post in special_map.keys(): post = special_map[post] return pre + "-" + post def prepare_pseudo_mhc_sequences(mhc_class, data_dir='.'): """ The pseudo sequences are provided with the NetMHCpan4.1/NetMHCIIpan4.0 data. """ data_path = Path(data_dir) if mhc_class=="II": pseudo_seq_file = "NetMHCIIpan_train/pseudosequence.2016.all.X.dat" else: pseudo_seq_file = "NetMHCpan_4_1_train/MHC_pseudo.dat" pseudo_mhc = [] with open(data_path/pseudo_seq_file, "r") as f: for line in f: allele, seq = line.split() pseudo_mhc.append((allele,seq)) pseudo_mhc = pd.DataFrame(pseudo_mhc, columns=("allele", "sequence1")) pseudo_mhc = pseudo_mhc[~pseudo_mhc["allele"].duplicated()] return pseudo_mhc ########## Generate DataFrame ########## def generate_mhc_kim(cv_type=None, mhc_select=0, regression=False, transform_ic50=None, to_csv=False, filename=None, data_dir='.', keep_all_alleles=False): ''' cv_type: string, strategy for 5-fold cross validation, options: - None: No cv-strategy, cv column is filled with 'TBD' - sr: removal of similar peptides seperatly in binder/ non-binder set, using similarity threshold of 80%, similarity found with 'Hobohm 1 like algorithm' - gs: grouping similar peptides in the same cv-partition - rnd: random partioning transform_ic50: string, ignnored if not regression - None: use raw ic50 measurements as labels - cap: cap ic50 meas at 50000 - norm: cap ic50 meas at 50000 and normalize - log: take log_50000 and cap at 50000 mhc_select: int between 0 and 50, choose allele by frequency rank in Binding Data 2009 ''' # Binding Data 2009. Used by Kim et al for Cross Validation. Used by MHCnugget for training. bd09_file = 'bdata.2009.mhci.public.1.txt' # Similar peptides removed bd09_cv_sr_file = 'bdata.2009.mhci.public.1.cv_sr.txt' # Random partioning bd09_cv_rnd_file = 'bdata.2009.mhci.public.1.cv_rnd.txt' # Similar peptides grouped bd09_cv_gs_file = 'bdata.2009.mhci.public.1.cv_gs.txt' # 'blind' used by Kim et al to estimate true predicitve accuracy. Used by MHCnugget for testing. # Generated by subtracting BD2009 from BD 2013 and removing similar peptides with respect to BD2009 # (similar = at least 80% similarity and same length) bdblind_file = 'bdata.2013.mhci.public.blind.1.txt' data_dir = Path(data_dir)/"benchmark_mhci_reliability/binding" # Read in data with specified cv type if cv_type=='sr': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_sr_file, sep='\t') elif cv_type=='gs': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_gs_file, sep='\t') elif cv_type=='rnd': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_rnd_file, sep='\t') else: bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_file, sep='\t') # Read in blind data bdblind = pd.read_csv(data_dir/'blind.1'/bdblind_file, sep='\t') # alleles are spelled differently in bdblind and bd2009, change spelling in bdblind bdblind['mhc'] = bdblind['mhc'].apply(_format_alleles) # Confirm there is no overlap print('{} entries from the blind data set are in the 2009 data set'.format(bdblind[['sequence', 'mhc']].isin(bd09[['sequence', 'mhc']]).all(axis=1).sum())) if regression: # For now: use only quantitative measurements, later tuple (label, inequality as int) #print('Using quantitative {} % percent of the data.'.format((bd09['inequality']=='=').mean())) #bd09 = bd09[bd09['inequality']=='='] #bd09.rename(columns={'meas':'label'}, inplace=True) #bdblind = bdblind[bdblind['inequality']=='='] #bdblind.rename(columns={'meas':'label'}, inplace=True) # Convert ic50 measurements to range [0,1] if transform_ic50 is not None: bd09['label'] = _transform_ic50(bd09, how=transform_ic50) bdblind['label'] = _transform_ic50(bdblind, how=transform_ic50) else: # Labeling for binder/NonBinder bd09 = _label_binder(bd09)[['mhc', 'sequence', 'label', 'cv']] #bdblind = _label_binder(bdblind)[['mhc', 'sequence', 'label', 'cv']] bdblind = bdblind.rename(columns={"meas":"label"}) if not keep_all_alleles: # in bd09 (train set) keep only entries with mhc also occuring in bdblind (test set) bd09 = bd09[bd09['mhc'].isin(bdblind['mhc'])] # Combine bdblind['cv'] = 'blind' bd = pd.concat([bd09, bdblind], ignore_index=True) if not(regression): # Test if there is at least one binder in bd09 AND bdblind min_one_binder = pd.concat([(bd09.groupby('mhc')['label'].sum() > 0), (bdblind.groupby('mhc')['label'].sum() > 0)], axis=1).all(axis=1) print('For {} alleles there is not at least one binder in bd 2009 AND bd blind. These will be dismissed.'.format((~min_one_binder).sum())) alleles = bd['mhc'].unique() allesles_to_keep = alleles[min_one_binder] # Dismiss alleles without at least one binder bd = bd[bd['mhc'].isin(allesles_to_keep)] # Make allele ranking based on binding data 2009 mhc_rank = bd[bd['cv']!='blind'].groupby('mhc').size().sort_values(ascending=False).reset_index()['mhc'] # Select allele if mhc_select is not None: print('Selecting allele {}'.format(mhc_rank.loc[mhc_select])) bd = bd[bd['mhc']==mhc_rank.loc[mhc_select]][['sequence', 'label', 'cv']] # Turn indices into strings bd = _string_index(bd) if to_csv and filename is not None: bd.to_csv(filename) return bd def generate_mhc_flurry(ms='noMS', mhc_select=0, regression=False, transform_ic50=None, binder_threshold=500, filter_length=True, label_binary=False, random_seed=42,data_dir='.'): ''' Load the MHC I data curated and uploaded to https://data.mendeley.com/datasets/8pz43nvvxh/1 by MHCFlurry Used by them for training and model selection ms: string, specifies if mass spectroscopy data should be included, options: - noMS: MHCFlurry no MS dataset - withMS: MHCFlurry with MS dataset mhc_select: int between 0 and 150 (noMS)/ 188 (withMS), choose allele by frequency rank filter_length: boolean, MHCFlurry selected peptides of length 8-15 (their model only deals with these lengths) ''' data_path = Path(data_dir) curated_noMS_path = data_path/'data_curated.20180219'/'curated_training_data.no_mass_spec.csv' curated_withMS_path = data_path/'data_curated.20180219'/'curated_training_data.with_mass_spec.csv' if ms=='noMS': df = pd.read_csv(curated_noMS_path) elif ms=='withMS': df =
pd.read_csv(curated_withMS_path)
pandas.read_csv
import streamlit as st import plotly_express as px import pandas as pd from plotnine import * from plotly.tools import mpl_to_plotly as ggplotly import numpy as np import math import scipy.stats as ss from scipy.stats import * def app(): # add a select widget to the side bar st.sidebar.subheader("Discrete Probaility") prob_choice = st.sidebar.radio("",["Discrete Probability","Binomial Probability","Geometric Probability","Poisson Probability"]) st.markdown('Discrete Probability') if prob_choice == "Discrete Probability": top = st.columns((1,1,2)) bottom = st.columns((1,1)) with top[0]: #st.subheader("Discrete Probaility") gs_URL = st.session_state.gs_URL googleSheetId = gs_URL.split("spreadsheets/d/")[1].split("/edit")[0] worksheetName = st.text_input("Sheet Name:","Discrete") URL = f'https://docs.google.com/spreadsheets/d/{googleSheetId}/gviz/tq?tqx=out:csv&sheet={worksheetName}' if st.button('Refresh'): df = pd.read_csv(URL) df = df.dropna(axis=1, how="all") df = pd.read_csv(URL) df = df.dropna(axis=1, how="all") with bottom[0]: st.dataframe(df) global numeric_columns global non_numeric_columns try: numeric_columns = list(df.select_dtypes(['float', 'int']).columns) non_numeric_columns = list(df.select_dtypes(['object']).columns) except Exception as e: print(e) st.write("Please upload file to the application.") with top[1]: x_axis = st.selectbox('X-Axis', options=numeric_columns, index=0) prob = st.selectbox('Probabilities', options=numeric_columns, index = 1) cat = 0 if len(non_numeric_columns) >= 1: cat = 1 #cv = st.selectbox("Group", options=list(df[non_numeric_columns[0]].unique())) if cat == 0: x = df[x_axis] p_x = df[prob] m = sum(x*p_x) sd = math.sqrt(sum((x-m)**2*p_x)) data = pd.DataFrame({"Mean":m,"Std Dev":sd},index = [0]) with top[2]: dph = ggplot(df) + geom_bar(aes(x=df[df.columns[0]],weight=df[df.columns[1]]),color="darkblue", fill="lightblue") st.pyplot(ggplot.draw(dph)) with bottom[1]: st.write(data) if cat != 0: with bottom[1]: data =
pd.DataFrame(columns = ['Type','Mean','Standard Deviation'])
pandas.DataFrame
#py_time_series_basic.py import datetime import pandas as pd index=pd.date_range(start='1/1/2017', periods=5, freq='d') index=pd.date_range(start='Jan 1 2017', periods=5, freq='d') index=pd.date_range(start=datetime.datetime(2017,1,1), \ periods=5, freq='d') index=pd.date_range(start='1 Jan 2017', end='5 Jan 2017') print(index) print() data=[10, 20, 30, 40] index=
pd.date_range(start='1 Jan 2017', end='4 Jan 2017')
pandas.date_range
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '3D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(['now', pd.Timestamp.max]) dtimin = pd.to_datetime(['now', pd.Timestamp.min]) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants: with pytest.raises(OverflowError): dtimax - variant expected = pd.Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = pd.Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError): dtimin - variant @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_add_offset_array(self, tz, box): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_index_equal(res2, expected) @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_sub_offset_array(self, tz, box): # GH#18824 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti - other expected = DatetimeIndex([dti[n] - other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_dti_with_offset_series(self, tz, names): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = Series([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) expected_add = Series([dti[n] + other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other tm.assert_series_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti
tm.assert_series_equal(res2, expected_add)
pandas.util.testing.assert_series_equal
# -*- coding: utf-8 -*- # @Time : 3/3/21 12:25 PM # @Author : Jingnan # @Email : <EMAIL> import csv import glob import os import pandas as pd # import streamlit as st from tqdm import tqdm def search_files(data_dir, cell, prefix): data_files = sorted(glob.glob(os.path.join(data_dir, "*" + str(cell) + "_" + prefix))) light_intensity_ls = [os.path.basename(data_file).split("_")[0] for data_file in data_files] intensity_dict = {} for intensity, data_file in zip(light_intensity_ls, data_files): intensity_dict[intensity] = data_file intensity_int_dict = {} for intensity in light_intensity_ls: if "dark" in intensity: continue if "-" in intensity: raise Exception(f"intensity文件包含‘-’,请删除此文件: {intensity}") # try: # if use_second_test: # intensity_int_dict[float(intensity.split("-")[0])] = intensity_dict[intensity] # # intensity_dict.pop(intensity.split("-")[0]) # else: # intensity_int_dict[float(intensity.split("-")[0])] = intensity_dict[intensity] # # intensity_dict.pop(intensity) # except KeyError: # pass else: try: intensity_int_dict[float(intensity)] = intensity_dict[intensity] except KeyError: pass data_files = [] intesity_int_ls = [] for intensity, data_file in intensity_int_dict.items(): intesity_int_ls.append(intensity) data_files.append(data_file) try: light_intensity_ls, data_files = zip(*sorted(zip(intesity_int_ls, data_files))) except ValueError: light_intensity_ls, data_files = [], [] return light_intensity_ls, data_files def reorganize_data(device_ids, father_dir, targt_dir): for device_id in device_ids: fpath = os.path.join(father_dir, device_id) out_file = os.path.join(targt_dir, device_id+ "_data.xlsx") data_ls = [] cells = [1] for idx, cell in enumerate(cells): light_intensity_ls, data_files = search_files(data_dir=fpath, cell=cell, prefix="data.txt") if len(light_intensity_ls)==0: data_np =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import akshare as ak import matplotlib.pyplot as plt import matplotlib import itertools matplotlib.rc("font", family="PingFang HK") def get_fund_categories(open_fund=False): fund_em_fund_name_df = ak.fund_em_fund_name() if open_fund: fund_em_open_fund_daily_df = ak.fund_em_open_fund_daily() df = pd.merge(fund_em_open_fund_daily_df, fund_em_fund_name_df, on="基金代码") fund_categories = np.unique(df["基金类型"].values) else: fund_categories = np.unique(fund_em_fund_name_df["基金类型"].values) return fund_categories def get_category_all_funds(): Total_df = current_open_fund_mergered() JJcate = np.unique(Total_df["基金大类"].values) code_cate_dict = {} for cate in JJcate: cate_df = Total_df[ (Total_df["基金大类"] == cate) & (Total_df["申购状态"] == "开放申购") & (Total_df["赎回状态"] == "开放赎回") & (Total_df["日增长率"] != "") ] code_cate_dict.update({cate: cate_df["基金代码"].values}) return code_cate_dict def get_fund_net_worth(fund_code, start_date, end_date, fund_category): """ :param fund_code: string, input a fund code :param start_date: string, input a date format 'yyyy-mm-dd' :param end_date: string, input a date format 'yyyy-mm-dd' :param fund_category: string, input either ['open', 'money', 'financial', 'etf'] :return: dataframe, sliced dataframe between start_date and end_date """ start_date = pd.to_datetime(start_date, format="%Y/%m/%d") end_date = pd.to_datetime(end_date, format="%Y/%m/%d") if fund_category == "open": df = ak.fund_em_open_fund_info(fund=fund_code) elif fund_category == "money": df = ak.fund_em_money_fund_info(fund=fund_code) df["净值日期"] = pd.to_datetime(df["净值日期"], format="%Y/%m/%d") elif fund_category == "financial": df = ak.fund_em_financial_fund_info(fund=fund_code) df["净值日期"] = pd.to_da
tetime(df["净值日期"], format="%Y/%m/%d")
pandas.to_datetime
"""The main pipeline to identify sidelobes in VLASS using a SOM. Requirements: - The VLASS Component catalogue - ALL image cutouts (VLASS only) for the specified sample Provided in this repo: - SOM_B3_h10_w10_vlass.bin: The trained SOM binary file. - neuron_info.csv: Contains the sidelobe probabilities for each neuron. The process is conducted as follows: 1. Preprocess the data - Creates an Image binary 2. Map the Image binary onto the SOM - Creates the MAP and TRANSFORM binaries 3. Update the Component catalogue using the results from the Mapping. - Outputs the final Component catalogue plus two other catalogues that are useful for debugging. **Note: Step (2) *must* be run on a GPU, unless you are fine with waiting over a month (probably) for it to complete! """ import os, sys import argparse import subprocess from tqdm import tqdm from multiprocessing import Pool, cpu_count import numpy as np import pandas as pd from astropy.io import fits from astropy.wcs import WCS from astropy.table import Table from astropy import units as u from astropy.coordinates import SkyCoord, search_around_sky from reproject import reproject_interp import pyink as pu def filename(objname, survey="DECaLS-DR8", format="fits"): """Convert a Component_name into a filename. Another method can be used as long as it is consistently applied.""" # Take Julian coords of name to eliminate white space - eliminate prefix name = objname.split(" ")[1] fname = f"{name}_{survey}.{format}" return fname def load_catalogue(catalog, flag_data=False, flag_SNR=False, pandas=False, **kwargs): """Load the Component catalogue in as either an astropy.Table (default) or a pandas.DataFrame (if pandas=True). Optionally apply common flags. """ fmt = "fits" if catalog.endswith("fits") else "csv" rcat = Table.read(catalog, format=fmt) if flag_data: rcat = rcat[rcat["S_Code"] != "E"] rcat = rcat[rcat["Duplicate_flag"] < 2] if flag_SNR: rcat = rcat[rcat["Peak_flux"] >= 5 * rcat["Isl_rms"]] rcat["SNR"] = rcat["Total_flux"] / rcat["Isl_rms"] if pandas: rcat = rcat.to_pandas() if fmt == "fits": for col in rcat.columns[rcat.dtypes == object]: rcat[col] = rcat[col].str.decode("ascii") return rcat def load_fits(filename, ext=0): hdulist = fits.open(filename) d = hdulist[ext] return d def load_radio_fits(filename, ext=0): """Load the data from a single extension of a fits file.""" hdu = load_fits(filename, ext=ext) wcs = WCS(hdu.header).celestial hdu.data = np.squeeze(hdu.data) hdu.header = wcs.to_header() return hdu def recenter_regrid(hdu, ra, dec, img_size, pix_size=0.6, reproj_hdr=None): """Update the header info for an image such that it is defined relative to its central pixel. Additionally, reproject the image and regrid the pixels onto a new scale so that all images have the same pixel size. """ # Recentering the reference pixel if reproj_hdr is None: reproj_hdr = hdu.header.copy() reproj_hdr["CRVAL1"] = ra reproj_hdr["CRVAL2"] = dec reproj_hdr["CRPIX1"] = img_size[0] // 2 + 0.5 reproj_hdr["CRPIX2"] = img_size[1] // 2 + 0.5 reproj_hdr["CDELT1"] = np.sign(reproj_hdr["CDELT1"]) * pix_size / 3600 reproj_hdr["CDELT2"] = np.sign(reproj_hdr["CDELT2"]) * pix_size / 3600 reproj_wcs = WCS(reproj_hdr).celestial reproj_data, reproj_footprint = reproject_interp( hdu, reproj_wcs, shape_out=img_size ) return reproj_data def scale_data(data, log=False, minsnr=None): """Scale the data so that the SOM behaves appropriately.""" img = np.zeros_like(data) noise = pu.rms_estimate(data[data != 0], mode="mad", clip_rounds=2) # data - np.median(remove_zeros) if minsnr is not None: mask = data >= minsnr * noise else: mask = np.ones_like(data, dtype=bool) data = data[mask] if log: data = np.log10(data) img[mask] = pu.minmax(data) return img.astype(np.float32) def radio_preprocess(idx, sample, path="images", img_size=(150, 150), **kwargs): """Preprocess a VLASS image. """ try: radio_comp = sample.iloc[idx] radio_file = radio_comp["filename"] radio_file = os.path.join(path, radio_file) radio_hdu = load_radio_fits(radio_file) radio_data = radio_hdu.data if radio_data.shape != img_size: radio_data = recenter_regrid( radio_hdu, radio_comp["RA"], radio_comp["DEC"], img_size=img_size, pix_size=0.6, ) return idx, scale_data(radio_data, **kwargs) except Exception as e: print(f"Failed on index {idx}: {e}") return None def run_prepro(sample, outfile, shape=(150, 150), threads=None, **kwargs): """Preprocess all VLASS images, creating an image binary. Note that the parallization is not working properly, and actually results in a slow-down if the sample size is too large. """ with pu.ImageWriter(outfile, 0, shape, clobber=True) as pk_img: if threads is None: threads = cpu_count() pool = Pool(processes=threads) results = [ pool.apply_async(radio_preprocess, args=(idx, sample), kwds=kwargs) for idx in sample.index ] for res in tqdm(results): out = res.get() if out is not None: pk_img.add(out[1], attributes=out[0]) def run_prepro_seq(sample, outfile, shape=(150, 150), **kwargs): """Sequential preprocessing for all VLASS images. """ with pu.ImageWriter(outfile, 0, shape, clobber=True) as pk_img: for idx in tqdm(sample.index): out = radio_preprocess(idx, sample, img_size=shape, **kwargs) if out is not None: pk_img.add(out[1], attributes=out[0]) def map_imbin( imbin_file, som_file, map_file, trans_file, som_width, som_height, numthreads=4, cpu=False, nrot=360, log=True, ): """Map an image binary onto a SOM using Pink. """ commands = [ "Pink", "--map", imbin_file, map_file, som_file, "--numthreads", f"{numthreads}", "--som-width", f"{som_width}", "--som-height", f"{som_height}", "--store-rot-flip", trans_file, "--euclidean-distance-shape", "circular", "-n", str(nrot), ] if cpu: commands += ["--cuda-off"] if log: map_logfile = map_file.replace(".bin", ".log") with open(map_logfile, "w") as log: subprocess.run(commands, stdout=log) else: subprocess.run(commands) def fill_duplicates(cat, cols): """Since duplicates are excluded in the catalogue (to save time), they must be filled in to create a complete catalogue. Due to nuances in the flagging routine, this must be done iteratively. """ # Fill in `cols` for duplicates by searching for matches in the rest # of the duplicate components. # Need to apply this multiple times because of the duplicate flagging algorithm. missing_comps = cat[(cat.Duplicate_flag >= 1) & np.isnan(cat[cols[0]])] not_missing_comps = cat[(cat.Duplicate_flag >= 1) & ~np.isnan(cat[cols[0]])] missing_coords = SkyCoord( missing_comps["RA"].values, missing_comps["DEC"].values, unit=u.deg ) not_missing_coords = SkyCoord( not_missing_comps["RA"].values, not_missing_comps["DEC"].values, unit=u.deg ) idx1, idx2, sep, dist = search_around_sky( missing_coords, not_missing_coords, seplimit=2 * u.arcsec ) # When multiple matches are found, choose the one with the highest SNR idx1u, idx1c = np.unique(idx1, return_counts=True) idx2u = [ idx2[idx1 == i1][0] if i1c == 1 else idx2[idx1 == i1][final_cat.iloc[idx2[idx1 == i1]]["SNR"].argmax()] for i1, i1c in zip(idx1u, idx1c) ] for col in cols: cat.loc[missing_comps.iloc[idx1].index, col] = ( not_missing_comps[col].iloc[idx2].values ) def fill_all_duplicates(cat, cols): nan_count = 0 while np.sum(np.isnan(cat[cols[0]])) != nan_count: nan_count = np.sum(np.isnan(cat[cols[0]])) fill_duplicates(cat, cols) def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser( description="Add sidelobe info to VLASS component catalogue." ) parser.add_argument( dest="catalogue", help="VLASS component catalogue", type=str, ) parser.add_argument( dest="outfile", help="Name for the updated component catalogue", type=str, ) parser.add_argument( "-p", "--cutout_path", dest="cutout_path", help="Path to the directory containing the input fits images", default="images", type=str, ) parser.add_argument( "-s", "--som", dest="som_file", help="The SOM binary file", type=str, ) parser.add_argument( "-n", "--neuron_table", dest="neuron_table_file", help="The table of properties for each SOM neuron", type=str, ) parser.add_argument( "-t", "--threads", dest="threads", help="Number of threads to use for multiprocessing", default=cpu_count(), type=int, ) parser.add_argument( "--cpu", dest="cpu", help="Run PINK in cpu mode instead of gpu mode", default=False, type=bool, ) parser.add_argument( "--overwrite", dest="clobber", help="Overwrite the Image and Map binaries", default=False, type=bool, ) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() catalogue = args.catalogue cutout_path = args.cutout_path som_file = args.som_file neuron_table_file = args.neuron_table_file threads = args.threads clobber = args.clobber cat_name = ".".join(os.path.basename(catalogue).split(".")[:-1]) imbin_file = f"IMG_{cat_name}.bin" sample = load_catalogue(catalogue, flag_data=False, flag_SNR=False, pandas=True) sample["filename"] = sample["Component_name"].apply(filename, survey="VLASS") # Subset on Duplicate_flag, then fill in those values later sample = sample[sample["Duplicate_flag"] < 2].reset_index(drop=True) if not os.path.exists(imbin_file) or clobber: run_prepro_seq( sample, imbin_file, shape=(150, 150), path=cutout_path, # threads=threads, log=True, minsnr=2, ) else: print(f"Image binary {imbin_file} already exists...skipping.") # EXIT HERE if mapping is being conducted on a different machine # sys.exit(1) # Map the image binary through the SOM som = pu.SOM(som_file) som_width, som_height, ndim = som.som_shape map_file = imbin_file.replace("IMG", "MAP") trans_file = map_file.replace("MAP", "TRANSFORM") if not os.path.exists(map_file) or not os.path.exists(trans_file) or clobber: map_imbin( imbin_file, som_file, map_file, trans_file, som_width, som_height, numthreads=cpu_count(), cpu=args.cpu, nrot=360, log=True, ) else: print( f"Mapping binary {map_file} and Transform file {trans_file} already exist...skipping." ) # CONTINUE HERE if Mapping was done on a different machine. # Update the component catalogue with the sidelobe probability imgs = pu.ImageReader(imbin_file) # Output a table of components that failed to preprocess # This is usually due to missing files failed = sample.iloc[list(set(sample.index).difference(imgs.records))].reset_index( drop=True ) Table.from_pandas(failed).write(f"{cat_name}_failed.fits", overwrite=True) # Output a table of all preprocessed components. # This matches the length of the IMG and MAP binaries, which makes # it useful for inspecting the results. sample = sample.iloc[imgs.records].reset_index(drop=True) Table.from_pandas(sample).write(f"{cat_name}_preprocessed.fits", overwrite=True) del imgs # Determine the best-matching neurons and their Euclidean distances somset = pu.SOMSet(som, map_file, trans_file) sample["bmu"] = somset.mapping.bmu(return_tuples=True) sample["Neuron_dist"] = somset.mapping.bmu_ed() bmu = somset.mapping.bmu() sample["Best_neuron_y"] = bmu[:, 0] sample["Best_neuron_x"] = bmu[:, 1] # Neuron table is one row per neuron. Reshape P_sidelobe into an array. neuron_table =
pd.read_csv(neuron_table_file)
pandas.read_csv
import sys import math import pandas as pd import numpy as np import matplotlib.pyplot as plt from termcolor import colored from os import listdir from os.path import isfile, join def load_daily_cases(d): """ Load all daily cases (CSV per date) from the containing directory @param d path to the directory containing daily case CSV files """ def get_date(t): [m,d,y] = t.split(".")[0].split("-") return "-".join([y,m,d]) # List all daily case files q = join(d, "csse_covid_19_data/csse_covid_19_daily_reports") csv_list = [f for f in listdir(q) if isfile(join(q, f)) and f.endswith(".csv")] daily = [] for tag in csv_list: print(colored("Reading : ", "cyan"), tag) df = pd.read_csv(join(q,tag), header="infer") df["date"] = get_date(tag) daily.append(df) daily =
pd.concat(daily)
pandas.concat
import os import pathlib #import tarfile import urllib.request import pandas as pd import spacy import string #import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from pickle import dump, load import joblib from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split #Custom transformer using Python standard library (you could use spacy as well) class predictors(TransformerMixin): """Class used to perform the first step of pipeline. This consists in lower case all sentences. """ # This function will clean the text def clean_text(self,text): return text.strip().lower() def transform(self, X, **transform_params): return [self.clean_text(text) for text in X] #return [text for text in X] def fit(self, X, y=None, **fit_params): return self def get_params(self, deep=True): return {} class SentimentTrain(object): """ Class used to train the sentiment analysis model Attributes: data_path (str): path where the text files can be found. """ def __init__(self,data_path): self.data_path=os.path.join(pathlib.Path().absolute(), data_path) def prepareData(self): """ Method that read each txt file and joins them. Returns: DataFrame: Including the joined files with columns 'Message' and 'Target' """ df_yelp = pd.read_table(os.path.join(self.data_path,'yelp_labelled.txt')) df_imdb = pd.read_table(os.path.join(self.data_path,'imdb_labelled.txt')) df_amz = pd.read_table(os.path.join(self.data_path,'amazon_cells_labelled.txt')) # Concatenate our Datasets frames = [df_yelp,df_imdb,df_amz] for column in frames: column.columns = ["Message","Target"] df_reviews = pd.concat(frames) return df_reviews def spacy_tokenizer(self,doc): """Function that serves as tokenizer in our pipeline Loads the 'en_core_web_sm' model, tokenize the string and perform pre processing. Preprocessing includes lemmatizing tokens as well as removing stop words and punctuations. Args: doc(str): sentence to tokenize. Returns: list: preprocessed tokens. """ punctuations = string.punctuation nlp = spacy.load('en_core_web_sm') stop_words = spacy.lang.en.stop_words.STOP_WORDS tokens = nlp(doc) # Lemmatizing each token and converting each token into lowercase tokens = [word.lemma_.lower() for word in tokens if not word.is_space] # Removing stop words and punctuations tokens = [ word for word in tokens if word not in stop_words and word not in punctuations ] # return preprocessed list of tokens return tokens def train(self): """Function that performs a pipeline execution. This function creates a Pipeline instance. Splits the data into train/test and pass it through the pipeline. It also saves the model as pickle file once training is over. """ df_reviews = self.prepareData() tfvectorizer = TfidfVectorizer(tokenizer = self.spacy_tokenizer) classifier_LG = LogisticRegression(verbose=True) pipe2_LG = Pipeline([ ('vectorizer', tfvectorizer), ('classifier', classifier_LG)], verbose=True) # pipe2_LG = Pipeline([ # ("cleaner", predictors()), # ('vectorizer', tfvectorizer), # ('classifier', classifier_LG)], verbose=True) X = df_reviews['Message'] ylabels = df_reviews['Target'] X_train, X_test, y_train, y_test = train_test_split(X, ylabels, test_size=0.3, random_state=42) pipe2_LG.fit(X_train,y_train) # Save the model model_path = os.path.join(str(pathlib.Path().absolute()), "model") model_file = model_path + "/logreg_tfidf.pkl" if not os.path.isdir(model_path): os.makedirs(model_path) dump(pipe2_LG, open(model_file, 'wb')) class PredictSentiment(object): """ Class to load the model and build the tokens DataFrame This class will load the model using the pickle file. So it can be used by the predict method. """ def __init__(self): #model_path = os.path.join(str(pathlib.Path().absolute()), "model") #model_file = model_path + "/forest_reg.pkl" #self.model = load(open(model_file, 'rb')) self.model = joblib.load("model/logreg_tfidf.pkl") def buildDF(self, sentence): """Generate DataFrame with tokens and coefficients. Args: sentence(str): sentence to tokenize. Returns: DataFrame: containing tokens used for prediction and corresponding coeficients, """ tokens = SentimentTrain("Data").spacy_tokenizer(sentence[0]) arr=[] for token in tokens: idx = self.model.steps[1][1].vocabulary_.get(token) coef = self.model.steps[2][1].coef_[0][idx] arr.append({'TOKEN':token, 'Coef':coef}) return
pd.DataFrame(arr)
pandas.DataFrame
# Source: AdvDSI-Lab2-Exercise1-Solutions.ipynb # Author: <NAME> def score_model(X, y, set_name=None, model=None): """Print regular performance statistics for the provided data Parameters ---------- y_preds : Numpy Array Predicted target y_actuals : Numpy Array Actual target set_name : str Name of the set to be printed Returns ------- """ import pandas as pd import numpy as np from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import mean_absolute_error as mae from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score y_preds = model.predict(X) y_predict_proba = model.predict_proba(X)[:, 1] perf_accuracy = accuracy_score(y, y_preds) perf_mse = mse(y, y_preds, squared=False) perf_mae = mae(y, y_preds) perf_precision = precision_score(y, y_preds) perf_recall = recall_score(y, y_preds) perf_F1 = f1_score(y, y_preds) perf_AUC = roc_auc_score(y, y_predict_proba) # print(f'ROC-AUC {set_name}: { roc_auc_score(y_preds, model.predict_proba(y_preds)[:, 1])}') model_scores = [] model_provided = model model_scores.append([set_name, perf_accuracy, perf_mse, perf_mae, perf_precision, perf_recall, perf_F1,perf_AUC]) df_model_scores = pd.DataFrame (model_scores, columns = ['Set Name','ACC','MSE','MAE','PREC','RECALL','F1','AUC']) return df_model_scores # New NULL Model def score_null_model(y_train, y_base, set_name = None): """Print regular performance statistics for the provided data Parameters ---------- y_train : Numpy Array Predicted target y_base : Numpy Array Actual target set_name : str Name of the set to be printed model : str Model to be used Returns ------- """ import pandas as pd import numpy as np from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import mean_absolute_error as mae from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score perf_accuracy = accuracy_score(y_base, y_train) perf_mse = mse(y_base, y_train, squared=False) perf_mae = mae(y_base, y_train) perf_precision = precision_score(y_base, y_train) perf_recall = recall_score(y_base, y_train) perf_F1 = f1_score(y_base, y_train) perf_AUC = None #roc_auc_score(y_base, y_predict_proba) # print(f'ROC-AUC {set_name}: { roc_auc_score(y_preds, model.predict_proba(y_preds)[:, 1])}') model_scores = [] model_scores.append([set_name, perf_accuracy, perf_mse, perf_mae, perf_precision, perf_recall, perf_F1,perf_AUC]) df_model_scores = pd.DataFrame (model_scores, columns = ['Set Name','ACC','MSE','MAE','PREC','RECALL','F1','AUC']) return df_model_scores def score_models(X_train = None, y_train = None, X_val = None, y_val = None, y_base = None, includeBase = False, model = None): """Score Models and return results as a dataframe Parameters ---------- X_train : Numpy Array X_train data y_train : Numpy Array Train target X_val : Numpy Array X_val data y_val : Numpy Array Val target includeBase: Boolean Calculate and display baseline model: model Model passed into function Returns ------- """ import pandas as pd import numpy as np df_model_scores = pd.DataFrame() if includeBase == True: df_model_scores_base = score_null_model(y_train = y_train, y_base = y_base, set_name='Base') df_model_scores = pd.concat([df_model_scores,df_model_scores_base],ignore_index = True, axis=0) if X_train.size > 0: df_model_scores_train = score_model(X_train, y_train, set_name='Train', model=model) df_model_scores = pd.concat([df_model_scores,df_model_scores_train],ignore_index = True, axis=0) if X_val.size > 0: df_model_scores_val = score_model(X_val, y_val, set_name='Validate', model=model) df_model_scores = pd.concat([df_model_scores,df_model_scores_val],ignore_index = True, axis=0) display(df_model_scores) return def score_models2(X_train = None, y_train = None, X_val = None, y_val = None, X_test = None, y_test = None, y_base = None, includeBase = False, model = None): """Score Models and return results as a dataframe Parameters ---------- X_train : Numpy Array X_train data y_train : Numpy Array Train target X_val : Numpy Array X_val data y_val : Numpy Array Val target X_test : Numpy Array X_test data y_test : Numpy Array Test target includeBase: Boolean Calculate and display baseline model: model Model passed into function Returns ------- """ import pandas as pd import numpy as np df_model_scores = pd.DataFrame() if includeBase == True: df_model_scores_base = score_null_model(y_train = y_train, y_base = y_base, set_name='Base') df_model_scores = pd.concat([df_model_scores,df_model_scores_base],ignore_index = True, axis=0) if X_train.size > 0: df_model_scores_train = score_model(X_train, y_train, set_name='Train', model=model) df_model_scores = pd.concat([df_model_scores,df_model_scores_train],ignore_index = True, axis=0) if X_val.size > 0: df_model_scores_val = score_model(X_val, y_val, set_name='Validate', model=model) df_model_scores = pd.concat([df_model_scores,df_model_scores_val],ignore_index = True, axis=0) if X_test.size > 0: df_model_scores_test = score_model(X_test, y_test, set_name='Test', model=model) df_model_scores =
pd.concat([df_model_scores,df_model_scores_test],ignore_index = True, axis=0)
pandas.concat
# -*- coding: utf-8 -*- """Reads and prepares triples/statements for INDRA. Run with: python -m src.stonkgs.data.indra_extraction """ import json import logging import os from typing import Any, Dict, List, Tuple import networkx as nx import pandas as pd import pybel from pybel.constants import ( ANNOTATIONS, EVIDENCE, RELATION, CITATION, INCREASES, DIRECTLY_INCREASES, DECREASES, DIRECTLY_DECREASES, REGULATES, BINDS, CORRELATION, NO_CORRELATION, NEGATIVE_CORRELATION, POSITIVE_CORRELATION, ASSOCIATION, PART_OF, ) from pybel.dsl import ( CentralDogma, ComplexAbundance, Abundance, CompositeAbundance, MicroRna, BaseConcept, ListAbundance, Reaction, ) from tqdm import tqdm from stonkgs.constants import ( INDRA_RAW_JSON, MISC_DIR, PRETRAINING_DIR, SPECIES_DIR, CELL_LINE_DIR, LOCATION_DIR, DISEASE_DIR, RELATION_TYPE_DIR, ) logger = logging.getLogger(__name__) DIRECT_RELATIONS = { DIRECTLY_INCREASES, DIRECTLY_DECREASES, BINDS, } INDIRECT_RELATIONS = { REGULATES, CORRELATION, DECREASES, INCREASES, NO_CORRELATION, NEGATIVE_CORRELATION, POSITIVE_CORRELATION, ASSOCIATION, PART_OF, } UP_RELATIONS = {INCREASES, POSITIVE_CORRELATION, DIRECTLY_INCREASES} DOWN_RELATIONS = {DECREASES, NEGATIVE_CORRELATION, DIRECTLY_DECREASES} def binarize_triple_direction( graph: pybel.BELGraph, triples_per_class: int = 25000 ) -> Tuple[Dict[str, Any], List]: """Binarize triples depending on the type of direction. Extract the fine-tuning data for the interaction type (direct vs. indirect) and polarity (up vs. down) tasks. """ triples = [] edges_to_removes = [] counter_dir_inc = 0 counter_dir_dec = 0 counter_inc = 0 counter_dec = 0 summary = {"context": "(in)direct relations and polarity"} # Iterate through the graph and infer a subgraph for u, v, k, data in graph.edges(keys=True, data=True): if EVIDENCE not in data or not data[EVIDENCE] or data[EVIDENCE] == "No evidence text.": # logger.warning(f'not evidence found in {data}') continue # Both nodes in the triple are required to be a protein/gene (complexes and other stuff are skipped) if not isinstance(u, CentralDogma) and not isinstance(v, CentralDogma): continue if data[RELATION] in UP_RELATIONS: polarity_label = "up" elif data[RELATION] in DOWN_RELATIONS: polarity_label = "down" else: continue if data[RELATION] in {INCREASES, DECREASES}: interaction_label = "indirect_interaction" elif data[RELATION] in {DIRECTLY_INCREASES, DIRECTLY_DECREASES}: interaction_label = "direct_interaction" else: continue """Check if limit has been reached""" if data[RELATION] == DIRECTLY_DECREASES and counter_dir_dec >= triples_per_class: continue elif data[RELATION] == INCREASES and counter_inc >= triples_per_class: continue elif data[RELATION] == DECREASES and counter_dec >= triples_per_class: continue elif data[RELATION] == DIRECTLY_INCREASES and counter_dir_inc >= triples_per_class: continue # Add particular triple to the fine tuning set if data[RELATION] == INCREASES: counter_inc += 1 elif data[RELATION] == DIRECTLY_INCREASES: counter_dir_inc += 1 elif data[RELATION] == DIRECTLY_DECREASES: counter_dir_dec += 1 elif data[RELATION] == DECREASES: counter_dec += 1 else: continue triples.append( { "source": u, "relation": data[RELATION], "target": v, "evidence": data[EVIDENCE], "pmid": data[CITATION], "polarity": polarity_label, "interaction": interaction_label, } ) edges_to_removes.append((u, v, k)) df = pd.DataFrame(triples) logger.info(f"Number of binarized triples for fine-tuning: {df.shape[0]}") summary["number_of_triples"] = df.shape[0] summary["number_of_labels"] = "4 or 2 depending on the task" summary["labels"] = "NA" df.to_csv(os.path.join(RELATION_TYPE_DIR, f"relation_type.tsv"), sep="\t", index=False) return summary, edges_to_removes def create_polarity_annotations(graph: pybel.BELGraph) -> Dict[str, Any]: """Group triples depending on the type of polarity.""" triples = [] summary = {"context": "polarity"} # Iterate through the graph and infer a subgraph for u, v, data in graph.edges(data=True): if EVIDENCE not in data or not data[EVIDENCE] or data[EVIDENCE] == "No evidence text.": logger.warning(f"not evidence found in {data}") continue # todo: check this we will focus only on molecular interactions if not any( isinstance(u, class_to_check) for class_to_check in ( CentralDogma, ComplexAbundance, Abundance, CompositeAbundance, MicroRna, ) ): continue if not any( isinstance(v, class_to_check) for class_to_check in ( CentralDogma, ComplexAbundance, Abundance, CompositeAbundance, MicroRna, ) ): continue class_label = "indirect" if data[RELATION] in INDIRECT_RELATIONS else "direct" triples.append( { "source": u, "relation": data[RELATION], "target": v, "evidence": data[EVIDENCE], "pmid": data[CITATION], "class": class_label, } ) df = pd.DataFrame(triples) summary["number_of_triples"] = df.shape[0] summary["number_of_labels"] = df["class"].unique().size summary["labels"] = df["class"].value_counts().to_dict() df.to_csv(os.path.join(RELATION_TYPE_DIR, f"relation_type.tsv"), sep="\t", index=False) return summary def create_context_type_specific_subgraph( graph: pybel.BELGraph, context_annotations: List[str], ) -> Tuple[List, pybel.BELGraph]: """Create a subgraph based on context annotations and also return edges that should be removed later on.""" subgraph = graph.child() subgraph.name = f"INDRA graph contextualized for {context_annotations}" edges_to_remove = [] # Iterate through the graph and infer a subgraph with edges that contain the annotation of interest for u, v, k, data in graph.edges(data=True, keys=True): if ANNOTATIONS in data and any( annotation in data[ANNOTATIONS] for annotation in context_annotations ): subgraph.add_edge(u, v, k, **data) # Triples to be removed edges_to_remove.append((u, v, k)) # number_of_edges_before = graph.number_of_edges() # graph.remove_edges_from(edges_to_remove) # number_of_edges_after_removing_annotations = graph.number_of_edges() # logger.info( # f'Original graph was reduced from {number_of_edges_before} to {number_of_edges_after_removing_annotations} # edges' # ) string = f'Number of nodes/edges in the inferred subgraph "{context_annotations}": \ {subgraph.number_of_nodes()} {subgraph.number_of_edges()}' logger.info(string) return edges_to_remove, subgraph def dump_edgelist( graph: pybel.BELGraph, annotations: List[str], name: str, output_dir: str, ) -> Dict[str, Any]: """Dump tsv file for ml purposes.""" triples = [] summary = { "context": name, } # Iterate through the graph and infer a subgraph with edges that contain the annotation of interest for u, v, data in graph.edges(data=True): # If the data entry has no text evidence or the following filler text, don't add it if not data[EVIDENCE] or data[EVIDENCE] == "No evidence text.": continue # Multiple annotations for annotation in data[ANNOTATIONS]: if annotation not in annotations: continue # Skip multiple classes in the triple for the same annotation if len(data[ANNOTATIONS][annotation]) > 1: logger.warning(f"triple has more than one label -> {data[ANNOTATIONS][annotation]}") continue for label_annotation in data[ANNOTATIONS][annotation]: triples.append( { "source": u, "relation": data[RELATION], "target": v, "evidence": data[EVIDENCE], "pmid": data[CITATION], "class": label_annotation, }, ) if not triples: return { "context": name, "number_of_triples": "0", "number_of_labels": "0", "labels": "0", } df =
pd.DataFrame(triples)
pandas.DataFrame
""" exceltools - providing more user-friendly access to the pywin32 library ============================================================================= exceltools is a Python module acting as a friendlier interface to the pywin32 library which in itself is an API to the Windows COM client API. exceltools does not provide the full functionality of pywin32, it only seeks to simplify some commonly used code. exceltools is intended to work alongside pandas and numpy and aids in creating and populating spreadsheets programmatically. """ import os import re import sys import shutil import warnings import datetime as dt from time import sleep from pathlib import Path # External Dependencies import pythoncom import numpy as np import pandas as pd import pandas.api.types as types from win32com import client from win32com.client import constants as c # Local modules import exceltools.errors as err from exceltools.range import Range from exceltools.column import Column from exceltools.cell import CellReference from exceltools.utils import col2num, num2col, excel_date, rgb2hex class ExcelSpreadSheet: """ A class built to simplify and streamline working with the win32client library. Example usage involves opening an existing workbook and saving a new copy without changing the original. New workbooks can also be created and originals can be overwritten. Example Usage: excel = ExcelSpreadSheet() excel.open("C:/Users/generic_user/Documents/master_file.xlsx") excel.write_dataframe(data, sheet="Sheet 1", start_col=1, start_row=2, headers=True) excel.write_cell("SomeString", sheet=1, row=1, col="A") excel.save_xlsx("C:/Users/generic_user/Documents/new_file.xlsx") excel.close(save_changes=False) """ def __init__(self): global client try: self.excel = client.gencache.EnsureDispatch("Excel.Application") except Exception: # Remove cache and try again. module_list = [m.__name__ for m in sys.modules.values()] for module in module_list: if re.match(r"win32com\.gen_py\..+", module): del sys.modules[module] shutil.rmtree(os.path.join(os.environ.get("LOCALAPPDATA"), "Temp", "gen_py")) from win32com import client self.excel = client.gencache.EnsureDispatch("Excel.Application") self.wb = None self._wb_open = 0 self.active_sheet = None self.sheet_names = [] self.null_arg = pythoncom.Empty self._wb_open = 0 self.format_args = { "Condition": { "logic": "logic_dict[logic]", "value": "value", "value2": "value2" }, "Format": { "interior_colour": "Interior.Color = self.rgb2hex(kwargs['interior_colour'])", "number_format": "NumberFormat = kwargs['number_format']", "bold": "Font.Bold = kwargs['bold']", "font_colour": "Font.Color = self.rgb2hex(kwargs['font_colour'])", "font_size": "Font.Size = kwargs['font_size']", "font_name": "Font.Name = kwargs['font_name']", "orientation": "Orientation = kwargs['orientation']", "underline": "Font.Underline = kwargs['underline']", "merge": "MergeCells = kwargs['merge']", "wrap_text": "WrapText = kwargs['wrap_text']", "h_align": "HorizontalAlignment = kwargs['h_align']", "v_align": "VerticalAlignment = kwargs['v_align']", "border_left": { "line_style": "Borders(c.xlEdgeLeft).LineStyle = kwargs['border_left']['line_style']", "weight": "Borders(c.xlEdgeLeft).Weight = kwargs['border_left']['weight']", "colour": "Borders(c.xlEdgeLeft).Color = self.rgb2hex(kwargs['border_left']['colour'])", }, "border_right": { "line_style": "Borders(c.xlEdgeRight).LineStyle = kwargs['border_right']['line_style']", "weight": "Borders(c.xlEdgeRight).Weight = kwargs['border_right']['weight']", "colour": "Borders(c.xlEdgeRight).Color = self.rgb2hex(kwargs['border_right']['colour'])", }, "border_top": { "line_style": "Borders(c.xlEdgeTop).LineStyle = kwargs['border_top']['line_style']", "weight": "Borders(c.xlEdgeTop).Weight = kwargs['border_top']['weight']", "colour": "Borders(c.xlEdgeTop).Color = self.rgb2hex(kwargs['border_top']['colour'])", }, "border_bot": { "line_style": "Borders(c.xlEdgeBottom).LineStyle = kwargs['border_bot']['line_style']", "weight": "Borders(c.xlEdgeBottom).Weight = kwargs['border_bot']['weight']", "colour": "Borders(c.xlEdgeBottom).Color = self.rgb2hex(kwargs['border_bot']['colour'])", }, "border_inside_h": { "line_style": "Borders(c.xlInsideHorizontal).LineStyle = kwargs['border_inside_h']['line_style']", "weight": "Borders(c.xlInsideHorizontal).Weight = kwargs['border_inside_h']['weight']", "colour": "Borders(c.xlInsideHorizontal).Color = self.rgb2hex(kwargs['border_inside_h']['colour'])", }, "border_inside_v": { "line_style": "Borders(c.xlInsideVertical).LineStyle = kwargs['border_inside_v']['line_style']", "weight": "Borders(c.xlInsideVertical).Weight = kwargs['border_inside_v']['weight']", "colour": "Borders(c.xlInsideVertical).Color = self.rgb2hex(kwargs['border_inside_v']['colour'])", } } } @staticmethod def col2num(col_str: str) -> int: """ Convert an Excel column string to an integer -> "A" == 1, "AA" == 27 e.t.c. """ return col2num(col_str) @staticmethod def num2col(col_int: int) -> str: """ Convert an Excel column index to a string -> 1 == "A", 27 == "AA" e.t.c. """ return num2col(col_int) @staticmethod def rgb2hex(rgb: list | tuple) -> int: """ Excel expects a hex value in order to fill cells This function allows you to supply standard RGB values to be converted to hex. """ return rgb2hex(rgb) @staticmethod def excel_date(date: pd.Series | dt.datetime | dt.date) -> float: """ Convert a datetime.datetime or pandas.Series object into an Excel date float """ return excel_date(date) def _validate_workbook(self): """ Ensure the current workbook is open and valid """ if self._wb_open == 0: raise err.NoWorkbookError() def _validate_worksheet(self, sheet): """ Make sure the sheet supplied is valid for the current open workbook """ if isinstance(sheet, str): if sheet not in self.sheet_names: raise err.InvalidSheetError(f"A sheet with the name {sheet} does not exist") elif isinstance(sheet, int): if len(self.sheet_names) < sheet: raise err.InvalidSheetError(f"Invalid Sheet Index. Sheet index {sheet} is out of bounds.") def _cleanse_data(self, data): """ Excel will print np.Nan as 65535. This function aims to cleanse any representations of NULL so that they print as expected to Excel. At this stage we also attempt to convert datetimes to a numeric value used by Excel. """ if isinstance(data, pd.DataFrame): for column in data: _dtype = data[column].dtype if types.is_numeric_dtype(_dtype): data.loc[:, column] = data[column].fillna(0) if types.is_string_dtype(_dtype): data.loc[:, column] = data[column].fillna("") if types.is_datetime64_any_dtype(_dtype): data.loc[:, column] = self.excel_date(data[column]) elif isinstance(data, (pd.Series, list)): _dtype =
pd.Series(data)
pandas.Series
""" Objects used to store and manage metabolomics data Objects ------- - DataContainer: Stores metabolomics data. Exceptions ---------- - BatchInformationError - RunOrderError - ClassNameError - EmptyDataContainerError Usage ----- DataContainers can be created in two different ways other than using the constructor: - Using the functions in the fileio module to read data processed with a third party software (XCMS, MZMine2, etc...) - Performing Feature correspondence algorithm on features detected from raw data (not implemented yet...) """ from . import utils from . import validation from . import fileio from ._names import * import numpy as np import pandas as pd from sklearn.decomposition import PCA from typing import List, Optional, Iterable, Union, BinaryIO, TextIO import bokeh.plotting import pickle from bokeh.palettes import Category10 from bokeh.models import ColumnDataSource from bokeh.transform import factor_cmap from bokeh.models import LabelSet import seaborn as sns class DataContainer(object): """ Container object that stores processed metabolomics data. The data is separated in three attributes: data_matrix, sample_metadata and feature_metadata. Each one is a pandas DataFrame. DataContainers can be created, apart from using the constructor, importing data in common formats (such as: XCMS, MZMine2, Progenesis, etc..) static methods. Attributes ---------- data_matrix : DataFrame. feature values for each sample. Data is organized in a "tidy" way: each row is an observation, each column is a feature. dtype must be float and all values should be non negative, but NANs are fine. sample_metadata : DataFrame. Metadata associated to each sample (eg: sample class). Has the same index as the data_matrix. `class` (standing for sample class) is a required column. Analytical batch and run order information can be included under the `batch` and `order` columns. Both must be integer numbers, and the run order must be unique for each sample. If the run order is specified in a per-batch fashion, the values will be converted to a unique value. feature_metadata : DataFrame. Metadata associated to each feature (eg: mass to charge ratio (mz), retention time (rt), etc...). The index is equal to the `data_matrix` column. "mz" and "rt" are required columns. mapping : dictionary of sample types to a list of sample classes. Maps sample types to sample classes. valid samples types are `qc`, `blank`, `sample` or `suitability`. values are list of sample classes. Mapping is used by Processor objects to define a default behaviour. For example, when using a BlankCorrector, the blank contribution to each feature is estimated using the sample classes that are values of the `blank` sample type. metrics : methods to compute common feature metrics. plot : methods to plot features. preprocess : methods to perform common preprocessing tasks. id batch order Methods ------- remove(remove, axis) : Remove samples/features from the DataContainer. reset(reset_mapping=True) : Reset the DataContainer, ie: recover removed samples/features, transformed values. is_valid_class_name(value) : checks if a class is present in the DataContainer diagnose() : creates a dictionary with information about the status of the DataContainer. Used by Processor objects as a validity check. select_features(mz, rt, mz_tol=0.01, rt_tol=5) : Search features within a m/z and rt tolerance. set_default_order() : Assigns a default run order of the samples assuming that the data matrix is sorted by run order already. sort(field, axis) : sort features/samples using metadata information. save(filename) : save the DataContainer as a pickle. See Also -------- from_progenesis from_pickle MetricMethods PlotMethods PreprocessMethods """ def __init__(self, data_matrix: pd.DataFrame, feature_metadata: pd.DataFrame, sample_metadata: pd.DataFrame, mapping: Optional[dict] = None, plot_mode: str = "bokeh"): """ See help(DataContainer) for more details Parameters ---------- data_matrix : pandas.DataFrame. Feature values for each measured sample. Each row is a sample and each column is a feature. sample_metadata : pandas.DataFrame. Metadata for each sample. class is a required column. feature_metadata : pandas.DataFrame. DataFrame with features names as indices. mz and rt are required columns. mapping : dict or None if dict, set each sample class to sample type. plot_mode : {"seaborn", "bokeh"} The package used to generate plots with the plot methods """ validation.validate_data_container(data_matrix, feature_metadata, sample_metadata) # check and convert order and batch information try: order = sample_metadata.pop(_sample_order) try: batch = sample_metadata.pop(_sample_batch) except KeyError: batch = pd.Series(data=np.ones_like(order.values), index=order.index) order = _convert_to_interbatch_order(order, batch) sample_metadata[_sample_order] = order sample_metadata[_sample_batch] = batch except KeyError: pass # values are copied to prevent that modifications on the original # objects affect the DataContainer attributes self.data_matrix = data_matrix.copy() self.feature_metadata = feature_metadata.copy() self.sample_metadata = sample_metadata.copy() self._sample_mask = data_matrix.index.copy() self._feature_mask = data_matrix.columns.copy() self.mapping = mapping self.id = data_matrix.index self.plot = None # copy back up data for resetting self._original_data_matrix = self.data_matrix.copy() self._original_sample_metadata = self.sample_metadata.copy() self._original_feature_metadata = self.feature_metadata.copy() # adding methods self.metrics = MetricMethods(self) self.preprocess = PreprocessMethods(self) self.set_plot_mode(plot_mode) @property def data_matrix(self) -> pd.DataFrame: return self._data_matrix.loc[self._sample_mask, self._feature_mask] @data_matrix.setter def data_matrix(self, value: pd.DataFrame): self._data_matrix = value @property def feature_metadata(self) -> pd.DataFrame: return self._feature_metadata.loc[self._feature_mask, :] @feature_metadata.setter def feature_metadata(self, value: pd.DataFrame): self._feature_metadata = value @property def sample_metadata(self) -> pd.DataFrame: return self._sample_metadata.loc[self._sample_mask, :] @sample_metadata.setter def sample_metadata(self, value: pd.DataFrame): self._sample_metadata = value @property def mapping(self): return self._mapping @mapping.setter def mapping(self, mapping: dict): self._mapping = _make_empty_mapping() if mapping is not None: valid_samples = self.classes.unique() _validate_mapping(mapping, valid_samples) self._mapping.update(mapping) @property def id(self) -> pd.Series: """pd.Series[str] : name id of each sample.""" return self._sample_metadata.loc[self._sample_mask, _sample_id] @id.setter def id(self, value: pd.Series): self._sample_metadata.loc[self._sample_mask, _sample_id] = value @property def classes(self) -> pd.Series: """pd.Series[str] : class of each sample.""" return self._sample_metadata.loc[self._sample_mask, _sample_class] @classes.setter def classes(self, value: pd.Series): self._sample_metadata.loc[self._sample_mask, _sample_class] = value @property def batch(self) -> pd.Series: """pd.Series[int]. Analytical batch number""" try: return self._sample_metadata.loc[self._sample_mask, _sample_batch] except KeyError: raise BatchInformationError("No batch information available.") @batch.setter def batch(self, value: pd.Series): self._sample_metadata.loc[self._sample_mask, _sample_batch] = value.astype(int) @property def order(self) -> pd.Series: """ pd.Series[int] : Run order in which samples were analyzed. It must be an unique integer for each sample. """ try: return self._sample_metadata.loc[self._sample_mask, _sample_order] except KeyError: raise RunOrderError("No run order information available") @order.setter def order(self, value: pd.Series): if utils.is_unique(value): self._sample_metadata.loc[self._sample_mask, _sample_order] = value.astype(int) else: msg = "order values must be unique" raise ValueError(msg) @property def dilution(self) -> pd.Series: try: return self._sample_metadata.loc[self._sample_mask, _sample_dilution] except KeyError: msg = "No dilution information available." raise DilutionInformationError(msg) @dilution.setter def dilution(self, value): self._sample_metadata.loc[self._sample_mask, _sample_dilution] = value def is_valid_class_name(self, test_class: Union[str, List[str]]) -> bool: """ Check if at least one sample class is`class_name`. Parameters ---------- test_class : str or list[str] classes to search in the DataContainer. Returns ------- is_valid : bool """ valid_classes = self.classes.unique() if isinstance(test_class, str): return test_class in valid_classes else: for c in test_class: if not (c in valid_classes): return False return True def remove(self, remove: Iterable[str], axis: str): """ Remove selected features / samples Parameters ---------- remove : Iterable[str] List of sample/feature names to remove. axis : {"features", "samples"} """ if not self._is_valid(remove, axis): msg = "Some samples/features aren't in the DataContainer" raise ValueError(msg) if axis == "features": self._feature_mask = self._feature_mask.difference(remove) elif axis == "samples": self._sample_mask = self._sample_mask.difference(remove) def _is_valid(self, index: Iterable[str], axis: str) -> bool: """ Check if all samples/features are present in the DataContainer. Parameters ---------- index: list[str] List of feature/sample names to check. axis: {"samples", "features"} """ ind = pd.Index(index) if axis == "features": return ind.isin(self.data_matrix.columns).all() elif axis == "samples": return ind.isin(self.data_matrix.index).all() else: msg = "axis must be `features` or `samples`." raise ValueError(msg) def diagnose(self) -> dict: """ Check if DataContainer has information to perform several correction types Returns ------- diagnostic : dict Each value is a bool indicating the status. `empty` is True if the size in at least one dimension of the data matrix is zero; "missing" is True if there are NANs in the data matrix; "order" is True if there is run order information for the samples; "batch" is True if there is batch number information associated to the samples. """ diagnostic = dict() diagnostic["empty"] = self.data_matrix.empty diagnostic["missing"] = self.data_matrix.isna().any().any() diagnostic[_qc_sample_type] = bool(self.mapping[_qc_sample_type]) diagnostic[_blank_sample_type] = bool(self.mapping[_blank_sample_type]) diagnostic[_study_sample_type] = bool(self.mapping[_study_sample_type]) diagnostic[_dilution_qc_type] = bool(self.mapping[_dilution_qc_type]) try: diagnostic[_sample_order] = self.order.any() except RunOrderError: diagnostic[_sample_order] = False try: diagnostic[_sample_batch] = self.batch.any() except BatchInformationError: diagnostic[_sample_batch] = False return diagnostic def reset(self, reset_mapping: bool = True): """ Reloads the original data matrix. Parameters ---------- reset_mapping: bool If True, clears sample classes from the mapping. """ self._sample_mask = self._original_data_matrix.index self._feature_mask = self._original_data_matrix.columns self.data_matrix = self._original_data_matrix self.sample_metadata = self._original_sample_metadata self.feature_metadata = self._original_feature_metadata if reset_mapping: self.mapping = None def select_features(self, mzq: float, rtq: float, mz_tol: float = 0.01, rt_tol: float = 5) -> pd.Index: """ Find feature names within the defined mass-to-charge and retention time tolerance. Parameters ---------- mzq: positive number Mass-to-charge value to search rtq: positive number Retention time value to search mz_tol: positive number Mass-to-charge tolerance used in the search. rt_tol: positive number Retention time tolerance used in the search. Returns ------- Index """ mz_match = (self.feature_metadata["mz"] - mzq).abs() < mz_tol rt_match = (self.feature_metadata["rt"] - rtq).abs() < rt_tol mz_match_ft = mz_match[mz_match].index rt_match_ft = rt_match[rt_match].index result = mz_match_ft.intersection(rt_match_ft) return result def set_default_order(self): """ set the order of the samples, assuming that de data is already sorted. """ order_data = np.arange(1, self.sample_metadata.shape[0] + 1) ind = self.data_matrix.index order = pd.Series(data=order_data, index=ind, dtype=int) batch = pd.Series(data=1, index=ind, dtype=int) self.order = order self.batch = batch def sort(self, field: str, axis: str): """ Sort samples/features in place using metadata values. Parameters ---------- field: str field to sort by. Must be a column of `sample_metadata` or `feature_metadata`. axis: {"samples", "features"} """ if axis == "samples": tmp = self._sample_metadata.sort_values(field).index self._sample_mask = tmp.intersection(self._sample_mask) # self.sample_metadata = self.sample_metadata.loc[sorted_index, :] # self.data_matrix = self.data_matrix.loc[sorted_index, :] elif axis == "features": tmp = self.feature_metadata.sort_values(field).index self._feature_mask = tmp.intersection(self._feature_mask) # self.feature_metadata = self.feature_metadata.loc[sorted_index, :] # self.data_matrix = self.data_matrix.loc[:, sorted_index] else: msg = "axis must be `samples` or `features`" raise ValueError(msg) def save(self, filename: str) -> None: """ Save DataContainer into a pickle Parameters ---------- filename: str name used to save the file. """ with open(filename, "wb") as fin: pickle.dump(self, fin) def set_plot_mode(self, mode: str): """ Set the library used to generate plots. Parameters ---------- mode: {"bokeh", "seaborn"} """ if mode == "bokeh": self.plot = BokehPlotMethods(self) elif mode == "seaborn": self.plot = SeabornPlotMethods(self) else: msg = "plot mode must be `seaborn` or `bokeh`" raise ValueError(msg) def add_order_from_csv(self, path: Union[str, TextIO], interbatch_order: bool = True) -> None: """ adds sample order and sample batch using information from a csv file. A column with the name `sample` with the same values as the index of the DataContainer sample_metadata must be provided. order information is taken from a column with name `order` and the same is done with batch information. order data must be positive integers and each batch must have unique values. Each batch must be identified with a positive integer. Parameters ---------- path : str path to the file with order data. Data format is inferred from the file extension. interbatch_order : bool If True converts the order value to a unique value for the whole DataContainer. This makes plotting the data as a function of order easier. """ df =
pd.read_csv(path, index_col="sample")
pandas.read_csv
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import operator import string import numpy as np import pandas as pd import pytest import cudf from cudf.core._compat import PANDAS_GE_110 from cudf.testing._utils import ( NUMERIC_TYPES, assert_eq, assert_exceptions_equal, ) @pytest.fixture def pd_str_cat(): categories = list("abc") codes = [0, 0, 1, 0, 1, 2, 0, 1, 1, 2] return pd.Categorical.from_codes(codes, categories=categories) def test_categorical_basic(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) cudf_cat = cudf.Index(cat) pdsr = pd.Series(cat, index=["p", "q", "r", "s", "t"]) sr = cudf.Series(cat, index=["p", "q", "r", "s", "t"]) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) string = str(sr) expect_str = """ p a q a r b s c t a """ assert all(x == y for x, y in zip(string.split(), expect_str.split())) assert_eq(cat.codes, cudf_cat.codes.to_array()) def test_categorical_integer(): if not PANDAS_GE_110: pytest.xfail(reason="pandas >=1.1 required") cat = pd.Categorical(["a", "_", "_", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal( cat.codes, sr.cat.codes.astype(cat.codes.dtype).fillna(-1).to_array() ) assert sr.null_count == 2 np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.astype(pdsr.cat.codes.dtype).fillna(-1).to_array(), ) string = str(sr) expect_str = """ 0 a 1 <NA> 2 <NA> 3 c 4 a dtype: category Categories (3, object): ['a', 'b', 'c'] """ assert string.split() == expect_str.split() def test_categorical_compare_unordered(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # test equal out = sr == sr assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr == pdsr) # test inequality out = sr != sr assert not np.any(out.to_array()) assert not np.any(pdsr != pdsr) assert not pdsr.cat.ordered assert not sr.cat.ordered # test using ordered operators assert_exceptions_equal( lfunc=operator.lt, rfunc=operator.lt, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), ) def test_categorical_compare_ordered(): cat1 = pd.Categorical( ["a", "a", "b", "c", "a"], categories=["a", "b", "c"], ordered=True ) pdsr1 = pd.Series(cat1) sr1 = cudf.Series(cat1) cat2 = pd.Categorical( ["a", "b", "a", "c", "b"], categories=["a", "b", "c"], ordered=True ) pdsr2 = pd.Series(cat2) sr2 = cudf.Series(cat2) # test equal out = sr1 == sr1 assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr1 == pdsr1) # test inequality out = sr1 != sr1 assert not np.any(out.to_array()) assert not np.any(pdsr1 != pdsr1) assert pdsr1.cat.ordered assert sr1.cat.ordered # test using ordered operators np.testing.assert_array_equal(pdsr1 < pdsr2, (sr1 < sr2).to_array()) np.testing.assert_array_equal(pdsr1 > pdsr2, (sr1 > sr2).to_array()) def test_categorical_binary_add(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), expected_error_message="Series of dtype `category` cannot perform " "the operation: add", ) def test_categorical_unary_ceil(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=getattr, rfunc=sr.ceil, lfunc_args_and_kwargs=([pdsr, "ceil"],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: ceil", ) def test_categorical_element_indexing(): """ Element indexing to a cat column must give the underlying object not the numerical index. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_eq(pdsr, sr) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) def test_categorical_masking(): """ Test common operation for getting a all rows that matches a certain category. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # check scalar comparison expect_matches = pdsr == "a" got_matches = sr == "a" np.testing.assert_array_equal( expect_matches.values, got_matches.to_array() ) # mask series expect_masked = pdsr[expect_matches] got_masked = sr[got_matches] assert len(expect_masked) == len(got_masked) assert len(expect_masked) == got_masked.valid_count assert_eq(got_masked, expect_masked) def test_df_cat_set_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a") pddf = df.to_pandas(nullable_pd_dtype=False) expect = pddf.set_index("a") assert_eq(got, expect) def test_df_cat_sort_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a").sort_index() expect = df.to_pandas(nullable_pd_dtype=False).set_index("a").sort_index() assert_eq(got, expect) def test_cat_series_binop_error(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) dfa = df["a"] dfb = df["b"] # lhs is a categorical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfa, dfb],), rfunc_args_and_kwargs=([dfa, dfb],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: add", ) # if lhs is a numerical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfb, dfa],), rfunc_args_and_kwargs=([dfb, dfa],), check_exception_type=False, expected_error_message="'add' operator not supported", ) @pytest.mark.parametrize("num_elements", [10, 100, 1000]) def test_categorical_unique(num_elements): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), num_elements ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_sorted = np.sort(gdf["a"].unique().to_pandas()) # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique_sorted = np.sort(pdf["a"].unique()) # verify np.testing.assert_array_equal(pdf_unique_sorted, gdf_unique_sorted) @pytest.mark.parametrize("nelem", [20, 50, 100]) def test_categorical_unique_count(nelem): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), nelem ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_count = gdf["a"].nunique() # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique = pdf["a"].unique() # verify assert gdf_unique_count == len(pdf_unique) def test_categorical_empty(): cat = pd.Categorical([]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal(cat.codes, sr.cat.codes.to_array()) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) def test_categorical_set_categories(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) psr = pd.Series(cat) sr = cudf.Series.from_categorical(cat) # adding category expect = psr.cat.set_categories(["a", "b", "c", "d"]) got = sr.cat.set_categories(["a", "b", "c", "d"]) assert_eq(expect, got) # removing category expect = psr.cat.set_categories(["a", "b"]) got = sr.cat.set_categories(["a", "b"]) assert_eq(expect, got) def test_categorical_set_categories_preserves_order(): series = pd.Series([1, 0, 0, 0, 2]).astype("category") # reassigning categories should preserve element ordering assert_eq( series.cat.set_categories([1, 2]), cudf.Series(series).cat.set_categories([1, 2]), ) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_ordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(False)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(False)) assert cd_sr.cat.ordered is False assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_ordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_ordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is True assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_unordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(True)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(True)) assert cd_sr.cat.ordered is True assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_unordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_unordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is False assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("from_ordered", [True, False]) @pytest.mark.parametrize("to_ordered", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_reorder_categories( pd_str_cat, from_ordered, to_ordered, inplace ): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(from_ordered)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(from_ordered)) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) kwargs = dict(ordered=to_ordered, inplace=inplace) pd_sr_1 = pd_sr.cat.reorder_categories(list("cba"), **kwargs) cd_sr_1 = cd_sr.cat.reorder_categories(list("cba"), **kwargs) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert_eq(pd_sr_1, cd_sr_1) assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_add_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.add_categories(["d"], inplace=inplace) cd_sr_1 = cd_sr.cat.add_categories(["d"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "d" in pd_sr_1.cat.categories.to_list() assert "d" in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_remove_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.remove_categories(["a"], inplace=inplace) cd_sr_1 = cd_sr.cat.remove_categories(["a"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "a" not in pd_sr_1.cat.categories.to_list() assert "a" not in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) # test using ordered operators assert_exceptions_equal( lfunc=cd_sr.to_pandas().cat.remove_categories, rfunc=cd_sr.cat.remove_categories, lfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), rfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), expected_error_message="removals must all be in old categories", ) def test_categorical_dataframe_slice_copy(): pdf = pd.DataFrame({"g": pd.Series(["a", "b", "z"], dtype="category")}) gdf = cudf.from_pandas(pdf) exp = pdf[1:].copy() gdf = gdf[1:].copy() assert_eq(exp, gdf) @pytest.mark.parametrize( "data", [ pd.Series([1, 2, 3, 89]), pd.Series([1, 2, 3, 89, 3, 1, 89], dtype="category"), pd.Series(["1", "2", "3", "4", "5"], dtype="category"), pd.Series(["1.0", "2.5", "3.001", "9"], dtype="category"), pd.Series(["1", "2", "3", None, "4", "5"], dtype="category"), pd.Series(["1.0", "2.5", "3.001", None, "9"], dtype="category"), pd.Series(["a", "b", "c", "c", "b", "a", "b", "b"]), pd.Series(["aa", "b", "c", "c", "bb", "bb", "a", "b", "b"]), pd.Series([1, 2, 3, 89, None, np.nan, np.NaN], dtype="float64"), pd.Series([1, 2, 3, 89], dtype="float64"), pd.Series([1, 2.5, 3.001, 89], dtype="float64"), pd.Series([None, None, None]), pd.Series([], dtype="float64"), ], ) @pytest.mark.parametrize( "cat_type", [ pd.CategoricalDtype(categories=["aa", "bb", "cc"]), pd.CategoricalDtype(categories=[2, 4, 10, 100]), pd.CategoricalDtype(categories=["aa", "bb", "c"]), pd.CategoricalDtype(categories=["a", "bb", "c"]), pd.CategoricalDtype(categories=["a", "b", "c"]), pd.CategoricalDtype(categories=["1", "2", "3", "4"]), pd.CategoricalDtype(categories=["1.0", "2.5", "3.001", "9"]), pd.CategoricalDtype(categories=[]), ], ) def test_categorical_typecast(data, cat_type): pd_data = data.copy() gd_data = cudf.from_pandas(data) assert_eq(pd_data.astype(cat_type), gd_data.astype(cat_type)) @pytest.mark.parametrize( "data", [ pd.Series([1, 2, 3, 89]), pd.Series(["a", "b", "c", "c", "b", "a", "b", "b"]), pd.Series(["aa", "b", "c", "c", "bb", "bb", "a", "b", "b"]), pd.Series([1, 2, 3, 89, None, np.nan, np.NaN], dtype="float64"), pd.Series([1, 2, 3, 89], dtype="float64"), pd.Series([1, 2.5, 3.001, 89], dtype="float64"), pd.Series([None, None, None]), pd.Series([], dtype="float64"), ], ) @pytest.mark.parametrize( "new_categories", [ ["aa", "bb", "cc"], [2, 4, 10, 100], ["aa", "bb", "c"], ["a", "bb", "c"], ["a", "b", "c"], [], pd.Series(["a", "b", "c"]), pd.Series(["a", "b", "c"], dtype="category"), pd.Series([-100, 10, 11, 0, 1, 2], dtype="category"), ], ) def test_categorical_set_categories_categoricals(data, new_categories): pd_data = data.copy().astype("category") gd_data = cudf.from_pandas(pd_data) assert_eq( pd_data.cat.set_categories(new_categories=new_categories), gd_data.cat.set_categories(new_categories=new_categories), ) assert_eq( pd_data.cat.set_categories( new_categories=pd.Series(new_categories, dtype="category") ), gd_data.cat.set_categories( new_categories=cudf.Series(new_categories, dtype="category") ), ) @pytest.mark.parametrize( "data", [ [1, 2, 3, 4], ["a", "1", "2", "1", "a"], pd.Series(["a", "1", "22", "1", "aa"]), pd.Series(["a", "1", "22", "1", "aa"], dtype="category"), pd.Series([1, 2, 3, -4], dtype="int64"), pd.Series([1, 2, 3, 4], dtype="uint64"), pd.Series([1, 2.3, 3, 4], dtype="float"), [None, 1, None, 2, None], [], ], ) @pytest.mark.parametrize( "dtype", [ pd.CategoricalDtype(categories=["aa", "bb", "cc"]), pd.CategoricalDtype(categories=[2, 4, 10, 100]), pd.CategoricalDtype(categories=["aa", "bb", "c"]), pd.CategoricalDtype(categories=["a", "bb", "c"]), pd.CategoricalDtype(categories=["a", "b", "c"]), pd.CategoricalDtype(categories=["22", "b", "c"]), pd.CategoricalDtype(categories=[]), ], ) def test_categorical_creation(data, dtype): expected = pd.Series(data, dtype=dtype) got = cudf.Series(data, dtype=dtype) assert_eq(expected, got) got = cudf.Series(data, dtype=cudf.from_pandas(dtype)) assert_eq(expected, got) expected = pd.Series(data, dtype="category") got = cudf.Series(data, dtype="category") assert_eq(expected, got) @pytest.mark.parametrize( "categories", [ [], [1, 2, 3], pd.Series(["a", "c", "b"], dtype="category"), pd.Series([1, 2, 3, 4, -100], dtype="category"), ], ) @pytest.mark.parametrize("ordered", [True, False]) def test_categorical_dtype(categories, ordered): expected = pd.CategoricalDtype(categories=categories, ordered=ordered) got = cudf.CategoricalDtype(categories=categories, ordered=ordered) assert_eq(expected, got) @pytest.mark.parametrize( ("data", "expected"), [ (cudf.Series([1]), np.uint8), (cudf.Series([1, None]), np.uint8), (cudf.Series(np.arange(np.iinfo(np.int8).max)), np.uint8), ( cudf.Series(np.append(np.arange(np.iinfo(np.int8).max), [None])), np.uint8, ), (cudf.Series(np.arange(np.iinfo(np.int16).max)), np.uint16), ( cudf.Series(np.append(np.arange(np.iinfo(np.int16).max), [None])), np.uint16, ), (cudf.Series(np.arange(np.iinfo(np.uint8).max)), np.uint8), ( cudf.Series(np.append(np.arange(np.iinfo(np.uint8).max), [None])), np.uint8, ), (cudf.Series(np.arange(np.iinfo(np.uint16).max)), np.uint16), ( cudf.Series(np.append(np.arange(np.iinfo(np.uint16).max), [None])), np.uint16, ), ], ) def test_astype_dtype(data, expected): got = data.astype("category").cat.codes.dtype np.testing.assert_equal(got, expected) @pytest.mark.parametrize( "data,add", [ ([1, 2, 3], [100, 11, 12]), ([1, 2, 3], [0.01, 9.7, 15.0]), ([0.0, 6.7, 10.0], [100, 11, 12]), ([0.0, 6.7, 10.0], [0.01, 9.7, 15.0]), (["a", "bd", "ef"], ["asdfsdf", "bddf", "eff"]), ([1, 2, 3], []), ([0.0, 6.7, 10.0], []), (["a", "bd", "ef"], []), ], ) def test_add_categories(data, add): pds = pd.Series(data, dtype="category") gds = cudf.Series(data, dtype="category") expected = pds.cat.add_categories(add) actual = gds.cat.add_categories(add) assert_eq( expected.cat.codes, actual.cat.codes.astype(expected.cat.codes.dtype) ) # Need to type-cast pandas object to str due to mixed-type # support in "object" assert_eq( expected.cat.categories.astype("str") if (expected.cat.categories.dtype == "object") else expected.cat.categories, actual.cat.categories, ) @pytest.mark.parametrize( "data,add", [ ([1, 2, 3], [1, 3, 11]), ([0.0, 6.7, 10.0], [1, 2, 0.0]), (["a", "bd", "ef"], ["a", "bd", "a"]), ], ) def test_add_categories_error(data, add): pds = pd.Series(data, dtype="category") gds = cudf.Series(data, dtype="category") assert_exceptions_equal( pds.cat.add_categories, gds.cat.add_categories, ([add],), ([add],), compare_error_message=False, ) def test_add_categories_mixed_error(): gds = cudf.Series(["a", "bd", "ef"], dtype="category") with pytest.raises(TypeError): gds.cat.add_categories([1, 2, 3]) gds = cudf.Series([1, 2, 3], dtype="category") with pytest.raises(TypeError): gds.cat.add_categories(["a", "bd", "ef"]) @pytest.mark.parametrize( "data", [ [1, 2, 3, 4], ["a", "1", "2", "1", "a"], pd.Series(["a", "1", "22", "1", "aa"]), pd.Series(["a", "1", "22", "1", "aa"], dtype="category"), pd.Series([1, 2, 3, 4], dtype="int64"), pd.Series([1, 2.3, 3, 4], dtype="float"), [None, 1, None, 2, None], ["a"], ], ) @pytest.mark.parametrize( "cat_dtype", [ pd.CategoricalDtype(categories=["aa", "bb", "cc"]), pd.CategoricalDtype(categories=[2, 4, 10, 100]), pd.CategoricalDtype(categories=["aa", "bb", "c"]), pd.CategoricalDtype(categories=["a", "bb", "c"]), pd.CategoricalDtype(categories=["a", "b", "c"]), pd.CategoricalDtype(categories=["22", "b", "c"]), pd.CategoricalDtype(categories=["a"]), ], ) def test_categorical_assignment(data, cat_dtype): pd_df = pd.DataFrame() pd_df["a"] = np.ones(len(data)) cd_df = cudf.from_pandas(pd_df) pd_cat_series = pd.Series(data, dtype=cat_dtype) # assign categorical series pd_df.assign(cat_col=pd_cat_series) cd_df.assign(cat_col=pd_cat_series) assert_eq(pd_df, cd_df) # assign categorical array # needed for dask_cudf support for including file name # as a categorical column # see issue: https://github.com/rapidsai/cudf/issues/2269 pd_df = pd.DataFrame() pd_df["a"] = np.ones(len(data)) cd_df = cudf.from_pandas(pd_df) pd_categorical =
pd.Categorical(data, dtype=cat_dtype)
pandas.Categorical
from functools import reduce import re import numpy as np import pandas as pd from avaml import _NONE from avaml.aggregatedata.__init__ import DatasetMissingLabel from avaml.score.overlap import calc_overlap __author__ = 'arwi' VECTOR_WETNESS_LOOSE = { _NONE: (0, 0), "new-loose": (0, 1), "wet-loose": (1, 1), "new-slab": (0, 0.4), "drift-slab": (0, 0.2), "pwl-slab": (0, 0), "wet-slab": (1, 0), "glide": (0.8, 0), } VECTOR_FREQ = { "dsize": { _NONE: 0, '0': 0, '1': 0.2, '2': 0.4, '3': 0.6, '4': 0.8, '5': 1, }, "dist": { _NONE: 0, '0': 0, '1': 0.25, '2': 0.5, '3': 0.75, '4': 1, }, "trig": { _NONE: 0, '0': 0, '10': 1 / 3, '21': 2 / 3, '22': 1, }, "prob": { _NONE: 0, '0': 0, '2': 1 / 3, '3': 2 / 3, '5': 1, }, } class Score: def __init__(self, labeled_data): def to_vec(df): level_2 = ["wet", "loose", "freq", "lev_max", "lev_min", "lev_fill", "aspect"] columns = pd.MultiIndex.from_product([["global"], ["danger_level", "emergency_warning"]]).append( pd.MultiIndex.from_product([[f"problem_{n}" for n in range(1, 4)], level_2]) ) vectors = pd.DataFrame(index=df.index, columns=columns) vectors[("global", "danger_level")] = df[("CLASS", _NONE, "danger_level")].astype(np.int) / 5 vectors[("global", "emergency_warning")] = ( df[("CLASS", _NONE, "emergency_warning")] == "Naturlig utløste skred" ).astype(np.int) for idx, row in df.iterrows(): for prob_n in [f"problem_{n}" for n in range(1, 4)]: problem = row["CLASS", _NONE, prob_n] if problem == _NONE: vectors.loc[idx, prob_n] = [0, 0, 0, 0, 0, 2, "00000000"] else: p_class = row["CLASS", problem] p_real = row["REAL", problem] wet = VECTOR_WETNESS_LOOSE[problem][0] loose = VECTOR_WETNESS_LOOSE[problem][1] freq = reduce(lambda x, y: x * VECTOR_FREQ[y][p_class[y]], VECTOR_FREQ.keys(), 1) lev_max = float(p_real["lev_max"]) if p_real["lev_max"] else 0.0 lev_min = float(p_real["lev_min"]) if p_real["lev_min"] else 0.0 lev_fill = int(p_class["lev_fill"]) if p_class["lev_fill"] else 0 aspect = row["MULTI", problem, "aspect"] vectors.loc[idx, prob_n] = [wet, loose, freq, lev_max, lev_min, lev_fill, aspect] return vectors if labeled_data.label is None or labeled_data.pred is None: raise DatasetMissingLabel() self.label_vectors = to_vec(labeled_data.label) self.pred_vectors = to_vec(labeled_data.pred) def calc(self): weights = np.array([0.20535988, 0.0949475, 1.]) diff_cols = [not re.match(r"^(lev_)|(aspect)", col) for col in self.label_vectors.columns.get_level_values(1)] diff = self.pred_vectors.loc[:, diff_cols] - self.label_vectors.loc[:, diff_cols] p_score_cols =
pd.MultiIndex.from_tuples([("global", "problem_score")])
pandas.MultiIndex.from_tuples
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from Networks import Trainer import Preprocessing def show_graph(data): indexes = pd.MultiIndex.from_product([['Min', 'Max', 'Mean'], ['Inflow', 'Outflow']], names=['Measure', 'Type']) test = np.hstack([np.min(data, axis=(2, 3)), np.max(data, axis=(2, 3)), np.mean(data, axis=(2, 3))]) data_summary =
pd.DataFrame(test, columns=indexes)
pandas.DataFrame
import LS import time as imp_t from tqdm import tqdm import pandas as pd import numpy as np def run_LS(sector, targetsfilepath, saveresultspath): ''' ~ runs Lomb-Scargle analysis on TESS light curves for 2-minute cadence targets and writes values and final stat table to file~ REQUIRES: time, tqdm, pandas, numpy, LS Args: sector -(int) sector of observation for saving targetsfilepath -(str) full path and file name of mit tess page sector target lists saveresultspath -(str) full path to location for saved arrays Returns: DataFrame of tic, Rvar, highest 3 power amplitudes with corresponding rotation periods ''' sector_table =
pd.read_csv(targetsfilepath,skiprows=5)
pandas.read_csv
import numpy as np import pandas as pd import hydrostats.data as hd import hydrostats.analyze as ha import hydrostats.visual as hv import HydroErr as he import matplotlib.pyplot as plt import os from netCDF4 import Dataset # Put all the directories (different states and resolutions) and corresponding NetCDF files into lists. list_of_files = [] list_of_dir = [] streamflow_dict = {} list_streams = [] for i in os.listdir('/home/chrisedwards/Documents/rapid_output/mult_res_output'): for j in os.listdir(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i)): list_of_files.append(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i, j, 'Qout_erai_t511_24hr_19800101to20141231.nc')) list_of_dir.append(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i, j)) list_of_dir.sort() list_of_files.sort() list_of_states=['az', 'id', 'mo', 'ny', 'or', 'col', 'az', 'id', 'mo', 'ny', 'or', 'col', 'az', 'id', 'mo', 'ny', 'or', 'col'] list_of_states.sort() # Loop through the lists to create the csv for each stream, in each resolution. for file, direc, state in zip(list_of_files, list_of_dir, list_of_states): # Call the NetCDF file. nc = Dataset(file) nc.variables.keys() nc.dimensions.keys() # Define variables from the NetCDF file. riv = nc.variables['rivid'][:].tolist() lat = nc.variables['lat'][:] lon = nc.variables['lon'][:] Q = nc.variables['Qout'][:] sQ = nc.variables['sQout'][:] time = nc.variables['time'][:].tolist() # Convert time from 'seconds since 1970' to the actual date. dates = pd.to_datetime(time, unit='s', origin='unix') temp_dictionary = {} counter = 0 for n in riv: str=state+'-{}'.format(n) temp_dictionary['{}'.format(str)] =
pd.DataFrame(data=Q[:, counter], index=dates, columns=[str])
pandas.DataFrame
''' Created on May 16, 2018 @author: cef significant scripts for calculating damage within the ABMRI framework for secondary data loader scripts, see fdmg.datos.py ''' #=============================================================================== # IMPORT STANDARD MODS ------------------------------------------------------- #=============================================================================== import logging, os, time, re, math, copy, gc, weakref, random, sys import pandas as pd import numpy as np import scipy.integrate #=============================================================================== # shortcuts #=============================================================================== from collections import OrderedDict from hlpr.exceptions import Error from weakref import WeakValueDictionary as wdict from weakref import proxy from model.sofda.hp.basic import OrderedSet from model.sofda.hp.pd import view idx = pd.IndexSlice #=============================================================================== # IMPORT CUSTOM MODS --------------------------------------------------------- #=============================================================================== #import hp.plot import model.sofda.hp.basic as hp_basic import model.sofda.hp.pd as hp_pd import model.sofda.hp.oop as hp_oop import model.sofda.hp.sim as hp_sim import model.sofda.hp.data as hp_data import model.sofda.hp.dyno as hp_dyno import model.sofda.hp.sel as hp_sel import model.sofda.fdmg.datos_fdmg as datos #import matplotlib.pyplot as plt #import matplotlib #import matplotlib.animation as animation #load the animation module (with the new search path) #=============================================================================== # custom shortcuts #=============================================================================== from model.sofda.fdmg.house import House #from model.sofda.fdmg.dfunc import Dfunc from model.sofda.fdmg.dmgfeat import Dmg_feat # logger setup ----------------------------------------------------------------------- mod_logger = logging.getLogger(__name__) mod_logger.debug('initilized') #=============================================================================== #module level defaults ------------------------------------------------------ #=============================================================================== #datapars_cols = [u'dataname', u'desc', u'datafile_tailpath', u'datatplate_tailpath', u'trim_row'] #headers in the data tab datafile_types_list = ['.csv', '.xls'] class Fdmg( #flood damage model hp_sel.Sel_controller, #no init hp_dyno.Dyno_wrap, #add some empty containers #hp.plot.Plot_o, #build the label hp_sim.Sim_model, #Sim_wrap: attach the reset_d. Sim_model: inherit attributes hp_oop.Trunk_o, #no init #Parent_cmplx: attach empty kids_sd #Parent: set some defaults hp_oop.Child): """ #=========================================================================== # INPUTS #=========================================================================== pars_path ==> pars_file.xls main external parameter spreadsheet. See description in file for each column dataset parameters tab = 'data'. expected columns: datapars_cols session parameters tab = 'gen'. expected rows: sessionpars_rows """ #=========================================================================== # program parameters #=========================================================================== name = 'fdmg' #list of attribute names to try and inherit from the session try_inherit_anl = set(['ca_ltail', 'ca_rtail', 'mind', \ 'dbg_fld_cnt', 'legacy_binv_f', 'gis_area_max', \ 'fprob_mult', 'flood_tbl_nm', 'gpwr_aep', 'dmg_rat_f',\ 'joist_space', 'G_anchor_ht', 'bsmt_opn_ht_code','bsmt_egrd_code', \ 'damp_func_code', 'cont_val_scale', 'hse_skip_depth', \ 'area_egrd00', 'area_egrd01', 'area_egrd02', 'fhr_nm', 'write_fdmg_sum', 'dfeat_xclud_price', 'write_fdmg_sum_fly', ]) fld_aep_spcl = 100 #special flood to try and include in db runs bsmt_egrd = 'wet' #default value for bsmt_egrd legacy_binv_f = True #flag to indicate that the binv is in legacy format (use indicies rather than column labels) gis_area_max = 3500 acode_sec_d = dict() #available acodes with dfunc data loaded (to check against binv request) {acode:asector} 'consider allowing the user control of these' gis_area_min = 5 gis_area_max = 5000 write_fdmg_sum_fly = False write_dmg_fly_first = True #start off to signifiy first run #=========================================================================== # debuggers #=========================================================================== write_beg_hist = True #whether to write the beg history or not beg_hist_df = None #=========================================================================== # user provided values #=========================================================================== #legacy pars floor_ht = 0.0 mind = '' #column to match between data sets and name the house objects #EAD calc ca_ltail ='flat' ca_rtail =2 #aep at which zero value is assumeed. 'none' uses lowest aep in flood set #Floodo controllers gpwr_aep = 100 #default max aep where gridpower_f = TRUE (when the power shuts off) dbg_fld_cnt = '0' #for slicing the number of floods we want to evaluate #area exposure area_egrd00 = None area_egrd01 = None area_egrd02 = None #Dfunc controllers place_codes = None dmg_types = None flood_tbl_nm = None #name of the flood table to use #timeline deltas 'just keeping this on the fdmg for simplicitly.. no need for flood level heterogenieyt' wsl_delta = 0.0 fprob_mult = 1.0 #needs to be a float for type matching dmg_rat_f = False #Fdmg.House pars joist_space = 0.3 G_anchor_ht = 0.6 bsmt_egrd_code = 'plpm' damp_func_code = 'seep' bsmt_opn_ht_code = '*min(2.0)' hse_skip_depth = -4 #depth to skip house damage calc fhr_nm = '' cont_val_scale = .25 write_fdmg_sum = True dfeat_xclud_price = 0.0 #=========================================================================== # calculation parameters #=========================================================================== res_fancy = None gpwr_f = True #placeholder for __init__ calcs fld_aep_l = None dmg_dx_base = None #results frame for writing plotr_d = None #dictionary of EAD plot workers dfeats_d = dict() #{tag:dfeats}. see raise_all_dfeats() fld_pwr_cnt = 0 seq = 0 #damage results/stats dmgs_df = None dmgs_df_wtail = None #damage summaries with damages for the tail logic included ead_tot = 0 dmg_tot = 0 #=========================================================================== # calculation data holders #=========================================================================== dmg_dx = None #container for full run results bdry_cnt = 0 bwet_cnt = 0 bdamp_cnt = 0 def __init__(self,*vars, **kwargs): logger = mod_logger.getChild('Fdmg') #======================================================================= # initilize cascade #======================================================================= super(Fdmg, self).__init__(*vars, **kwargs) #initilzie teh baseclass #======================================================================= # object updates #======================================================================= self.reset_d.update({'ead_tot':0, 'dmgs_df':None, 'dmg_dx':None,\ 'wsl_delta':0}) #update the rest attributes #======================================================================= # defaults #======================================================================= if not self.session._write_data: self.write_fdmg_sum = False if not self.dbg_fld_cnt == 'all': self.dbg_fld_cnt = int(float(self.dbg_fld_cnt)) #======================================================================= # pre checks #======================================================================= if self.db_f: #model assignment if not self.model.__repr__() == self.__repr__(): raise IOError #check we have all the datos we want dname_exp = np.array(('rfda_curve', 'binv','dfeat_tbl', 'fhr_tbl')) boolar = np.invert(np.isin(dname_exp, self.session.pars_df_d['datos'])) if np.any(boolar): """allowing this?""" logger.warning('missing %i expected datos: %s'%(boolar.sum(), dname_exp[boolar])) #======================================================================= #setup functions #======================================================================= #par cleaners/ special loaders logger.debug("load_hse_geo() \n") self.load_hse_geo() logger.info('load and clean dfunc data \n') self.load_pars_dfunc(self.session.pars_df_d['dfunc']) #load the data functions to damage type table logger.debug('\n') self.setup_dmg_dx_cols() logger.debug('load_submodels() \n') self.load_submodels() logger.debug('init_dyno() \n') self.init_dyno() #outputting setup if self.write_fdmg_sum_fly: self.fly_res_fpath = os.path.join(self.session.outpath, '%s fdmg_res_fly.csv'%self.session.tag) logger.info('Fdmg model initialized as \'%s\' \n'%(self.name)) return #=========================================================================== # def xxxcheck_pars(self): #check your data pars # #pull the datas frame # df_raw = self.session.pars_df_d['datos'] # # #======================================================================= # # check mandatory data objects # #======================================================================= # if not 'binv' in df_raw['name'].tolist(): # raise Error('missing \'binv\'!') # # #======================================================================= # # check optional data objects # #======================================================================= # fdmg_tab_nl = ['rfda_curve', 'binv','dfeat_tbl', 'fhr_tbl'] # boolidx = df_raw['name'].isin(fdmg_tab_nl) # # if not np.all(boolidx): # raise IOError #passed some unexpected data names # # return #=========================================================================== def load_submodels(self): logger = self.logger.getChild('load_submodels') self.state = 'load' #======================================================================= # data objects #======================================================================= 'this is the main loader that builds all teh children as specified on the data tab' logger.info('loading dat objects from \'fdmg\' tab') logger.debug('\n \n') #build datos from teh data tab 'todo: hard code these class types (rather than reading from teh control file)' self.fdmgo_d = self.raise_children_df(self.session.pars_df_d['datos'], #df to raise on kid_class = None) #should raise according to df entry self.session.prof(state='load.fdmg.datos') 'WARNING: fdmgo_d is not set until after ALL the children on this tab are raised' #attach special children self.binv = self.fdmgo_d['binv'] """NO! this wont hold resetting updates self.binv_df = self.binv.childmeta_df""" #======================================================================= # flood tables #======================================================================= self.ftblos_d = self.raise_children_df(self.session.pars_df_d['flood_tbls'], #df to raise on kid_class = datos.Flood_tbl) #should raise according to df entry #make sure the one we are loking for is in there if not self.session.flood_tbl_nm in list(self.ftblos_d.keys()): raise Error('requested flood table name \'%s\' not found in loaded sets'%self.session.flood_tbl_nm) 'initial call which only udpates the binv_df' self.set_area_prot_lvl() if 'fhr_tbl' in list(self.fdmgo_d.keys()): self.set_fhr() #======================================================================= # dfeats #====================================================================== if self.session.load_dfeats_first_f & self.session.wdfeats_f: logger.debug('raise_all_dfeats() \n') self.dfeats_d = self.fdmgo_d['dfeat_tbl'].raise_all_dfeats() #======================================================================= # raise houses #======================================================================= #check we have all the acodes self.check_acodes() logger.info('raising houses') logger.debug('\n') self.binv.raise_houses() self.session.prof(state='load.fdmg.houses') 'calling this here so all of the other datos are raised' #self.rfda_curve = self.fdmgo_d['rfda_curve'] """No! we need to get this in before the binv.reset_d['childmeta_df'] is set self.set_area_prot_lvl() #apply the area protectino from teh named flood table""" logger.info('loading floods') logger.debug('\n \n') self.load_floods() self.session.prof(state='load.fdmg.floods') logger.debug("finished with %i kids\n"%len(self.kids_d)) return def setup_dmg_dx_cols(self): #get teh columns to use for fdmg results """ This is setup to generate a unique set of ordered column names with this logic take the damage types add mandatory fields add user provided fields """ logger = self.logger.getChild('setup_dmg_dx_cols') #======================================================================= #build the basic list of column headers #======================================================================= #damage types at the head col_os = OrderedSet(self.dmg_types) #put #basic add ons _ = col_os.update(['total', 'hse_depth', 'wsl', 'bsmt_egrd', 'anchor_el']) #======================================================================= # special logic #======================================================================= if self.dmg_rat_f: for dmg_type in self.dmg_types: _ = col_os.add('%s_rat'%dmg_type) if not self.wsl_delta==0: col_os.add('wsl_raw') """This doesnt handle runs where we start with a delta of zero and then add some later for these, you need to expplicitly call 'wsl_raw' in the dmg_xtra_cols_fat""" #ground water damage if 'dmg_gw' in self.session.outpars_d['Flood']: col_os.add('gw_f') #add the dem if necessary if 'gw_f' in col_os: col_os.add('dem_el') #======================================================================= # set pars based on user provided #======================================================================= #s = self.session.outpars_d[self.__class__.__name__] #extra columns for damage resulst frame if self.db_f or self.session.write_fdmg_fancy: logger.debug('including extra columns in outputs') #clewan the extra cols 'todo: move this to a helper' if hasattr(self.session, 'xtra_cols'): try: dc_l = eval(self.session.xtra_cols) #convert to a list except: logger.error('failed to convert \'xtra_cols\' to a list. check formatting') raise IOError else: dc_l = ['wsl_raw', 'gis_area', 'acode_s', 'B_f_height', 'BS_ints','gw_f'] if not isinstance(dc_l, list): raise IOError col_os.update(dc_l) #add these self.dmg_df_cols = col_os logger.debug('set dmg_df_cols as: %s'%self.dmg_df_cols) return def load_pars_dfunc(self, df_raw=None): #build a df from the dfunc tab """ 20190512: upgraded to handle nores and mres types """ #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('load_pars_dfunc') #list of columns to expect exp_colns = np.array(['acode','asector','place_code','dmg_code','dfunc_type','anchor_ht_code']) if df_raw is None: df_raw = self.session.pars_df_d['dfunc'] logger.debug('from df %s: \n %s'%(str(df_raw.shape), df_raw)) #======================================================================= # clean #======================================================================= df1 = df_raw.dropna(axis='columns', how='all').dropna(axis='index', how='all') #drop rows with all na df1 = df1.drop(columns=['note', 'rank'], errors='ignore') #drop some columns we dont need #======================================================================= # checking #======================================================================= #expected columns boolar = np.invert(np.isin(exp_colns, df1.columns)) if np.any(boolar): raise Error('missing %i expected columns\n %s'%(boolar.sum, exp_colns[boolar])) #rfda garage logic boolidx = np.logical_and(df1['place_code'] == 'G', df1['dfunc_type'] == 'rfda') if np.any(boolidx): raise Error('got dfunc_type = rfda for a garage curve (no such thing)') #======================================================================= # calculated columns #======================================================================= df2 = df1.copy() df2['dmg_type'] = df2['place_code'] + df2['dmg_code'] """as acode whill change, we want to keep the name static df2['name'] = df2['acode'] + df2['dmg_type']""" df2['name'] = df2['dmg_type'] #======================================================================= # data loading #======================================================================= if 'tailpath' in df2.columns: boolidx = ~pd.isnull(df2['tailpath']) #get dfuncs with data requests self.load_raw_dfunc(df2[boolidx]) df2 = df2.drop(['headpath', 'tailpath'], axis = 1, errors='ignore') #drop these columns #======================================================================= # get special lists #======================================================================= #find total for exclusion boolidx = np.invert((df2['place_code']=='total').astype(bool)) """Im not using the total dfunc any more...""" if not np.all(boolidx): raise Error('i thinkn this has been disabled') self.dmg_types = tuple(df2.loc[boolidx,'dmg_type'].dropna().unique().tolist()) self.dmg_codes = tuple(df2.loc[boolidx, 'dmg_code'].dropna().unique().tolist()) self.place_codes = tuple(df2.loc[boolidx,'place_code'].dropna().unique().tolist()) #======================================================================= # #handle nulls #======================================================================= df3 = df2.copy() for coln in ['dmg_type', 'name']: df3.loc[:,coln] = df3[coln].replace(to_replace=np.nan, value='none') #======================================================================= # set this #======================================================================= self.session.pars_df_d['dfunc'] = df3 logger.debug('dfunc_df with %s'%str(df3.shape)) #======================================================================= # get slice for houses #======================================================================= self.dfunc_mstr_df = df3[boolidx] #get this trim return """ view(df3) """ def load_hse_geo(self): #special loader for hse_geo dxcol (from tab hse_geo) logger = self.logger.getChild('load_hse_geo') #======================================================================= # load and clean the pars #======================================================================= df_raw = hp_pd.load_xls_df(self.session.parspath, sheetname = 'hse_geo', header = [0,1], logger = logger) df = df_raw.dropna(how='all', axis = 'index') #drop any rows with all nulls self.session.pars_df_d['hse_geo'] = df #======================================================================= # build a blank starter for each house to fill #======================================================================= omdex = df.columns #get the original mdex 'probably a cleaner way of doing this' lvl0_values = omdex.get_level_values(0).unique().tolist() lvl1_values = omdex.get_level_values(1).unique().tolist() lvl1_values.append('t') newcols = pd.MultiIndex.from_product([lvl0_values, lvl1_values], names=['place_code','finish_code']) """id prefer to use a shortend type (Float32) but this makes all the type checking very difficult""" geo_dxcol = pd.DataFrame(index = df.index, columns = newcols, dtype='Float32') #make the frame self.geo_dxcol_blank = geo_dxcol if self.db_f: if np.any(pd.isnull(df)): raise Error('got %i nulls in the hse_geo tab'%df.isna().sum().sum()) l = geo_dxcol.index.tolist() if not l == ['area', 'height', 'per', 'inta']: raise IOError return def load_raw_dfunc(self, meta_df_raw): #load raw data for dfuncs logger = self.logger.getChild('load_raw_dfunc') logger.debug('with df \'%s\''%(str(meta_df_raw.shape))) d = dict() #empty container meta_df = meta_df_raw.copy() #======================================================================= # loop through each row and load the data #======================================================================= for indx, row in meta_df.iterrows(): inpath = os.path.join(row['headpath'], row['tailpath']) df = hp_pd.load_smart_df(inpath, index_col =None, logger = logger) d[row['name']] = df.dropna(how = 'all', axis = 'index') #store this into the dictionaryu logger.info('finished loading raw dcurve data on %i dcurves: %s'%(len(d), list(d.keys()))) self.dfunc_raw_d = d return def load_floods(self): #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('load_floods') logger.debug('setting floods df \n') self.set_floods_df() df = self.floods_df logger.debug('raising floods \n') d = self.raise_children_df(df, #build flood children kid_class = Flood, dup_sibs_f= True, container = OrderedDict) #pass attributes from one tot eh next #======================================================================= # ordered by aep #======================================================================= fld_aep_od = OrderedDict() for childname, childo in d.items(): if hasattr(childo, 'ari'): fld_aep_od[childo.ari] = childo else: raise IOError logger.info('raised and bundled %i floods by aep'%len(fld_aep_od)) self.fld_aep_od = fld_aep_od return def set_floods_df(self): #build the flood meta data logger = self.logger.getChild('set_floods_df') df_raw = self.session.pars_df_d['floods'] df1 = df_raw.sort_values('ari').reset_index(drop=True) df1['ari'] = df1['ari'].astype(np.int) #======================================================================= # slice for debug set #======================================================================= if self.db_f & (not self.dbg_fld_cnt == 'all'): """this would be much better with explicit typesetting""" #check that we even have enough to do the slicing if len(df1) < 2: logger.error('too few floods for debug slicing. pass dbg_fld_cnt == all') raise IOError df2 = pd.DataFrame(columns = df1.columns) #make blank starter frame dbg_fld_cnt = int(float(self.dbg_fld_cnt)) logger.info('db_f=TRUE. selecting %i (of %i) floods'%(dbg_fld_cnt, len(df1))) #=================================================================== # try to pull out and add the 100yr #=================================================================== try: boolidx = df1.loc[:,'ari'] == self.fld_aep_spcl if not boolidx.sum() == 1: logger.debug('failed to locate 1 flood') raise IOError df2 = df2.append(df1[boolidx]) #add this row to the end df1 = df1[~boolidx] #slice out this row dbg_fld_cnt = max(0, dbg_fld_cnt - 1) #reduce the loop count by 1 dbg_fld_cnt = min(dbg_fld_cnt, len(df1)) #double check in case we are given a very short set logger.debug('added the %s year flood to the list with dbg_fld_cnt %i'%(self.fld_aep_spcl, dbg_fld_cnt)) except: logger.debug('failed to extract the special %i flood'%self.fld_aep_spcl) df2 = df1.copy() #=================================================================== # build list of extreme (low/high) floods #=================================================================== evn_cnt = 0 odd_cnt = 0 for cnt in range(0, dbg_fld_cnt, 1): if cnt % 2 == 0: #evens. pull from front idxr = evn_cnt evn_cnt += 1 else: #odds. pull from end idxr = len(df1) - odd_cnt - 1 odd_cnt += 1 logger.debug('pulling flood with indexer %i'%(idxr)) ser = df1.iloc[idxr, :] #make thsi slice df2 = df2.append(ser) #append this to the end #clean up df = df2.drop_duplicates().sort_values('ari').reset_index(drop=True) logger.debug('built extremes flood df with %i aeps: %s'%(len(df), df.loc[:,'ari'].values.tolist())) if not len(df) == int(self.dbg_fld_cnt): raise IOError else: df = df1.copy() if not len(df) > 0: raise IOError self.floods_df = df return def set_area_prot_lvl(self): #assign the area_prot_lvl to the binv based on your tab #logger = self.logger.getChild('set_area_prot_lvl') """ TODO: Consider moving this onto the binv and making the binv dynamic... Calls: handles for flood_tbl_nm """ logger = self.logger.getChild('set_area_prot_lvl') logger.debug('assigning \'area_prot_lvl\' for \'%s\''%self.flood_tbl_nm) #======================================================================= # get data #======================================================================= ftbl_o = self.ftblos_d[self.flood_tbl_nm] #get the activated flood table object ftbl_o.apply_on_binv('aprot_df', 'area_prot_lvl') return True def set_fhr(self): #assign the fhz bfe and zone from the fhr_tbl data logger = self.logger.getChild('set_fhr') logger.debug('assigning for \'fhz\' and \'bfe\'') #get the data for this fhr set fhr_tbl_o = self.fdmgo_d['fhr_tbl'] try: df = fhr_tbl_o.d[self.fhr_nm] except: if not self.fhr_nm in list(fhr_tbl_o.d.keys()): logger.error('could not find selected fhr_nm \'%s\' in the loaded rule sets: \n %s' %(self.fhr_nm, list(fhr_tbl_o.d.keys()))) raise IOError #======================================================================= # loop through each series and apply #======================================================================= """ not the most generic way of handling this... todo: add generic method to the binv can take ser or df updates the childmeta_df if before init updates the children if after init """ for hse_attn in ['fhz', 'bfe']: ser = df[hse_attn] if not self.session.state == 'init': #======================================================================= # tell teh binv to update its houses #======================================================================= self.binv.set_all_hse_atts(hse_attn, ser = ser) else: logger.debug('set column \'%s\' onto the binv_df'%hse_attn) self.binv.childmeta_df.loc[:,hse_attn] = ser #set this column in teh binvdf """I dont like this fhr_tbl_o.apply_on_binv('fhz_df', 'fhz', coln = self.fhr_nm) fhr_tbl_o.apply_on_binv('bfe_df', 'bfe', coln = self.fhr_nm)""" return True def get_all_aeps_classic(self): #get the list of flood aeps from the classic flood table format 'kept this special syntax reader separate in case we want to change th eformat of the flood tables' flood_pars_df = self.session.pars_df_d['floods'] #load the data from the flood table fld_aep_l = flood_pars_df.loc[:, 'ari'].values #drop the 2 values and convert to a list return fld_aep_l def run(self, **kwargs): #placeholder for simulation runs logger = self.logger.getChild('run') logger.debug('on run_cnt %i'%self.run_cnt) self.run_cnt += 1 self.state='run' #======================================================================= # prechecks #======================================================================= if self.db_f: if not isinstance(self.outpath, str): raise IOError logger.info('\n fdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmgfdmg') logger.info('for run_cnt %i'%self.run_cnt) self.calc_fld_set(**kwargs) return def setup_res_dxcol(self, #setup the results frame fld_aep_l = None, #dmg_type_list = 'all', bid_l = None): #======================================================================= # defaults #======================================================================= if bid_l == None: bid_l = self.binv.bid_l if fld_aep_l is None: fld_aep_l = list(self.fld_aep_od.keys()) #just get all teh keys from the dictionary #if dmg_type_list=='all': dmg_type_list = self.dmg_types #======================================================================= # setup the dxind for writing #======================================================================= lvl0_values = fld_aep_l lvl1_values = self.dmg_df_cols #include extra reporting columns #fold these into a mdex (each flood_aep has all dmg_types) columns = pd.MultiIndex.from_product([lvl0_values, lvl1_values], names=['flood_aep','hse_atts']) dmg_dx = pd.DataFrame(index = bid_l, columns = columns).sort_index() #make the frame self.dmg_dx_base = dmg_dx.copy() if self.db_f: logger = self.logger.getChild('setup_res_dxcol') if self.write_beg_hist: fld_aep_l.sort() columns = pd.MultiIndex.from_product([fld_aep_l, ['egrd', 'cond']], names=['flood_aep','egrd']) self.beg_hist_df = pd.DataFrame(index=bid_l, columns = columns) logger.info('recording bsmt_egrd history with %s'%str(self.beg_hist_df.shape)) else: self.beg_hist_df = None """ dmg_dx.columns """ return def calc_fld_set(self, #calc flood damage for the flood set fld_aep_l = None, #list of flood aeps to calcluate #dmg_type_list = 'all', #list of damage types to calculate bid_l = None, #list of building names ot calculate wsl_delta = None, #delta value to add to all wsl wtf = None, #optinonal flag to control writing of dmg_dx (otherwise session.write_fdmg_set_dx is used) **run_fld): #kwargs to send to run_fld 'we could separate the object creation and the damage calculation' """ #======================================================================= # INPUTS #======================================================================= fld_aep_l: list of floods to calc this can be a custom list built by the user extracted from the flood table (see session.get_ftbl_aeps) loaded from the legacy rfda pars (session.rfda_pars.fld_aep_l)\ bid_l: list of ids (matching the mind varaible set under Fdmg) #======================================================================= # OUTPUTS #======================================================================= dmg_dx: dxcol of flood damage across all dmg_types and floods mdex lvl0: flood aep lvl1: dmg_type + extra cols I wanted to have this flexible, so the dfunc could pass up extra headers couldnt get it to work. instead used a global list and acheck new headers must be added to the gloabl list and Dfunc. index bldg_id #======================================================================= # TODO: #======================================================================= setup to calc across binvs as well """ #======================================================================= # defaults #======================================================================= start = time.time() logger = self.logger.getChild('calc_fld_set') if wtf is None: wtf = self.session.write_fdmg_set_dx if wsl_delta is None: wsl_delta= self.wsl_delta #======================================================================= # setup and load the results frame #======================================================================= #check to see that all of these conditions pass if not np.all([bid_l is None, fld_aep_l is None]): logger.debug('non default run. rebuild the dmg_dx_base') #non default run. rebuild the frame self.setup_res_dxcol( fld_aep_l = fld_aep_l, #dmg_type_list = dmg_type_list, bid_l = bid_l) elif self.dmg_dx_base is None: #probably the first run if not self.run_cnt == 1: raise IOError logger.debug('self.dmg_dx_base is None. rebuilding') self.setup_res_dxcol(fld_aep_l = fld_aep_l, #dmg_type_list = dmg_type_list, bid_l = bid_l) #set it up with the defaults dmg_dx = self.dmg_dx_base.copy() #just start witha copy of the base #======================================================================= # finish defaults #======================================================================= 'these are all mostly for reporting' if fld_aep_l is None: fld_aep_l = list(self.fld_aep_od.keys()) #just get all teh keys from the dictionary """ leaving these as empty kwargs and letting floods handle if bid_l == None: bid_l = binv_dato.bid_l if dmg_type_list=='all': dmg_type_list = self.dmg_types """ """ lvl0_values = dmg_dx.columns.get_level_values(0).unique().tolist() lvl1_values = dmg_dx.columns.get_level_values(1).unique().tolist()""" logger.info('calc flood damage (%i) floods w/ wsl_delta = %.2f'%(len(fld_aep_l), wsl_delta)) logger.debug('ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \n') #======================================================================= # loop and calc eacch flood #======================================================================= fcnt = 0 first = True for flood_aep in fld_aep_l: #lopo through and build each flood #self.session.prof(state='%s.fdmg.calc_fld_set.%i'%(self.get_id(), fcnt)) #memory profiling self.state = flood_aep 'useful for keeping track of what the model is doing' #get teh flood flood_dato = self.fld_aep_od[flood_aep] #pull thsi from the dictionary logger.debug('getting dmg_df for %s'%flood_dato.name) #=================================================================== # run sequence #=================================================================== #get damage for these depths dmg_df = flood_dato.run_fld(**run_fld) #add the damage df to this slice if dmg_df is None: continue #skip this one #=================================================================== # wrap up #=================================================================== dmg_dx[flood_aep] = dmg_df #store into the frame fcnt += 1 logger.debug('for flood_aep \'%s\' on fcnt %i got dmg_df %s \n'%(flood_aep, fcnt, str(dmg_df.shape))) #=================================================================== # checking #=================================================================== if self.db_f: #check that the floods are increasing if first: first = False last_aep = None else: if not flood_aep > last_aep: raise IOError last_aep = flood_aep #======================================================================= # wrap up #======================================================================= self.state = 'na' if wtf: filetail = '%s %s %s %s res_fld'%(self.session.tag, self.simu_o.name, self.tstep_o.name, self.name) filepath = os.path.join(self.outpath, filetail) hp_pd.write_to_file(filepath, dmg_dx, overwrite=True, index=True) #send for writing self.dmg_dx = dmg_dx stop = time.time() logger.info('in %.4f secs calcd damage on %i of %i floods'%(stop - start, fcnt, len(fld_aep_l))) return def get_results(self): #called by Timestep.run_dt() self.state='wrap' logger = self.logger.getChild('get_results') #======================================================================= # optionals #======================================================================= s = self.session.outpars_d[self.__class__.__name__] if (self.session.write_fdmg_fancy) or (self.session.write_fdmg_sum): logger.debug("calc_summaries \n") dmgs_df = self.calc_summaries() self.dmgs_df = dmgs_df.copy() else: dmgs_df = None if ('ead_tot' in s) or ('dmg_df' in s): logger.debug('\n') self.calc_annulized(dmgs_df = dmgs_df, plot_f = False) 'this will also run calc_sumamries if it hasnt happened yet' if 'dmg_tot' in s: #get a cross section of the 'total' column across all flood_aeps and sum for all entries self.dmg_tot = self.dmg_dx.xs('total', axis=1, level=1).sum().sum() if ('bwet_cnt' in s) or ('bdamp_cnt' in s) or ('bdry_cnt' in s): logger.debug('get_fld_begrd_cnt') self.get_fld_begrd_cnt() if 'fld_pwr_cnt' in s: logger.debug('calc_fld_pwr_cnt \n') cnt = 0 for aep, obj in self.fld_aep_od.items(): if obj.gpwr_f: cnt +=1 self.fld_pwr_cnt = cnt self.binv.calc_binv_stats() if self.session.write_fdmg_fancy: self.write_res_fancy() if self.write_fdmg_sum_fly: #write the results after each run self.write_dmg_fly() #update the bdmg_dx if not self.session.bdmg_dx is None: #add the timestep bdmg_dx = pd.concat([self.dmg_dx], keys=[self.tstep_o.name], names=['tstep'], axis=1,verify_integrity=True,copy=False) bdmg_dx.index.name = self.mind """trying this as a column so we can append #add the sim bdmg_dx = pd.concat([bdmg_dx], keys=[self.simu_o.name], names=['simu'], axis=1,verify_integrity=True,copy=False)""" #join to the big if len(self.session.bdmg_dx) == 0: self.session.bdmg_dx = bdmg_dx.copy() else: self.session.bdmg_dx = self.session.bdmg_dx.join(bdmg_dx) """ view(self.session.bdmg_dx.join(bdmg_dx)) view(bdmg_dx) view(self.session.bdmg_dx) """ #======================================================================= # checks #======================================================================= if self.db_f: self.check_dmg_dx() logger.debug('finished \n') def calc_summaries(self, #annualize the damages fsts_l = ['gpwr_f', 'dmg_sw', 'dmg_gw'], #list of additional flood attributes to report in teh summary dmg_dx=None, plot=False, #flag to execute plot_dmgs() at the end. better to do this explicitly with an outputr wtf=None): """ basically dropping dimensions on the outputs and adding annuzlied damages #======================================================================= # OUTPUTS #======================================================================= DROP BINV DIMENSIOn dmgs_df: df with columns: raw damage types, and annualized damage types index: each flood entries: total damage for binv DROP FLOODS DIMENSIOn aad_sum_ser DROP ALL DIMENSIONS ead_tot """ #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('calc_summaries') if dmg_dx is None: dmg_dx = self.dmg_dx.copy() if plot is None: plot = self.session._write_figs if wtf is None: wtf = self.write_fdmg_sum #======================================================================= # #setup frame #======================================================================= #get the columns dmg_types = list(self.dmg_types) + ['total'] #======================================================================= # #build the annualized damage type names #======================================================================= admg_types = [] for entry in dmg_types: admg_types.append(entry+'_a') cols = dmg_types + ['prob', 'prob_raw'] + admg_types + fsts_l dmgs_df = pd.DataFrame(columns = cols) dmgs_df['ari'] = dmg_dx.columns.get_level_values(0).unique() dmgs_df = dmgs_df.sort_values('ari').reset_index(drop=True) #======================================================================= # loop through and fill out the data #======================================================================= for index, row in dmgs_df.iterrows(): #loop through an dfill out dmg_df = dmg_dx[row['ari']] #get the fdmg for this aep #sum all the damage types for dmg_type in dmg_types: row[dmg_type] = dmg_df[dmg_type].sum() #sum them all up #calc the probability row['prob_raw'] = 1/float(row['ari']) #inverse of aep row['prob'] = row['prob_raw'] * self.fprob_mult #apply the multiplier #calculate the annualized damages for admg_type in admg_types: dmg_type = admg_type[:-2] #drop the a row[admg_type] = row[dmg_type] * row['prob'] #=================================================================== # get stats from the floodo #=================================================================== floodo = self.fld_aep_od[row['ari']] for attn in fsts_l: row[attn] = getattr(floodo, attn) #=================================================================== # #add this row backinto the frame #=================================================================== dmgs_df.loc[index,:] = row #======================================================================= # get series totals #======================================================================= dmgs_df = dmgs_df.sort_values('prob').reset_index(drop='true') #======================================================================= # closeout #======================================================================= logger.debug('annualized %i damage types for %i floods'%(len(dmg_type), len(dmgs_df))) if wtf: filetail = '%s dmg_sumry'%(self.session.state) filepath = os.path.join(self.outpath, filetail) hp_pd.write_to_file(filepath, dmgs_df, overwrite=True, index=False) #send for writing logger.debug('set data with %s and cols: %s'%(str(dmgs_df.shape), dmgs_df.columns.tolist())) if plot: self.plot_dmgs(wtf=wtf) #======================================================================= # post check #======================================================================= if self.db_f: #check for sort logic if not dmgs_df.loc[:,'prob'].is_monotonic: raise IOError if not dmgs_df['total'].iloc[::-1].is_monotonic: #flip the order logger.warning('bigger floods arent causing more damage') 'some of the flood tables seem bad...' #raise IOError #all probabilities should be larger than zero if not np.all(dmgs_df.loc[:,'prob'] > 0): raise IOError return dmgs_df def calc_annulized(self, dmgs_df = None, ltail = None, rtail = None, plot_f=None, dx = 0.001): #get teh area under the damage curve """ #======================================================================= # INPUTS #======================================================================= ltail: left tail treatment code (low prob high damage) flat: extend the max damage to the zero probability event 'none': don't extend the tail rtail: right trail treatment (high prob low damage) 'none': don't extend '2year': extend to zero damage at the 2 year aep """ #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('calc_annulized') if ltail is None: ltail = self.ca_ltail if rtail is None: rtail = self.ca_rtail 'plotter ignores passed kwargs here' if plot_f is None: plot_f= self.session._write_figs #======================================================================= # get data #======================================================================= if dmgs_df is None: dmgs_df = self.calc_summaries() #df_raw = self.data.loc[:,('total', 'prob', 'ari')].copy().reset_index(drop=True) 'only slicing columns for testing' df = dmgs_df.copy().reset_index(drop=True) #======================================================================= # shortcuts #======================================================================= if len(df) <2 : logger.warning('not enough floods to calculate EAD') self.ead_tot = 0 self.dmgs_df_wtail = df return if df['total'].sum() < 1: logger.warning('calculated zero damages!') self.ead_tot = 0 self.dmgs_df_wtail = df return logger.debug("with ltail = \'%s\', rtail = \'%s\' and df %s"%(ltail, rtail, str(df.shape))) #======================================================================= # left tail treatment #======================================================================= if ltail == 'flat': #zero probability 'assume 1000yr flood is the max damage' max_dmg = df['total'].max()*1.0001 df.loc[-1, 'prob'] = 0 df.loc[-1, 'ari'] = 999999 df.loc[-1, 'total'] = max_dmg logger.debug('ltail == flat. duplicated danage %.2f at prob 0'%max_dmg) elif ltail == 'none': pass else: raise IOError 'todo: add option for value multiplier' #======================================================================= # right tail #======================================================================= if rtail == 'none': pass elif hp_basic.isnum(rtail): rtail_yr = float(rtail) rtail_p = 1.0 / rtail_yr max_p = df['prob'].max() #floor check if rtail_p < max_p: logger.error('rtail_p (%.2f) < max_p (%.2f)'%(rtail_p, max_p)) raise IOError #same elif rtail_p == max_p: logger.debug("rtail_p == min(xl. no changes made") else: logger.debug("adding zero damage for aep = %.1f"%rtail_yr) #zero damage 'assume no damage occurs at the passed rtail_yr' loc = len(df) df.loc[loc, 'prob'] = rtail_p df.loc[loc, 'ari'] = 1.0/rtail_p df.loc[loc, 'total'] = 0 """ hp_pd.view_web_df(self.data) """ else: raise IOError #======================================================================= # clean up #======================================================================= df = df.sort_index() #resort the index if self.db_f: 'these should still hold' if not df.loc[:,'prob'].is_monotonic: raise IOError """see above if not df['total'].iloc[::-1].is_monotonic: raise IOError""" x, y = df['prob'].values.tolist(), df['total'].values.tolist() #======================================================================= # find area under curve #======================================================================= try: #ead_tot = scipy.integrate.simps(y, x, dx = dx, even = 'avg') 'this was giving some weird results' ead_tot = scipy.integrate.trapz(y, x, dx = dx) except: raise Error('scipy.integrate.trapz failed') logger.info('found ead_tot = %.2f $/yr from %i points with tail_codes: \'%s\' and \'%s\'' %(ead_tot, len(y), ltail, rtail)) self.ead_tot = ead_tot #======================================================================= # checks #======================================================================= if self.db_f: if pd.isnull(ead_tot): raise IOError if not isinstance(ead_tot, float): raise IOError if ead_tot <=0: """ view(df) """ raise Error('got negative damage! %.2f'%ead_tot) #======================================================================= # update data with tails #======================================================================= self.dmgs_df_wtail = df.sort_index().reset_index(drop=True) #======================================================================= # generate plot #======================================================================= if plot_f: self.plot_dmgs(self, right_nm = None, xaxis = 'prob', logx = False) return def get_fld_begrd_cnt(self): #tabulate the bsmt_egrd counts from each flood logger = self.logger.getChild('get_fld_begrd_cnt') #======================================================================= # data setup #======================================================================= dmg_dx = self.dmg_dx.copy() #lvl1_values = dmg_dx.columns.get_level_values(0).unique().tolist() #get all teh basement egrade types df1 = dmg_dx.loc[:,idx[:, 'bsmt_egrd']] #get a slice by level 2 values #get occurances by value d = hp_pd.sum_occurances(df1, logger=logger) #======================================================================= # loop and calc #======================================================================= logger.debug('looping through %i bsmt_egrds: %s'%(len(d), list(d.keys()))) for bsmt_egrd, cnt in d.items(): attn = 'b'+bsmt_egrd +'_cnt' logger.debug('for \'%s\' got %i'%(attn, cnt)) setattr(self, attn, cnt) logger.debug('finished \n') def check_dmg_dx(self): #check logical consistency of the damage results logger = self.logger.getChild('check_dmg_dx') #======================================================================= # data setup #======================================================================= dmg_dx = self.dmg_dx.copy() mdex = dmg_dx.columns aep_l = mdex.get_level_values(0).astype(int).unique().values.tolist() aep_l.sort() #======================================================================= # check that each flood increases in damage #======================================================================= total = None aep_last = None for aep in aep_l: #get this slice df = dmg_dx[aep] if total is None: boolcol = np.isin(df.columns, ['MS', 'MC', 'BS', 'BC', 'GS']) #identify damage columns total = df.loc[:,boolcol].sum().sum() if not aep == min(aep_l): raise IOError else: newtot = df.loc[:,boolcol].sum().sum() if not newtot >= total: logger.warning('aep %s tot %.2f < aep %s %.2f'%(aep, newtot, aep_last, total)) #raise IOError #print 'new tot %.2f > oldtot %.2f'%(newtot, total) total = newtot aep_last = aep return def check_acodes(self, #check you have curves for all the acodes ac_sec_d = None, #set of Loaded acodes {acode: asecotr} ac_req_l = None, #set of requested acodes dfunc_df = None, #contorl file page for the dfunc parameters ): #======================================================================= # defaults #======================================================================= log = self.logger.getChild('check_acodes') if ac_sec_d is None: ac_sec_d = self.acode_sec_d if ac_req_l is None: ac_req_l = self.binv.acode_l #pull from the binv if dfunc_df is None: dfunc_df = self.session.pars_df_d['dfunc'] log.debug('checking acodes requested by binv against %i available'%len(ac_sec_d)) """ for k, v in ac_sec_d.items(): print(k, v) """ #======================================================================= # conversions #======================================================================= ava_ar = np.array(list(ac_sec_d.keys())) #convert availables to an array req_ar = np.array(ac_req_l) #get the pars set pars_ar_raw = dfunc_df['acode'].dropna().unique() pars_ar = pars_ar_raw[pars_ar_raw!='none'] #drop the nones #======================================================================= # check we loaded everything we requested in the pars #======================================================================= boolar = np.invert(np.isin(pars_ar, ava_ar)) if np.any(boolar): raise Error('%i acodes requested by the pars were not loaded: \n %s' %(boolar.sum(), req_ar[boolar])) #======================================================================= # check the binv doesnt have anything we dont have pars for #======================================================================= boolar = np.invert(np.isin(req_ar, pars_ar)) if np.any(boolar): raise Error('%i binv acodes not found on the \'dfunc\' tab: \n %s' %(boolar.sum(), req_ar[boolar])) return def wrap_up(self): #======================================================================= # update asset containers #======================================================================= """ #building inventory 'should be flagged for updating during House.notify()' if self.binv.upd_kid_f: self.binv.update()""" """dont think we need this here any more.. only on udev. keeping it just to be save""" self.last_tstep = copy.copy(self.time) self.state='close' def write_res_fancy(self, #for saving results in xls per tab. called as a special outputr dmg_dx=None, include_ins = False, include_raw = False, include_begh = True): """ #======================================================================= # INPUTS #======================================================================= include_ins: whether ot add inputs as tabs. ive left this separate from the 'copy_inputs' flag as it is not a true file copy of the inputs """ #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('write_res_fancy') if dmg_dx is None: dmg_dx = self.dmg_dx if dmg_dx is None: logger.warning('got no dmg_dx. skipping') return #======================================================================= # setup #======================================================================= od = OrderedDict() #======================================================================= # add the parameters #======================================================================= #get the blank frame df = pd.DataFrame(columns = ['par','value'] ) df['par'] = list(self.try_inherit_anl) for indx, row in df.iterrows(): df.iloc[indx, 1] = getattr(self, row['par']) #set this value od['pars'] = df #======================================================================= # try and add damage summary #======================================================================= if not self.dmgs_df is None: od['dmg summary'] = self.dmgs_df #======================================================================= # #get theh dmg_dx decomposed #======================================================================= od.update(hp_pd.dxcol_to_df_set(dmg_dx, logger=self.logger)) #======================================================================= # #add dmg_dx as a raw tab #======================================================================= if include_raw: od['raw_res'] = dmg_dx #======================================================================= # add inputs #======================================================================= if include_ins: for dataname, dato in self.kids_d.items(): if hasattr(dato, 'data') & hp_pd.isdf(dato.data): od[dataname] = dato.data #======================================================================= # add debuggers #======================================================================= if include_begh: if not self.beg_hist_df is None: od['beg_hist'] = self.beg_hist_df #======================================================================= # #write to excel #======================================================================= filetail = '%s %s %s %s fancy_res'%(self.session.tag, self.simu_o.name, self.tstep_o.name, self.name) filepath = os.path.join(self.outpath, filetail) hp_pd.write_dfset_excel(od, filepath, engine='xlsxwriter', logger=self.logger) return def write_dmg_fly(self): #write damage results after each run logger = self.logger.getChild('write_dmg_fly') dxcol = self.dmg_dx #results #======================================================================= # build the resuults summary series #======================================================================= #get all the flood aeps lvl0vals = dxcol.columns.get_level_values(0).unique().astype(int).tolist() #blank holder res_ser = pd.Series(index = lvl0vals) #loop and calc sums for each flood for aep in lvl0vals: res_ser[aep] = dxcol.loc[:,(aep,'total')].sum() #add extras if not self.ead_tot is None: res_ser['ead_tot'] = self.ead_tot res_ser['dt'] = self.tstep_o.year res_ser['sim'] = self.simu_o.ind lindex = '%s.%s'%(self.simu_o.name, self.tstep_o.name) hp_pd.write_fly_df(self.fly_res_fpath,res_ser, lindex = lindex, first = self.write_dmg_fly_first, tag = 'fdmg totals', db_f = self.db_f, logger=logger) #write results on the fly self.write_dmg_fly_first = False return def get_plot_kids(self): #raise kids for plotting the damage summaries logger = self.logger.getChild('get_plot_kids') #======================================================================= # get slice of aad_fmt_df matching the aad cols #======================================================================= aad_fmt_df = self.session.pars_df_d['dmg_sumry_plot'] #pull teh formater pars from the tab dmgs_df = self.dmgs_df self.data = dmgs_df boolidx = aad_fmt_df.loc[:,'name'].isin(dmgs_df.columns) #get just those formaters with data in the aad aad_fmt_df_slice = aad_fmt_df[boolidx] #get this slice3 """ hp_pd.view_web_df(self.data) hp_pd.view_web_df(df) hp_pd.view_web_df(aad_fmt_df_slice) aad_fmt_df_slice.columns """ #======================================================================= # formatter kids setup #======================================================================= """need to run this every time so the data is updated TODO: allow some updating here so we dont have to reduibl deach time if self.plotter_kids_dict is None:""" self.plotr_d = self.raise_children_df(aad_fmt_df_slice, kid_class = hp_data.Data_o) logger.debug('finisehd \n') #=============================================================================== # def plot_dmgs(self, wtf=None, right_nm = None, xaxis = 'ari', logx = True, # ylims = None, #tuple of min/max values for the y-axis # ): #plot curve of aad # """ # see tab 'aad_fmt' to control what is plotted and formatting # """ # #======================================================================= # # defaults # #======================================================================= # logger = self.logger.getChild('plot_dmgs') # if wtf == None: wtf = self.session._write_figs # # #======================================================================= # # prechecks # #======================================================================= # if self.db_f: # if self.dmgs_df is None: # raise IOError # # # #======================================================================= # # setup # #======================================================================= # if not ylims is None: # try: # ylims = eval(ylims) # except: # pass # # #get the plot workers # if self.plotr_d is None: # self.get_plot_kids() # # kids_d = self.plotr_d # # title = '%s-%s-%s EAD-ARI plot on %i objs'%(self.session.tag, self.simu_o.name, self.name, len(self.binv.childmeta_df)) # logger.debug('with \'%s\''%title) # # if not self.tstep_o is None: # title = title + ' for %s'%self.tstep_o.name # # #======================================================================= # # update plotters # #======================================================================= # logger.debug('updating plotters with my data') # # #get data # data_og = self.data.copy() #store this for later # # if self.dmgs_df_wtail is None: # df = self.dmgs_df.copy() # else: # df = self.dmgs_df_wtail.copy() # # df = df.sort_values(xaxis, ascending=True) # # #reformat data # df.set_index(xaxis, inplace = True) # # #re set # self.data = df # # #tell kids to refresh their data from here # for gid, obj in kids_d.items(): obj.data = obj.loadr_vir() # # self.data = data_og #reset the data # # #======================================================================= # # get annotation # #======================================================================= # val_str = '$' + "{:,.2f}".format(self.ead_tot/1e6) # #val_str = "{:,.2f}".format(self.ead_tot) # """ # txt = 'total aad: $%s \n tail kwargs: \'%s\' and \'%s\' \n'%(val_str, self.ca_ltail, self.ca_rtail) +\ # 'binv.cnt = %i, floods.cnt = %i \n'%(self.binv.cnt, len(self.fld_aep_od))""" # # # txt = 'total EAD = %s'%val_str # # # #======================================================================= # #plot the workers # #======================================================================= # #twinx # if not right_nm is None: # logger.debug('twinning axis with name \'%s\''%right_nm) # title = title + '_twin' # # sort children into left/right buckets by name to plot on each axis # right_pdb_d, left_pdb_d = self.sort_buckets(kids_d, right_nm) # # if self.db_f: # if len (right_pdb_d) <1: raise IOError # # #======================================================================= # # #send for plotting # #======================================================================= # 'this plots both bundles by their data indexes' # ax1, ax2 = self.plot_twinx(left_pdb_d, right_pdb_d, # logx=logx, xlab = xaxis, title=title, annot = txt, # wtf=False) # 'cant figure out why teh annot is plotting twice' # # ax2.set_ylim(0, 1) #prob limits # legon = False # else: # logger.debug('single axis') # # try: # del kids_d['prob'] # except: # pass # # pdb = self.get_pdb_dict(list(kids_d.values())) # # ax1 = self.plot_bundles(pdb, # logx=logx, xlab = 'ARI', ylab = 'damage ($ 10^6)', title=title, annot = txt, # wtf=False) # # legon=True # # #hatch # #======================================================================= # # post formatting # #======================================================================= # #set axis limits # if xaxis == 'ari': ax1.set_xlim(1, 1000) #aep limits # elif xaxis == 'prob': ax1.set_xlim(0, .6) # # if not ylims is None: # ax1.set_ylim(ylims[0], ylims[1]) # # # #ax1.set_ylim(0, ax1.get_ylim()[1]) #$ limits # # # #======================================================================= # # format y axis labels # #======================================================= ================ # old_tick_l = ax1.get_yticks() #get teh old labels # # # build the new ticks # l = [] # # for value in old_tick_l: # new_v = '$' + "{:,.0f}".format(value/1e6) # l.append(new_v) # # #apply the new labels # ax1.set_yticklabels(l) # # """ # #add thousands comma # ax1.get_yaxis().set_major_formatter( # #matplotlib.ticker.FuncFormatter(lambda x, p: '$' + "{:,.2f}".format(x/1e6))) # # matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))""" # # if xaxis == 'ari': # ax1.get_xaxis().set_major_formatter( # matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ','))) # # # if wtf: # fig = ax1.figure # savepath_raw = os.path.join(self.outpath,title) # flag = hp.plot.save_fig(self, fig, savepath_raw=savepath_raw, dpi = self.dpi, legon=legon) # if not flag: raise IOError # # # #plt.close() # return #=============================================================================== class Flood( hp_dyno.Dyno_wrap, hp_sim.Sim_o, hp_oop.Parent, #flood object worker hp_oop.Child): #=========================================================================== # program pars #=========================================================================== gpwr_f = False #grid power flag palceholder #=========================================================================== # user defineid pars #=========================================================================== ari = None #loaded from flood table #area exposure grade. control for areas depth decision algorhithim based on the performance of macro structures (e.g. dykes). area_egrd00 = '' area_egrd01 = '' area_egrd02 = '' area_egrd00_code = None area_egrd01_code = None area_egrd02_code = None #=========================================================================== # calculated pars #=========================================================================== hdep_avg = 0 #average house depth #damate properties total = 0 BS = 0 BC = 0 MS = 0 MC = 0 dmg_gw = 0 dmg_sw = 0 dmg_df_blank =None wsl_avg = 0 #=========================================================================== # data containers #=========================================================================== hdmg_cnt = 0 dmg_df = None dmg_res_df = None #bsmt_egrd counters. see get_begrd_cnt() bdry_cnt = 0 bwet_cnt = 0 bdamp_cnt = 0 def __init__(self, parent, *vars, **kwargs): logger = mod_logger.getChild('Flood') logger.debug('start _init_') #======================================================================= # #attach custom vars #======================================================================= self.inherit_parent_ans=set(['mind', 'dmg_types']) #======================================================================= # initilize cascade #======================================================================= super(Flood, self).__init__(parent, *vars, **kwargs) #initilzie teh baseclass #======================================================================= # common setup #======================================================================= if self.sib_cnt == 0: #update the resets pass #======================================================================= # unique setup #======================================================================= """ handled by the outputr self.reset_d.update({'hdmg_cnt':0})""" self.ari = int(self.ari) self.dmg_res_df = pd.DataFrame() #set as an empty frame for output handling #======================================================================= # setup functions #======================================================================= self.set_gpwr_f() logger.debug('set_dmg_df_blank()') self.set_dmg_df_blank() logger.debug('get your water levels from the selected wsl table \n') self.set_wsl_frm_tbl() logger.debug('set_area_egrd()') self.set_area_egrd() logger.debug('get_info_from_binv()') df = self.get_info_from_binv() #initial run to set blank frame self.set_wsl_from_egrd(df) """ moved into set_wsl_frm_tbl() logger.debug('\n') self.setup_dmg_df()""" self.init_dyno() self.logger.debug('__init___ finished \n') def set_dmg_df_blank(self): logger = self.logger.getChild('set_dmg_df_blank') binv_df = self.model.binv.childmeta_df colns = OrderedSet(self.model.dmg_df_cols.tolist() + ['wsl', 'area_prot_lvl']) 'wsl should be redundant' #get boolean self.binvboolcol = binv_df.columns.isin(colns) #store this for get_info_from_binv() #get teh blank frame self.dmg_df_blank = pd.DataFrame(columns = colns, index = binv_df.index) #get the blank frame 'this still needs the wsl levels attached based on your area exposure grade' logger.debug('set dmg_df_blank with %s'%(str(self.dmg_df_blank.shape))) return def set_gpwr_f(self): #set your power flag if self.is_frozen('gpwr_f'): return True#shortcut for frozen logger = self.logger.getChild('set_gpwr_f') #======================================================================= # get based on aep #======================================================================= min_aep = int(self.model.gpwr_aep) if self.ari < min_aep: gpwr_f = True else: gpwr_f = False logger.debug('for min_aep = %i, set gpwr_f = %s'%(min_aep, gpwr_f)) #update handler self.handle_upd('gpwr_f', gpwr_f, proxy(self), call_func = 'set_gpwr_f') return True def set_wsl_frm_tbl(self, #build the raw wsl data from the passed flood table flood_tbl_nm = None, #name of flood table to pull raw data from #bid_l=None, ): """ here we get the raw values these are later modified by teh area_egrd with self.get_wsl_from_egrd() #======================================================================= # INPUTS #======================================================================= flood_tbl_df_raw: raw df of the classic flood table columns:` count, aep, aep, aep, aep....\ real_columns: bldg_id, bid, depth, depth, depth, etc... index: unique arbitrary wsl_ser: series of wsl for this flood on each bldg_id #======================================================================= # calls #======================================================================= dynp handles Fdmg.flood_tbl_nm """ #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('set_wsl_frm_tbl') if flood_tbl_nm is None: flood_tbl_nm = self.model.flood_tbl_nm #======================================================================= # get data #======================================================================= #pull the raw flood tables ftbl_o = self.model.ftblos_d[flood_tbl_nm] wsl_d = ftbl_o.wsl_d df = pd.DataFrame(index = list(wsl_d.values())[0].index) #blank frame from teh first entry #======================================================================= # loop and apply for each flood type #======================================================================= for ftype, df1 in wsl_d.items(): #======================================================================= # data checks #======================================================================= if self.db_f: if not ftype in ['wet', 'dry', 'damp']: raise IOError df_raw =df1.copy() if not self.ari in df_raw.columns: logger.error('the flood provided on the \'floods\' tab (\'%s\') does not have a match in the flood table: \n %s'% (self.ari, self.model.ftblos_d[flood_tbl_nm].filepath)) raise IOError #======================================================================= # slice for this flood #======================================================================= boolcol = df1.columns == self.ari #slice for this aep #get the series for this wsl_ser = df1.loc[:, boolcol].iloc[:,0].astype(float) #wsl_ser = wsl_ser.rename(ftype) #rename with the aep 'binv slicing moved to Flood_tbl.clean_data()' #======================================================================= # checks #======================================================================= if self.db_f: if len(wsl_ser) <1: raise IOError """ allowing #check for nuls if np.any(pd.isnull(wsl_ser2)): raise IOError""" #======================================================================= # wrap up report and attach #======================================================================= df[ftype] = wsl_ser logger.debug('from \'%s\' for \'%s\' got wsl_ser %s for aep: %i' %(flood_tbl_nm, ftype, str(wsl_ser.shape), self.ari)) self.wsl_df = df #set this 'notusing dy nps' if self.session.state == 'init': self.reset_d['wsl_df'] = df.copy() return True def set_area_egrd(self): #pull your area exposure grade from somewhere """ #======================================================================= # calls #======================================================================= self.__init__() dynp handles: Fdmg.flood_tbl_nm (just in case we are pulling from there """ #======================================================================= # dependency check #======================================================================= if not self.session.state=='init': dep_l = [([self.model], ['set_area_prot_lvl'])] if self.deps_is_dated(dep_l, method = 'reque', caller = 'set_area_egrd'): return False logger = self.logger.getChild('set_area_egrd') #======================================================================= # steal egrd from elsewhere table if asked #======================================================================= for cnt in range(0,3,1): #loop through each one attn = 'area_egrd%02d'%cnt area_egrd_code = getattr(self, attn + '_code') if area_egrd_code in ['dry', 'damp', 'wet']: area_egrd = area_egrd_code #=================================================================== # pull from teh flood table #=================================================================== elif area_egrd_code == '*ftbl': ftbl_o = self.model.ftblos_d[self.model.flood_tbl_nm] #get the flood tabl object area_egrd = getattr(ftbl_o, attn) #get from teh table #=================================================================== # pull from teh model #=================================================================== elif area_egrd_code == '*model': area_egrd = getattr(self.model, attn) #get from teh table else: logger.error('for \'%s\' got unrecognized area_egrd_code: \'%s\''%(attn, area_egrd_code)) raise IOError #=================================================================== # set these #=================================================================== self.handle_upd(attn, area_egrd, weakref.proxy(self), call_func = 'set_area_egrd') 'this should triger generating a new wsl set to teh blank_dmg_df' logger.debug('set \'%s\' from \'%s\' as \'%s\'' %(attn, area_egrd_code,area_egrd)) if self.db_f: if not area_egrd in ['dry', 'damp', 'wet']: raise IOError return True def set_wsl_from_egrd(self, #calculate the wsl based on teh area_egrd df = None): """ This is a partial results retrival for non damage function results TODO: consider checking for depednency on House.area_prot_lvl #======================================================================= # calls #======================================================================= self.__init__ dynp handles for: Flood.area_egrd## Fdmg.flood_tbl_nm if area_egrd_code == *model, this loop isnt really necessary """ #======================================================================= # check dependencies and frozen #=========================================================== ============ if not self.session.state=='init': dep_l = [([self], ['set_area_egrd', 'set_wsl_frm_tbl'])] if self.deps_is_dated(dep_l, method = 'reque', caller = 'set_wsl_from_egrd'): return False #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('set_wsl_from_egrd') #if wsl_delta is None: wsl_delta = self.model.wsl_delta #======================================================================= # get data #======================================================================= if df is None: df = self.get_info_from_binv() 'need to have updated area_prot_lvls' #======================================================================= # precheck #======================================================================= if self.db_f: if not isinstance(df, pd.DataFrame): raise IOError if not len(df) > 0: raise IOError #======================================================================= # add the wsl for each area_egrd #======================================================================= for prot_lvl in range(0,3,1): #loop through each one #get your grade fro this prot_lvl attn = 'area_egrd%02d'%prot_lvl area_egrd = getattr(self, attn) #identify the housese for this protection level boolidx = df.loc[:,'area_prot_lvl'] == prot_lvl if boolidx.sum() == 0: continue #give them the wsl corresponding to this grade df.loc[boolidx, 'wsl'] = self.wsl_df.loc[boolidx,area_egrd] #set a tag for the area_egrd if 'area_egrd' in df.columns: df.loc[boolidx, 'area_egrd'] = area_egrd logger.debug('for prot_lvl %i, set %i wsl from \'%s\''%(prot_lvl, boolidx.sum(), area_egrd)) #======================================================================= # set this #======================================================================= self.dmg_df_blank = df #======================================================================= # post check #======================================================================= logger.debug('set dmg_df_blank with %s'%str(df.shape)) if self.session.state=='init': self.reset_d['dmg_df_blank'] = df.copy() if self.db_f: if np.any(
pd.isnull(df['wsl'])
pandas.isnull
from datetime import timedelta import pytest from pandas import PeriodIndex, Series, Timedelta, date_range, period_range, to_datetime import pandas._testing as tm class TestToTimestamp: def test_to_timestamp(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "D") -
Timedelta(1, "ns")
pandas.Timedelta
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas from pandas.api.types import is_scalar from pandas.compat import to_str, string_types, numpy as numpy_compat, cPickle as pkl import pandas.core.common as com from pandas.core.dtypes.common import ( _get_dtype_from_object, is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_object_dtype, is_integer_dtype, ) from pandas.core.index import _ensure_index_from_sequences from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.util._validators import validate_bool_kwarg import itertools import functools import numpy as np import re import sys import warnings from modin.error_message import ErrorMessage from .utils import from_pandas, to_pandas, _inherit_docstrings from .iterator import PartitionIterator from .series import SeriesView @_inherit_docstrings( pandas.DataFrame, excluded=[pandas.DataFrame, pandas.DataFrame.__init__] ) class DataFrame(object): def __init__( self, data=None, index=None, columns=None, dtype=None, copy=False, query_compiler=None, ): """Distributed DataFrame object backed by Pandas dataframes. Args: data (numpy ndarray (structured or homogeneous) or dict): Dict can contain Series, arrays, constants, or list-like objects. index (pandas.Index, list, ObjectID): The row index for this DataFrame. columns (pandas.Index): The column names for this DataFrame, in pandas Index object. dtype: Data type to force. Only a single dtype is allowed. If None, infer copy (boolean): Copy data from inputs. Only affects DataFrame / 2d ndarray input. query_compiler: A query compiler object to manage distributed computation. """ if isinstance(data, DataFrame): self._query_compiler = data._query_compiler return # Check type of data and use appropriate constructor if data is not None or query_compiler is None: pandas_df = pandas.DataFrame( data=data, index=index, columns=columns, dtype=dtype, copy=copy ) self._query_compiler = from_pandas(pandas_df)._query_compiler else: self._query_compiler = query_compiler def __str__(self): return repr(self) def _build_repr_df(self, num_rows, num_cols): # Add one here so that pandas automatically adds the dots # It turns out to be faster to extract 2 extra rows and columns than to # build the dots ourselves. num_rows_for_head = num_rows // 2 + 1 num_cols_for_front = num_cols // 2 + 1 if len(self.index) <= num_rows: head = self._query_compiler tail = None else: head = self._query_compiler.head(num_rows_for_head) tail = self._query_compiler.tail(num_rows_for_head) if len(self.columns) <= num_cols: head_front = head.to_pandas() # Creating these empty to make the concat logic simpler head_back = pandas.DataFrame() tail_back = pandas.DataFrame() if tail is not None: tail_front = tail.to_pandas() else: tail_front = pandas.DataFrame() else: head_front = head.front(num_cols_for_front).to_pandas() head_back = head.back(num_cols_for_front).to_pandas() if tail is not None: tail_front = tail.front(num_cols_for_front).to_pandas() tail_back = tail.back(num_cols_for_front).to_pandas() else: tail_front = tail_back = pandas.DataFrame() head_for_repr = pandas.concat([head_front, head_back], axis=1) tail_for_repr = pandas.concat([tail_front, tail_back], axis=1) return pandas.concat([head_for_repr, tail_for_repr]) def __repr__(self): # In the future, we can have this be configurable, just like Pandas. num_rows = 60 num_cols = 30 result = repr(self._build_repr_df(num_rows, num_cols)) if len(self.index) > num_rows or len(self.columns) > num_cols: # The split here is so that we don't repr pandas row lengths. return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".format( len(self.index), len(self.columns) ) else: return result def _repr_html_(self): """repr function for rendering in Jupyter Notebooks like Pandas Dataframes. Returns: The HTML representation of a Dataframe. """ # In the future, we can have this be configurable, just like Pandas. num_rows = 60 num_cols = 20 # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. result = self._build_repr_df(num_rows, num_cols)._repr_html_() if len(self.index) > num_rows or len(self.columns) > num_cols: # We split so that we insert our correct dataframe dimensions. return result.split("<p>")[ 0 ] + "<p>{0} rows x {1} columns</p>\n</div>".format( len(self.index), len(self.columns) ) else: return result def _get_index(self): """Get the index for this DataFrame. Returns: The union of all indexes across the partitions. """ return self._query_compiler.index def _get_columns(self): """Get the columns for this DataFrame. Returns: The union of all indexes across the partitions. """ return self._query_compiler.columns def _set_index(self, new_index): """Set the index for this DataFrame. Args: new_index: The new index to set this """ self._query_compiler.index = new_index def _set_columns(self, new_columns): """Set the columns for this DataFrame. Args: new_index: The new index to set this """ self._query_compiler.columns = new_columns index = property(_get_index, _set_index) columns = property(_get_columns, _set_columns) def _validate_eval_query(self, expr, **kwargs): """Helper function to check the arguments to eval() and query() Args: expr: The expression to evaluate. This string cannot contain any Python statements, only Python expressions. """ if isinstance(expr, str) and expr is "": raise ValueError("expr cannot be an empty string") if isinstance(expr, str) and "@" in expr: ErrorMessage.not_implemented("Local variables not yet supported in eval.") if isinstance(expr, str) and "not" in expr: if "parser" in kwargs and kwargs["parser"] == "python": ErrorMessage.not_implemented("'Not' nodes are not implemented.") @property def size(self): """Get the number of elements in the DataFrame. Returns: The number of elements in the DataFrame. """ return len(self.index) * len(self.columns) @property def ndim(self): """Get the number of dimensions for this DataFrame. Returns: The number of dimensions for this DataFrame. """ # DataFrames have an invariant that requires they be 2 dimensions. return 2 @property def ftypes(self): """Get the ftypes for this DataFrame. Returns: The ftypes for this DataFrame. """ # The ftypes are common across all partitions. # The first partition will be enough. dtypes = self.dtypes.copy() ftypes = ["{0}:dense".format(str(dtype)) for dtype in dtypes.values] result = pandas.Series(ftypes, index=self.columns) return result @property def dtypes(self): """Get the dtypes for this DataFrame. Returns: The dtypes for this DataFrame. """ return self._query_compiler.dtypes @property def empty(self): """Determines if the DataFrame is empty. Returns: True if the DataFrame is empty. False otherwise. """ return len(self.columns) == 0 or len(self.index) == 0 @property def values(self): """Create a numpy array with the values from this DataFrame. Returns: The numpy representation of this DataFrame. """ return to_pandas(self).values @property def axes(self): """Get the axes for the DataFrame. Returns: The axes for the DataFrame. """ return [self.index, self.columns] @property def shape(self): """Get the size of each of the dimensions in the DataFrame. Returns: A tuple with the size of each dimension as they appear in axes(). """ return len(self.index), len(self.columns) def _update_inplace(self, new_query_compiler): """Updates the current DataFrame inplace. Args: new_query_compiler: The new QueryCompiler to use to manage the data """ old_query_compiler = self._query_compiler self._query_compiler = new_query_compiler old_query_compiler.free() def add_prefix(self, prefix): """Add a prefix to each of the column names. Returns: A new DataFrame containing the new column names. """ return DataFrame(query_compiler=self._query_compiler.add_prefix(prefix)) def add_suffix(self, suffix): """Add a suffix to each of the column names. Returns: A new DataFrame containing the new column names. """ return DataFrame(query_compiler=self._query_compiler.add_suffix(suffix)) def applymap(self, func): """Apply a function to a DataFrame elementwise. Args: func (callable): The function to apply. """ if not callable(func): raise ValueError("'{0}' object is not callable".format(type(func))) ErrorMessage.non_verified_udf() return DataFrame(query_compiler=self._query_compiler.applymap(func)) def copy(self, deep=True): """Creates a shallow copy of the DataFrame. Returns: A new DataFrame pointing to the same partitions as this one. """ return DataFrame(query_compiler=self._query_compiler.copy()) def groupby( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs ): """Apply a groupby to this DataFrame. See _groupby() remote task. Args: by: The value to groupby. axis: The axis to groupby. level: The level of the groupby. as_index: Whether or not to store result as index. sort: Whether or not to sort the result by the index. group_keys: Whether or not to group the keys. squeeze: Whether or not to squeeze. Returns: A new DataFrame resulting from the groupby. """ axis = pandas.DataFrame()._get_axis_number(axis) idx_name = "" if callable(by): by = by(self.index) elif isinstance(by, string_types): idx_name = by by = self.__getitem__(by).values.tolist() elif is_list_like(by): if isinstance(by, pandas.Series): by = by.values.tolist() mismatch = ( len(by) != len(self) if axis == 0 else len(by) != len(self.columns) ) if all(obj in self for obj in by) and mismatch: # In the future, we will need to add logic to handle this, but for now # we default to pandas in this case. pass elif mismatch: raise KeyError(next(x for x in by if x not in self)) from .groupby import DataFrameGroupBy return DataFrameGroupBy( self, by, axis, level, as_index, sort, group_keys, squeeze, idx_name, **kwargs ) def sum( self, axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs ): """Perform a sum across the DataFrame. Args: axis (int): The axis to sum on. skipna (bool): True to skip NA values, false otherwise. Returns: The sum of the DataFrame. """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 self._validate_dtypes_sum_prod_mean(axis, numeric_only, ignore_axis=False) return self._query_compiler.sum( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs ) def abs(self): """Apply an absolute value function to all numeric columns. Returns: A new DataFrame with the applied absolute value. """ self._validate_dtypes(numeric_only=True) return DataFrame(query_compiler=self._query_compiler.abs()) def isin(self, values): """Fill a DataFrame with booleans for cells contained in values. Args: values (iterable, DataFrame, Series, or dict): The values to find. Returns: A new DataFrame with booleans representing whether or not a cell is in values. True: cell is contained in values. False: otherwise """ return DataFrame(query_compiler=self._query_compiler.isin(values=values)) def isna(self): """Fill a DataFrame with booleans for cells containing NA. Returns: A new DataFrame with booleans representing whether or not a cell is NA. True: cell contains NA. False: otherwise. """ return DataFrame(query_compiler=self._query_compiler.isna()) def isnull(self): """Fill a DataFrame with booleans for cells containing a null value. Returns: A new DataFrame with booleans representing whether or not a cell is null. True: cell contains null. False: otherwise. """ return DataFrame(query_compiler=self._query_compiler.isnull()) def keys(self): """Get the info axis for the DataFrame. Returns: A pandas Index for this DataFrame. """ return self.columns def transpose(self, *args, **kwargs): """Transpose columns and rows for the DataFrame. Returns: A new DataFrame transposed from this DataFrame. """ return DataFrame(query_compiler=self._query_compiler.transpose(*args, **kwargs)) T = property(transpose) def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """Create a new DataFrame from the removed NA values from this one. Args: axis (int, tuple, or list): The axis to apply the drop. how (str): How to drop the NA values. 'all': drop the label if all values are NA. 'any': drop the label if any values are NA. thresh (int): The minimum number of NAs to require. subset ([label]): Labels to consider from other axis. inplace (bool): Change this DataFrame or return a new DataFrame. True: Modify the data for this DataFrame, return None. False: Create a new DataFrame and return it. Returns: If inplace is set to True, returns None, otherwise returns a new DataFrame with the dropna applied. """ inplace = validate_bool_kwarg(inplace, "inplace") if is_list_like(axis): axis = [pandas.DataFrame()._get_axis_number(ax) for ax in axis] result = self for ax in axis: result = result.dropna(axis=ax, how=how, thresh=thresh, subset=subset) return self._create_dataframe_from_compiler(result._query_compiler, inplace) axis = pandas.DataFrame()._get_axis_number(axis) if how is not None and how not in ["any", "all"]: raise ValueError("invalid how option: %s" % how) if how is None and thresh is None: raise TypeError("must specify how or thresh") if subset is not None: if axis == 1: indices = self.index.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) else: indices = self.columns.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) new_query_compiler = self._query_compiler.dropna( axis=axis, how=how, thresh=thresh, subset=subset ) return self._create_dataframe_from_compiler(new_query_compiler, inplace) def add(self, other, axis="columns", level=None, fill_value=None): """Add this DataFrame to another or a scalar/list. Args: other: What to add this this DataFrame. axis: The axis to apply addition over. Only applicaable to Series or list 'other'. level: A level in the multilevel axis to add over. fill_value: The value to fill NaN. Returns: A new DataFrame with the applied addition. """ axis = pandas.DataFrame()._get_axis_number(axis) if level is not None: if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.add, other, axis=axis, level=level, fill_value=fill_value, ) other = self._validate_other(other, axis, numeric_or_object_only=True) new_query_compiler = self._query_compiler.add( other=other, axis=axis, level=level, fill_value=fill_value ) return self._create_dataframe_from_compiler(new_query_compiler) def agg(self, func, axis=0, *args, **kwargs): return self.aggregate(func, axis, *args, **kwargs) def aggregate(self, func, axis=0, *args, **kwargs): axis = pandas.DataFrame()._get_axis_number(axis) result = None if axis == 0: try: result = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: kwargs.pop("is_transform", None) return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, *args, **kwargs): _axis = kwargs.pop("_axis", None) if _axis is None: _axis = getattr(self, "axis", 0) kwargs.pop("_level", None) if isinstance(arg, string_types): return self._string_function(arg, *args, **kwargs) # Dictionaries have complex behavior because they can be renamed here. elif isinstance(arg, dict): return self._default_to_pandas(pandas.DataFrame.agg, arg, *args, **kwargs) elif is_list_like(arg) or callable(arg): return self.apply(arg, axis=_axis, args=args, **kwargs) else: # TODO Make pandas error raise ValueError("type {} is not callable".format(type(arg))) def _string_function(self, func, *args, **kwargs): assert isinstance(func, string_types) f = getattr(self, func, None) if f is not None: if callable(f): return f(*args, **kwargs) assert len(args) == 0 assert ( len([kwarg for kwarg in kwargs if kwarg not in ["axis", "_level"]]) == 0 ) return f f = getattr(np, func, None) if f is not None: return self._default_to_pandas(pandas.DataFrame.agg, func, *args, **kwargs) raise ValueError("{} is an unknown string function".format(func)) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.align, other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def all(self, axis=0, bool_only=None, skipna=None, level=None, **kwargs): """Return whether all elements are True over requested axis Note: If axis=None or axis=0, this call applies df.all(axis=1) to the transpose of df. """ if axis is not None: axis = pandas.DataFrame()._get_axis_number(axis) else: if bool_only: raise ValueError("Axis must be 0 or 1 (got {})".format(axis)) return self._query_compiler.all( axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs ) def any(self, axis=0, bool_only=None, skipna=None, level=None, **kwargs): """Return whether any elements are True over requested axis Note: If axis=None or axis=0, this call applies on the column partitions, otherwise operates on row partitions """ if axis is not None: axis = pandas.DataFrame()._get_axis_number(axis) else: if bool_only: raise ValueError("Axis must be 0 or 1 (got {})".format(axis)) return self._query_compiler.any( axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs ) def append(self, other, ignore_index=False, verify_integrity=False, sort=None): """Append another DataFrame/list/Series to this one. Args: other: The object to append to this. ignore_index: Ignore the index on appending. verify_integrity: Verify the integrity of the index on completion. Returns: A new DataFrame containing the concatenated values. """ if isinstance(other, (pandas.Series, dict)): if isinstance(other, dict): other = pandas.Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True" " or if the Series has a name" ) if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = pandas.Index([other.name], name=self.index.name) # Create a Modin DataFrame from this Series for ease of development other = DataFrame(pandas.DataFrame(other).T, index=index)._query_compiler elif isinstance(other, list): if not isinstance(other[0], DataFrame): other = pandas.DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = DataFrame(other.loc[:, self.columns])._query_compiler else: other = DataFrame(other)._query_compiler else: other = [obj._query_compiler for obj in other] else: other = other._query_compiler # If ignore_index is False, by definition the Index will be correct. # We also do this first to ensure that we don't waste compute/memory. if verify_integrity and not ignore_index: appended_index = self.index.append(other.index) is_valid = next((False for idx in appended_index.duplicated() if idx), True) if not is_valid: raise ValueError( "Indexes have overlapping values: {}".format( appended_index[appended_index.duplicated()] ) ) query_compiler = self._query_compiler.concat( 0, other, ignore_index=ignore_index, sort=sort ) return DataFrame(query_compiler=query_compiler) def apply( self, func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds ): """Apply a function along input axis of DataFrame. Args: func: The function to apply axis: The axis over which to apply the func. broadcast: Whether or not to broadcast. raw: Whether or not to convert to a Series. reduce: Whether or not to try to apply reduction procedures. Returns: Series or DataFrame, depending on func. """ axis = pandas.DataFrame()._get_axis_number(axis) ErrorMessage.non_verified_udf() if isinstance(func, string_types): if axis == 1: kwds["axis"] = axis return getattr(self, func)(*args, **kwds) elif isinstance(func, dict): if axis == 1: raise TypeError( "(\"'dict' object is not callable\", " "'occurred at index {0}'".format(self.index[0]) ) if len(self.columns) != len(set(self.columns)): warnings.warn( "duplicate column names not supported with apply().", FutureWarning, stacklevel=2, ) elif is_list_like(func): if axis == 1: raise TypeError( "(\"'list' object is not callable\", " "'occurred at index {0}'".format(self.index[0]) ) elif not callable(func): return query_compiler = self._query_compiler.apply(func, axis, *args, **kwds) if isinstance(query_compiler, pandas.Series): return query_compiler return DataFrame(query_compiler=query_compiler) def as_blocks(self, copy=True): return self._default_to_pandas(pandas.DataFrame.as_blocks, copy=copy) def as_matrix(self, columns=None): """Convert the frame to its Numpy-array representation. Args: columns: If None, return all columns, otherwise, returns specified columns. Returns: values: ndarray """ # TODO this is very inefficient, also see __array__ return to_pandas(self).as_matrix(columns) def asfreq(self, freq, method=None, how=None, normalize=False, fill_value=None): return self._default_to_pandas( pandas.DataFrame.asfreq, freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) def asof(self, where, subset=None): return self._default_to_pandas(pandas.DataFrame.asof, where, subset=subset) def assign(self, **kwargs): return self._default_to_pandas(pandas.DataFrame.assign, **kwargs) def astype(self, dtype, copy=True, errors="raise", **kwargs): col_dtypes = {} if isinstance(dtype, dict): if not set(dtype.keys()).issubset(set(self.columns)) and errors == "raise": raise KeyError( "Only a column name can be used for the key in" "a dtype mappings argument." ) col_dtypes = dtype else: for column in self.columns: col_dtypes[column] = dtype new_query_compiler = self._query_compiler.astype(col_dtypes, **kwargs) return self._create_dataframe_from_compiler(new_query_compiler, not copy) def at_time(self, time, asof=False): return self._default_to_pandas(pandas.DataFrame.at_time, time, asof=asof) def between_time(self, start_time, end_time, include_start=True, include_end=True): return self._default_to_pandas( pandas.DataFrame.between_time, start_time, end_time, include_start=include_start, include_end=include_end, ) def bfill(self, axis=None, inplace=False, limit=None, downcast=None): """Synonym for DataFrame.fillna(method='bfill')""" new_df = self.fillna( method="bfill", axis=axis, limit=limit, downcast=downcast, inplace=inplace ) if not inplace: return new_df def bool(self): """Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean """ shape = self.shape if shape != (1,) and shape != (1, 1): raise ValueError( """The PandasObject does not have exactly 1 element. Return the bool of a single element PandasObject. The truth value is ambiguous. Use a.empty, a.item(), a.any() or a.all().""" ) else: return to_pandas(self).bool() def boxplot( self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwargs ): return to_pandas(self).boxplot( column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, **kwargs ) def clip(self, lower=None, upper=None, axis=None, inplace=False, *args, **kwargs): # validate inputs if axis is not None: axis = pandas.DataFrame()._get_axis_number(axis) self._validate_dtypes(numeric_only=True) if is_list_like(lower) or is_list_like(upper): if axis is None: raise ValueError("Must specify axis = 0 or 1") self._validate_other(lower, axis) self._validate_other(upper, axis) inplace = validate_bool_kwarg(inplace, "inplace") axis = numpy_compat.function.validate_clip_with_axis(axis, args, kwargs) # any np.nan bounds are treated as None if lower is not None and np.any(np.isnan(lower)): lower = None if upper is not None and np.any(np.isnan(upper)): upper = None new_query_compiler = self._query_compiler.clip( lower=lower, upper=upper, axis=axis, inplace=inplace, *args, **kwargs ) return self._create_dataframe_from_compiler(new_query_compiler, inplace) def clip_lower(self, threshold, axis=None, inplace=False): return self.clip(lower=threshold, axis=axis, inplace=inplace) def clip_upper(self, threshold, axis=None, inplace=False): return self.clip(upper=threshold, axis=axis, inplace=inplace) def combine(self, other, func, fill_value=None, overwrite=True): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.combine, other, func, fill_value=fill_value, overwrite=overwrite, ) def combine_first(self, other): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas(pandas.DataFrame.combine_first, other=other) def compound(self, axis=None, skipna=None, level=None): return self._default_to_pandas( pandas.DataFrame.compound, axis=axis, skipna=skipna, level=level ) def consolidate(self, inplace=False): return self._default_to_pandas(pandas.DataFrame.consolidate, inplace=inplace) def convert_objects( self, convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True, ): return self._default_to_pandas( pandas.DataFrame.convert_objects, convert_dates=convert_dates, convert_numeric=convert_numeric, convert_timedeltas=convert_timedeltas, copy=copy, ) def corr(self, method="pearson", min_periods=1): return self._default_to_pandas( pandas.DataFrame.corr, method=method, min_periods=min_periods ) def corrwith(self, other, axis=0, drop=False): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.corrwith, other, axis=axis, drop=drop ) def count(self, axis=0, level=None, numeric_only=False): """Get the count of non-null objects in the DataFrame. Arguments: axis: 0 or 'index' for row-wise, 1 or 'columns' for column-wise. level: If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. numeric_only: Include only float, int, boolean data Returns: The count, in a Series (or DataFrame if level is specified). """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 return self._query_compiler.count( axis=axis, level=level, numeric_only=numeric_only ) def cov(self, min_periods=None): return self._default_to_pandas(pandas.DataFrame.cov, min_periods=min_periods) def cummax(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative maximum across the DataFrame. Args: axis (int): The axis to take maximum on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative maximum of the DataFrame. """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 if axis: self._validate_dtypes() return DataFrame( query_compiler=self._query_compiler.cummax( axis=axis, skipna=skipna, **kwargs ) ) def cummin(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative minimum across the DataFrame. Args: axis (int): The axis to cummin on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative minimum of the DataFrame. """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 if axis: self._validate_dtypes() return DataFrame( query_compiler=self._query_compiler.cummin( axis=axis, skipna=skipna, **kwargs ) ) def cumprod(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative product across the DataFrame. Args: axis (int): The axis to take product on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative product of the DataFrame. """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 self._validate_dtypes(numeric_only=True) return DataFrame( query_compiler=self._query_compiler.cumprod( axis=axis, skipna=skipna, **kwargs ) ) def cumsum(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative sum across the DataFrame. Args: axis (int): The axis to take sum on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative sum of the DataFrame. """ axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 self._validate_dtypes(numeric_only=True) return DataFrame( query_compiler=self._query_compiler.cumsum( axis=axis, skipna=skipna, **kwargs ) ) def describe(self, percentiles=None, include=None, exclude=None): """ Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values. Args: percentiles (list-like of numbers, optional): The percentiles to include in the output. include: White-list of data types to include in results exclude: Black-list of data types to exclude in results Returns: Series/DataFrame of summary statistics """ if include is not None: if not is_list_like(include): include = [include] include = [np.dtype(i) for i in include] if exclude is not None: if not is_list_like(include): exclude = [exclude] exclude = [np.dtype(e) for e in exclude] if percentiles is not None: pandas.DataFrame()._check_percentile(percentiles) return DataFrame( query_compiler=self._query_compiler.describe( percentiles=percentiles, include=include, exclude=exclude ) ) def diff(self, periods=1, axis=0): """Finds the difference between elements on the axis requested Args: periods: Periods to shift for forming difference axis: Take difference over rows or columns Returns: DataFrame with the diff applied """ axis = pandas.DataFrame()._get_axis_number(axis) return DataFrame( query_compiler=self._query_compiler.diff(periods=periods, axis=axis) ) def div(self, other, axis="columns", level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ if level is not None: if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.div, other, axis=axis, level=level, fill_value=fill_value, ) other = self._validate_other(other, axis, numeric_only=True) new_query_compiler = self._query_compiler.div( other=other, axis=axis, level=level, fill_value=fill_value ) return self._create_dataframe_from_compiler(new_query_compiler) def divide(self, other, axis="columns", level=None, fill_value=None): """Synonym for div. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ return self.div(other, axis, level, fill_value) def dot(self, other): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas(pandas.DataFrame.dot, other) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """Return new object with labels in requested axis removed. Args: labels: Index or column labels to drop. axis: Whether to drop labels from the index (0 / 'index') or columns (1 / 'columns'). index, columns: Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels). level: For MultiIndex inplace: If True, do operation inplace and return None. errors: If 'ignore', suppress error and existing labels are dropped. Returns: dropped : type of caller """ # TODO implement level if level is not None: return self._default_to_pandas( pandas.DataFrame.drop, labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) inplace = validate_bool_kwarg(inplace, "inplace") if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") axis = pandas.DataFrame()._get_axis_name(axis) axes = {axis: labels} elif index is not None or columns is not None: axes, _ = pandas.DataFrame()._construct_axes_from_arguments( (index, columns), {} ) else: raise ValueError( "Need to specify at least one of 'labels', 'index' or 'columns'" ) # TODO Clean up this error checking if "index" not in axes: axes["index"] = None elif axes["index"] is not None: if not is_list_like(axes["index"]): axes["index"] = [axes["index"]] if errors == "raise": non_existant = [obj for obj in axes["index"] if obj not in self.index] if len(non_existant): raise ValueError( "labels {} not contained in axis".format(non_existant) ) else: axes["index"] = [obj for obj in axes["index"] if obj in self.index] # If the length is zero, we will just do nothing if not len(axes["index"]): axes["index"] = None if "columns" not in axes: axes["columns"] = None elif axes["columns"] is not None: if not is_list_like(axes["columns"]): axes["columns"] = [axes["columns"]] if errors == "raise": non_existant = [ obj for obj in axes["columns"] if obj not in self.columns ] if len(non_existant): raise ValueError( "labels {} not contained in axis".format(non_existant) ) else: axes["columns"] = [ obj for obj in axes["columns"] if obj in self.columns ] # If the length is zero, we will just do nothing if not len(axes["columns"]): axes["columns"] = None new_query_compiler = self._query_compiler.drop( index=axes["index"], columns=axes["columns"] ) return self._create_dataframe_from_compiler(new_query_compiler, inplace) def drop_duplicates(self, subset=None, keep="first", inplace=False): return self._default_to_pandas( pandas.DataFrame.drop_duplicates, subset=subset, keep=keep, inplace=inplace ) def duplicated(self, subset=None, keep="first"): return self._default_to_pandas( pandas.DataFrame.duplicated, subset=subset, keep=keep ) def eq(self, other, axis="columns", level=None): """Checks element-wise that this is equal to other. Args: other: A DataFrame or Series or scalar to compare to. axis: The axis to perform the eq over. level: The Multilevel index level to apply eq over. Returns: A new DataFrame filled with Booleans. """ if level is not None: if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.eq, other, axis=axis, level=level ) other = self._validate_other(other, axis) new_query_compiler = self._query_compiler.eq( other=other, axis=axis, level=level ) return self._create_dataframe_from_compiler(new_query_compiler) def equals(self, other): """ Checks if other DataFrame is elementwise equal to the current one Returns: Boolean: True if equal, otherwise False """ if isinstance(other, pandas.DataFrame): # Copy into a Ray DataFrame to simplify logic below other = DataFrame(other) if not self.index.equals(other.index) or not self.columns.equals(other.columns): return False return all(self.eq(other).all()) def eval(self, expr, inplace=False, **kwargs): """Evaluate a Python expression as a string using various backends. Args: expr: The expression to evaluate. This string cannot contain any Python statements, only Python expressions. parser: The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the enhancing performance documentation for more details. engine: The engine used to evaluate the expression. truediv: Whether to use true division, like in Python >= 3 local_dict: A dictionary of local variables, taken from locals() by default. global_dict: A dictionary of global variables, taken from globals() by default. resolvers: A list of objects implementing the __getitem__ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes. level: The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter. target: This is the target object for assignment. It is used when there is variable assignment in the expression. If so, then target must support item assignment with string keys, and if a copy is being returned, it must also support .copy(). inplace: If target is provided, and the expression mutates target, whether to modify target inplace. Otherwise, return a copy of target with the mutation. Returns: ndarray, numeric scalar, DataFrame, Series """ self._validate_eval_query(expr, **kwargs) inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.eval(expr, **kwargs) if isinstance(new_query_compiler, pandas.Series): return new_query_compiler else: return self._create_dataframe_from_compiler(new_query_compiler, inplace) def ewm( self, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0, ): return self._default_to_pandas( pandas.DataFrame.ewm, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, freq=freq, adjust=adjust, ignore_na=ignore_na, axis=axis, ) def expanding(self, min_periods=1, freq=None, center=False, axis=0): return self._default_to_pandas( pandas.DataFrame.expanding, min_periods=min_periods, freq=freq, center=center, axis=axis, ) def ffill(self, axis=None, inplace=False, limit=None, downcast=None): """Synonym for DataFrame.fillna(method='ffill') """ new_df = self.fillna( method="ffill", axis=axis, limit=limit, downcast=downcast, inplace=inplace ) if not inplace: return new_df def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs ): """Fill NA/NaN values using the specified method. Args: value: Value to use to fill holes. This value cannot be a list. method: Method to use for filling holes in reindexed Series pad. ffill: propagate last valid observation forward to next valid backfill. bfill: use NEXT valid observation to fill gap. axis: 0 or 'index', 1 or 'columns'. inplace: If True, fill in place. Note: this will modify any other views on this object. limit: If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast: A dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type. Returns: filled: DataFrame """ # TODO implement value passed as DataFrame if isinstance(value, pandas.DataFrame) or isinstance(value, pandas.Series): new_query_compiler = self._default_to_pandas( pandas.DataFrame.fillna, value=value, method=method, axis=axis, inplace=False, limit=limit, downcast=downcast, **kwargs )._query_compiler return self._create_dataframe_from_compiler(new_query_compiler, inplace) inplace = validate_bool_kwarg(inplace, "inplace") axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 if isinstance(value, (list, tuple)): raise TypeError( '"value" parameter must be a scalar or dict, but ' 'you passed a "{0}"'.format(type(value).__name__) ) if value is None and method is None: raise ValueError("must specify a fill method or value") if value is not None and method is not None: raise ValueError("cannot specify both a fill method and value") if method is not None and method not in ["backfill", "bfill", "pad", "ffill"]: expecting = "pad (ffill) or backfill (bfill)" msg = "Invalid fill method. Expecting {expecting}. Got {method}".format( expecting=expecting, method=method ) raise ValueError(msg) new_query_compiler = self._query_compiler.fillna( value=value, method=method, axis=axis, inplace=False, limit=limit, downcast=downcast, **kwargs ) return self._create_dataframe_from_compiler(new_query_compiler, inplace) def filter(self, items=None, like=None, regex=None, axis=None): """Subset rows or columns based on their labels Args: items (list): list of labels to subset like (string): retain labels where `arg in label == True` regex (string): retain labels matching regex input axis: axis to filter on Returns: A new DataFrame with the filter applied. """ nkw = com._count_not_none(items, like, regex) if nkw > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive" ) if nkw == 0: raise TypeError("Must pass either `items`, `like`, or `regex`") if axis is None: axis = "columns" # This is the default info axis for dataframes axis = pandas.DataFrame()._get_axis_number(axis) labels = self.columns if axis else self.index if items is not None: bool_arr = labels.isin(items) elif like is not None: def f(x): return like in to_str(x) bool_arr = labels.map(f).tolist() else: def f(x): return matcher.search(to_str(x)) is not None matcher = re.compile(regex) bool_arr = labels.map(f).tolist() if not axis: return self[bool_arr] return self[self.columns[bool_arr]] def first(self, offset): return self._default_to_pandas(pandas.DataFrame.first, offset) def first_valid_index(self): """Return index for first non-NA/null value. Returns: scalar: type of index """ return self._query_compiler.first_valid_index() def floordiv(self, other, axis="columns", level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ if level is not None: if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.floordiv, other, axis=axis, level=level, fill_value=fill_value, ) other = self._validate_other(other, axis, numeric_only=True) new_query_compiler = self._query_compiler.floordiv( other=other, axis=axis, level=level, fill_value=fill_value ) return self._create_dataframe_from_compiler(new_query_compiler) @classmethod def from_csv( cls, path, header=0, sep=", ", index_col=0, parse_dates=True, encoding=None, tupleize_cols=None, infer_datetime_format=False, ): from .io import read_csv return read_csv( path, header=header, sep=sep, index_col=index_col, parse_dates=parse_dates, encoding=encoding, tupleize_cols=tupleize_cols, infer_datetime_format=infer_datetime_format, ) @classmethod def from_dict(cls, data, orient="columns", dtype=None): ErrorMessage.default_to_pandas() return from_pandas(pandas.DataFrame.from_dict(data, orient=orient, dtype=dtype)) @classmethod def from_items(cls, items, columns=None, orient="columns"): ErrorMessage.default_to_pandas() return from_pandas(
pandas.DataFrame.from_items(items, columns=columns, orient=orient)
pandas.DataFrame.from_items
from math import log import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import OrderedDict from itertools import combinations_with_replacement, product from typing import Sequence from sklearn.metrics import pairwise_distances import spatialdata def reduce_matrix_size(matrix, types, dicts): """ reduce matrix size Parameters ---------- matrix: array types: array storage: dict Returns ------- array,row_merged matrix based on types """ for i, arr in enumerate(matrix): dicts[types[i]].append(arr) for k, v in dicts.items(): dicts[k] = np.asarray(v).sum(axis=0) new_types = [] new_matx = [] for k, v in dicts.items(): new_types.append(k) new_matx.append(v) return new_matx def type_adj_matrix(matrix, types): """return an N * N matrix, N is the number of unique types Args: matrix: array types: array Returns: tuple, matrix and the unique types """ unitypes = np.unique(types) storage = OrderedDict(zip(unitypes, [[] for _ in range(len(unitypes))])) new_matrix = reduce_matrix_size(matrix, types, storage) storage = OrderedDict(zip(unitypes, [[] for _ in range(len(unitypes))])) type_matrix = reduce_matrix_size(np.asarray(new_matrix).T, types, storage) return np.array(type_matrix), unitypes def pairs_counter(matrix, types, order=False): """count how many pairs of types in the matrix Args: matrix: array types: array order: bool, if True, (x1, x2) and (x2, x1) is not the same Returns: dict, the count of each pairs """ it = np.nditer(matrix, flags=["multi_index"]) if order: combs = [i for i in product(types, repeat=2)] storage = OrderedDict(zip(combs, [0 for _ in range(len(combs))])) for x in it: (i1, i2) = it.multi_index storage[(types[i1], types[i2])] += x else: combs = [i for i in combinations_with_replacement(types, 2)] storage = OrderedDict(zip(combs, [0 for _ in range(len(combs))])) for x in it: (i1, i2) = it.multi_index if i1 <= i2: storage[(types[i1], types[i2])] += x else: storage[(types[i2], types[i1])] += x return storage def interval_pairs(arr): new_arr = [] for i, x in enumerate(arr): if i < len(arr) - 1: new_arr.append((x, arr[i + 1])) return new_arr def cell_ShannonEntropy( obs: pd.DataFrame, ): """ Parameters ---------- obs Annotation data matrix of M cells ------- calculate the spatial shannon entropy of each cell type """ n_cell_types = set(obs['cell_types']) cell_shannon = {} for i in n_cell_types: cell_type = obs.iloc[list(np.where(obs['cell_types'] == i)[0])] length_cell_type = len(cell_type) cell_type_dict = dict(cell_type['label'].value_counts()) shannon_ent = 0.0 for key in cell_type_dict: prob = float(cell_type_dict[key]) / length_cell_type shannon_ent -= prob * log(prob, 2) cell_shannon[i] = shannon_ent return cell_shannon class spatial_entropy(object): """ calculate the spatial entropy by altieri entropy """ def __init__(self, cell_cor, types, cut=None, order=False, base=None): if len(cell_cor) != len(types): raise ValueError("length of cell and cell types should be the same") if base is None: base = np.e self._cell_cor = cell_cor self._types = types self._order = order self._base = base self.adj_matrix = pairwise_distances(self._cell_cor) if isinstance(cut, int): self._break = interval_pairs(np.linspace(0, self.adj_matrix.max(), cut + 2)) elif isinstance(cut, Sequence): self._break = interval_pairs(cut) elif cut is None: self._break = interval_pairs(np.linspace(0, self.adj_matrix.max(), 3)) # 没有指定cut长度则最小划分为三段 else: raise ValueError("'cut' must be an int or an array-like object") self._wrap() def _Z_W(self): zw = [] for (p1, p2) in self._break: bool_matx = ((self.adj_matrix > p1) & (self.adj_matrix <= p2)).astype(int) # bool矩阵计算出在p1和p2区间内的坐标点 type_matx, utypes = type_adj_matrix(bool_matx, self._types) pairs_counts = pairs_counter(type_matx, utypes, self._order) zw.append(pairs_counts) return zw def _Z(self): bool_matx = (self.adj_matrix >= 0).astype(int) type_matx, utypes = type_adj_matrix(bool_matx, self._types) z = pairs_counter(type_matx, utypes, self._order) return z def _W(self): w = [] for (p1, p2) in self._break: w.append(p2 - p1) w = np.asarray(w) w = w / w.sum() return w def _wrap(self): zw = np.asarray(self._Z_W()) z = self._Z() w = np.asarray(self._W()) pz = np.array(list(z.values())) pz = pz / pz.sum() H_Zwk = [] # H(Z|w_k) PI_Zwk = [] # PI(Z|w_k) for i in zw: v_ = i.values() v, pz_ = [], [] for ix, x in enumerate(v_): if x != 0: v.append(x) pz_.append(pz[ix]) v = np.asarray(v) pz_ = np.asarray(pz_) v = v / v.sum() H = v * np.log(1 / v) / np.log(self._base) PI = v * np.log(v / pz_) / np.log(self._base) H_Zwk.append(H.sum()) PI_Zwk.append(PI.sum()) self.residue = (w * np.asarray(H_Zwk)).sum() self.mutual_info = (w * np.asarray(PI_Zwk)).sum() self.entropy = self.mutual_info + self.residue # 指定单个区域的空间熵计算 def swspatial_entropy(df, ux, uy, l, w, span, d='h', w_cut=10): """ Parameters ---------- data: the dataframe contain coordinates of each cell and cluster id ux: upleft x of the window,coordinate space uy: upleft y of the window,coordiante sapce l:length of the window,coordinate space w:width of the window,coordinate space span: the step size of window d: h,horizontal direction or v,vertical direction Returns ------- the spatial entropy of the window area """"" if l <= 0 or w <= 0: raise ValueError("length and width of the window should be greater than 0") if d == 'h': x_coord_max = df['x_coord'].max() if ux + l <= x_coord_max: site = [] swse = [] for index in range(ux, x_coord_max, span): spot = df.loc[df['x_coord'] > index] spot = spot.loc[spot['x_coord'] < (index + l)] spot = spot.loc[spot['y_coord'] > uy] spot = spot.loc[spot['y_coord'] < uy + w] coord = np.array(spot[['x_coord', 'y_coord']]) clusters = list(spot.iloc[:, 2]) print(len(coord)) print(len(clusters)) se = spatial_entropy(coord, clusters, cut=w_cut) swse.append(se) site.append(index) if d == 'v': y_coord_max = df['y_coord'].max() if uy + w <= y_coord_max: site = [] swse = [] for index in range(uy, y_coord_max, span): spot = df.loc[df['x_coord'] > ux] spot = spot.loc[spot['x_coord'] < ux + l] spot = spot.loc[spot['y_coord'] > index] spot = spot.loc[spot['y_coord'] < index + w] coord = np.array(spot[['x_coord', 'y_coord']]) clusters = list(spot.iloc[:, 2]) se = spatial_entropy(coord, clusters, cut=w_cut) swse.append(se) site.append(index) se_df =
pd.DataFrame({'ul_of_windows': site, 'spatial_entropy': swse})
pandas.DataFrame
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.ix['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index._tuple_index)] result = s['qux'] result2 = s.ix['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) assert_series_equal(result, expect) result = series.count(level='a') expect = self.series.count(level=0) assert_series_equal(result, expect) self.assertRaises(KeyError, series.count, 'x') self.assertRaises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var'] def test_series_group_min_max(self): for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) assert_series_equal(leftside, rightside) def test_frame_group_ops(self): self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] self.assert_(leftside._get_axis(axis).equals(level_index)) self.assert_(rightside._get_axis(axis).equals(level_index)) assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile(np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum() assert_series_equal(result, expected) def test_groupby_multilevel(self): result = self.ymd.groupby(level=[0, 1]).mean() k1 = self.ymd.index.get_level_values(0) k2 = self.ymd.index.get_level_values(1) expected = self.ymd.groupby([k1, k2]).mean() assert_frame_equal(result, expected, check_names=False) # TODO groupby with level_values drops names self.assertEquals(result.index.names, self.ymd.index.names[:2]) result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean() assert_frame_equal(result, result2) def test_groupby_multilevel_with_transform(self): pass def test_multilevel_consolidate(self): index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('bar', 'two')]) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df['Totals', ''] = df.sum(1) df = df.consolidate() def test_ix_preserve_names(self): result = self.ymd.ix[2000] result2 = self.ymd['A'].ix[2000] self.assertEquals(result.index.names, self.ymd.index.names[1:]) self.assertEquals(result2.index.names, self.ymd.index.names[1:]) result = self.ymd.ix[2000, 2] result2 = self.ymd['A'].ix[2000, 2] self.assertEquals(result.index.name, self.ymd.index.names[2]) self.assertEquals(result2.index.name, self.ymd.index.names[2]) def test_partial_set(self): # GH #397 df = self.ymd.copy() exp = self.ymd.copy() df.ix[2000, 4] = 0 exp.ix[2000, 4].values[:] = 0 assert_frame_equal(df, exp) df['A'].ix[2000, 4] = 1 exp['A'].ix[2000, 4].values[:] = 1 assert_frame_equal(df, exp) df.ix[2000] = 5 exp.ix[2000].values[:] = 5 assert_frame_equal(df, exp) # this works...for now df['A'].ix[14] = 5 self.assertEquals(df['A'][14], 5) def test_unstack_preserve_types(self): # GH #403 self.ymd['E'] = 'foo' self.ymd['F'] = 2 unstacked = self.ymd.unstack('month') self.assertEqual(unstacked['A', 1].dtype, np.float64) self.assertEqual(unstacked['E', 1].dtype, np.object_) self.assertEqual(unstacked['F', 1].dtype, np.float64) def test_unstack_group_index_overflow(self): labels = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex(levels=[level] * 8 + [[0, 1]], labels=[labels] * 8 + [np.arange(2).repeat(500)]) s = Series(np.arange(1000), index=index) result = s.unstack() self.assertEqual(result.shape, (500, 2)) # test roundtrip stacked = result.stack() assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex(levels=[[0, 1]] + [level] * 8, labels=[np.arange(2).repeat(500)] + [labels] * 8) s = Series(np.arange(1000), index=index) result = s.unstack(0) self.assertEqual(result.shape, (500, 2)) # put it in middle index = MultiIndex(levels=[level] * 4 + [[0, 1]] + [level] * 4, labels=([labels] * 4 + [np.arange(2).repeat(500)] + [labels] * 4)) s = Series(np.arange(1000), index=index) result = s.unstack(4) self.assertEqual(result.shape, (500, 2)) def test_getitem_lowerdim_corner(self): self.assertRaises(KeyError, self.frame.ix.__getitem__, (('bar', 'three'), 'B')) # in theory should be inserting in a sorted space???? self.frame.ix[('bar','three'),'B'] = 0 self.assertEqual(self.frame.sortlevel().ix[('bar','three'),'B'], 0) #---------------------------------------------------------------------- # AMBIGUOUS CASES! def test_partial_ix_missing(self): raise nose.SkipTest("skipping for now") result = self.ymd.ix[2000, 0] expected = self.ymd.ix[2000]['A'] assert_series_equal(result, expected) # need to put in some work here # self.ymd.ix[2000, 0] = 0 # self.assert_((self.ymd.ix[2000]['A'] == 0).all()) # Pretty sure the second (and maybe even the first) is already wrong. self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6)) self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0) #---------------------------------------------------------------------- def test_to_html(self): self.ymd.columns.name = 'foo' self.ymd.to_html() self.ymd.T.to_html() def test_level_with_tuples(self): index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0), ('foo', 'qux', 0)], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar', 0)] result2 = series.ix[('foo', 'bar', 0)] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertRaises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2)) result = frame.ix[('foo', 'bar', 0)] result2 = frame.xs(('foo', 'bar', 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'), ('foo', 'qux')], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar')] result2 = series.ix[('foo', 'bar')] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = frame.ix[('foo', 'bar')] result2 = frame.xs(('foo', 'bar')) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_int_series_slicing(self): s = self.ymd['A'] result = s[5:] expected = s.reindex(s.index[5:]) assert_series_equal(result, expected) exp = self.ymd['A'].copy() s[5:] = 0 exp.values[5:] = 0 self.assert_numpy_array_equal(s.values, exp.values) result = self.ymd[5:] expected = self.ymd.reindex(s.index[5:]) assert_frame_equal(result, expected) def test_mixed_depth_get(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df['a'] expected = df['a', '', ''] assert_series_equal(result, expected) self.assertEquals(result.name, 'a') result = df['routine1', 'result1'] expected = df['routine1', 'result1', ''] assert_series_equal(result, expected) self.assertEquals(result.name, ('routine1', 'result1')) def test_mixed_depth_insert(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.copy() expected = df.copy() result['b'] = [1, 2, 3, 4] expected['b', '', ''] = [1, 2, 3, 4] assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.drop('a', axis=1) expected = df.drop([('a', '', '')], axis=1) assert_frame_equal(expected, result) result = df.drop(['top'], axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) expected = expected.drop([('top', 'OD', 'wy')], axis=1) assert_frame_equal(expected, result) result = df.drop(('top', 'OD', 'wx'), axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) assert_frame_equal(expected, result) expected = df.drop([('top', 'OD', 'wy')], axis=1) expected = df.drop('top', axis=1) result = df.drop('result1', level=1, axis=1) expected = df.drop([('routine1', 'result1', ''), ('routine2', 'result1', '')], axis=1) assert_frame_equal(expected, result) def test_drop_nonunique(self): df = DataFrame([["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1]], columns=["var1", "var2", "var3", "var4"]) grp_size = df.groupby("var1").size() drop_idx = grp_size.ix[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! #2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index assert_frame_equal(result, expected) def test_mixed_depth_pop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) df1 = df.copy() df2 = df.copy() result = df1.pop('a') expected = df2.pop(('a', '', '')) assert_series_equal(expected, result) assert_frame_equal(df1, df2) self.assertEquals(result.name, 'a') expected = df1['top'] df1 = df1.drop(['top'], axis=1) result = df2.pop('top') assert_frame_equal(expected, result) assert_frame_equal(df1, df2) def test_reindex_level_partial_selection(self): result = self.frame.reindex(['foo', 'qux'], level=0) expected = self.frame.ix[[0, 1, 2, 7, 8, 9]] assert_frame_equal(result, expected) result = self.frame.T.reindex_axis(['foo', 'qux'], axis=1, level=0) assert_frame_equal(result, expected.T) result = self.frame.ix[['foo', 'qux']] assert_frame_equal(result, expected) result = self.frame['A'].ix[['foo', 'qux']] assert_series_equal(result, expected['A']) result = self.frame.T.ix[:, ['foo', 'qux']]
assert_frame_equal(result, expected.T)
pandas.util.testing.assert_frame_equal
from __future__ import annotations from datetime import timedelta import operator from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Hashable, List, cast, ) import warnings import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._typing import Dtype from pandas.compat.numpy import function as nv from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._exceptions import rewrite_exception from pandas.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCTimedeltaIndex from pandas.core import ops import pandas.core.common as com from pandas.core.construction import extract_array import pandas.core.indexes.base as ibase from pandas.core.indexes.base import maybe_extract_name from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if isinstance(start, RangeIndex): return start.copy(name=name) elif isinstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if
com.all_none(start, stop, step)
pandas.core.common.all_none
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os from copy import deepcopy import numpy as np import pandas as pd from pandas import DataFrame, Series import unittest import nose from numpy.testing import assert_almost_equal, assert_allclose from numpy.testing.decorators import slow from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal) import trackpy as tp from trackpy.try_numba import NUMBA_AVAILABLE from trackpy.linking import PointND, link, Hash_table # Catch attempts to set values on an inadvertent copy of a Pandas object. tp.utils.make_pandas_strict() path, _ = os.path.split(os.path.abspath(__file__)) path = os.path.join(path, 'data') # Call lambda function for a fresh copy each time. unit_steps = lambda: [[PointND(t, (x, 0))] for t, x in enumerate(range(5))] np.random.seed(0) random_x = np.random.randn(5).cumsum() random_x -= random_x.min() # All x > 0 max_disp = np.diff(random_x).max() random_walk_legacy = lambda: [[PointND(t, (x, 5))] for t, x in enumerate(random_x)] def hash_generator(dims, box_size): return lambda: Hash_table(dims, box_size) def _skip_if_no_numba(): if not NUMBA_AVAILABLE: raise nose.SkipTest('numba not installed. Skipping.') def random_walk(N): return np.cumsum(np.random.randn(N)) def contracting_grid(): """Two frames with a grid of 441 points. In the second frame, the points contract, so that the outermost set coincides with the second-outermost set in the previous frame. This is a way to challenge (and/or stump) a subnet solver. """ pts0x, pts0y = np.mgrid[-10:11,-10:11] pts0 = pd.DataFrame(dict(x=pts0x.flatten(), y=pts0y.flatten(), frame=0)) pts1 = pts0.copy() pts1.frame = 1 pts1.x = pts1.x * 0.9 pts1.y = pts1.y * 0.9 allpts = pd.concat([pts0, pts1], ignore_index=True) allpts.x += 100 # Because BTree doesn't allow negative coordinates allpts.y += 100 return allpts class CommonTrackingTests(object): do_diagnostics = False # Don't ask for diagnostic info from linker def test_one_trivial_stepper(self): # One 1D stepper N = 5 f = DataFrame({'x': np.arange(N), 'y': np.ones(N), 'frame': np.arange(N)}) expected = f.copy() expected['particle'] = np.zeros(N) actual = self.link_df(f, 5) assert_frame_equal(actual, expected) actual_iter = self.link_df_iter(f, 5, hash_size=(10, 2)) assert_frame_equal(actual_iter, expected) if self.do_diagnostics: assert 'diag_search_range' in self.diag.columns # Except for first frame, all particles should have been labeled # with a search_range assert not any(self.diag['diag_search_range'][ actual_iter.frame > 0].isnull()) def test_two_isolated_steppers(self): N = 5 Y = 25 # Begin second feature one frame later than the first, so the particle labeling (0, 1) is # established and not arbitrary. a = DataFrame({'x': np.arange(N), 'y': np.ones(N), 'frame': np.arange(N)}) b = DataFrame({'x': np.arange(1, N), 'y': Y + np.ones(N - 1), 'frame': np.arange(1, N)}) f = pd.concat([a, b]) expected = f.copy().reset_index(drop=True) expected['particle'] = np.concatenate([np.zeros(N), np.ones(N - 1)]) expected.sort(['particle', 'frame'], inplace=True) actual = self.link_df(f, 5) assert_frame_equal(actual, expected) actual_iter = self.link_df_iter(f, 5, hash_size=(50, 50)) assert_frame_equal(actual_iter, expected) # Sort rows by frame (normal use) actual = self.link_df(f.sort('frame'), 5) assert_frame_equal(actual, expected) actual_iter = self.link_df_iter(f.sort('frame'), 5, hash_size=(50, 50)) assert_frame_equal(actual_iter, expected) # Shuffle rows (crazy!) np.random.seed(0) f1 = f.reset_index(drop=True) f1.reindex(np.random.permutation(f1.index)) actual = self.link_df(f1, 5) assert_frame_equal(actual, expected) actual_iter = self.link_df_iter(f1, 5, hash_size=(50, 50)) assert_frame_equal(actual_iter, expected) def test_two_isolated_steppers_one_gapped(self): N = 5 Y = 25 # Begin second feature one frame later than the first, # so the particle labeling (0, 1) is established and not arbitrary. a = DataFrame({'x': np.arange(N), 'y': np.ones(N), 'frame': np.arange(N)}) a = a.drop(3).reset_index(drop=True) b = DataFrame({'x': np.arange(1, N), 'y': Y + np.ones(N - 1), 'frame': np.arange(1, N)}) f = pd.concat([a, b]) expected = f.copy() expected['particle'] = np.concatenate([np.array([0, 0, 0, 2]), np.ones(N - 1)]) expected.sort(['particle', 'frame'], inplace=True) expected.reset_index(drop=True, inplace=True) actual = self.link_df(f, 5) assert_frame_equal(actual, expected) actual_iter = self.link_df_iter(f, 5, hash_size=(50, 50)) assert_frame_equal(actual_iter, expected) # link_df_iter() tests not performed, because hash_size is # not knowable from the first frame alone. # Sort rows by frame (normal use) actual = self.link_df(f.sort('frame'), 5)
assert_frame_equal(actual, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 =
pd.Categorical(s2, ordered=True)
pandas.Categorical
# -*- coding: utf-8 -*- """Functions to sample sktime datasets. Used in experiments to get deterministic resamples. """ import numpy as np import pandas as pd import sklearn.utils def stratified_resample(X_train, y_train, X_test, y_test, random_state): """Stratified resample data without replacement using a random state. Reproducable resampling. Combines train and test, resamples to get the same class distribution, then returns new train and test. Parameters ---------- X_train : pd.DataFrame train data attributes in sktime pandas format. y_train : np.array train data class labels. X_test : pd.DataFrame test data attributes in sktime pandas format. y_test : np.array test data class labes as np array. random_state : int seed to enable reproducable resamples Returns ------- new train and test attributes and class labels. """ all_labels = np.concatenate((y_train, y_test), axis=None) all_data = pd.concat([X_train, X_test]) random_state = sklearn.utils.check_random_state(random_state) # count class occurrences unique_train, counts_train = np.unique(y_train, return_counts=True) unique_test, counts_test = np.unique(y_test, return_counts=True) assert list(unique_train) == list( unique_test ) # haven't built functionality to deal with classes that exist in # test but not in train # prepare outputs X_train = pd.DataFrame() y_train = np.array([]) X_test =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python3 ''' Background Reading to understand this tool ---- Paper: Portfolio Selection - <NAME> 1952 URL: https://www.math.ust.hk/~maykwok/courses/ma362/07F/markowitz_JF.pdf https://www.investopedia.com/terms/e/efficientfrontier.asp https://en.wikipedia.org/wiki/Efficient_frontier https://en.wikipedia.org/wiki/Markowitz_model The idea is that there is an efficent set of portfolio containing different securities with different weights of investments and for each amount of risk investor is willing to indure. This set of efficient portfolios can be calculated and discovered. This script helps us understand how! Enjoy! ''' ''' Description: ------------ This Python script calculates Markowitz Efficient Frontier API Used: Yahoo Finance I am studying the efficiency (Markowitz-wise) of 500 portfolios containing only stocks of Apple & Ford with many random weights for each portfolio Duration: Data from 2010-1-1 till now Requirements: ------------ Make sure that Pandas, pandas_datareader, numpy, matplotlib and xlrd are installed no need for anything else Usage: ----- python Calculate_Markowitz_Efficient_Frontier.py Dr. <NAME> Enjoy! ''' ''' Some famous companies stocks tikers to work with ------------------------------------------------ Apple AAPL Procter & Gamble Co PG Microsoft Corporation MSFT Exxon Mobil Corporation XOM BP plc BP AT&T Inc. T Ford Motor Company F General Electric Company GE Alphabet Inc Class A (Google) GOOGL ''' import numpy as np import pandas as pd from pandas_datareader import data as web import matplotlib.pyplot as plt # Ford is F and Apple is AAPL Stock_tickers = ['F', 'AAPL'] ComparisionofEfficiency =
pd.DataFrame()
pandas.DataFrame
# IMPORTS import pandas as pd # DATA data = [] with open("Data - Day08.txt") as file: for line in file: data.append(line.strip().split(" ")) data = pd.DataFrame(data, columns=["register", "action", "action_value", "if_col", "condition_register", "condition", "condition_value"]) data["action_value"] =
pd.to_numeric(data["action_value"])
pandas.to_numeric
import matplotlib.pyplot as plt from sklearn.metrics import mean_absolute_error from keras import backend as K import os import numpy as np import pandas as pd import seaborn as sns from sklearn.metrics import classification_report import xgboost as xgb CUR_DIR = os.path.abspath(os.curdir) ROOT_DIR = os.path.dirname(CUR_DIR) IMAGES_DIR = os.path.join(ROOT_DIR, "images") DATA_DIR = os.path.join(ROOT_DIR, "data") MODELS_DIR = os.path.join(ROOT_DIR, "models") EVAL_DIR = os.path.join(ROOT_DIR, "evaluation") MODEL_PERF_DIR = os.path.join(EVAL_DIR, "model_performance") GRAPHS_DIR = os.path.join(EVAL_DIR, "graphs") writepath = os.path.join(MODEL_PERF_DIR, "performance.csv") plt.style.use('ggplot') def plot_loss(history,model): """ The purpose of this function is to plot the validation and training loss function across epochs. """ plt.plot(history.history['mae'], label='training') plt.plot(history.history['val_mae'], label='val') plt.xlabel('epoch') plt.ylabel('mae') plt.title(f'Loss for {model.name}') plt.legend(loc='upper right') output_path = os.path.join(GRAPHS_DIR,f'Loss Plot {model.name}.png') plt.savefig(output_path) plt.show() print(output_path) def relu_advanced(x): from keras import backend as K """The purpose of this function is the bound the output value of the network between 1 and 5 inclusively which matches the domain the stars get on the reviews.""" return (K.relu(x, max_value=5)) def transpose_df(df,reset_index,prefix): if reset_index == False: out_df = df.groupby('star',as_index=False)['prediction'].mean().T elif reset_index == True: out_df = pd.DataFrame(df.groupby('star')['prediction'].skew()).reset_index().T new_header = out_df.iloc[0] new_header = [f'{prefix}_{int(i)}_Star' for i in new_header] new_header out_df = out_df[1:] #take the data less the header row out_df.columns = new_header return out_df def write_performance(model,mae,writepath,eval_df): data = { 'model_name':model.name, 'mae':mae } grouped_eval_df = eval_df.groupby('star',as_index=False)['prediction'].mean() avg_prefix = 'Average_Prediction_for' skew_prefix = 'Prediction_Skewness_for' avg_df = transpose_df(eval_df,False,avg_prefix) skew_df = transpose_df(eval_df,True,skew_prefix) for col in avg_df.columns: data.update({col:avg_df[col][0]}) for col in skew_df.columns: data.update({col:skew_df[col][0]}) out_df = pd.DataFrame(data,index=[0]) mode = 'a' if os.path.exists(writepath) else 'w' header = False if os.path.exists(writepath) else True out_df.to_csv(writepath, mode=mode, index=False, header=header) # print message print("Performance appended successfully.") def plot_distributions(model,eval_df,field): i=0 colors = ['black', 'midnightblue', 'darkgreen','mediumpurple','darkred'] if field == 'nb_of_words': # bins = 20 max_val = 260 bin_field_name = f'binned_{field}' eval_df = eval_df[eval_df.nb_of_words<=max_val] bins = list(range(0,max_val,10)) labels = bins[:-1] eval_df[bin_field_name] = pd.cut(eval_df[field], bins=bins, labels=labels) eval_df.groupby(bin_field_name, as_index=False)['absolute_error'].mean() b = sns.barplot(bin_field_name, 'absolute_error', data=eval_df, ci = False, color = colors[2]) plt.gcf().set_size_inches(17, 9) b.axes.set_title(f"Mean Absolute Error by Review Length for model: {model.name}",fontsize=20) b.set_xlabel(field, fontsize=17) b.set_ylabel('Mean Absolute Error', fontsize=15) b.tick_params(labelsize=14) else: bins = 5 fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15,10)) fig.delaxes(axes[1][2]) plt.text(x=0.5, y=0.94, s=f"Model Performance Distribution by Stars for model: {model.name}", fontsize=18, ha="center", transform=fig.transFigure) plt.subplots_adjust(hspace=0.95) for ax, (name, subdf) in zip(axes.flatten(), eval_df.groupby('star')): subdf.hist(field, ax = ax, rwidth=0.9,color = colors[i],bins = bins) i+=1 ax.set_title(name) ax.set_xlabel(field) ax.set_ylabel('Count') # Generate histograms plt.savefig(os.path.join(GRAPHS_DIR,f'{field.capitalize()}_Distribution_{model.name}.png')) plt.show() def example_scores(model,vect = None): test1 = 'I like the top but it took long to deliver' test2 = 'This app is trash' test3 = 'The app is extremely slow, but I still like it' test4 = 'I Do not Love this App' test5 = 'Too many glitches' test6 = 'Worthless app' test7 = 'Do not download this app' test8 = 'Horrible' test9 = 'Could be better but is serviceable' test10 = 'The servers are always down' tests = [test1, test2, test3, test4, test5, test6, test7, test8, test9, test10] for test in tests: if hasattr(model,'xgboost'): print(f'"{test}" receives a score of', model.predict(vect.transform([test]))) else: print(f'"{test}" receives a score of', model.predict([test]).ravel()) def performance_evaluation(X_test, y_test, model, vect = None): if hasattr(model,'xgboost'): y_pred = np.around(model.predict(vect.transform(X_test))) else: y_pred = np.around(model.predict(X_test)) y_pred = np.where(y_pred < 1, 1, y_pred) y_pred = np.where(y_pred > 5, 5, y_pred) print(f'The prediction values range between {min(y_pred)} and {max(y_pred)}') mae = mean_absolute_error(y_test, y_pred) print(f'Mean Absolute Error: {mae}') eval_df =
pd.merge(X_test, y_test, left_index=True, right_index=True)
pandas.merge
import numpy as np from sklearn.cluster import MeanShift from sklearn import preprocessing import pandas as pd ''' Pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) survival Survival (0 = No; 1 = Yes) name Name sex Sex age Age sibsp Number of Siblings/Spouses Aboard parch Number of Parents/Children Aboard ticket Ticket Number fare Passenger Fare (British pound) cabin Cabin embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) boat Lifeboat body Body Identification Number home.dest Home/Destination ''' df = pd.read_excel('../05. Clustering/titanic.xls') original_df =
pd.DataFrame.copy(df)
pandas.DataFrame.copy
from __future__ import print_function, division import random import sys from matplotlib import rcParams import matplotlib.pyplot as plt import pandas as pd import numpy as np import h5py from keras.models import load_model from keras.models import Sequential from keras.layers import Dense, Conv1D, LSTM, Bidirectional, Dropout from keras.utils import plot_model from nilmtk.utils import find_nearest from nilmtk.feature_detectors import cluster from nilmtk.legacy.disaggregate import Disaggregator from nilmtk.datastore import HDFDataStore class RNNDisaggregator(Disaggregator): '''Attempt to create a RNN Disaggregator Attributes ---------- model : keras Sequential model mmax : the maximum value of the aggregate data MIN_CHUNK_LENGTH : int the minimum length of an acceptable chunk ''' def __init__(self): '''Initialize disaggregator ''' self.MODEL_NAME = "LSTM" self.mmax = None self.MIN_CHUNK_LENGTH = 100 self.model = self._create_model() def train(self, mains, meter, epochs=1, batch_size=128, **load_kwargs): '''Train Parameters ---------- mains : a nilmtk.ElecMeter object for the aggregate data meter : a nilmtk.ElecMeter object for the meter data epochs : number of epochs to train batch_size : size of batch used for training **load_kwargs : keyword arguments passed to `meter.power_series()` ''' main_power_series = mains.power_series(**load_kwargs) meter_power_series = meter.power_series(**load_kwargs) # Train chunks run = True mainchunk = next(main_power_series) meterchunk = next(meter_power_series) if self.mmax == None: self.mmax = mainchunk.max() while(run): mainchunk = self._normalize(mainchunk, self.mmax) meterchunk = self._normalize(meterchunk, self.mmax) self.train_on_chunk(mainchunk, meterchunk, epochs, batch_size) try: mainchunk = next(main_power_series) meterchunk = next(meter_power_series) except: run = False def train_on_chunk(self, mainchunk, meterchunk, epochs, batch_size): '''Train using only one chunk Parameters ---------- mainchunk : chunk of site meter meterchunk : chunk of appliance epochs : number of epochs for training batch_size : size of batch used for training ''' # Replace NaNs with 0s mainchunk.fillna(0, inplace=True) meterchunk.fillna(0, inplace=True) ix = mainchunk.index.intersection(meterchunk.index) mainchunk = np.array(mainchunk[ix]) meterchunk = np.array(meterchunk[ix]) mainchunk = np.reshape(mainchunk, (mainchunk.shape[0],1,1)) self.model.fit(mainchunk, meterchunk, epochs=epochs, batch_size=batch_size, shuffle=True) def train_across_buildings(self, mainlist, meterlist, epochs=1, batch_size=128, **load_kwargs): '''Train using data from multiple buildings Parameters ---------- mainlist : a list of nilmtk.ElecMeter objects for the aggregate data of each building meterlist : a list of nilmtk.ElecMeter objects for the meter data of each building batch_size : size of batch used for training epochs : number of epochs to train **load_kwargs : keyword arguments passed to `meter.power_series()` ''' assert len(mainlist) == len(meterlist), "Number of main and meter channels should be equal" num_meters = len(mainlist) mainps = [None] * num_meters meterps = [None] * num_meters mainchunks = [None] * num_meters meterchunks = [None] * num_meters # Get generators of timeseries for i,m in enumerate(mainlist): mainps[i] = m.power_series(**load_kwargs) for i,m in enumerate(meterlist): meterps[i] = m.power_series(**load_kwargs) # Get a chunk of data for i in range(num_meters): mainchunks[i] = next(mainps[i]) meterchunks[i] = next(meterps[i]) if self.mmax == None: self.mmax = max([m.max() for m in mainchunks]) run = True while(run): # Normalize and train mainchunks = [self._normalize(m, self.mmax) for m in mainchunks] meterchunks = [self._normalize(m, self.mmax) for m in meterchunks] self.train_across_buildings_chunk(mainchunks, meterchunks, epochs, batch_size) # If more chunks, repeat try: for i in range(num_meters): mainchunks[i] = next(mainps[i]) meterchunks[i] = next(meterps[i]) except: run = False def train_across_buildings_chunk(self, mainchunks, meterchunks, epochs, batch_size): '''Train using only one chunk of data. This chunk consists of data from all buildings. Parameters ---------- mainchunk : chunk of site meter meterchunk : chunk of appliance epochs : number of epochs for training batch_size : size of batch used for training ''' num_meters = len(mainchunks) batch_size = int(batch_size/num_meters) num_of_batches = [None] * num_meters # Find common parts of timeseries for i in range(num_meters): mainchunks[i].fillna(0, inplace=True) meterchunks[i].fillna(0, inplace=True) ix = mainchunks[i].index.intersection(meterchunks[i].index) m1 = mainchunks[i] m2 = meterchunks[i] mainchunks[i] = m1[ix] meterchunks[i] = m2[ix] num_of_batches[i] = int(len(ix)/batch_size) - 1 for e in range(epochs): # Iterate for every epoch print(e) batch_indexes = list(range(min(num_of_batches))) random.shuffle(batch_indexes) for bi, b in enumerate(batch_indexes): # Iterate for every batch print("Batch {} of {}".format(bi,num_of_batches), end="\r") sys.stdout.flush() X_batch = np.empty((batch_size*num_meters, 1, 1)) Y_batch = np.empty((batch_size*num_meters, 1)) # Create a batch out of data from all buildings for i in range(num_meters): mainpart = mainchunks[i] meterpart = meterchunks[i] mainpart = mainpart[b*batch_size:(b+1)*batch_size] meterpart = meterpart[b*batch_size:(b+1)*batch_size] X = np.reshape(mainpart, (batch_size, 1, 1)) Y = np.reshape(meterpart, (batch_size, 1)) X_batch[i*batch_size:(i+1)*batch_size] = np.array(X) Y_batch[i*batch_size:(i+1)*batch_size] = np.array(Y) # Shuffle data p = np.random.permutation(len(X_batch)) X_batch, Y_batch = X_batch[p], Y_batch[p] # Train model self.model.train_on_batch(X_batch, Y_batch) print("\n") def disaggregate(self, mains, output_datastore, meter_metadata, **load_kwargs): '''Disaggregate mains according to the model learnt previously. Parameters ---------- mains : a nilmtk.ElecMeter of aggregate data meter_metadata: a nilmtk.ElecMeter of the observed meter used for storing the metadata output_datastore : instance of nilmtk.DataStore subclass For storing power predictions from disaggregation algorithm. **load_kwargs : key word arguments Passed to `mains.power_series(**kwargs)` ''' load_kwargs = self._pre_disaggregation_checks(load_kwargs) load_kwargs.setdefault('sample_period', 60) load_kwargs.setdefault('sections', mains.good_sections()) timeframes = [] building_path = '/building{}'.format(mains.building()) mains_data_location = building_path + '/elec/meter1' data_is_available = False for chunk in mains.power_series(**load_kwargs): if len(chunk) < self.MIN_CHUNK_LENGTH: continue print("New sensible chunk: {}".format(len(chunk))) timeframes.append(chunk.timeframe) measurement = chunk.name chunk2 = self._normalize(chunk, self.mmax) appliance_power = self.disaggregate_chunk(chunk2) appliance_power[appliance_power < 0] = 0 appliance_power = self._denormalize(appliance_power, self.mmax) # Append prediction to output data_is_available = True cols =
pd.MultiIndex.from_tuples([chunk.name])
pandas.MultiIndex.from_tuples
# -*- coding: utf-8 -*- """ Created on Wed Nov 24 10:26:06 2021 @author: snoone """ import glob import os import pandas as pd pd.options.mode.chained_assignment = None # default='warn' ##make header from completed observations table OUTDIR = "D:/Python_CDM_conversion/hourly/qff/cdm_out/header_table" os.chdir("D:/Python_CDM_conversion/hourly/qff/cdm_out/observations_table") col_list = ["observation_id", "report_id", "longitude", "latitude", "source_id","date_time"] extension = 'psv' #my_file = open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") #all_filenames = my_file.readlines() #print(all_filenames) ##use alist of file name sto run 5000 parallel #with open("D:/Python_CDM_conversion/hourly/qff/test/ls.txt", "r") as f: # all_filenames = f.read().splitlines() all_filenames = [i for i in glob.glob('*.{}'.format(extension))] ##to start at begining of files for filename in all_filenames: ##to start at next file after last processe #for filename in all_filenames[all_filenames.index('SWM00002338.qff'):] : merged_df=pd.read_csv(filename, sep="|", usecols=col_list) ###produce headre table using some of obs table column information hdf = pd.DataFrame() hdf['observation_id'] = merged_df['observation_id'].str[:11] hdf["report_id"]=merged_df["report_id"] hdf["application_area"]="" hdf["observing_programme"]="" hdf["report_type"]="0" hdf["station_type"]="1" hdf["platform_type"]="" hdf["primary_station_id"]=merged_df["report_id"].str[:-19] hdf["primary_station_id_scheme"]="13" hdf["location_accuracy"]="0.1" hdf["location_method"]="" hdf["location_quality"]="3" hdf["longitude"]=merged_df["longitude"] hdf["latitude"]=merged_df["latitude"] hdf["crs"]="0" hdf["station_speed"]="" hdf["station_course"]="" hdf["station_heading"]="" hdf["height_of_station_above_local_ground"]="" hdf["height_of_station_above_sea_level_accuracy"]="" hdf["sea_level_datum"]="" hdf["report_meaning_of_timestamp"]="2" hdf["report_timestamp"]="" hdf["report_duration"]="0" hdf["report_time_accuracy"]="" hdf["report_time_quality"]="" hdf["report_time_reference"]="0" hdf["platform_subtype"]="" hdf["profile_id"]="" hdf["events_at_station"]="" hdf["report_quality"]="" hdf["duplicate_status"]="4" hdf["duplicates"]="" hdf["source_record_id"]="" hdf ["processing_codes"]="" hdf["source_id"]=merged_df["source_id"] hdf['record_timestamp'] =
pd.to_datetime('now')
pandas.to_datetime
from .handler import function_handler import yaml import pytest import pandas as pd import numpy as np from packaging import version def transform_setup(function): # read in file infos with open("tests/test_yamls/test_transform.yml", "r") as stream: file_infos = yaml.safe_load(stream) if function == "decompress-content": extract_infos = [file_info for file_info in file_infos if file_info['function'] == "decompress-content"] transform_infos = [] for info in extract_infos: # get file infos input_file = info['input_file'] output_file = info['output_file'] # create input & output dfs f = open(input_file, "rb") binary_str = f.read() input_df = pd.DataFrame({0: [binary_str]}) output_df = pd.read_csv(output_file) transform_infos.append((input_df, output_df)) return transform_infos if function == "transform-to-dataframe": extract_infos = [file_info for file_info in file_infos if file_info['function'] == "transform-to-dataframe"] transform_infos = [] for info in extract_infos: # get file infos input_file = info['input_file'] output_file = info['output_file'] str_type = info['str_type'] # create input & output dfs input_df = pd.read_csv(input_file) output_df = pd.read_csv(output_file) transform_infos.append((input_df, output_df, str_type)) return transform_infos if function == "split-dataframe-rows": extract_infos = [file_info for file_info in file_infos if file_info['function'] == "split-dataframe-rows"] transform_infos = [] for info in extract_infos: # get file infos input_file = info['input_file'] # create input & output dfs input_df = pd.read_csv(input_file, header=None) output_dfs = [pd.read_csv(output_df) for output_df in info['output_files']] transform_infos.append((input_df, output_dfs)) return transform_infos if function == "flatten-lists-to-dataframe": extract_infos = [file_info for file_info in file_infos if file_info['function'] == "flatten-lists-to-dataframe"] transform_infos = [] for info in extract_infos: # get file infos input_file = info['input_file'] output_file = info['output_file'] extract_field = info['extract_field'] preserve_origin_data = info['preserve_origin_data'] # create input & output dfs input_df = pd.read_csv(input_file) output_df =
pd.read_csv(output_file)
pandas.read_csv
import copy import datetime from datetime import datetime import re import numpy as np import pandas as pd from PIL import Image import streamlit as st from streamlit import markdown as md from streamlit import caching import gsheet LOCAL = True def is_unique(s): a = s.to_numpy() # s.values (pandas<0.24) return (a[0] == a).all() def st_config(): """Configure Streamlit view option and read in credential file if needed check if user and password are correct""" st.set_page_config(layout="wide") pw = st.sidebar.text_input("Enter password:") if pw == "":#st.secrets["PASSWORD"]: if LOCAL: return "" else: return st.secrets["GSHEETS_KEY"] else: return None @st.cache def read_data(creds): """Read court tracking data in and drop duplicate case numbers""" # try: df = gsheet.read_data(gsheet.open_sheet(gsheet.init_sheets(creds),"01_Community_lawyer_test_out_final","Frontend")) # df.drop_duplicates("Case Number",inplace=True) #Do we want to drop duplicates??? return df # except Exception as e: # return None #def date_options(min_date,max_date,key): # cols = st.beta_columns(2) # key1 = key + "a" # key2 = key + "b" # start_date = cols[0].date_input("Start Date",min_value=min_date,max_value=max_date,value=min_date,key=key1)#,format="MM/DD/YY") # end_date = cols[1].date_input("End Date",min_value=min_date,max_value=max_date,value=datetime.today().date(),key=key2)#,format="MM/DD/YY") # return start_date,end_date #UI start date end date/ eviction motion or both drop duplicates?: def date_options(df): min_date = df.court_date.min().date() max_date = df.court_date.max().date() start_date = st.sidebar.date_input("Start Date",min_value=min_date,max_value=max_date,value=min_date)#,format="MM/DD/YY") end_date = st.sidebar.date_input("End Date",min_value=min_date,max_value=max_date,value=max_date)#,format="MM/DD/YY") df = filter_dates(df,start_date,end_date) st.sidebar.markdown(f"### {start_date} to {end_date} cases tracked: "+str(len(df))) return df def filter_dates(df,start_date,end_date): return df.loc[(df["court_date"].apply(lambda x: x.date())>=start_date) & (df["court_date"].apply(lambda x: x.date())<=end_date)] def motion_options(df): motion = st.sidebar.radio("Motion Hearing, Eviction Trial, Both",["Both","Motion Hearing","Eviction Trial"]) return filter_motion(df,motion) def filter_motion(df,motion): if motion != "Both": df = df.loc[df["motion_hearing"].eq(motion)] st.sidebar.markdown(f"### {motion}s tracked: "+str(len(df))) else: st.sidebar.markdown(f"### Eviction Trials and Motion Hearings tracked: "+str(len(df))) pass return df def agg_cases(df,col,i): df_r = df.groupby([col,"Case Number"]).count().iloc[:,i] df_r.name = "count" df_r = pd.DataFrame(df_r) df_a = pd.DataFrame(df_r.to_records()) df_r = df_r.groupby(level=0).sum() df_r["cases"] = df_a.groupby(col)["Case Number"].agg(lambda x: ','.join(x)) return df_r def agg_checklist(df_r): df_r["result"]=df_r.index df_b = pd.concat([pd.Series(row['count'], row['result'].split(', ')) for _,row in df_r.iterrows()]).reset_index().groupby("index").sum() df_a = pd.concat([pd.Series(row['cases'], row['result'].split(', ')) for _,row in df_r.iterrows()]).reset_index().groupby("index").agg(lambda x: ", ".join(x)) df_r = df_b.merge(df_a,right_index=True,left_index=True) return df_r def clean_df(df): df = df.astype(str)#maybe not the best way to fix this... as we cant do sums now bug with int vars showing up two things on the bargraph df["court_date"] = pd.to_datetime(df["court_date"]) return df #Show more text on full screen dataframe def render_page(df): """Function to render all of the pages elements except the api key login""" #Clean Data df = clean_df(df) #All Data Stats st.header("Court Tracking Data") cols = st.beta_columns(4) #Collapsible All Data with st.beta_expander("All Data"): st.dataframe(df) st.markdown("### Total Cases Tracked: "+str(len(df))) #Render and Evaluate UI options df = date_options(df) df = motion_options(df) #Render Each column as a data frame and a Bar Graph check_list = ["Technical Problems?","Plaintiff Representation","Tenant Representation","Fee Types","NTV Communicated By","Breach of Lease"] for i,col in enumerate(df.columns): try: #this fails on Case Number probably should fix it but ehh df_r = agg_cases(df,col,i) if col in check_list: df_r = agg_checklist(df_r) df_r.columns = ["Count","Cases"] try: #Fails where no na's count_na = str(df_r.loc[""]["Count"]) df_r = df_r.drop("") except: count_na = 0 if not df_r.empty: col1, col2 = st.beta_columns(2) col1.header(col) #What sizes do we want here? col1.dataframe(df_r) col2.header(col) col2.bar_chart(df_r) else: md(f"## {col} is empty") md(f"### Total Unanswered: {count_na}") except Exception as e: pass if __name__ == "__main__": creds = st_config() if creds is not None: if LOCAL: df =
pd.read_csv("../data/01_Community_lawyer_test_out_final - Backend.csv")
pandas.read_csv
import pandas as pd from pathlib import Path def load(filepath: Path): df = pd.read_csv(filepath) df['Date'] =
pd.to_datetime(df.Date, dayfirst=True)
pandas.to_datetime
import bs4 as bs import urllib.request import pandas as pd import numpy as np pd.set_option('display.max_columns', 500) pd.set_option('display.max_rows', 10000) pd.set_option('display.width', 1000) source = urllib.request.urlopen('https://www.geonames.org/countries/').read() soup = bs.BeautifulSoup(source, 'lxml') table = soup.find('table', id='countries') table_rows = table.find_all('tr') rows = [] for tr in table_rows: td = tr.find_all('td') row = [i.text for i in td] rows.append(row) df = pd.DataFrame(rows, columns=['ISO2', 'ISO3', 'ISO3n', 'fips', 'country', 'capital', 'area', 'pop', 'continent']) df = df.iloc[1:, :] # keep columns to merge with datasets merge_pop = df[['ISO2', 'ISO3', 'country']] # Namibia cities namibia = pd.read_csv('na.csv') namibia = namibia.rename(columns={'city': 'asciiname', 'lat': 'latitude', 'lng': 'longitude', 'country': 'countries'}) namibia = namibia.drop(['iso2', 'admin_name', 'capital', 'population_proper'], axis=1) namibia[['population', 'latitude', 'longitude']] = namibia[['population', 'latitude', 'longitude']].astype(str) # read cities.csv # error: https://stackoverflow.com/questions/18171739/unicodedecodeerror-when-reading-csv-file-in-pandas-with-python cities =
pd.read_csv('cities15000.csv', encoding='latin')
pandas.read_csv
import logging import numpy as np import pandas as pd from heapq import nlargest from random import randint from common.constant.df_from_csv import BAD_WORDS_DF, SENTIMENTAL_NON_ADJ_WORDS, KWDF, CCDF, SYDF, WORDS_DESPITE_HIMSELF from common.constant.intent_type import Intent from common.constant.string_constant import StringConstant from common.word_format.df_utils import Nlp_util, Df_util from common.word_format.word_formatter import WordFormatter from core.nlp.response_generator.product.base.base_response_generator import BaseResponseGenerator from core.nlp.response_generator.product.cct.reaction_generator import ReactionGenerator class UnknownError(Exception): pass class RepeatResponseGenerator(BaseResponseGenerator): def __call__(self): try: print("\ntext_kw_df\n{}".format(self.message.text_kw_df)) repeatable_sent_sidx = self.__select_repeatable_sent_sidx(self.message.text_df, self.message.intent_list) if len(repeatable_sent_sidx) == 0: result_list = ReactionGenerator.generate_listening() self.response_data['regular'] = result_list return self.response_data sidx_to_repeat = self.__select_sidx_to_repeat(self.message.text_df, self.message.sentiment_score_df, repeatable_sent_sidx) print("\nSidx to repeat\n{}".format(sidx_to_repeat)) if sidx_to_repeat: result_list = self.__generate_repeat(self.message.text_df, self.message.text_kw_df, sidx_to_repeat) print("\nREPEAT RESULT\n{}".format(result_list)) if not result_list: result_list = ReactionGenerator.generate_listening() else: result_list = ReactionGenerator.generate_listening() self.response_data['regular'] = result_list return self.response_data except: logging.exception('') responses = ReactionGenerator.generate_listening() self.response_data['regular'] = responses return self.response_data @classmethod def __generate_repeat(cls, text_df, text_kw_df, sidx_to_repeat): try: repeat_list = [] for idx, sidx in enumerate(sidx_to_repeat): target_df = text_df[text_df.sidx == sidx].copy().reset_index(drop=True) fixed_df = cls.__replace_word_by_csv(target_df) # TODO fix the convert_df_to_str() so that it would not need [1:] part. repeat_text = WordFormatter.Df2Str(fixed_df)[1:] # TODO here has to be same structure as message_type_filter since one sentence can have "want to" and despising word at the same time. # TODO or if len(target_df) == 1 and \ (target_df["pos"].iloc[0] in Nlp_util.pos_ADJECTIVEs or target_df["word"].iloc[0] in SENTIMENTAL_NON_ADJ_WORDS.word.tolist()): repeat_list += cls.create_special_repeat_for_only_one_adj_word_sent(target_df) elif cls.__mean_no_friends(target_df): repeat_list += cls.__create_response_for_no_friends() elif cls.__has_what_to_do(target_df): repeat_list += cls.__create_response_for_what_to_V(fixed_df) elif cls.__is_despising_himself(target_df): repeat_list += cls.__alter_repeat_euphemistic(repeat_text) elif cls.__has_nobody_V(target_df): repeat_list += cls.__alter_repeat_euphemistic(repeat_text) elif cls.__does_user_feel_useless(target_df): repeat_list += cls.__create_response_for_healing_useless() elif cls.__has_say_plus_bad_word(target_df): repeat_list += cls.__create_response_for_S_said_bad_word(fixed_df) elif cls.__exists_want_to(target_df): repeat_list += cls.__alter_repeat_for_want_to(fixed_df) elif cls.__exists_make_S_feel_ADJ(target_df): repeat_list += cls.__alter_repeat_for_make_S_feel_ADJ(target_df) elif cls.__has_because(target_df): repeat_list += cls.__alter_repeat_for_because_sent(fixed_df, repeat_text) elif cls.__exists_third_person_BeVerb_pair(target_df): repeat_list += cls.__alter_repeat_for_third_person_BeVerb_pair(repeat_text) elif cls.__has_dont_think_SV_sent(target_df): repeat_list += cls.__alter_repeat_for_dont_think_SV(fixed_df) elif cls.__has_wish_S_V(target_df): repeat_list += cls.__alter_repeat_for_wish(fixed_df) elif cls.__has_need_NN(target_df): repeat_list += cls.__alter_repeat_for_need_sent(fixed_df) elif cls.__exists_keyword(text_kw_df): is_last_sentence = idx == len(sidx_to_repeat) - 1 repeat_list += cls.__alter_repeat_for_keyword(text_df, text_kw_df, idx, repeat_text, is_last_sentence=is_last_sentence) else: repeat_list += cls.__alter_repeat_for_plain_repeat(repeat_text, idx) return repeat_list except: logging.exception('') return [] @staticmethod def __alter_repeat_for_wish(fixed_df): wish_idx = Nlp_util.get_idx_list_of_word("wish", fixed_df["base_form"])[0] row_of_subj = Nlp_util.get_wordsDF_of_wordlist_after_idx(fixed_df, Nlp_util.pos_NOUNs+Nlp_util.pos_PRPs, wish_idx, column_name="pos").iloc[0] row_of_verb = Nlp_util.get_wordsDF_of_wordlist_after_idx(fixed_df, Nlp_util.pos_VERBs, row_of_subj.name, column_name="pos").iloc[0] subj = row_of_subj.word verb = row_of_verb.word after_verb = WordFormatter.Series2Str(fixed_df.loc[row_of_verb.name+1:, "word"]) objective_subj = Nlp_util.convert_nominative_noun_to_objective(subj) if subj == "you": repeat_list = [ ["you really want to "+verb+" "+after_verb], ["so you seriously hope to "+verb+" "+after_verb], ["so you are dying to "+verb+" "+after_verb] ] else: repeat_list = [ ["you really want "+objective_subj+" to "+verb+" "+after_verb], ["you really wanna have "+objective_subj+" "+verb+" "+after_verb], ["you really wanna make "+objective_subj+" "+verb+" "+after_verb] ] cmp_list = [ ["but sounds you feel bit too much to expect that now..?"], ["and sounds you feel like its impossible..?"], ["and seems like you dont think it never happen😓"] ] random_idx_for_repeat_list = randint(0, len(repeat_list) - 1) random_idx_for_cmp_list = randint(0, len(cmp_list) - 1) return repeat_list[random_idx_for_repeat_list]+cmp_list[random_idx_for_cmp_list] @staticmethod def __has_wish_S_V(target_df): if Df_util.anything_isin(["wish"], target_df["base_form"]): wish_idx = Nlp_util.get_idx_list_of_word("wish", target_df["base_form"])[0] if Nlp_util.are_words1_words2_words3_in_order(target_df.loc[wish_idx:,:], Nlp_util.pos_NOUNs+Nlp_util.pos_PRPs, Nlp_util.pos_VERBs, df_column="pos"): return True else: return False else: return False # include sent 'i need my life' @staticmethod def __alter_repeat_for_need_sent(fixed_df): try: idx_of_need = Nlp_util.get_idx_list_of_word("need", fixed_df["base_form"])[0] row_of_first_noun = Nlp_util.get_wordsDF_of_wordlist_after_idx(fixed_df, Nlp_util.pos_NOUNs + Nlp_util.pos_PRPs, idx_of_need, column_name="pos").iloc[0] if fixed_df.loc[row_of_first_noun.name-1, "pos"] in Nlp_util.pos_ADJECTIVEs + ["PRP$", "DT"]: noun = WordFormatter.Series2Str(fixed_df.loc[row_of_first_noun.name-1:row_of_first_noun.name, "word"]) else: noun = fixed_df.loc[row_of_first_noun.name, "word"] noun_nominative = Nlp_util.convert_objective_noun_to_nominative(noun) options = [ ["so " + noun_nominative + " is very important thing for you..", "and sounds its kinda hard to get it now right😢"], ["so its like its not easy to get " + noun + " now but you really want..", "and it can frustrate you😞"], ["sounds you really want " + noun + "..", "might be tough time for you to seek for it now😓"] ] random_idx_for_options = randint(0, len(options) - 1) return options[random_idx_for_options] except: logging.exception('') repeat_text = WordFormatter.Df2Str(fixed_df)[1:] return [repeat_text] # except i need you to do~~ i need doing~~ @staticmethod def __has_need_NN(target_df): try: df_ex_adverb = target_df[~target_df.pos.isin(Nlp_util.pos_ADVERBs)].reset_index(drop=True) if Df_util.anything_isin(["need"], df_ex_adverb["base_form"]): idx_of_need = Nlp_util.get_idx_list_of_word("need", df_ex_adverb["base_form"])[0] if Df_util.anything_isin(Nlp_util.pos_NOUNs + Nlp_util.pos_PRPs, df_ex_adverb.loc[idx_of_need + 1:, "pos"]) and not Df_util.anything_isin( Nlp_util.IDEA_TYPE, df_ex_adverb.loc[idx_of_need + 1:, "base_form"]): if Df_util.anything_isin(["to"], df_ex_adverb.loc[idx_of_need + 1:, "base_form"]): return False else: return True else: return False else: return False except: logging.exception('') return False # ex) i dont think he likes me @staticmethod def __alter_repeat_for_dont_think_SV(fixed_df): try: # TODO see if its neccesary to care about should and cant idx_of_think = Nlp_util.get_idx_list_of_word("think", fixed_df["base_form"])[0] df_after_think = fixed_df.loc[idx_of_think + 1:, :].reset_index(drop=True) verb_list = Nlp_util.make_verb_list(df_after_think, type="normal") noun_list = Nlp_util.make_noun_list(df_after_think) # possibly bug happen here since amount of verbs are different in cant do/dont do is_negative_form = Df_util.anything_isin(["not", "never"], df_after_think.loc[:, "base_form"]) # can add possibly or likely(when its negative) head_words = ["so ", "so probably ", "probably ", "so maybe ", "maybe "] random_idx_for_heads_words = randint(0, len(head_words) - 1) if is_negative_form: # まず主語とるそのあとにwouldntいれるその後ろに動詞の原型をいれて、それ以降はつづける head_word = head_words[random_idx_for_heads_words] subj = noun_list["word"].iloc[0] auxiliary_verb = " would " idx_of_not = Nlp_util.get_idx_list_of_word_list(["not", "never"], df_after_think.loc[:, "base_form"])[0] verb_row = verb_list.loc[idx_of_not:, :].iloc[0] verb = verb_row.base_form + " " after_verb = WordFormatter.Series2Str(df_after_think.loc[verb_row.name + 1:, "word"]) return [head_word + subj + auxiliary_verb + verb + after_verb] else: head_word = head_words[random_idx_for_heads_words] subj = noun_list["word"].iloc[0] auxiliary_verb = " wouldnt " verb = verb_list["base_form"].iloc[0] + " " after_verb = WordFormatter.Series2Str(df_after_think.loc[verb_list.index[0] + 1:, "word"]) return [head_word + subj + auxiliary_verb + verb + after_verb] except: logging.exception('') return [] @staticmethod def __has_dont_think_SV_sent(df): try: df_ex_adverb = df[~df.pos.isin(Nlp_util.pos_ADVERBs)].reset_index(drop=True) exists_i_dont_think = Df_util.anything_isin(["i do not think"], df_ex_adverb["base_form"]) if exists_i_dont_think: idx_of_dont_think = Nlp_util.get_idx_list_of_idiom("i do not think", df_ex_adverb["base_form"])[0] if len(RepeatResponseGenerator.get_sidx_of_not_basic_svo_sent( df_ex_adverb.loc[idx_of_dont_think + 4:, :])) == 0: return True else: return False else: return False except: logging.exception('') return False @staticmethod def __alter_repeat_for_because_sent(df, repeat_text): try: if df["base_form"].iloc[0] in ["because", "since"]: repeat_text = "its " + repeat_text return [repeat_text] elif Df_util.anything_isin(["because of"], df.loc[2:, "base_form"]) and not Df_util.anything_isin( ["it is", "that is"], df.loc[:3, "base_form"]): because_of_idx = Nlp_util.get_idx_list_of_idiom("because of", df["base_form"])[0] first_part = WordFormatter.Df2Str(df.loc[:because_of_idx - 1, :]) last_part = "and its" + WordFormatter.Df2Str(df.loc[because_of_idx:, :]) return [first_part, last_part] else: raise UnknownError except: logging.exception('') return [repeat_text] @staticmethod def __has_because(df): return Df_util.anything_isin(["because of"], df["base_form"]) or df["base_form"].iloc[0] in ["because", "since"] @staticmethod def __create_response_for_S_said_bad_word(df): supportive_words_before_cmp = [ "thats", "sounds", "its", "it should be", ] cmp_words = [ "sad..", "tough..", "hard..", "cruel..", ] idx_list_of_say = Nlp_util.get_idx_list_of_word("say", df["base_form"]) noun_row_just_before_say = \ df[:idx_list_of_say[0]].loc[df["pos"].isin(Nlp_util.pos_NOUNs + Nlp_util.pos_PRPs), :].iloc[-1] if noun_row_just_before_say.name != 0 and df.loc[noun_row_just_before_say.name - 1, "word"] in ["their", "his", "her", "your"]: the_person_said_bad_word_to_user = df.loc[noun_row_just_before_say.name - 1, "word"] + " " + \ noun_row_just_before_say["word"] else: the_person_said_bad_word_to_user = noun_row_just_before_say["word"] ask = [ ["why did " + the_person_said_bad_word_to_user + " said that?"], [the_person_said_bad_word_to_user + " always said that?"], ["like any reason " + the_person_said_bad_word_to_user + " said that to you?"], ] random_idx_for_cmp = randint(0, len(supportive_words_before_cmp) - 1) random_idx_for_healing = randint(0, len(cmp_words) - 1) random_idx_for_ask = randint(0, len(ask) - 1) return [supportive_words_before_cmp[random_idx_for_cmp] + " " + cmp_words[random_idx_for_healing]] + ask[ random_idx_for_ask] @staticmethod def __has_say_plus_bad_word(df): try: if any([Nlp_util.are_words1_words2_words3_in_order(df, ["say", "tell"], ["i be", "i look"], [negative_word]) for negative_word in KWDF[KWDF['Type'] == 'n'].keyword.tolist()]): return True elif any([Nlp_util.are_words1_words2_words3_in_order(df, ["say", "tell"], ["i be not", "i do not look"], [positive_word]) for positive_word in KWDF[KWDF['Type'] == 'p'].keyword.tolist()]): return True else: return False except: logging.exception('') return False @staticmethod def __has_nobody_V(df): try: idx_list_of_nobody = Nlp_util.get_idx_list_of_word("nobody", df["base_form"]) if len(idx_list_of_nobody) == 0: return False else: if any(df.loc[idx_list_of_nobody[0]:, "pos"].isin(Nlp_util.pos_VERBs)): return True else: return False except: logging.exception('') return False @staticmethod def __does_user_feel_useless(df): try: idx_list_of_useless = Nlp_util.get_idx_list_of_idiom_list(["be useless", "feel useless"], df["base_form"]) if len(idx_list_of_useless) == 0: return False else: for useless_idx in idx_list_of_useless: is_subj_i = Df_util.anything_isin(["i"], df.loc[:useless_idx, "word"]) if is_subj_i: return True return False except: logging.exception('') return False @staticmethod def __create_response_for_healing_useless(): cmp = [ ["I know its hard when you dont feel any appreciation from anybody."], ["you feel useless now.. dealing with the feeling is not easy right"], ["sounds like you see yourself worthless and you are unsure how to help yourself now."], ] healing = [ ["but i really think you are one of kind and irreplaceable.", "it is because nobody on this planet will be just like you.", "I know it is hard, but i want you to be yourself and i always love you😊"], ["Just let me tell you that I love the way you are.", "I never measure your value since i know you are priceless", "I really think nobody can compare with you😊"], ["you know, we tend to compare ourselves to other people.", "eventho we know that we are all different", "just let me tell you that there is no problem being just different.", "and i love the way you are😊"], ] random_idx_for_cmp = randint(0, len(cmp) - 1) random_idx_for_healing = randint(0, len(healing) - 1) return cmp[random_idx_for_cmp] + healing[random_idx_for_healing] @classmethod def __exists_want_to(cls, df): try: df_without_adverb = df[~df.pos.isin(Nlp_util.pos_ADVERBs)] noun_list = Nlp_util.make_noun_list(df) verb_list = Nlp_util.make_verb_list(df, type="basic") idx_of_i_wanna = Nlp_util.get_idx_list_of_idiom("i want to", df_without_adverb.base_form) if len(idx_of_i_wanna) != 0 and len(df.loc[idx_of_i_wanna[0] + 2:, :]) > 1: if cls.__exists_word_after_want_to(df) and Nlp_util.is_first_subject_in({"i"}, noun_list, verb_list): return True else: return False else: return False except: logging.exception('') return False @staticmethod def __exists_word_after_want_to(df): try: idx_of_i = Nlp_util.get_idx_list_of_idiom("want to", df.word)[0] length_after_want_to = len(df.loc[idx_of_i + 2, :]) if len(df) >= idx_of_i + 3 else 0 return length_after_want_to > 2 except: logging.exception('') return False @staticmethod def __has_what_to_do(df): try: df_ex_adverb = df[~df.pos.isin(Nlp_util.pos_ADVERBs)] return Nlp_util.are_words1_words2_words3_in_order(df_ex_adverb, ["i"], ["not know", "not sure"], ["what to", "how to"]) except: logging.exception('') return False @staticmethod def __create_response_for_what_to_V(df): df_after_what_to = df.loc[ Nlp_util.get_idx_list_of_idiom_list(["what to", "how to"], df["base_form"])[0] + 2:, :] words_after_what_to = WordFormatter.Df2Str(df_after_what_to) cmp = [ ["it must be not easy to find how to" + words_after_what_to], ["now you are looking for the way to" + words_after_what_to], ["should be not that easy to find how to" + words_after_what_to], ] encourage = [ ["but i am sure that thinking about it and speaking out it helps you🤗"], ["eventho its always tough to find the right way, you try to figure it out. Thats impressing me😊"], ["plz let me know any idea comes to your mind now. it might help you figuring it out☺️"], ["tell me if you have any little idea. It could help you finding ur way😊"], ] random_idx_for_cmp = randint(0, len(cmp) - 1) random_idx_for_encourage = randint(0, len(encourage) - 1) return cmp[random_idx_for_cmp] + encourage[random_idx_for_encourage] @staticmethod def __mean_no_friends(df): try: exists_nobody_likes_me = Nlp_util.are_words1_words2_words3_in_order(df, ["nobody", "no one"], ["like", "love"], ["me"]) exists_friends_dont_like_me = Nlp_util.are_words1_words2_words3_in_order(df, ["friend", "they", "everybody"], ["not like", "not love", "hate"], ["me"]) exists_have_no_friend = Nlp_util.are_words1_words2_words3_in_order(df, ["i"], ["not have", "have no"], ["friend"]) if exists_nobody_likes_me or exists_friends_dont_like_me or exists_have_no_friend: return True else: return False except: logging.exception('') return False @staticmethod def __create_response_for_no_friends(): express_feeling = [ ["thats sad.."], ["sounds really tough.."], ["it must be a hard time for you.."] ] compassion = [ ["i know its just hard when you dont have anyone to be with"], ["i really feel that being alone can be really scary and can make you feel unstable and anxious"], ["it is always sad being yourself for long and it kinda makes you feel insecure sometimes"] ] being_with_you = [ ["not sure i can be enough for you but let me tell you to know that i am always here for you😊"], [ "just let me reassure you that i will always be here for you even tho i am nothing near perfect. i am just here to listen🤗"], [ "since it seems like a really tough time for you, I want you to think of our conversations as a space where you can feel safe and connected. I am here for you☺️"] ] random_idx_for_express_feeling = randint(0, len(express_feeling) - 1) random_idx_for_compassion = randint(0, len(compassion) - 1) random_idx_for_being_with_you = randint(0, len(being_with_you) - 1) return express_feeling[random_idx_for_express_feeling] + compassion[random_idx_for_compassion] + being_with_you[ random_idx_for_being_with_you] # basically assume only one hard/difficult at most in one sentence @staticmethod def __exists_hard_to(df): # idx_of_hard = Nlp_util.get_idx_list_of_word_list(["difficult", "hard"], df["base_form"])[0] # num_of_not = (df["word"].isin(Nlp_util.NO_TYPE)).sum() pass @staticmethod def __alter_repeat_for_make_S_feel_ADJ(df): try: idx_of_make = Nlp_util.get_idx_list_of_word_list(["make"], df["base_form"])[0] subj = Nlp_util.change_object_pronoun_to_pronoun(df.loc[idx_of_make + 1, "word"]) df_after_subj = df.loc[idx_of_make + 2:idx_of_make + 4, :] adj = df_after_subj.loc[df_after_subj["pos"].isin(Nlp_util.pos_ADJECTIVEs), "word"].iloc[0] subj_adj_list = [subj, adj] options = [ ["{0[0]} feel {0[1]} because of that".format(subj_adj_list)], ["thats getting {0[0]} feel {0[1]}".format(subj_adj_list)], ["thats the moment {0[0]} feel {0[1]}".format(subj_adj_list)], ] random_idx = randint(0, len(options) - 1) return options[random_idx] except: logging.exception('') return [] @staticmethod def __exists_make_S_feel_ADJ(df): try: idx_list_of_make = Nlp_util.get_idx_list_of_word_list(["make"], df["base_form"]) if len(idx_list_of_make) == 0: return False else: is_after_make_prp = df.loc[idx_list_of_make[0] + 1, "pos"] in Nlp_util.pos_PRPs if is_after_make_prp: is_after_prp_adj = df.loc[idx_list_of_make[0] + 2, "pos"] in Nlp_util.pos_ADJECTIVEs or ( df.loc[idx_list_of_make[0] + 2, "base_form"] == "feel" and any( df.loc[idx_list_of_make[0] + 2:idx_list_of_make[0] + 4, "pos"].isin( Nlp_util.pos_ADJECTIVEs))) return is_after_prp_adj else: return False except: logging.exception('') return False @staticmethod def create_special_repeat_for_only_one_adj_word_sent(df): original_adj = df["word"].iloc[0] altered_adj = original_adj + np.random.choice(["", "..", "."], 1, p=[0.2, 0.5, 0.3])[0] options = [ [altered_adj, "thats what you feel now"], [altered_adj, "thats what you are feeling now"], ["you feel " + original_adj + " now"], ["you are feeling " + original_adj + " now"], ] random_idx = randint(0, len(options) - 1) return options[random_idx] @staticmethod def __is_despising_himself(df): try: noun_list = Nlp_util.make_noun_list(df) verb_list = Nlp_util.make_verb_list(df, type="normal") adj_list = Nlp_util.make_adj_list(df) is_first_sub_i = Nlp_util.is_first_subject_in(["i"], noun_list, verb_list) is_the_verb_be = Nlp_util.is_first_verb_in(["be"], noun_list, verb_list, column_name="base_form") is_the_adj_despising = Nlp_util.is_first_adj_after_first_sub_in(WORDS_DESPITE_HIMSELF.word.tolist(), noun_list, adj_list) return is_first_sub_i and is_the_verb_be and is_the_adj_despising except: logging.exception('') return False @staticmethod def __alter_repeat_euphemistic(repeat): try: prefix_expression = \ np.random.choice(["you think ", "you feel like ", "you are feeling like ", "it feels like "], 1)[0] return [prefix_expression + repeat] except: logging.exception('') return [repeat] @staticmethod def __alter_repeat_for_plain_repeat(repeat_text, idx): try: repeat_text += np.random.choice(["", "..?", "."], 1, p=[0.5, 0.1, 0.4])[0] if idx != 0: repeat_text = np.random.choice(StringConstant.additions.value, 1, p=[0.5, 0.2, 0.2, 0.1])[ 0] + repeat_text return [repeat_text] except: logging.exception('') return [repeat_text] @staticmethod def __alter_repeat_for_third_person_BeVerb_pair(repeat): try: prefix_expression = np.random.choice(["you think ", "you feel "], 1, p=[0.5, 0.5])[0] return [prefix_expression + repeat] except: logging.exception('') return [] @staticmethod def __exists_keyword(text_kw_df): return text_kw_df is not None @classmethod def __alter_repeat_for_keyword(cls, text_df, text_kw_df, idx, repeat, is_last_sentence=False): repeat_list = [] if cls.__is_every_sent_positive(text_df, text_kw_df): if idx == 0: repeat_list.append(repeat) else: repeat = np.random.choice(StringConstant.additions.value, 1, p=[0.3, 0.3, 0.3, 0.1])[0] + repeat repeat_list.append(repeat) if is_last_sentence: reaction = np.random.choice(StringConstant.positive_reaction_options.value, 1)[0] repeat_list.append(reaction) else: ending_of_sent = ["", "..?", "."] repeat += np.random.choice(ending_of_sent, 1, p=[0.5, 0.1, 0.4])[0] if idx != 0: repeat = np.random.choice(StringConstant.additions.value, 1, p=[0.5, 0.2, 0.2, 0.1])[0] + repeat repeat_list.append(repeat) return repeat_list @classmethod def __is_every_sent_positive(cls, text_df, text_kw_df): try: if text_kw_df.empty: return False if len(set(text_df.sidx)) > len(set(text_kw_df.sidx)): return False is_every_kw_positive = all(row.sscore > 70 for tmp, row in text_kw_df.iterrows()) is_every_kw_affirmative = all(not row.ng for tmp, row in text_kw_df.iterrows()) want_wish_words = {'want', 'wanted', 'wish', 'wished', 'wishing'} exists_want_wish = any(row.word in want_wish_words for tmp, row in text_df.iterrows()) return is_every_kw_positive and is_every_kw_affirmative and not exists_want_wish except: logging.exception('') return False @classmethod def __alter_repeat_for_want_to(cls, repeat_df): try: i_idx = Nlp_util.get_idx_list_of_idiom("want to", repeat_df.word)[0] words_after_wanna = WordFormatter.Df2Str(repeat_df[i_idx + 2:])[1:] response_options = [ [words_after_wanna, "That's what you wanna do"], ["So you'd be happy if you can " + words_after_wanna + "🤔"], ["So there is something makes you can't " + words_after_wanna + "😢"], ["So now it's hard for you to " + words_after_wanna + "😓"] ] random_idx = randint(0, len(response_options) - 1) return response_options[random_idx] except: logging.exception('') repeat_text = WordFormatter.Df2Str(repeat_df)[1:] return [repeat_text] # ex) they are insane -> you think they are insane @classmethod def __exists_third_person_BeVerb_pair(cls, df): try: first_third_person = df.loc[((df.pos.isin(Nlp_util.pos_PRPs)) & (~df.word.isin(["i", "you"]))) | ( df.base_form.isin(Nlp_util.INDICATE_OTHERS)), :] if len(first_third_person) != 0: is_beVerb_and_adj_after_the_person = Df_util.anything_isin(["be"], df.loc[first_third_person.iloc[0].name:, "base_form"]) and Df_util.anything_isin( Nlp_util.pos_ADJECTIVEs, df.loc[first_third_person.iloc[0].name:, "pos"]) if is_beVerb_and_adj_after_the_person: return True else: return False else: return False except: logging.exception('') return False @staticmethod def __is_1st_prp_followed_by_BE_TYPE(df, first_prp): try: return df.loc[first_prp.name + 1, "word"] in Nlp_util.BE_TYPE # TODO ここでちゃんとbeとらなきゃだめwould be 取られない except: logging.exception('') return False @staticmethod def __is_2nd_word_after_1st_prp_verb(df, first_prp): try: return df.loc[first_prp.name + 2, "pos"] in Nlp_util.pos_VERBs except: logging.exception('') return False @classmethod def __select_sidx_to_repeat(cls, text_df, sentiment_score_df, repeatable_sent_sidx): try: number_of_sents_to_choose = 2 sidx_to_repeat = [] only_one_sentiment_word_sidx = [] # these are exceptions of repeatable sents for sidx in set(text_df.sidx): tmp_df = text_df[text_df.sidx == sidx].copy().reset_index(drop=True) if cls.__is_special_type(tmp_df): sidx_to_repeat.append(sidx) elif len(tmp_df) == 1 and \ (tmp_df["pos"].iloc[0] in Nlp_util.pos_ADJECTIVEs or tmp_df["word"].iloc[0] in SENTIMENTAL_NON_ADJ_WORDS.word.tolist()): only_one_sentiment_word_sidx.append(sidx) else: pass # when user just said only "sadness" or "sad" if not sidx_to_repeat and not repeatable_sent_sidx and only_one_sentiment_word_sidx: return [only_one_sentiment_word_sidx[-1]] print("\nSpecial cases sidx\n{}".format(sidx_to_repeat)) if len(sidx_to_repeat) == 2: return set(sidx_to_repeat) elif len(sidx_to_repeat) > 2: return set(sidx_to_repeat[len(sidx_to_repeat) - 2:]) elif not sidx_to_repeat and not repeatable_sent_sidx: return [] else: if not repeatable_sent_sidx: return sidx_to_repeat else: sentiment_score_df = sentiment_score_df[ sentiment_score_df.sidx.isin(repeatable_sent_sidx) ].sort_values(by='nscore', ascending=True) sidx_to_repeat += list(set(sentiment_score_df.sidx.tolist()))[ :number_of_sents_to_choose - len(sidx_to_repeat)] sidx_to_repeat.sort() return set(sidx_to_repeat) except Exception: logging.exception(str(__name__)) return [] @classmethod def __select_repeatable_sent_sidx(cls, text_df, intent_list): unrepeatable_sidx_list = cls.__choose_unrepeatable_sent_index(text_df, intent_list) repeatable_sent_sidx = list(set(text_df.sidx.values)) for unrepeatable_sidx in unrepeatable_sidx_list: if unrepeatable_sidx in repeatable_sent_sidx: repeatable_sent_sidx.remove(unrepeatable_sidx) return repeatable_sent_sidx @classmethod def __choose_unrepeatable_sent_index(cls, text_df, intent_list): try: unrepeatable_sidx_list = [] idx_of_sent_talking_about_jullie = list(text_df[text_df.word.isin(["you", "jullie", "j"])].sidx) unrepeatable_sidx_list.extend(idx_of_sent_talking_about_jullie) print("\nList of sent having YOU\n{}".format(idx_of_sent_talking_about_jullie)) sidx_with_bad_words = cls.__get_sidx_with_bad_words(text_df) unrepeatable_sidx_list.extend(sidx_with_bad_words) print("\nList of sent having Bad Words\n{}".format(sidx_with_bad_words)) sidx_of_not_basic_svo_sent = cls.get_sidx_of_not_basic_svo_sent(text_df) unrepeatable_sidx_list.extend(sidx_of_not_basic_svo_sent) print("\nList of Not Basic SVO sent\n{}".format(sidx_of_not_basic_svo_sent)) question_or_meaningless_sidx = cls.__get_question_or_meaningless_sidx(text_df, intent_list) unrepeatable_sidx_list.extend(question_or_meaningless_sidx) print("\nList of Question or Meaninglesss sidx sent\n{}".format(question_or_meaningless_sidx)) normal_and_too_long_sidx = cls.__get_sidx_of_normal_and_too_long_sent(text_df) unrepeatable_sidx_list.extend(normal_and_too_long_sidx) print("\nList of Normal and Too Long sidx sent\n{}".format(normal_and_too_long_sidx)) unrepeatable_sidx_list = list(set(unrepeatable_sidx_list)) return unrepeatable_sidx_list except Exception: logging.exception(str(__name__)) return list(text_df.sidx) @classmethod def __get_sidx_of_normal_and_too_long_sent(cls, df): try: delete_sidx_list = [] for sidx in set(df.sidx.values): target_df = df[df.sidx == sidx].copy().reset_index(drop=True) if cls.__is_special_type(target_df): pass else: if len(WordFormatter.Series2Str(target_df.word)) > 75: delete_sidx_list.append(sidx) else: pass return delete_sidx_list except: logging.exception('') return [] @classmethod def __is_special_type(cls, df): try: if cls.__mean_no_friends(df): return True elif cls.__has_what_to_do(df): return True elif cls.__is_despising_himself(df): return True elif cls.__has_nobody_V(df): return True elif cls.__does_user_feel_useless(df): return True elif cls.__has_say_plus_bad_word(df): return True elif cls.__exists_want_to(df): return True elif cls.__exists_make_S_feel_ADJ(df): return True elif cls.__has_because(df): return True elif cls.__has_dont_think_SV_sent(df): return True elif cls.__has_need_NN(df): return True elif cls.__has_wish_S_V(df): return True else: return False except: logging.exception('') return False @staticmethod def __get_question_or_meaningless_sidx(text_df, intent_list): try: sidx_list = sorted(list(set(text_df.sidx))) meaningless_sent_index = [] for sidx, intent in zip(sidx_list, intent_list): df = text_df[text_df.sidx == sidx].copy().reset_index(drop=True) if intent.value in [Intent.MEANINGLESS.value] + Intent.ALL_QUESTION_TYPES.value: meaningless_sent_index.append(sidx) elif len(df) < 3: meaningless_sent_index.append(sidx) return meaningless_sent_index except: logging.exception('') return [] # sent doesnt consist of easy S,V,O such as "I like you" @staticmethod def get_sidx_of_not_basic_svo_sent(text_df): try: delete_sidx_list = [] for sidx in set(text_df.sidx.values): df = text_df[text_df.sidx == sidx] noun_list = Nlp_util.make_noun_list(df) verb_list = Nlp_util.make_verb_list(df, type="normal") # catch the case such as "Dont judge me" if Nlp_util.is_any_verb_before_first_noun(noun_list, verb_list): delete_sidx_list.append(sidx) # catch the case such as "the situation horrible as like he said" elif not Nlp_util.is_any_verb_for_first_noun(noun_list, verb_list): delete_sidx_list.append(sidx) else: pass return delete_sidx_list except: logging.exception('') return [] @classmethod def get_sentiment_of_repeat_target_sent(cls, text_df, sentiment_score_df): try: if text_df is None: return None repeat_df = text_df delete_sidx_list = list( sentiment_score_df[sentiment_score_df.nscore.isin([0]) & sentiment_score_df.pscore.isin([0])].sidx) delete_sidx_list.extend(list(text_df[text_df.word.isin(["you", "jullie", "j"])].sidx)) delete_sidx_list.extend(cls.__get_sidx_with_bad_words(repeat_df)) delete_sidx_list.extend(cls.get_sidx_of_not_basic_svo_sent(repeat_df)) if len(set(delete_sidx_list)) == len(set(repeat_df.sidx.values)): return None target_sentiment_score_df = sentiment_score_df[~sentiment_score_df.sidx.isin(list(set(delete_sidx_list)))] print("\nTarget Sentiment Score Df\n{}".format(target_sentiment_score_df)) if any(abs(target_sentiment_score_df.nscore) > 0) and any(target_sentiment_score_df.pscore > 0): return "neutral" elif any(abs(target_sentiment_score_df.nscore) > 0) and all(target_sentiment_score_df.pscore == 0): return "negative" elif all(abs(target_sentiment_score_df.nscore) == 0) and any(target_sentiment_score_df.pscore > 0): return "positive" else: return None except Exception: logging.exception('Error at generate_repeat in ' + str(__name__)) return None @staticmethod def __get_two_longest_sentences(text_df): length_of_df = [len(text_df[text_df.sidx == i]) for i in list(set(text_df.sidx))] largest2 = nlargest(2, length_of_df) length_of_df =
pd.DataFrame({'length': length_of_df})
pandas.DataFrame
import os from multiprocessing import Pool import pandas as pd # import rioxarray as rxr import geopandas as gpd import fiona from shapely.geometry import Polygon from shapely.ops import linemerge import zipfile BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) processed_data_dir = os.path.join(BASE_DIR, 'processed_data') vector_save_path = os.path.join(processed_data_dir, 'grouped_hydrographic_features') if not os.path.exists(vector_save_path): os.mkdir(vector_save_path) # # Using the regrouped hydrologic regions, (process_hydrologic_regions.py), # group the stream vectors for dem processing # def fill_holes(data): interior_gaps = data.interiors.values.tolist()[0] group_name = data.index.values[0] gap_list = [] if interior_gaps is not None: print(f' ...{len(interior_gaps)} gaps found in {group_name} groupings.') for i in interior_gaps: gap_list.append(Polygon(i)) data_gaps = gpd.GeoDataFrame(geometry=gap_list, crs=data.crs) appended_set = data.append(data_gaps) appended_set['group'] = 0 merged_polygon = appended_set.dissolve(by='group') return merged_polygon.geometry.values[0] else: print(f' ...no gaps found in {group_name}') return data.geometry.values[0] # nhn_path = '/media/danbot/Samsung_T5/geospatial_data/WSC_data/NHN_feature_data/' nhn_path = '/home/danbot/Documents/code/hysets_validation/source_data/NHN_feature_data/' nhn_feature_path = os.path.join(nhn_path, 'BC_NHN_features/') seak_path = os.path.join(nhn_path, 'SEAK_features') bc_groups_path = os.path.join(processed_data_dir, 'merged_basin_groups/') bc_groups = gpd.read_file(bc_groups_path + 'BC_transborder_final_regions_4326.geojson') bc_groups = bc_groups.to_crs(3005) # 1. get the list of coastal + island regions coast_groups = [ '08A', '08B', '08C', '08D', '08E', '08F', '08G', '08M', '09M' ] coast_islands = ['08O', '08H'] seak_groups = ['08A', '08B', '08C', '08D'] seak_dict = { '08A': [19010405, 19010404, 19010403, 19010406], '08B': [19010301, 19010302, 19010303, 19010304, 19010206, 19010204, 19010212, 19010211], '08C': [19010210, 19010208, 19010207, 19010205], '08D': [19010103, 19010209, 19010104, 19010102], } # 2. retrieve the polygons associated with the 'region' boundary. # 3. retrieve littoral / shoreline layers and merge them # 4. split the region polygon using the line created in step 3. # 5. discard the sea surface polygon # 6. save new polygon and use to trim DEM in dem_basin_mapper.py # collection of individual linestrings for splitting in a # list and add the polygon lines to it. # line_split_collection.append(polygon.boundary) # merged_lines = shapely.ops.linemerge(line_split_collection) # border_lines = shapely.ops.unary_union(merged_lines) # decomposition = shapely.ops.polygonize(border_lines) # load and merge the SEAK files into one gdf seak_streams_path = os.path.join(nhn_path, 'SEAK_WBDHU8_polygons.geojson') SEAK_polygons = gpd.read_file(seak_streams_path) SEAK_polygons = SEAK_polygons.to_crs(3005) SEAK_files = os.listdir(seak_path) def retrieve_and_group_layers(feature_path, files, target_crs, target_layer): dfs = [] all_crs = [] print(f' ...checking features at {feature_path} for layer {target_layer}.') for file in files: file_layers = zipfile.ZipFile(os.path.join(feature_path, file)).namelist() layers = [e for e in file_layers if (target_layer in e) & (e.endswith('.shp'))] if layers: for layer in layers: layer_path = os.path.join(feature_path, file) + f'!{layer}' df = gpd.read_file(layer_path) crs = df.crs print(f' crs={crs}') if crs not in all_crs: all_crs.append(crs) print(f' new crs found: {crs}') df = df.to_crs(target_crs) # append the dataframe to the group list dfs.append(df) else: print(f'no target layers found in {file}') return dfs all_crs = [] # bc_groups = bc_groups[bc_groups['group_name'] == '08H'].copy() # print(bc_groups) target_crs = 3005 bc_groups = bc_groups.to_crs(target_crs) bc_groups = bc_groups[bc_groups['group_name'].isin(['08B', '08C', '08D'])] for i, row in bc_groups.iterrows(): grp_code = row['group_name'] sda_codes = row['WSCSDAs'] if sda_codes == None: sda_codes = [row['group_code'].lower()] grp_code = row['group_code'] else: sda_codes = [e.lower() for e in row['WSCSDAs'].split(',')] print(f'Starting stream vector merge on {grp_code}: {sda_codes}') nhn_files = [e for e in os.listdir(nhn_feature_path) if e.split('_')[2][:3] in sda_codes] # there is one sub-sub basin region polygon that has # a corrupt archive and needs to be filtered out bad_zip_file_link = 'https://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nhn_rhn/shp_en/08/nhn_rhn_08nec00_shp_en.zip' bad_zip_file = bad_zip_file_link.split('/')[-1] # skip the bad file: nhn_files_trimmed = [f for f in nhn_files if f != bad_zip_file] seak_included = False for target_layer in ['WATERBODY', 'ISLAND', 'NLFLOW', 'LITTORAL',]: df_list = [] group_stream_layers = [] print(f' Starting merge of {target_layer} features.') output_folder = os.path.join(vector_save_path, f'{grp_code}/{target_layer}/') if not os.path.exists(output_folder): os.makedirs(output_folder) # use geojson for littoral and island (polygons) # use .shp for stream network (NLFLOW layer) output_filename = f'{grp_code}_{target_layer}_{target_crs}.geojson' if target_layer in ['NLFLOW']: output_filename = f'{grp_code}_{target_layer}_{target_crs}.shp' output_filepath = os.path.join(output_folder, output_filename) if not os.path.exists(output_filepath): nhn_dfs = retrieve_and_group_layers(nhn_feature_path, nhn_files_trimmed, target_crs, target_layer) if len(nhn_dfs) == 0: continue else: nhn_gdf = gpd.GeoDataFrame(pd.concat(nhn_dfs, ignore_index=True), crs=target_crs) print(f' {len(nhn_gdf)} NHN items found.') # nhn_gdf['intersects_group_polygon'] = gpd.sjoin(gdf, row, how='inner', predicate='contains') # gdf = gdf[gdf['intersects_group_polygon']].copy() # print(nhn_gdf.head()) if nhn_gdf.empty: continue else: df_list.append(nhn_gdf) if (target_layer == 'NLFLOW') & (grp_code in seak_dict.keys()): huc_codes = [str(e) for e in seak_dict[grp_code]] print('') print(f' ...searching for USGS vector info for {grp_code}.') group_seak_files = [] for h in huc_codes: files = [f for f in SEAK_files if h in f] if len(files) > 0: group_seak_files += files # there should be as many files as there are codes, # otherwise a file is missing. assert len(group_seak_files) == len(seak_dict[grp_code]) # get the southeast alaska hydrographic feature files seak_dfs = retrieve_and_group_layers(seak_path, group_seak_files, target_crs, 'NHDFlowline') seak_gdf = gpd.GeoDataFrame(pd.concat(seak_dfs, ignore_index=True), crs=target_crs) # seak_gdf = seak_gdf.iloc[:5000] # seak_gdf = gpd.GeoDataFrame(pd.concat([gdf,seak_layer], ignore_index=True), crs=target_crs) print(f' {len(seak_gdf)} SEAK items found.') if not seak_gdf.empty: df_list.append(seak_gdf) if len(df_list) > 0: gdf = gpd.GeoDataFrame(
pd.concat(df_list, ignore_index=True)
pandas.concat
import pandas as pd sep:str = '_' debug:bool = True student_column_purge_list = ['id','email','ssn','address'] # remove id,email,ssn and address def process(students_file_name:str, teachers_file_name:str) -> str: # read csv file into df students_df = pd.read_csv(students_file_name, delimiter=sep) if debug: print(students_df) assert len(students_df.columns) == 7, f"Something wrong with the file {students_file_name}" assert 'fname' in students_df.columns and 'lname' in students_df.columns and 'cid' in students_df.columns, f'Something wrong with the file {students_file_name}, columns - fname, lname or cid do not exist.' students_df.drop(['id','email','ssn','address'], axis=1, inplace=True) if debug: print(students_df) print(students_df.count()) # read parquet file into df teachers_df = pd.read_parquet(teachers_file_name) assert len(teachers_df.columns) == 7, f"Something wrong with the file {teachers_file_name}" assert 'fname' in teachers_df.columns and 'lname' in teachers_df.columns and 'cid' in teachers_df.columns, f'Something wrong with the file {teachers_file_name}, columns - fname, lname or cid do not exist.' if debug: print(teachers_df) print(teachers_df.count()) teachers_df.rename(columns={'fname': 'teachers_fname', 'lname': 'teachers_lname'}, inplace=True) # trim unused columns teachers_drop_list = ['id','email', 'ssn', 'address'] teachers_df.drop(teachers_drop_list, axis=1, inplace=True) # join teacher with formatted students join_df =
pd.merge(students_df, teachers_df, on='cid', how='inner')
pandas.merge
import os import csv import torch import numpy as np import pandas as pd import seaborn as sns from plot import * from os.path import join from pathlib import Path from sklearn.cluster import KMeans from collections import Counter from torch.utils.data import DataLoader, Subset from customLoader import * from torchvision.transforms import transforms from IPython import embed def get_loader(trajectories, transform, conf, shuffle=False, limit=None): train, _ = get_train_val_split(trajectories, 1) train_dataset = CustomMinecraftData(train, transform=transform, delay=False, **conf) if not limit == None: train_dataset = Subset(train_dataset, limit) train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=shuffle, num_workers=0) return train_dataloader def compute_kmeans(embeddings, num_clusters): return KMeans(n_clusters=num_clusters, random_state=0).fit(embeddings) def compute_embeddings(loader, model): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") return np.array([model.compute_embedding(batch, device).detach().cpu().numpy() for batch in loader]).squeeze() def get_images(loader): return torch.cat([data[:,0] for data in loader]) def load_trajectories(trajectories, limit=None): print("Loading trajectories...") all_trajectories = [] files = sorted([x for x in os.listdir(f"./results/{trajectories}/") if 'coords' in x], key=lambda x: int(x.split('.')[1])) for file in files: with open(f"./results/{trajectories}/{file}") as csv_file: trajectory = [] csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for i, row in enumerate(csv_reader): trajectory.append(row) all_trajectories.append(trajectory) trajs = np.array(all_trajectories).reshape(-1, 3) if not limit == None: return trajs[limit] return trajs def construct_map(enc): if not enc.limit == None: limit = [x*10 for x in range(enc.limit)] else: limit = None loader = get_loader( enc.trajectories, enc.transform, enc.conf, shuffle=enc.shuffle, limit=limit) if 'Custom' in enc.trajectories[0]: trajectories = load_trajectories(enc.trajectories[0], limit) embeddings = compute_embeddings(loader, enc) if enc.type == "index": indexes = get_indexes(trajectories, embeddings, enc) index_map(enc, indexes) elif enc.type == "reward": reward_map(trajectories, embeddings, enc, loader) elif enc.type == "embed": images = get_images(loader) + 0.5 embed_map(embeddings, images, enc.experiment) elif enc.type == "centroides": indexes = get_indexes(trajectories, embeddings, enc) centroides_map(enc, loader, indexes) else: raise NotImplementedError() def get_indexes(trajectories, embeddings, enc): print("Get index from all data points...") values = pd.DataFrame(columns=['x', 'y', 'Code:']) for i, (e, p) in enumerate(zip(embeddings, trajectories)): x = float(p[2]) y = float(p[0]) e = torch.from_numpy(e).cuda() k = enc.compute_argmax(e.unsqueeze(dim=0)) if k==3: values = values.append( {'x': x, 'y': y, 'Code:': int(k)}, ignore_index=True) values['Code:'] = values['Code:'].astype('int32') return values def centroides_map(encoder, loader, indexes): experiment = encoder.experiment _, coord_list = encoder.model.list_reconstructions() world = getWorld(encoder.trajectories[0]) palette = sns.color_palette("Paired", n_colors=encoder.num_clusters) experiment = encoder.test['path_weights'].split('/')[0] centroides_indexmap(coord_list, indexes, palette, experiment, world, loader) def index_map(enc, indexes): code_list = indexes['Code:'].tolist() codes_count = Counter(code_list) palette = sns.color_palette("Paired", n_colors=len(list(set(code_list)))) experiment = enc.test['path_weights'].split('/')[0] world = getWorld(enc.trajectories[0]) plot_idx_maps(indexes, palette, experiment, world) skill_appearance(codes_count, palette, experiment, world) def reward_map(trajectories, embeddings, enc, loader): print("Get index from all data points...") data_list = [] for g in range(enc.num_clusters): print(f"Comparing data points with goal state {g}", end="\r") values =
pd.DataFrame(columns=['x', 'y', 'reward'])
pandas.DataFrame
from collections import Counter from itertools import combinations from math import sqrt import random from keras.layers import Concatenate, Dense, Dot, Dropout, Embedding, Input, Reshape from keras.models import Model from keras.callbacks import Callback, ModelCheckpoint import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler import tensorflow STUDENT_ID = '20622268' # Function to calculate RMSE def rmse(pred, actual): # Ignore nonzero terms. pred = pred[actual.nonzero()].flatten() actual = actual[actual.nonzero()].flatten() return sqrt(mean_squared_error(pred, actual)) def build_cfmodel(n_users, n_items, embed_size, output_layer='dot'): user_input = Input(shape=(1,), dtype='int32', name='user_input') item_input = Input(shape=(1,), dtype='int32', name='item_input') user_emb = Embedding(output_dim=embed_size, input_dim=n_users, input_length=1)(user_input) user_emb = Reshape((embed_size,))(user_emb) item_emb = Embedding(output_dim=embed_size, input_dim=n_items, input_length=1)(item_input) item_emb = Reshape((embed_size,))(item_emb) if output_layer == 'dot': model_output = Dot(axes=1)([user_emb, item_emb]) elif output_layer == 'mlp': mlp_input = Concatenate()([user_emb, item_emb]) dense_1 = Dense(64, activation='relu')(mlp_input) dense_1_dp = Dropout(0.15)(dense_1) dense_2 = Dense(32, activation='relu')(dense_1_dp) dense_2_dp = Dropout(0.15)(dense_2) model_output = Dense(1)(dense_2_dp) else: raise NotImplementedError model = Model(inputs=[user_input, item_input], outputs=model_output) return model def build_deepwide_model(len_continuous, deep_vocab_lens, deep2_vocab_lens, len_wide, embed_size): embed_size2 = 32 input_list = [] continuous_input = Input(shape=(len_continuous,), dtype='float32', name='continuous_input') input_list.append(continuous_input) emb_list = [] for vocab_size in deep_vocab_lens: embed_size = int(vocab_size**0.25) _input = Input(shape=(1,), dtype='int32') input_list.append(_input) _emb = Embedding(output_dim=embed_size, input_dim=vocab_size, input_length=1)(_input) _emb = Reshape((embed_size,))(_emb) emb_list.append(_emb) for vocab_size in deep2_vocab_lens: embed_size2 = int(vocab_size**0.25) _input = Input(shape=(1,), dtype='int32') input_list.append(_input) _emb2 = Embedding(output_dim=embed_size2, input_dim=vocab_size, input_length=1)(_input) _emb2 = Reshape((embed_size2,))(_emb2) emb_list.append(_emb2) deep_input = Concatenate()(emb_list + [continuous_input]) dense_1 = Dense(512, activation='relu')(deep_input) dense_1_dp = Dropout(0.3)(dense_1) dense_2 = Dense(256, activation='relu')(dense_1_dp) dense_2_dp = Dropout(0.3)(dense_2) dense_3 = Dense(128, activation='relu')(dense_2_dp) dense_3_dp = Dropout(0.3)(dense_3) wide_input = Input(shape=(len_wide,), dtype='float32') input_list.append(wide_input) fc_input = Concatenate()([dense_3_dp, wide_input]) dense_1 = Dense(8, activation='sigmoid')(fc_input) model_output = Dense(1)(dense_1) model = Model(inputs=input_list, outputs=model_output) return model def get_continuous_features(df, continuous_columns): continuous_features = df[continuous_columns].values # continuous_features = df[continuous_columns].a return continuous_features def get_top_k_p_combinations(df, comb_p, topk, output_freq=False): def get_category_combinations(categories_str, comb_p=2): categories = categories_str.split(', ') return list(combinations(categories, comb_p)) all_categories_p_combos = df["item_categories"].apply( lambda x: get_category_combinations(x, comb_p)).values.tolist() all_categories_p_combos = [tuple(t) for item in all_categories_p_combos for t in item] tmp = dict(Counter(all_categories_p_combos)) sorted_categories_combinations = list(sorted(tmp.items(), key=lambda x: x[1], reverse=True)) if output_freq: return sorted_categories_combinations[:topk] else: return [t[0] for t in sorted_categories_combinations[:topk]] def get_wide_features(df): def categories_to_binary_output(categories): binary_output = [0 for _ in range(len(selected_categories_to_idx))] for category in categories.split(', '): if category in selected_categories_to_idx: binary_output[selected_categories_to_idx[category]] = 1 else: binary_output[0] = 1 return binary_output def categories_cross_transformation(categories): current_category_set = set(categories.split(', ')) corss_transform_output = [0 for _ in range(len(top_combinations))] for k, comb_k in enumerate(top_combinations): if len(current_category_set & comb_k) == len(comb_k): corss_transform_output[k] = 1 else: corss_transform_output[k] = 0 return corss_transform_output category_binary_features = np.array(df.item_categories.apply( lambda x: categories_to_binary_output(x)).values.tolist()) category_corss_transform_features = np.array(df.item_categories.apply( lambda x: categories_cross_transformation(x)).values.tolist()) return np.concatenate((category_binary_features, category_corss_transform_features), axis=1) root_path = "" tr_df =
pd.read_csv(root_path + "data/train.csv")
pandas.read_csv
""" Module containing the Company Class. Abreviations used in code: dfi = input dataframe dfo = output dataframe """ from typing import Literal import numpy as np import pandas as pd from . import config as c class Company: """ Finance Data Class for listed Brazilian Companies. Attributes ---------- identifier: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. """ def __init__( self, identifier: int | str, acc_method: Literal["consolidated", "separate"] = "consolidated", acc_unit: float | str = 1.0, tax_rate: float = 0.34, ): """Initialize main variables. Parameters ---------- identifier: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. acc_method : {'consolidated', 'separate'}, default 'consolidated' Accounting method used for registering investments in subsidiaries. acc_unit : float or str, default 1.0 acc_unit is a constant that will divide company account values. The constant can be a number greater than zero or the strings {'thousand', 'million', 'billion'}. tax_rate : float, default 0.34 The 'tax_rate' attribute will be used to calculate some of the company indicators. """ self.set_id(identifier) self.acc_method = acc_method self.acc_unit = acc_unit self.tax_rate = tax_rate def set_id(self, identifier: int | str): """ Set a unique identifier to filter the company in as fi. Parameters ---------- value: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. Returns ------- int or str Raises ------ KeyError * If passed ``identifier`` not found in as fi. """ # Create custom data frame for ID selection df = ( c.main_df[["cvm_id", "fiscal_id"]] .drop_duplicates() .astype({"cvm_id": int, "fiscal_id": str}) ) if identifier in df["cvm_id"].values: self._cvm_id = identifier self._fiscal_id = df.loc[df["cvm_id"] == identifier, "fiscal_id"].item() elif identifier in df["fiscal_id"].values: self._fiscal_id = identifier self._cvm_id = df.loc[df["fiscal_id"] == identifier, "cvm_id"].item() else: raise KeyError("Company 'identifier' not found in database") # Only set company data after object identifier validation self._set_main_data() @property def acc_method(self): """ Get or set accounting method used for registering investments in subsidiaries. Parameters ---------- value : {'consolidated', 'separate'}, default 'consolidated' Accounting method used for registering investments in subsidiaries. Returns ------- str Raises ------ ValueError * If passed ``value`` is invalid. """ return self._acc_unit @acc_method.setter def acc_method(self, value: Literal["consolidated", "separate"]): if value in {"consolidated", "separate"}: self._acc_method = value else: raise ValueError("acc_method expects 'consolidated' or 'separate'") @property def acc_unit(self): """ Get or set a constant to divide company account values. Parameters ---------- value : float or str, default 1.0 acc_unit is a constant that will divide company account values. The constant can be a number greater than zero or the strings {'thousand', 'million', 'billion'}. Returns ------- float Raises ------ ValueError * If passed ``value`` is invalid. """ return self._acc_unit @acc_unit.setter def acc_unit(self, value: float | str): if value == "thousand": self._acc_unit = 1_000 elif value == "million": self._acc_unit = 1_000_000 elif value == "billion": self._acc_unit = 1_000_000_000 elif value >= 0: self._acc_unit = value else: raise ValueError("Accounting Unit is invalid") @property def tax_rate(self): """ Get or set company 'tax_rate' attribute. Parameters ---------- value : float, default 0.34 'value' will be passed to 'tax_rate' object attribute if 0 <= value <= 1. Returns ------- float Raises ------ ValueError * If passed ``value`` is invalid. """ return self._tax_rate @tax_rate.setter def tax_rate(self, value: float): if 0 <= value <= 1: self._tax_rate = value else: raise ValueError("Company 'tax_rate' value is invalid") def _set_main_data(self) -> pd.DataFrame: self._COMP_DF = ( c.main_df.query("cvm_id == @self._cvm_id") .astype( { "co_name": str, "cvm_id": np.uint32, "fiscal_id": str, "report_type": str, "report_version": str, "period_reference": "datetime64", "period_begin": "datetime64", "period_end": "datetime64", "period_order": np.int8, "acc_code": str, "acc_name": str, "acc_method": str, "acc_fixed": bool, "acc_value": float, "equity_statement_column": str, } ) .sort_values(by="acc_code", ignore_index=True) ) self._NAME = self._COMP_DF["co_name"].iloc[0] self._FIRST_ANNUAL = self._COMP_DF.query('report_type == "annual"')[ "period_end" ].min() self._LAST_ANNUAL = self._COMP_DF.query('report_type == "annual"')[ "period_end" ].max() self._LAST_QUARTERLY = self._COMP_DF.query('report_type == "quarterly"')[ "period_end" ].max() def info(self) -> pd.DataFrame: """Return dataframe with company info.""" company_info = { "Name": self._NAME, "CVM ID": self._cvm_id, "Fiscal ID (CNPJ)": self._fiscal_id, "Total Accounting Rows": len(self._COMP_DF.index), "Selected Tax Rate": self._tax_rate, "Selected Accounting Method": self._acc_method, "Selected Accounting Unit": self._acc_unit, "First Annual Report": self._FIRST_ANNUAL.strftime("%Y-%m-%d"), "Last Annual Report": self._LAST_ANNUAL.strftime("%Y-%m-%d"), "Last Quarterly Report": self._LAST_QUARTERLY.strftime("%Y-%m-%d"), } df = pd.DataFrame.from_dict(company_info, orient="index", columns=["Values"]) df.index.name = "Company Info" return df def report( self, report_type: str, acc_level: int | None = None, num_years: int = 0, ) -> pd.DataFrame: """ Return a DataFrame with company selected report type. This function generates a report representing one of the financial statements for the company adjusted by the attributes passed and returns a pandas.DataFrame with this report. Parameters ---------- report_type : {'assets', 'liabilities_and_equity', 'liabilities', 'equity', 'income', 'cash_flow'} Report type to be generated. acc_level : {None, 2, 3, 4}, default None Detail level to show for account codes. acc_level = None -> X... (default: show all accounts) acc_level = 2 -> X.YY (show 2 levels) acc_level = 3 -> X.YY.ZZ (show 3 levels) acc_level = 4 -> X.YY.ZZ.WW (show 4 levels) num_years : int, default 0 Select how many last years to show where 0 -> show all years Returns ------ pandas.DataFrame Raises ------ ValueError * If ``report_type`` attribute is invalid * If ``acc_level`` attribute is invalid """ # Check input arguments. if acc_level not in {None, 2, 3, 4}: raise ValueError("acc_level expects None, 2, 3 or 4") df = self._COMP_DF.query("acc_method == @self._acc_method").copy() # Change acc_unit only for accounts different from 3.99 df["acc_value"] = np.where( df["acc_code"].str.startswith("3.99"), df["acc_value"], df["acc_value"] / self._acc_unit, ) # Filter dataframe for selected acc_level if acc_level: acc_code_limit = acc_level * 3 - 2 # noqa df.query("acc_code.str.len() <= @acc_code_limit", inplace=True) """ Filter dataframe for selected report_type (report type) df['acc_code'].str[0].unique() -> [1, 2, 3, 4, 5, 6, 7] The first part of 'acc_code' is the report type Table of reports correspondence: 1 -> Balance Sheet - Assets 2 -> Balance Sheet - Liabilities and Shareholders’ Equity 3 -> Income 4 -> Comprehensive Income 5 -> Changes in Equity 6 -> Cash Flow (Indirect Method) 7 -> Added Value """ report_types = { "assets": ["1"], "cash": ["1.01.01", "1.01.02"], "current_assets": ["1.01"], "non_current_assets": ["1.02"], "liabilities": ["2.01", "2.02"], "debt": ["2.01.04", "2.02.01"], "current_liabilities": ["2.01"], "non_current_liabilities": ["2.02"], "liabilities_and_equity": ["2"], "equity": ["2.03"], "income": ["3"], # "earnings_per_share": ["3.99.01.01", "3.99.02.01"], "earnings_per_share": ["3.99"], "comprehensive_income": ["4"], "changes_in_equity": ["5"], "cash_flow": ["6"], "added_value": ["7"], } acc_codes = report_types[report_type] expression = "" for count, acc_code in enumerate(acc_codes): if count > 0: expression += " or " expression += f'acc_code.str.startswith("{acc_code}")' df.query(expression, inplace=True) # remove earnings per share from income statment if report_type == 'income': df = df[~df['acc_code'].str.startswith("3.99")] if report_type in {"income", "cash_flow"}: df = self._calculate_ttm(df) df.reset_index(drop=True, inplace=True) report_df = self._make_report(df) report_df.set_index(keys="acc_code", drop=True, inplace=True) # Show only selected years if num_years > 0: cols = report_df.columns.to_list() cols = cols[0:2] + cols[-num_years:] report_df = report_df[cols] return report_df def _calculate_ttm(self, dfi: pd.DataFrame) -> pd.DataFrame: if self._LAST_ANNUAL > self._LAST_QUARTERLY: return dfi.query('report_type == "annual"').copy() df1 = dfi.query("period_end == @self._LAST_QUARTERLY").copy() df1.query("period_begin == period_begin.min()", inplace=True) df2 = dfi.query("period_reference == @self._LAST_QUARTERLY").copy() df2.query("period_begin == period_begin.min()", inplace=True) df2["acc_value"] = -df2["acc_value"] df3 = dfi.query("period_end == @self._LAST_ANNUAL").copy() df_ttm = ( pd.concat([df1, df2, df3], ignore_index=True)[["acc_code", "acc_value"]] .groupby(by="acc_code") .sum() .reset_index() ) df1.drop(columns="acc_value", inplace=True) df_ttm = pd.merge(df1, df_ttm) df_ttm["report_type"] = "quarterly" df_ttm["period_begin"] = self._LAST_QUARTERLY - pd.DateOffset(years=1) df_annual = dfi.query('report_type == "annual"').copy() return pd.concat([df_annual, df_ttm], ignore_index=True) def custom_report( self, acc_list: list[str], num_years: int = 0, ) -> pd.DataFrame: """ Return a financial report from custom list of accounting codes Creates DataFrame object with a custom list of accounting codes adjusted by function attributes Parameters ---------- acc_list : list[str] A list of strings containg accounting codes to be used in report num_years : int, default 0 Select how many last years to show where 0 -> show all years Returns ------- pandas.DataFrame """ df_as = self.report("assets") df_le = self.report("liabilities_and_equity") df_is = self.report("income") df_cf = self.report("cash_flow") dfo = pd.concat([df_as, df_le, df_is, df_cf]).query("acc_code == @acc_list") # Show only selected years if num_years > 0: cols = dfo.columns.to_list() cols = cols[0:2] + cols[-num_years:] dfo = dfo[cols] return dfo @staticmethod def _prior_values(s: pd.Series, is_prior: bool) -> pd.Series: """Shift row to the right in order to obtain series previous values""" if is_prior: arr = s.iloc[:-1].values return np.append(np.nan, arr) else: return s def indicators(self, num_years: int = 0, is_prior: bool = True) -> pd.DataFrame: """ Return company main operating indicators. Creates DataFrame object with company operating indicators as described in reference [1] Parameters ---------- num_years : int, default 0 Select how many last years to show where 0 -> show all years is_prior : bool, default True Divide return measurements by book values from the end of the prior year (see Damodaran reference). Returns ------- pandas.Dataframe References ---------- .. [1] <NAME>, "Return on Capital (ROC), Return on Invested Capital (ROIC) and Return on Equity (ROE): Measurement and Implications.", 2007, https://people.stern.nyu.edu/adamodar/pdfoles/papers/returnmeasures.pdf https://people.stern.nyu.edu/adamodar/New_Home_Page/datafile/variable.htm """ df_as = self.report("assets") df_le = self.report("liabilities_and_equity") df_in = self.report("income") df_cf = self.report("cash_flow") df = pd.concat([df_as, df_le, df_in, df_cf]).drop( columns=["acc_fixed", "acc_name"] ) # Calculate indicators series revenues = df.loc["3.01"] gross_profit = df.loc["3.03"] ebit = df.loc["3.05"] ebt = df.loc["3.07"] effective_tax = df.loc["3.08"] depreciation_amortization = df.loc["6.01.01.04"] ebitda = ebit + depreciation_amortization operating_cash_flow = df.loc["6.01"] # capex = df.loc["6.02"] net_income = df.loc["3.11"] total_assets = df.loc["1"] total_assets_p = self._prior_values(total_assets, is_prior) equity = df.loc["2.03"] equity_p = self._prior_values(equity, is_prior) total_cash = df.loc["1.01.01"] + df.loc["1.01.02"] current_assets = df.loc["1.01"] current_liabilities = df.loc["2.01"] working_capital = current_assets - current_liabilities total_debt = df.loc["2.01.04"] + df.loc["2.02.01"] net_debt = total_debt - total_cash invested_capital = total_debt + equity - total_cash invested_capital_p = self._prior_values(invested_capital, is_prior) # Output Dataframe (dfo) dfo =
pd.DataFrame(columns=df.columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ## Load and process Park et al. data # # For each sample, we want to compute: # # * (non-silent) binary mutation status in the gene of interest # * binary copy gain/loss status in the gene of interest # * what "class" the gene of interest is in (more detail on what this means below) # # We'll save this to a file since the preprocessing takes a few minutes, so we can load it quickly in downstream analysis scripts. # In[1]: from pathlib import Path import pickle as pkl import pandas as pd import sys; sys.path.append('..') import config as cfg get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[2]: # park et al. geneset info park_loss_data = cfg.data_dir / 'park_loss_df.tsv' park_gain_data = cfg.data_dir / 'park_gain_df.tsv' # park et al. significant gene info park_loss_sig_data = cfg.data_dir / 'park_loss_df_sig_only.tsv' park_gain_sig_data = cfg.data_dir / 'park_gain_df_sig_only.tsv' # mutation and copy number data pancancer_pickle = Path('/home/jake/research/mpmp/data/pancancer_data.pkl') # ### Load data from Park et al. supp. info # In[3]: park_loss_df =
pd.read_csv(park_loss_data, sep='\t', index_col=0)
pandas.read_csv
import math import queue from datetime import datetime, timedelta, timezone import pandas as pd from storey import build_flow, SyncEmitSource, Reduce, Table, AggregateByKey, FieldAggregator, NoopDriver, \ DataframeSource from storey.dtypes import SlidingWindows, FixedWindows, EmitAfterMaxEvent, EmitEveryEvent test_base_time = datetime.fromisoformat("2020-07-21T21:40:00+00:00") def append_return(lst, x): lst.append(x) return lst def test_sliding_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): controller.emit({'col1': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col1': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col1': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col1': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col1': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col1': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col1': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col1': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col1': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col1': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data_uneven_feature_occurrence(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() controller.emit({'col1': 0}, 'tal', test_base_time) for i in range(10): controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 2, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 4, 'number_of_stuff_sum_2h': 4, 'number_of_stuff_sum_24h': 4, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 16, 'number_of_stuff_sum_2h': 16, 'number_of_stuff_sum_24h': 16, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 8, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 25, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 25, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_filters_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'), aggr_filter=lambda element: element['is_valid'] == 0)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'is_valid': i % 2} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'is_valid': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'is_valid': 1, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 2, 'is_valid': 0, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'is_valid': 1, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 4, 'is_valid': 0, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'is_valid': 1, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 6, 'is_valid': 0, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'is_valid': 1, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 8, 'is_valid': 0, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'is_valid': 1, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_max_values_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("num_hours_with_stuff_in_the_last_24h", "col1", ["count"], SlidingWindows(['24h'], '1h'), max_value=5)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=10 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'num_hours_with_stuff_in_the_last_24h_count_24h': 1}, {'col1': 1, 'num_hours_with_stuff_in_the_last_24h_count_24h': 2}, {'col1': 2, 'num_hours_with_stuff_in_the_last_24h_count_24h': 3}, {'col1': 3, 'num_hours_with_stuff_in_the_last_24h_count_24h': 4}, {'col1': 4, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 5, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 6, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 7, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 8, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 9, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_simple_aggregation_flow_multiple_fields(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_things", "col2", ["count"], SlidingWindows(['1h', '2h'], '15m')), FieldAggregator("abc", "col3", ["sum"], SlidingWindows(['24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'col2': i * 1.2, 'col3': i * 2 + 4} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'col2': 0.0, 'col3': 4, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_things_count_1h': 1, 'number_of_things_count_2h': 1, 'abc_sum_24h': 4, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'col2': 1.2, 'col3': 6, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_things_count_1h': 2, 'number_of_things_count_2h': 2, 'abc_sum_24h': 10, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'col2': 2.4, 'col3': 8, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_things_count_1h': 3, 'number_of_things_count_2h': 3, 'abc_sum_24h': 18, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'col2': 3.5999999999999996, 'col3': 10, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_things_count_1h': 4, 'number_of_things_count_2h': 4, 'abc_sum_24h': 28, 'number_of_stuff_avg_1h': 1.5, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'col2': 4.8, 'col3': 12, 'number_of_stuff_sum_1h': 10, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_things_count_1h': 5, 'number_of_things_count_2h': 5, 'abc_sum_24h': 40, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'col2': 6.0, 'col3': 14, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_things_count_1h': 6, 'number_of_things_count_2h': 6, 'abc_sum_24h': 54, 'number_of_stuff_avg_1h': 2.5, 'number_of_stuff_avg_2h': 2.5, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'col2': 7.199999999999999, 'col3': 16, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 21, 'number_of_stuff_sum_24h': 21, 'number_of_things_count_1h': 7, 'number_of_things_count_2h': 7, 'abc_sum_24h': 70, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'col2': 8.4, 'col3': 18, 'number_of_stuff_sum_1h': 28, 'number_of_stuff_sum_2h': 28, 'number_of_stuff_sum_24h': 28, 'number_of_things_count_1h': 8, 'number_of_things_count_2h': 8, 'abc_sum_24h': 88, 'number_of_stuff_avg_1h': 3.5, 'number_of_stuff_avg_2h': 3.5, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'col2': 9.6, 'col3': 20, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_things_count_1h': 9, 'number_of_things_count_2h': 9, 'abc_sum_24h': 108, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'col2': 10.799999999999999, 'col3': 22, 'number_of_stuff_sum_1h': 45, 'number_of_stuff_sum_2h': 45, 'number_of_stuff_sum_24h': 45, 'number_of_things_count_1h': 10, 'number_of_things_count_2h': 10, 'abc_sum_24h': 130, 'number_of_stuff_avg_1h': 4.5, 'number_of_stuff_avg_2h': 4.5, 'number_of_stuff_avg_24h': 4.5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['15m', '25m', '45m', '1h']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 7.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 8.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 9.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 10.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 11.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 6.0, 'samples_count_45m': 1.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 7.0, 'samples_count_45m': 2.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 8.0, 'samples_count_45m': 3.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 9.0, 'samples_count_45m': 4.0, 'samples_count_1h': 9.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 1.0, 'samples_count_45m': 5.0, 'samples_count_1h': 10.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 6.0, 'samples_count_1h': 11.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U235'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_fixed_window_aggregation_with_multiple_keys_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U238'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U238'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U238'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U238'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U238'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U238'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U238'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U238'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U238']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['10m', '15m']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [ {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U238'}, {'samples_count_10m': 3.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_10m': 3.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U238'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_sliding_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], SlidingWindows(['15m', '25m', '45m', '1h'], '5m'))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 7.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 8.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 8.0, 'samples_count_45m': 9.0, 'samples_count_1h': 9.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 9.0, 'samples_count_45m': 10.0, 'samples_count_1h': 10.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 11.0, 'samples_count_1h': 11.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 12.0, 'samples_count_1h': 12.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 13.0, 'samples_count_1h': 13.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 8.0, 'samples_count_45m': 14.0, 'samples_count_1h': 14.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 9.0, 'samples_count_45m': 15.0, 'samples_count_1h': 15.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 15.0, 'samples_count_1h': 16.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 14.0, 'samples_count_1h': 17.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U235'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_emit_max_event_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver()), emit_policy=EmitAfterMaxEvent(3)), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(12): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 10, 'number_of_stuff_sum_1h': 30, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 30, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}, {'col1': 11, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 6.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_error_on_bad_emit_policy(): try: AggregateByKey([], Table("test", NoopDriver()), emit_policy=EmitEveryEvent), assert False except TypeError: pass def test_emit_delay_aggregation_flow(): q = queue.Queue(1) def reduce_fn(acc, x): if x['col1'] == 2: q.put(None) acc.append(x) return acc controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "count"], SlidingWindows(['1h'], '10m'))], Table("test", NoopDriver()), emit_policy=EmitAfterMaxEvent(4, 1)), Reduce([], reduce_fn), ]).run() for i in range(11): if i == 3: q.get() data = {'col1': i} controller.emit(data, 'katya', test_base_time + timedelta(seconds=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_count_1h': 3}, {'col1': 6, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_count_1h': 7}, {'col1': 10, 'number_of_stuff_sum_1h': 55, 'number_of_stuff_count_1h': 11}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregate_dict_simple_aggregation_flow(): aggregations = [{'name': 'number_of_stuff', 'column': 'col1', 'operations': ["sum", "avg", "min", "max"], 'windows': ['1h', '2h', '24h'], 'period': '10m'}] controller = build_flow([ SyncEmitSource(), AggregateByKey(aggregations, Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregate_dict_fixed_window(): aggregations = [{'name': 'number_of_stuff', 'column': 'col1', 'operations': ["count"], 'windows': ['1h', '2h', '3h', '24h']}] controller = build_flow([ SyncEmitSource(), AggregateByKey(aggregations, Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_old_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time - timedelta(hours=25)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_old_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time - timedelta(hours=25)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_out_of_order_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time + timedelta(minutes=15)) controller.emit({'col1': 4}, 'tal', test_base_time + timedelta(minutes=25 * 3)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2}, {'col1': 3, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2}, {'col1': 4, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_roll_cached_buckets(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_roll_cached_buckets(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregation_unique_fields(): try: build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff", "col1", ["count"], SlidingWindows(['1h', '2h'], '15m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() assert False except TypeError: pass def test_fixed_window_aggregation_with_first_and_last_aggregates(): df = pd.DataFrame( { "timestamp": [ pd.Timestamp("2021-07-13 06:43:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:46:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:49:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:52:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:55:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:58:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:01:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:04:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:07:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:10:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:13:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:16:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 07:19:01.084587+0000", tz="UTC"), ], "emission": [ 16.44200, 64807.90231, 413.90100, 73621.21551, 53936.62158, 13582.52318, 966.80400, 450.40700, 4965.28760, 42982.57194, 1594.40460, 69601.73368, 48038.65572, ], "sensor_id": [ "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", "0654-329-05", ], } ) controller = build_flow( [ DataframeSource(df, time_field="timestamp", key_field="sensor_id"), AggregateByKey( [ FieldAggregator( "samples", "emission", ["last", "first", "count"], FixedWindows(["10m"]), ) ], Table("MyTable", NoopDriver()), ), Reduce([], lambda acc, x: append_return(acc, x)), ] ).run() termination_result = controller.await_termination() expected = [ { "samples_last_10m": 16.442, "samples_count_10m": 1.0, "samples_first_10m": 16.442, "timestamp": pd.Timestamp("2021-07-13 06:43:01.084587+0000", tz="UTC"), "emission": 16.442, "sensor_id": "0654-329-05", }, { "samples_last_10m": 64807.90231, "samples_count_10m": 2.0, "samples_first_10m": 16.442, "timestamp": pd.Timestamp("2021-07-13 06:46:01.084587+0000", tz="UTC"), "emission": 64807.90231, "sensor_id": "0654-329-05", }, { "samples_last_10m": 413.901, "samples_count_10m": 3.0, "samples_first_10m": 16.442, "timestamp": pd.Timestamp("2021-07-13 06:49:01.084587+0000", tz="UTC"), "emission": 413.901, "sensor_id": "0654-329-05", }, { "samples_last_10m": 73621.21551, "samples_count_10m": 1.0, "samples_first_10m": 73621.21551, "timestamp": pd.Timestamp("2021-07-13 06:52:01.084587+0000", tz="UTC"), "emission": 73621.21551, "sensor_id": "0654-329-05", }, { "samples_last_10m": 53936.62158, "samples_count_10m": 2.0, "samples_first_10m": 73621.21551, "timestamp":
pd.Timestamp("2021-07-13 06:55:01.084587+0000", tz="UTC")
pandas.Timestamp
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import logging from abc import ABC from collections import Counter from pathlib import Path from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union import pandas as pd import torch.utils.data from torch._six import container_abcs from torch.utils.data import BatchSampler, DataLoader, Dataset, RandomSampler, Sampler, SequentialSampler from torch.utils.data.dataloader import default_collate # type: ignore from InnerEye.Common.type_annotations import IntOrString, TupleFloat3 from InnerEye.ML.config import SegmentationModelBase from InnerEye.ML.dataset.sample import GeneralSampleMetadata, PatientDatasetSource, \ PatientMetadata, Sample from InnerEye.ML.model_config_base import ModelConfigBase from InnerEye.ML.utils import io_util, ml_util from InnerEye.ML.utils.csv_util import CSV_CHANNEL_HEADER, CSV_PATH_HEADER, \ CSV_SUBJECT_HEADER from InnerEye.ML.utils.io_util import is_nifti_file_path from InnerEye.ML.utils.transforms import Compose3D COMPRESSION_EXTENSIONS = ['sz', 'gz'] def collate_with_metadata(batch: List[Dict[str, Any]]) -> Dict[str, Any]: """ The collate function that the dataloader workers should use. It does the same thing for all "normal" fields (all fields are put into tensors with outer dimension batch_size), except for the special "metadata" field. Those metadata objects are collated into a simple list. :param batch: A list of samples that should be collated. :return: collated result """ elem = batch[0] if isinstance(elem, container_abcs.Mapping): result = dict() for key in elem: # Special handling for all fields that store metadata, and for fields that are list. # Lists are used in SequenceDataset. # All these are collated by turning them into lists or lists of lists. if isinstance(elem[key], (list, PatientMetadata, GeneralSampleMetadata)): result[key] = [d[key] for d in batch] else: result[key] = default_collate([d[key] for d in batch]) return result raise TypeError(f"Unexpected batch data: Expected a dictionary, but got: {type(elem)}") def set_random_seed_for_dataloader_worker(worker_id: int) -> None: """ Set the seed for the random number generators of python, numpy. """ # Set the seeds for numpy and python random based on the offset of the worker_id and initial seed, # converting the initial_seed which is a long to modulo int32 which is what numpy expects. random_seed = (torch.initial_seed() + worker_id) % (2 ** 32) ml_util.set_random_seed(random_seed, f"Data loader worker ({worker_id})") class _RepeatSampler(BatchSampler): """ A batch sampler that wraps another batch sampler. It repeats the contents of that other sampler forever. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False, max_repeats: int = 0) -> None: super().__init__(sampler, batch_size, drop_last) self.sampler = sampler self.max_repeats = max_repeats def __iter__(self) -> Any: repeats = 0 while self.max_repeats == 0 or repeats < self.max_repeats: yield from iter(self.sampler) repeats += 1 class ImbalancedSampler(Sampler): """ Sampler that performs naive over-sampling by drawing samples with replacements. The probability of being drawn depends on the label of each data point, rare labels have a higher probability to be drawn. Assumes the dataset implements the "get_all_labels" functions in order to compute the weights associated with each data point. Side note: the sampler choice is independent from the data augmentation pipeline. Data augmentation is performed on the images while loading them at a later stage. This sampler merely affects which item is selected. """ # noinspection PyMissingConstructor def __init__(self, dataset: Any, num_samples: int = None) -> None: """ :param dataset: a dataset :num_samples: number of samples to draw. If None the number of samples corresponds to the length of the dataset. """ self.dataset = dataset self.indices = list(range(len(dataset))) self.weights = self.get_weights() self.num_samples = len(dataset) if num_samples is None else num_samples def get_weights(self) -> torch.Tensor: labels = self.dataset.get_labels_for_imbalanced_sampler() counts_per_label: Dict = Counter(labels) return torch.tensor([1.0 / counts_per_label[labels[i]] for i in self.indices]) def __iter__(self) -> Any: # noinspection PyTypeChecker return iter([self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, # type: ignore replacement=True)]) def __len__(self) -> int: return self.num_samples class RepeatDataLoader(DataLoader): """ This class implements a data loader that avoids spawning a new process after each epoch. It uses an infinite sampler. This is adapted from https://github.com/pytorch/pytorch/issues/15849 """ def __init__(self, dataset: Any, max_repeats: int, batch_size: int = 1, shuffle: bool = False, use_imbalanced_sampler: bool = False, drop_last: bool = False, **kwargs: Any): """ Creates a new data loader. :param dataset: The dataset that should be loaded. :param batch_size: The number of samples per minibatch. :param shuffle: If true, the dataset will be shuffled randomly. :param drop_last: If true, drop incomplete minibatches at the end. :param kwargs: Additional arguments that will be passed through to the Dataloader constructor. """ sampler = RandomSampler(dataset) if shuffle else SequentialSampler(dataset) if use_imbalanced_sampler: sampler = ImbalancedSampler(dataset) self._actual_batch_sampler = BatchSampler(sampler, batch_size, drop_last) repeat_sampler = _RepeatSampler(self._actual_batch_sampler, batch_size=batch_size, max_repeats=max_repeats) super().__init__(dataset=dataset, batch_sampler=repeat_sampler, **kwargs) self.iterator = None def __len__(self) -> int: return len(self._actual_batch_sampler) def __iter__(self) -> Any: if self.iterator is None: self.iterator = super().__iter__() # type: ignore assert self.iterator is not None # for mypy for i in range(len(self)): yield next(self.iterator) D = TypeVar('D', bound=ModelConfigBase) class GeneralDataset(Dataset, ABC, Generic[D]): def __init__(self, args: D, data_frame: Optional[pd.DataFrame] = None, name: Optional[str] = None): self.name = name or "None" self.args = args self.data_frame = args.dataset_data_frame if data_frame is None else data_frame logging.info(f"Processing dataset (name={self.name})") def as_data_loader(self, shuffle: bool, batch_size: Optional[int] = None, num_dataload_workers: Optional[int] = None, use_imbalanced_sampler: bool = False, drop_last_batch: bool = False, max_repeats: Optional[int] = None) -> DataLoader: num_dataload_workers = num_dataload_workers or self.args.num_dataload_workers batch_size = batch_size or self.args.train_batch_size if self.args.avoid_process_spawn_in_data_loaders: if max_repeats is None: max_repeats = self.args.get_total_number_of_training_epochs() return RepeatDataLoader( self, max_repeats=max_repeats, batch_size=batch_size, shuffle=shuffle, num_workers=num_dataload_workers, pin_memory=self.args.pin_memory, worker_init_fn=set_random_seed_for_dataloader_worker, collate_fn=collate_with_metadata, use_imbalanced_sampler=use_imbalanced_sampler, drop_last=drop_last_batch ) else: if use_imbalanced_sampler: sampler: Optional[Sampler] = ImbalancedSampler(self) shuffle = False else: sampler = None return DataLoader( self, batch_size=batch_size, shuffle=shuffle, num_workers=num_dataload_workers, pin_memory=self.args.pin_memory, worker_init_fn=set_random_seed_for_dataloader_worker, collate_fn=collate_with_metadata, sampler=sampler, # type: ignore drop_last=drop_last_batch ) class FullImageDataset(GeneralDataset): """ Dataset class that loads and creates samples with full 3D images from a given pd.Dataframe. The following are the operations performed to generate a sample from this dataset: ------------------------------------------------------------------------------------------------- 1) On initialization parses the provided pd.Dataframe with dataset information, to cache the set of file paths and patient mappings to load as PatientDatasetSource. The sources are then saved in a list: dataset_sources. 2) dataset_sources is iterated in a batched fashion, where for each batch it loads the full 3D images, and applies pre-processing functions (e.g. normalization), returning a sample that can be used for full image operations. """ def __init__(self, args: SegmentationModelBase, data_frame: pd.DataFrame, full_image_sample_transforms: Optional[Compose3D[Sample]] = None): super().__init__(args, data_frame) self.full_image_sample_transforms = full_image_sample_transforms # Check base_path assert self.args.local_dataset is not None if not self.args.local_dataset.is_dir(): raise ValueError("local_dataset should be the path to the base directory of the data: {}". format(self.args.local_dataset)) # cache all of the available dataset sources self._get_file_extension() if self._is_nifti_dataset(): dataloader: Callable[[], Any] = self._load_dataset_sources else: raise Exception("Files should be Nifti, but found {0}".format(self.file_extension)) self.dataset_sources: Union[Dict[IntOrString, PatientDatasetSource]] = dataloader() self.dataset_indices = sorted(self.dataset_sources.keys()) def __len__(self) -> int: return len(self.dataset_indices) def __getitem__(self, i: int) -> Dict[str, Any]: return self.get_samples_at_index(index=i)[0].get_dict() @staticmethod def _extension_from_df_file_paths(file_paths: List[str]) -> str: file_extensions = [f.split('.')[-2] if f.endswith(tuple(COMPRESSION_EXTENSIONS)) else f.split('.')[-1] for f in file_paths] if len(file_extensions) == 0: raise Exception("No files of expected format (Nifti) were found") # files must all be of same type unique_file_extensions = list(set(file_extensions)) if len(unique_file_extensions) > 1: raise Exception("More than one file type was found. This is not supported.") return "." + unique_file_extensions[0] def _is_nifti_dataset(self) -> bool: return is_nifti_file_path(self.file_extension) def _get_file_extension(self) -> None: file_extension = self._extension_from_df_file_paths(self.data_frame[CSV_PATH_HEADER].values) # type: ignore self.file_extension = file_extension if not (self._is_nifti_dataset()): raise Exception("Wrong file type provided. Must be Nifti.") def extract_spacing(self, patient_id: IntOrString) -> TupleFloat3: """ extract spacing for that particular image using the first image channel :param patient_id: :return: """ return io_util.load_nifti_image(self.dataset_sources[patient_id].image_channels[0]).header.spacing def get_samples_at_index(self, index: int) -> List[Sample]: # load the channels into memory if not self._is_nifti_dataset(): raise ValueError("Unknown file extension. Files should be Nifti or HDF5 format but found " + self.file_extension) ds = self.dataset_sources[self.dataset_indices[index]] samples = [io_util.load_images_from_dataset_source(dataset_source=ds)] # type: ignore return [Compose3D.apply(self.full_image_sample_transforms, x) for x in samples] def _load_dataset_sources(self) -> Dict[int, PatientDatasetSource]: assert self.args.local_dataset is not None return load_dataset_sources(dataframe=self.data_frame, local_dataset_root_folder=self.args.local_dataset, image_channels=self.args.image_channels, ground_truth_channels=self.args.ground_truth_ids, mask_channel=self.args.mask_id ) def load_dataset_sources(dataframe: pd.DataFrame, local_dataset_root_folder: Path, image_channels: List[str], ground_truth_channels: List[str], mask_channel: Optional[str]) -> Dict[int, PatientDatasetSource]: """ Prepares a patient-to-images mapping from a dataframe read directly from a dataset CSV file. The dataframe contains per-patient per-channel image information, relative to a root directory. This method converts that into a per-patient dictionary, that contains absolute file paths separated for for image channels, ground truth channels, and mask channels. :param dataframe: A dataframe read directly from a dataset CSV file. :param local_dataset_root_folder: The root folder that contains all images. :param image_channels: The names of the image channels that should be used in the result. :param ground_truth_channels: The names of the ground truth channels that should be used in the result. :param mask_channel: The name of the mask channel that should be used in the result. This can be None. :return: A dictionary mapping from an integer subject ID to a PatientDatasetSource. """ expected_headers = {CSV_SUBJECT_HEADER, CSV_PATH_HEADER, CSV_CHANNEL_HEADER} # validate the csv file actual_headers = list(dataframe) if not expected_headers.issubset(actual_headers): raise ValueError("The dataset CSV file should contain at least these columns: {}, but got: {}" .format(expected_headers, actual_headers)) # Calculate unique data points, first, and last data point unique_ids = sorted(
pd.unique(dataframe[CSV_SUBJECT_HEADER])
pandas.unique
import pandas as pd import glob import os import configargparse as argparse from net_benefit_ascvd.prediction_utils.util import df_dict_concat parser = argparse.ArgumentParser( config_file_parser_class=argparse.YAMLConfigFileParser, ) parser.add_argument( "--project_dir", type=str, required=True ) parser.add_argument("--task_prefix", type=str, required=True) parser.add_argument( "--selected_config_experiment_suffix", type=str, default="selected", ) if __name__ == "__main__": args = parser.parse_args() project_dir = args.project_dir task_prefix = args.task_prefix def get_config_df(experiment_name): config_df_path = os.path.join( os.path.join( project_dir, "experiments", experiment_name, "config", "config.csv" ) ) config_df =
pd.read_csv(config_df_path)
pandas.read_csv
""" This module defines a Feed class and a PT_network class based on a GTFS feeds. There is an instance attribute for every GTFS table (routes, stops, etc.), which stores the table as a Pandas DataFrame, or as ``None`` in case that table is missing. The Feed class also has heaps of methods. For more information check <NAME>'s GTFS toolkit. I have added few more functionality to the Feed object so I can use it to calculate the transit catchments. """ import tempfile import time import shutil import math import sys from pathlib import Path from datetime import datetime, timedelta from dateutil.parser import parse import pandas as pd import numpy as np import geopandas as gp import shapely.geometry as geom import gtfstk as gt from . import helpers as hp class Feed(gt.Feed): def __init__(self, dist_units, agency=None, stops=None, routes=None, trips=None, stop_times=None, calendar=None, calendar_dates=None, fare_attributes=None, fare_rules=None, shapes=None, frequencies=None, transfers=None, feed_info=None, feed_segments=None, valid_date=None): self.dist_units = dist_units self.agency = agency self.stops = stops self.routes = routes self.trips = trips self.stop_times = stop_times self.calendar = calendar self.calendar_dates = calendar_dates self.fare_attributes = fare_attributes self.fare_rules = fare_rules self.shapes = shapes self.frequencies = frequencies self.transfers = transfers self.feed_info = feed_info self.feed_segments = feed_segments self.valid_date = valid_date @property def valid_day_of_week(self): self.valid_day_of_week = parse(valid_date).weekday('%A') class pt_network: def __init__( self, feed=None, ptedge=None, wedge=None, analysis_start=None, analysis_end=None, transfer_duration=None, walk_speed_kph=None, ): self.feed = feed #feed object is generated from read_gtfs self.ptedge = ptedge #links stops by transit self.wedge = wedge #links stops by walking self.analysis_start = analysis_start #Analysis start time self.analysis_end = analysis_end #Analysis end time self.transfer_duration = transfer_duration self.walk_speed_kph = walk_speed_kph @property def analysis_start_sec(self): return gt.timestr_to_seconds(self.analysis_start) @property def analysis_end_sec(self): return gt.timestr_to_seconds(self.analysis_end) @property def analysis_duration_sec(self): return self.analysis_end_sec - self.analysis_start_sec @property def analysis_time_sec(self): #Middle point for our analysis return self.analysis_start_sec + self.analysis_duration_sec/2 @property def analysis_time(self): return hp.sec2text(self.analysis_time_sec) @property def transfer_duration_sec(self): return self.transfer_duration * 60 """ Functions about creating abundant access. """ def read_gtfs( path, dt, #date to validate feed upon, it can be like "Thrusday" or "20181201" dist_units=None): """ Create a Feed instance from the given path and given distance units. The path should be a directory containing GTFS text files or a zip file that unzips as a collection of GTFS text files (and not as a directory containing GTFS text files). The distance units given must lie in :const:`constants.dist_units` Notes ----- - Ignore non-GTFS files - Automatically strip whitespace from the column names in GTFS files - This is based on gtfstk library """ gt_feed = gt.read_gtfs(path, dist_units) #Validate feed for an specific day (eigther a date or the day of week)======== if not gt.valid_date(dt): dt = gt_feed.get_first_week()[parse(dt).weekday()] gt_feed = hp.validate_feed(gt_feed, dt) feed_dict = hp.feed_obj_to_dict(gt_feed) feed_dict['valid_date'] = dt #calculate PT segments======================================================== PT_links_df = feed_dict['stop_times'].copy() #making sure trips are sorted by the trip sequence PT_links_df.sort_values(by=['trip_id', 'stop_sequence'], inplace = True) #converting the stop_times into pt links PT_links_df.rename(columns = {'arrival_time': 'o_time', 'stop_id': 'o_stop', 'stop_sequence': 'o_sequence'}, inplace = True) PT_links_df[['d_time', 'd_stop', 'd_sequence']] = PT_links_df[['o_time', 'o_stop', 'o_sequence']].shift(-1) PT_links_df = PT_links_df[PT_links_df['o_sequence'] < PT_links_df['d_sequence']].copy() #removes the last stops #Convert the time into seconds for easier time calculatins PT_links_df['o_time_sec'] = PT_links_df['o_time'].apply(hp.text2sec) PT_links_df['d_time_sec'] = PT_links_df['d_time'].apply(hp.text2sec) PT_links_df['duration'] = PT_links_df['d_time_sec'] - PT_links_df['o_time_sec'] #Add route_id using the trips table PT_links_df = PT_links_df.merge(feed_dict['trips']) #Add route type in text format to the link dataset PT_links_df = PT_links_df.merge(feed_dict['routes']) route_type = {'0': 'Tram, Streetcar, Light rail', '1': 'Subway, Metro', '2': 'Rail', '3': 'Bus', '4': 'Ferry', '5': 'Cable car', '6': 'Gondola, Suspended cable car', '7': 'Funicular'} PT_links_df['route_type'] = PT_links_df['route_type'].astype(str) PT_links_df['route_type'].replace(route_type, inplace = True) #add stop sequence to PT_links_df def stop_seq_for_trips(stop_times_df): """ The objective is to create a dataframe of stop sequence for each trip The output format will be: first field is: trip_ids seocond field is: stop_ids separeated by comma in order of their sequence """ def get_first_trip(group): stop_seq = ";".join(group['stop_id'].tolist())+";" trip_id = group['trip_id'].iat[0] trip_dict = {'stop_seq': stop_seq, 'trip_id': trip_id} return pd.DataFrame(trip_dict, index=[0]) stop_seq_df = stop_times_df.groupby('trip_id').apply(get_first_trip).reset_index(drop=True) return stop_seq_df stop_seq_df = stop_seq_for_trips(feed_dict['stop_times']) PT_links_df = PT_links_df.merge(stop_seq_df) def remaining_stops(row): sid = row['o_stop']+";" seq = row['stop_seq'] return seq.split(sid, 1)[-1] PT_links_df['stop_seq'] = PT_links_df.apply(remaining_stops, axis = 1) # add stops lat and lon PT_links_df = PT_links_df.merge(feed_dict['stops'][['stop_id', 'stop_lat', 'stop_lon']], left_on='o_stop', right_on='stop_id', how='left').drop('stop_id', axis = 1) PT_links_df.rename(columns = {'stop_lat': 'o_stop_lat', 'stop_lon': 'o_stop_lon'}, inplace = True) PT_links_df = PT_links_df.merge(feed_dict['stops'][['stop_id', 'stop_lat', 'stop_lon']], left_on='d_stop', right_on='stop_id', how='left').drop('stop_id', axis = 1) PT_links_df.rename(columns = {'stop_lat': 'd_stop_lat', 'stop_lon': 'd_stop_lon'}, inplace = True) feed_dict['feed_segments'] = PT_links_df for key in ['_trips_i', '_calendar_i', '_calendar_dates_g']: if key in feed_dict: del feed_dict[key] return Feed(**feed_dict) def get_bounding_box(latitude_in_degrees, longitude_in_degrees, half_side_in_m): """ Makes a box around a location using half size of a side and returns the mionimum and maximum coordinates in WGS 1984. """ assert half_side_in_m > 0 assert latitude_in_degrees >= -180.0 and latitude_in_degrees <= 180.0 assert longitude_in_degrees >= -180.0 and longitude_in_degrees <= 180.0 half_side_in_km = half_side_in_m / 1000 lat = math.radians(latitude_in_degrees) lon = math.radians(longitude_in_degrees) radius = 6371 # Radius of the parallel at given latitude parallel_radius = radius * math.cos(lat) lat_min = lat - half_side_in_km/radius lat_max = lat + half_side_in_km/radius lon_min = lon - half_side_in_km/parallel_radius lon_max = lon + half_side_in_km/parallel_radius rad2deg = math.degrees lat_min = rad2deg(lat_min) lon_min = rad2deg(lon_min) lat_max = rad2deg(lat_max) lon_max = rad2deg(lon_max) return {'lat_min':lat_min, 'lat_max':lat_max, 'lon_min':lon_min, 'lon_max':lon_max} def around_stops( stops, #GTFS feed df of stops walk_duration_sec, #Walking time walk_speed_kmh, #Walking speed lat, #Origin Lat lon #origin Lon ): """ This function gets a stops in pd format and a location. Then extracts stops that are around the input stop based on the walk duration and speed. Note: - stops is a pandas dataframe of stops.txt in GTFS """ assert lat >= -180.0 and lat <= 180.0 assert lon >= -180.0 and lon <= 180.0 walk_dist_m = walk_speed_kmh * 1000 / 3600 * walk_duration_sec box = get_bounding_box(lat, lon, walk_dist_m) cond = (stops['stop_lat'] > box['lat_min'])&\ (stops['stop_lon'] > box['lon_min'])&\ (stops['stop_lat'] < box['lat_max'])&\ (stops['stop_lon'] < box['lon_max']) stops_df = stops[cond].copy() if not stops_df.empty: cols = ['stop_lat', 'stop_lon'] stops_df['walk_to_stop_m'] = stops_df[cols].apply(lambda row: hp.distance_m(lat, lon, row[0], row[1]), axis = 1) stops_df['walk_to_stop_sec'] = stops_df['walk_to_stop_m'] / walk_speed_kmh / 1000 * 3600 stops_df = stops_df[['stop_id', 'walk_to_stop_sec']][stops_df['walk_to_stop_sec'] < walk_duration_sec].copy() stops_df.reset_index(drop = True) return stops_df def connect2ptnetwork( pt_network, start_location, #(x, y) walk2transit): """ Generates a dataframe connecting all nodes (stops and origins) in the network to each other: The connection is based on walking time and walking speed. """ feed = pt_network.feed stops = feed.stops origin_lat = start_location[1] origin_lon = start_location[0] walk_graph = around_stops( stops, walk2transit, pt_network.walk_speed_kph, origin_lat, origin_lon) walk_graph['o_type'] = 'Start Location' walk_graph.rename(columns = {"stop_id": "d_stop"}, inplace = True) return walk_graph def get_slice(links_df, around_stops_df): """ the objective here is to ge a list of stops and find out what trips pass these stops after a specific time. Only trips that leave after we arrive at stop are valid. The last trip we can take is the one leaves before the total time we are willing to wait. Notes: - links_df is cleand version of all links in GTFS. By clean I mean no links for before our analysis starts and no links after our analysis ends. - stop_seq_df is a data frame of trips and sequence of stops - around_stops_df is a data frame of stops where people can walk to. It is also cleaned and actual arrival time in text and second formats has been added First, we cut the links that start from stops we can reach Second, we remove any service that leaves before we arrive third, we add stop sequence to the data frame, this will be later used to remove trips with exact same pattern. In other word no one take the second bus of two exact same serivces. """ first_link_df = links_df.merge(around_stops_df, left_on='o_stop', right_on='d_stop', how='inner') # Now we remove all trip_ids that pass from our stop. In other words, no one would take a service twice. ramining_links_df = links_df[~links_df['trip_id'].isin(first_link_df['trip_id'])].copy().reset_index(drop = True) cond = first_link_df['o_time'] >= first_link_df['arrival_time'] first_link_df = first_link_df[cond].copy().reset_index(drop=True) if not first_link_df.empty: #This part of the code is a mistry! but it cleans the first link errors and it is curcial to the rest of the code first_link_df = first_link_df.drop_duplicates(['stop_seq']) def clean_first_link(group): arrival_time_sec = group['arrival_time_sec'].min() output = group[group['arrival_time_sec'] == arrival_time_sec].copy() output = output.drop_duplicates(['trip_id']) return output first_link_df = first_link_df.groupby('trip_id').apply(clean_first_link).reset_index(drop = True) #================================================================================================================= first_link_df['wt'] = first_link_df['o_time_sec'] - first_link_df['arrival_time_sec'] # now we select the links that shape the tail of trips we can reach. By tail I mean # the ramining of the a full trip that is after my stop.cmd first_link_df = first_link_df[['trip_id', 'o_sequence', 'arrival_time_sec', 'd_tt', 'wt', 'awt']].copy() first_link_df.rename(columns = {'o_sequence': 'min_seq', 'arrival_time_sec': 'arrive_at_link', 'd_tt': 'o_tt', 'awt': 'o_awt'}, inplace = True) #selects all trips that pass based on trip id from links_df first_trips_df = links_df.merge(first_link_df).reset_index(drop = True) cond = (first_trips_df['o_sequence'] >= first_trips_df['min_seq']) first_trips_df = first_trips_df[cond].copy().reset_index(drop = True) #first_trips_df.awt.fillna(first_trips_df.wt, inplace=True) first_trips_df['tt'] = (first_trips_df['d_time_sec'] - \ first_trips_df['arrive_at_link'] -\ first_trips_df['wt'] +\ first_trips_df['o_awt']) first_trips_df['d_tt'] = first_trips_df['o_tt'] + first_trips_df['tt'] first_trips_df = first_trips_df.drop(['min_seq'], axis=1) else: first_trips_df = pd.DataFrame() return first_trips_df, ramining_links_df def walk_to_next_stop(walk_edges, previous_slice_df): """ stops_df is from GTFS stops_ids is a pandas series """ def add_around_stops(group): o_stop = group.name o_tt = group['d_tt'].min() o_time_sec = group[group['d_tt'] == o_tt]['d_time_sec'].min() #end of the link is start of walk to next stop around_stops_df = walk_edges[walk_edges['o_stop'].isin(previous_slice_df['d_stop'])].copy() around_stops_df.rename(columns = {'stop_id': 'd_stop'}, inplace = True) around_stops_df['arrival_time_sec'] = around_stops_df['walk_to_stop_sec'] + o_time_sec around_stops_df['arrival_time'] = around_stops_df['arrival_time_sec'].map(hp.sec2text) around_stops_df['o_tt'] = o_tt return around_stops_df around_stops_df = previous_slice_df.groupby('d_stop').apply(add_around_stops).reset_index(drop = True) around_stops_df['d_tt'] = around_stops_df['o_tt'] + around_stops_df['walk_to_stop_sec'] around_stops_df = around_stops_df.sort_values(['d_stop', 'd_tt']) around_stops_df = around_stops_df.groupby('d_stop').first().reset_index() #around_stops_df.drop('d_tt', axis=1, inplace=True) return around_stops_df def build_pt_network( feed, analysis_start = '07:00:00', #time in string 'HH:MM:SS' analysis_end = '09:00:00', #time in string 'HH:MM:SS' transfer_duration = 2, #2 minutes walk_speed_kph = 4.8, #Walking speed in kilometer per hour convert_to_gpd = False, #generates a geopandas database ): assert gt.valid_time(analysis_start) assert gt.valid_time(analysis_end) pt_net = pt_network( feed=feed, analysis_start=analysis_start, analysis_end=analysis_end, transfer_duration=transfer_duration, walk_speed_kph=walk_speed_kph) #calculates the average wait time (awt) depending on the analysis awt period. PT_links_df = feed.feed_segments #removes the PT links outside the analysis awt period cond = (PT_links_df['o_time_sec'] >= pt_net.analysis_start_sec)&\ (PT_links_df['d_time_sec'] <= pt_net.analysis_end_sec) PT_links_df = feed.feed_segments[cond].copy() #calculates the frequency of trips frq_df = PT_links_df['stop_seq'].value_counts().reset_index() frq_df.columns = ['stop_seq', 'service_cnt'] frq_df['headway_sec'] = (pt_net.analysis_duration_sec) /frq_df['service_cnt'] frq_df['headway_min'] = frq_df['headway_sec'] / 60 PT_links_df = PT_links_df.merge(frq_df, how = 'left') #calculates the awt PT_links_df['awt'] = PT_links_df['headway_sec'] / 2 #average waite time (sec) is half the headway if convert_to_gpd == True: #converting the PT_links_df to a geodataframe l = lambda x: geom.LineString([geom.Point(x.o_stop_lon,x.o_stop_lat), geom.Point(x.d_stop_lon, x.d_stop_lat)]) PT_links_df['geometry'] = PT_links_df.apply(l, axis=1) PT_links_gdf = gp.GeoDataFrame(PT_links_df) pt_net.ptedge = PT_links_gdf else: pt_net.ptedge = PT_links_df #connecting stops together with direct walking stops = feed.stops walk_graph = list() for stop in stops[['stop_id', 'stop_lat', 'stop_lon']].iterrows(): s = around_stops( stops, pt_net.transfer_duration_sec, walk_speed_kph, stop[1][1], stop[1][2]) s['o_stop'] = stop[1][0] s['o_type'] = 'GTFS stop' walk_graph.append(s) wedge = pd.concat(walk_graph) wedge.rename(columns = {"stop_id": "d_stop"}, inplace = True) pt_net.wedge = wedge return pt_net def abundant_access_single( pt_network, start_location, #(x, y) transfers = 999, #number of transfers walk_to_transit = 5, # minutes walk_from_transit = 5, #minutes ): """ The objective here is to find how much of a city is available to by PT from some locations at an specific time. - The analysis date has to be valid for the feed. The format should be like 20170101 - The analysis time is text like '08:00:00' The output can be point or polygon. If point, each point feature will have an attribute showing the remaining time for walking from that point. If polygon, the output will be one multipart feature showing all """ #connect the start location to the pt network feed = pt_network.feed ptedge = pt_network.ptedge wedge = pt_network.wedge walk_to_transit = 5 * 60 #seconds walk_from_transit = 5 * 60 #seconds #finding around stops ar_df = connect2ptnetwork( pt_network, start_location, #(x, y) walk_to_transit) ar_df['arrival_time_sec'] = pt_network.analysis_time_sec + ar_df['walk_to_stop_sec'] ar_df['arrival_time'] = ar_df['arrival_time_sec'].apply(hp.sec2text) ar_df['o_tt'] = 0 ar_df['tt'] = ar_df['walk_to_stop_sec'] ar_df['d_tt'] = ar_df['o_tt']+ ar_df['walk_to_stop_sec'] #calculating abundant access rl_df = ptedge # rl is remainging links at = [] transfer = 0 while True: #ft is first tirps ft_df, rl_df = get_slice(rl_df, ar_df) ft_df['transfer'] = transfer transfer += 1 at.append(ft_df) if (ft_df.empty) or (transfer >= transfers): break ar_df = walk_to_next_stop(wedge, ft_df) all_trips = pd.concat(at).reset_index(drop = True) if all_trips.empty: return
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import os import gc import joblib from sklearn.metrics import r2_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score import sklearn.metrics as skm from sklearn.metrics import confusion_matrix import time import functions as func import datetime import univariatefunctions as ufunc from multiprocessing import cpu_count from joblib import Parallel from joblib import delayed def main(): method = 'OrgData' # 'DOcategory', 'pHcategory',ysi_blue_green_algae (has negative values for leavon... what does negative mean!?) # 'ysi_blue_green_algae'] # , 'dissolved_oxygen', 'ph'] targets = ['ph'] # 'ARIMA', 'SARIMA', 'ETS', 'AR', 'MA' models = ['SARIMA'] path = 'Sondes_data/train_Summer/' files = [f for f in os.listdir(path) if f.endswith( ".csv") and f.startswith('leavon')] # leavon bgsusd_all for model_name in models: for target in targets: if target.find('category') > 0: cat = 1 directory = 'Results/bookThree/output_Cat_' + \ model_name+'/oversampling_cv_models/' data = {'CV': 'CV', 'target_names': 'target_names', 'method_names': 'method_names', 'temporalhorizons': 'temporalhorizons', 'window_nuggets': 'window_nuggets', 'config': 'config', 'file_names': 'file_names', 'F1_0': 'F1_0', 'F1_1': 'F1_1', 'P_0': 'P_0', 'P_1': 'P_1', 'R_0': 'R_0', 'R_1': 'R_1', 'acc0_1': 'acc0_1', 'F1_0_1': 'F1_0_1', 'F1_all': 'F1_all', 'fbeta': 'fbeta'} else: cat = 0 directory = 'Results/bookThree/output_Reg_' + \ model_name+'/oversampling_cv_models/' data = {'CV': 'CV', 'target_names': 'target_names', 'method_names': 'method_names', 'temporalhorizons': 'temporalhorizons', 'window_nuggets': 'window_nuggets', 'config': 'config', 'file_names': 'file_names', 'mape': 'mape', 'me': 'me', 'mae': 'mae', 'mpe': 'mpe', 'rmse': 'rmse', 'R2': 'R2'} if not os.path.exists(directory): os.makedirs(directory) for file in files: print(file) result_filename = 'results_'+target + \ '_'+file + '_'+str(time.time())+'.csv' dfheader = pd.DataFrame(data=data, index=[0]) dfheader.to_csv(directory+result_filename, index=False) n_steps = 1 for PrH_index in [1, 3, 6, 12, 24, 36]: dataset = pd.read_csv(path+file) # Only the Target dataset = dataset[[ 'year', 'month', 'day', 'hour', target]] print('Window: '+str(n_steps) + ' TH: ' + str(PrH_index)+' '+method+' '+target) i = 1 if model_name == 'MA': train_X_grid, train_y_grid, input_dim, features = func.preparedata( dataset, PrH_index, n_steps, target, cat) start_time = time.time() # For Train files: custom_cv = func.custom_cv_2folds(train_X_grid, 3) for train_index, test_index in custom_cv: train_X = train_X_grid[train_index] train_y = train_y_grid[train_index] train_X_uni = train_X[:, -1] test_X = train_X_grid[test_index] # actual future values test_X_uni = test_X[:, -1] test_y = train_y_grid[test_index] predictions = ufunc.movingAverage( train_X_uni, train_y, test_X_uni, test_y) df_time = pd.DataFrame({ 'year': np.array(test_X[:, 0]).astype(int), 'month': np.array(test_X[:, 1]).astype(int), 'day': np.array(test_X[:, 2]).astype(int), 'hour': np.array(test_X[:, 3]).astype(int), }) timeline = pd.to_datetime( df_time, format='%Y%m%d %H') if cat == 1: predictions = np.array(predictions).astype(int) test_y = np.array(test_y).astype(int) # test_y = test_y.reshape(len(test_y),) # predictions = predictions.reshape( # len(predictions),) cm0 = func.forecast_accuracy( predictions, test_y, cat) filename = file + '_' + \ target+'_TH' + \ str(PrH_index)+'_lag' + \ str(n_steps)+'_'+str(i) plt.scatter(timeline.values, test_y, s=1) plt.scatter(timeline.values, predictions, s=1) plt.legend(['actual', 'predictions'], loc='upper right') plt.xticks(rotation=45) directorydeeper = directory+'more/' if not os.path.exists(directorydeeper): os.makedirs(directorydeeper) plt.savefig(directorydeeper+filename+'.jpg') plt.close() data = {'time': timeline, 'Actual': test_y, 'Predictions': predictions} df = pd.DataFrame(data=data) df.to_csv(directorydeeper+filename + '.csv', index=False) if cat == 1: data = {'CV': i, 'target_names': target, 'method_names': method, 'temporalhorizons': PrH_index, 'window_nuggets': 1, 'file_names': filename, 'F1_0': cm0[0], 'F1_1': cm0[1], 'P_0': cm0[2], 'P_1': cm0[3], 'R_0': cm0[4], 'R_1': cm0[5], 'acc0_1': cm0[6], 'F1_0_1': cm0[7], 'F1_all': cm0[8], 'fbeta': [cm0[9]]} elif cat == 0: data = {'CV': i, 'target_names': target, 'method_names': method, 'temporalhorizons': PrH_index, 'window_nuggets': 1, 'file_names': filename, 'mape': cm0[0], 'me': cm0[1], 'mae': cm0[2], 'mpe': cm0[3], 'rmse': cm0[4], 'R2': cm0[5]} df = pd.DataFrame(data=data, index=[0]) df.to_csv(directory+result_filename, index=False, mode='a', header=False) i = i + 1 elapsed_time = time.time() - start_time print(time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) if model_name == 'ARIMA' or model_name == 'AR' or model_name == 'ETS' or model_name == 'SARIMA' or model_name == 'BL': start_time = time.time() train_X_grid = dataset.values custom_cv = ufunc.custom_cv_2folds( train_X_grid, 1, PrH_index) ###################### # Cross Validation sets ###################### i = 1 for train_index, test_index in custom_cv: train_X = train_X_grid[train_index] train_X_uni = train_X[:, -1] test_X = train_X_grid[test_index] # actual future values test_X_uni = test_X[:, -1] df_time = pd.DataFrame({ 'year': np.array(test_X[:, 0]).astype(int), 'month': np.array(test_X[:, 1]).astype(int), 'day': np.array(test_X[:, 2]).astype(int), 'hour': np.array(test_X[:, 3]).astype(int), }) timeline = pd.to_datetime( df_time, format='%Y%m%d %H') if model_name == 'BL': # train_X_uni,test_X_uni # make them into dataFrame so below can be done test_X_uni = pd.DataFrame(test_X_uni) target_values = test_X_uni.drop( test_X_uni.index[0: 1], axis=0) target_values.index = np.arange( 0, len(target_values)) # test_X_uni = pd.DataFrame(test_X_uni) predictions = test_X_uni.drop( test_X_uni.index[len(test_X_uni)-1: len(test_X_uni)], axis=0) test_X_uni = target_values timeline = timeline.drop( timeline.index[len(timeline)-1: len(timeline)], axis=0) cm0 = func.forecast_accuracy( predictions, test_X_uni, cat) filename = file + '_' + \ target+'_TH' + \ str(PrH_index)+'_lag' + \ str(n_steps)+'_'+str(i) plt.scatter(timeline.values, test_X_uni, s=1) plt.scatter(timeline.values, predictions, s=1) plt.legend(['actual', 'predictions'], loc='upper right') plt.xticks(rotation=45) directorydeeper = directory+'more/' if not os.path.exists(directorydeeper): os.makedirs(directorydeeper) plt.savefig(directorydeeper+filename+'.jpg') plt.close() print(predictions.head()) print(test_X_uni.head()) print(timeline.head()) # data = {'time': timeline, # 'Actual': test_X_uni, # 'Predictions': predictions} frames = [timeline, test_X_uni, predictions] df = pd.concat(frames, axis=1) df.to_csv(directorydeeper+filename + '.csv', index=False, header=['time', 'Actual', 'Predictions']) if cat == 1: data = {'CV': i, 'target_names': target, 'method_names': method, 'temporalhorizons': PrH_index, 'window_nuggets': 1, 'file_names': filename, 'F1_0': cm0[0], 'F1_1': cm0[1], 'P_0': cm0[2], 'P_1': cm0[3], 'R_0': cm0[4], 'R_1': cm0[5], 'acc0_1': cm0[6], 'F1_0_1': cm0[7], 'F1_all': cm0[8], 'fbeta': [cm0[9]]} elif cat == 0: data = {'CV': i, 'target_names': target, 'method_names': method, 'temporalhorizons': PrH_index, 'window_nuggets': 1, 'file_names': filename, 'mape': cm0[0], 'me': cm0[1], 'mae': cm0[2], 'mpe': cm0[3], 'rmse': cm0[4], 'R2': cm0[5]} df =
pd.DataFrame(data=data, index=[0])
pandas.DataFrame
import pandas as pd import numpy as np from .utility_fxns import distribute def generate_id_dict(id_list, prod_ids, df): ''' docstring for generate_id_dict input: product id list output: dictionary of key: product id values: [position of product id in full matrix , number of skus , sku product ids]''' id_dict = {} for i in prod_ids: pos = id_list.index(i) j = 1 sku_ids = [] flag = True while flag: step = pos + j if (df.item_type[step] == 'Product') & (j == 1): j = 0 flag = False elif df.item_type[step] == 'Product': j -= 1 flag = False elif df.item_type[step] == 'SKU': j += 1 sku_ids.append(df.product_id[step]) else: # not a product or sku j = 0 flag = False id_dict[i] = [pos, j, sku_ids] return id_dict def sku_combo_dicts_v2(file_list): '''docstring for sku_combo_dicts''' file = 'color_table.csv' filename = [i for i in file_list if file in i][0] df =
pd.read_csv(filename)
pandas.read_csv
from __future__ import division from psychopy.visual import ImageStim, TextStim, Window from psychopy import core, event, gui, data, logging import numpy as np import pandas as pd import os from routines import Routine #general settings expName = 'wpa_6' screen_size = [800, 600] frames_per_second = 60 full_screen = False background_color = '#eeeeee' # trial settings choice_keys = ['q', 'p'] escape_key = 'escape' choice_time_limit = 5 feedback_duration = 2 fixation_duration = 1.5 #stimuli settings text_color = 'black' text_height = 50 options_x_offset = 200 image_size = 100 #store info about the experiment session dlg = gui.Dlg(title=expName) dlg.addField('Participant:', 1) dlg.addField('Age:', 25) dlg.addField('Gender:', choices=['female', 'male', 'prefer not to disclose']) dlg.addField('Handedness:', choices=['right', 'left', 'both']) dlg.show() expInfo = dict(zip(['participant', 'age', 'gender', 'hand'], dlg.data)) expInfo['date'] = data.getDateStr() # add a simple timestamp expInfo['expName'] = expName # add the experiment name if dlg.OK: # then the user pressed OK print(expInfo) else: print(expInfo) core.quit() #check if data folder exists directory=os.path.join(os.getcwd(), 'data') if not os.path.exists(directory): os.makedirs(directory) #create file name for storing data fileName = os.path.join('data', '%s_%s_%s' % (expName, expInfo['participant'], expInfo['date'])) #save a log file logFile = logging.LogFile(fileName + '.log', level=logging.DEBUG) logging.console.setLevel(logging.WARNING) # this outputs to the screen, not a file #create a window mywin = Window(screen_size, units='pix', color=background_color, fullscr=full_screen) #create some stimuli n_trials = 30 A_feedback = TextStim(win=mywin, color=text_color, pos=(-options_x_offset, 0), height=text_height) B_feedback = TextStim(win=mywin, color=text_color, pos=(options_x_offset, 0), height=text_height) A_feedback_trials = np.random.binomial(n=1, p=.4, size=n_trials) B_feedback_trials = np.random.binomial(n=1, p=.6, size=n_trials) A_picture = ImageStim(win=mywin, pos=(-options_x_offset, 0), size=image_size, image=os.path.join(os.getcwd(), 'stimuli', 'A.png')) B_picture = ImageStim(win=mywin, pos=(options_x_offset, 0), size=image_size, image=os.path.join(os.getcwd(), 'stimuli', 'B.png')) fixation_cross = TextStim(win=mywin, text='+', color=text_color) #create the dataframe data =
pd.DataFrame([])
pandas.DataFrame
from __future__ import print_function import pandas as pd import os import logging import argparse ''' This file reads in data related E. coli levels in Chicago beaches. It is based on the files analysis.R and split_sheets.R, and is written such that the dataframe loaded here will match the R dataframe code exactly. ''' # This is an adaptation of previous read_data.py so that it runs on Python3 # Some variable names changed. Notably, Client.ID is now Beach # Added day of week and month variables # Also adds columns to dataframe: # YesterdayEcoli : prior days reading # DayBeforeYesterdayEcoli : two days prior reading # actual_elevated : where Escherichia_coli >=235 # predicted_elevated : where Drek_Prediction >=235 # # TODO: verbose # TODO: use multi-level index on date/beach ? # TODO: standardize on inplace=True or not inplace # TODO: how much consistency do we want between python columns # and the R columns? # TODO: create better docstrings # TODO: remove print statements and the import # TODO: loyola/leone the same? # TODO: repeats on 2015-06-16 ? # and some of 2012? # Just check for these everywhere, why is it happening? def split_sheets(file_name, year, verbose=False): ''' Reads in all sheets of an excel workbook, concatenating all of the information into a single dataframe. The excel files were unfortunately structured such that each day had its own sheet. ''' xls = pd.ExcelFile(file_name) dfs = [] standardized_col_names = [ 'Date', 'Laboratory_ID', 'Beach', 'Reading1', 'Reading2', 'Escherichia_coli', 'Units', 'Sample_Collection_Time' ] for i, sheet_name in enumerate(xls.sheet_names): if not xls.book.sheet_by_name(sheet_name).nrows: # Older versions of ExcelFile.parse threw an error if the sheet # was empty, explicitly check for this condition. logging.debug('sheet "{0}" from {1} is empty'.format(sheet_name, year)) continue df = xls.parse(sheet_name) if i == 0 and len(df.columns) > 30: # This is the master/summary sheet logging.debug('ignoring sheet "{0}" from {1}'.format(sheet_name, year)) continue if df.index.dtype == 'object': # If the first column does not have a label, then the excel # parsing engine will helpfully use the first column as # the index. This is *usually* helpful, but there are two # days when the first column is missing the typical label # of 'Laboratory ID'. In this case, peel that index off # and set its name. msg = '1st column in sheet "{0}" from {1} is missing title'.format( sheet_name, year) logging.debug(msg) df.reset_index(inplace=True) df.columns = ['Laboratory ID'] + df.columns.tolist()[1:] # Insert name of sheet as first column, the sheet name is the date df.insert(0, u'Date', sheet_name) for c in df.columns.tolist(): if 'Reading' in c: # There are about 10 days that have >2 readings for some reason if int(c[8:]) > 2: logging.info('sheet "{0}" from {1} has >2 readings'.format( sheet_name, year) ) df.drop(c, 1, inplace=True) # Only take the first 8 columns, some sheets erroneously have >8 cols df = df.ix[:,0:8] # Standardize the column names df.columns = standardized_col_names dfs.append(df) df = pd.concat(dfs) df.insert(0, u'Year', str(year)) logging.info('Removing data with missing Client ID') df.dropna(subset=['Beach'], inplace=True) return df def read_holiday_data(file_name, verbose=False): df = pd.read_csv(file_name) df['Date'] = pd.to_datetime(df['Date']) return df def read_water_sensor_data(verbose=False): ''' Downloads and reads water sensor data from the Chicago data portal. Downsamples the readings into the min, mean, and max for each day and for each sensor. Each day only has one row, with many columns (one column each per sensor per reading per type of down-sampling process) ''' url = 'https://data.cityofchicago.org/api/views/qmqz-2xku/rows.csv?accessType=DOWNLOAD' water_sensors = pd.read_csv(url) url = 'https://data.cityofchicago.org/api/views/g3ip-u8rb/rows.csv?accessType=DOWNLOAD' sensor_locations = pd.read_csv(url) df = pd.merge(water_sensors, sensor_locations, left_on='Beach Name', right_on='Sensor Name') df.drop(['Sensor Type', 'Location'], 1, inplace=True) # TODO: map sensor to beach ??? df['Beach Name'] = df['Beach Name'].apply(lambda x: x[0:-6]) df['Measurement Timestamp'] = pd.to_datetime(df['Measurement Timestamp']) df['Date'] = pd.DatetimeIndex(df['Measurement Timestamp']).normalize() df.drop(['Battery Life', 'Measurement Timestamp', 'Measurement Timestamp Label', 'Measurement ID', 'Sensor Name'], axis=1, inplace=True) df_mins = df.groupby(['Beach Name', 'Date'], as_index=False).min() df_means = df.groupby(['Beach Name', 'Date'], as_index=False).mean() df_maxes = df.groupby(['Beach Name', 'Date'], as_index=False).max() df_mins.drop(['Latitude','Longitude'],1,inplace=True) df_means.drop(['Latitude','Longitude'],1,inplace=True) df_maxes.drop(['Latitude','Longitude'],1,inplace=True) cols = df_mins.columns.tolist() def rename_columns(cols, aggregation_type): cols = list(map(lambda x: x.replace(' ', '_'), cols)) for i in range(2,7): cols[i] = cols[i] + '_' + aggregation_type return cols df_mins.columns = rename_columns(cols, 'Min') df_means.columns = rename_columns(cols, 'Mean') df_maxes.columns = rename_columns(cols, 'Max') df = pd.merge(df_mins, df_means, on=['Beach_Name', 'Date']) df = pd.merge(df, df_maxes, on=['Beach_Name', 'Date']) df = df.pivot(index='Date', columns='Beach_Name') df.columns = ['.'.join(col[::-1]).strip() for col in df.columns.values] df.reset_index(inplace=True) df.columns = ['Full_date'] + list( map(lambda x: x.replace(' ', '_'), df.columns.tolist()[1:])) c = df.columns.tolist() c[c.index('Full_date')] = 'Date' df.columns = c return df def read_weather_station_data(verbose=False): ''' Downloads and reads weather sensor data from the Chicago data portal. Downsamples the readings into the min, mean, and max for each day and for each sensor. Each day only has one row, with many columns (one column each per sensor per reading per type of down-sampling process) ''' url = 'https://data.cityofchicago.org/api/views/k7hf-8y75/rows.csv?accessType=DOWNLOAD' weather_sensors = pd.read_csv(url) url = 'https://data.cityofchicago.org/api/views/g3ip-u8rb/rows.csv?accessType=DOWNLOAD' sensor_locations = pd.read_csv(url) weather_sensors.columns = map(lambda x: x.replace(' ', '_'), weather_sensors.columns.tolist()) sensor_locations.columns = map(lambda x: x.replace(' ', '_'), sensor_locations.columns.tolist()) sensor_locations.columns = ['Station_Name'] + sensor_locations.columns.tolist()[1:] df = pd.merge(weather_sensors, sensor_locations, on='Station_Name') df['Beach'] = df['Station_Name'] df['Date'] = pd.DatetimeIndex(df['Measurement_Timestamp']).normalize() df.drop(['Measurement_Timestamp_Label', 'Measurement_Timestamp', 'Sensor_Type', 'Location', 'Measurement_ID', 'Battery_Life','Station_Name'], axis=1, inplace=True) df_mins = df.groupby(['Beach', 'Date'], as_index=False).min() df_means = df.groupby(['Beach', 'Date'], as_index=False).mean() df_maxes = df.groupby(['Beach', 'Date'], as_index=False).max() cols = df_mins.columns.tolist() def rename_columns(cols, aggregation_type): cols = list(map(lambda x: x.replace(' ', '_'), cols)) for i in range(2,15): cols[i] = cols[i] + '_' + aggregation_type return cols df_mins.columns = rename_columns(cols, 'Min') df_means.columns = rename_columns(cols, 'Mean') df_maxes.columns = rename_columns(cols, 'Max') df = pd.merge(df_mins, df_means, on=['Beach', 'Date']) df = pd.merge(df, df_maxes, on=['Beach', 'Date']) df.drop(['Latitude_x', 'Latitude_y', 'Longitude_x', 'Longitude_y'], axis=1, inplace=True) df = df.pivot(index='Date', columns='Beach') df.columns = ['.'.join(col[::-1]).strip() for col in df.columns.values] df.reset_index(inplace=True) df.columns = ['Full_date'] + list( map(lambda x: x.replace(' ', '_'), df.columns.tolist()[1:])) c = df.columns.tolist() c[c.index('Full_date')] = 'Date' df.columns = c return df def read_locations(file_name, verbose=False): locations = pd.read_csv(file_name) return locations def print_full(x): ''' Helper function to plot the *full* dataframe. ''' pd.set_option('display.max_rows', len(x)) print(x) pd.reset_option('display.max_rows') def date_lookup(s, verbose=False): ''' This is an extremely fast approach to datetime parsing. For large data, the same dates are often repeated. Rather than re-parse these, we store all unique dates, parse them, and use a lookup to convert all dates. Thanks to fixxxer, found at http://stackoverflow.com/questions/29882573 ''' dates = {date:pd.to_datetime(date, errors='ignore') for date in s.unique()} for date, parsed in dates.items(): if type(parsed) is not pd.tslib.Timestamp: logging.debug('Non-regular date format "{0}"'.format(date)) fmt = '%B %d (%p) %Y' dates[date] = pd.to_datetime(date,format=fmt) return s.apply(lambda v: dates[v]) def read_data(verbose=False): ''' Read in the excel files for years 2006-2015 found in 'data/ChicagoParkDistrict/raw/Standard 18 hr Testing' along with drekbeach data. Also reformats columns in accordance with the transformations found in analysis.R ''' cpd_data_path = './data/ChicagoParkDistrict/raw/Standard 18 hr Testing/' #cpd_data_path = os.path.join(os.path.dirname(__file__), cpd_data_path) dfs = [] for yr in range(2006,2015): dfs.append(split_sheets(cpd_data_path + str(yr) + ' Lab Results.xls', yr)) dfs.append(split_sheets(cpd_data_path + '2015 Lab Results.xlsx', 2015)) df = pd.concat(dfs) # Need to reset the index to deal with the repeated concatenations df.index = range(0, len(df.index)) # Some records are of the form <1 or >2440 # Remove the operator and treat the remaining string as the value. # Also convert string to float, if possible for col in ['Reading1', 'Reading2', 'Escherichia_coli']: for i, val in enumerate(df[col].tolist()): if isinstance(val, (str,bytes)): val = val.replace('<', '').replace('>', '') try: df.ix[i, col] = float(val) except ValueError: # Sometimes strings are things like 'Sample Not Received' if 'sample' in df.ix[i, col].lower(): logging.debug('Trying to cast "{0}" to numeric'.format( df.ix[i, col] )) else: logging.info('Trying to cast "{0}" to numeric'.format( df.ix[i, col] )) df.ix[i, col] = float('nan') df[col] = df[col].astype('float64') # Massage dates, create weekday column df.insert(0, 'Full_date', df[['Date', 'Year']].apply(lambda x: ' '.join(x), axis=1).apply(lambda x: x.replace(' (PM)', '') )) df['Full_date'] = date_lookup(df['Full_date']) df.insert(0, 'Timestamp', pd.to_datetime(df['Full_date'], errors='coerce') ) months=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] df.insert(0, 'Month', df['Timestamp'].dt.month.apply(lambda x: months[int(x)-1]) ) days=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'] df.insert(0, 'Weekday', df['Timestamp'].dt.dayofweek.apply(lambda x: days[int(x)]) ) df.drop(['Date','Timestamp'], axis=1,inplace=True ) # Some header rows were duplicated df = df[df['Laboratory_ID'] != u'Laboratory ID'] # Normalize the beach names df['Beach'] = df['Beach'].map(lambda x: x.strip()) cleanbeachnames = pd.read_csv(cpd_data_path + 'cleanbeachnames.csv') cleanbeachnames = dict(zip(cleanbeachnames['Old'], cleanbeachnames['New'])) # There is one observation that does not have a beach name in the # Beach column, remove it. df = df[df['Beach'].map(lambda x: x in cleanbeachnames)] df['Beach'] = df['Beach'].map(lambda x: cleanbeachnames[x]) # Read in drek beach data drek_data_path = './data/DrekBeach/' drekdata = pd.read_csv(drek_data_path + 'daily_summaries_drekb.csv') drekdata.columns = ['Beach', 'Full_date', 'Drek_Reading','Drek_Prediction', 'Drek_Worst_Swim_Status'] drekdata['Full_date'] = date_lookup(drekdata['Full_date']) drekdata['Beach'] = drekdata['Beach'].map(lambda x: x.strip()) drekdata['Beach'] = drekdata['Beach'].map(lambda x: cleanbeachnames[x]) df = pd.merge(df, drekdata, how='outer', on= ['Beach', 'Full_date']) c = df.columns.tolist() c[c.index('Full_date')] = 'Date' df.columns = c # get rid of some useless columns df.drop(['Laboratory_ID','Units','Sample_Collection_Time','Drek_Worst_Swim_Status'], axis=1,inplace=True ) # There was an anamolous reading, the max possible value from the test # is around 2420, but one reading was 6488. # We need to do the ~(reading 1 > 2500 | reading 2 > 2500) instead of # (reading 1 < 2500 & reading 2 < 2500) since the latter returns # False if there is a NaN. df = df[~((df['Reading1'] > 2500) | (df['Reading2'] > 2500))] # R code creates a calculated geometric mean column b/c it didn't # import the column correctly (it truncated the value). Pandas did # import correctly, so no need to create that. external_data_path = './data/ExternalData/' #external_data_path = os.path.join(os.path.dirname(__file__), # external_data_path) holidaydata = read_holiday_data(external_data_path + 'Holidays.csv', verbose) # TODO: merge holiday data watersensordata = read_water_sensor_data(verbose) df =
pd.merge(df, watersensordata, on='Date', how='outer')
pandas.merge
import numpy as np import pandas as pd import torch import torch.optim as optim from train import train, loss_func, test from model import NN, CNN from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.linear_model import Ridge, Lasso from sklearn.ensemble import RandomForestRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn import metrics from sklearn.tree import DecisionTreeRegressor from densratio import densratio from pykliep import DensityRatioEstimator import xgboost as xgb file_names = ['books_processed_balanced', 'dvd_processed_balanced', 'electronics_processed_balanced', 'kitchen_processed_balanced'] def calc_result(reg, x0, y0, x1, y1, dr=None): reg.fit(x0, y0, sample_weight=dr) train_loss = np.mean((y0 - reg.predict(x0))**2) test_loss = np.mean((y1 - reg.predict(x1))**2) rating_temp = y1.copy() rating_temp[rating_temp >= 3] = 100 auc = calc_auc(rating_temp, reg.predict(x1)) return train_loss, test_loss, auc def calc_auc(y, f): fpr, tpr, _ = metrics.roc_curve(y, f, pos_label=100) auc = metrics.auc(fpr, tpr) return 1-auc def main(): ite = 10 num_train_data = 2000 num_test_data = 2000 Net = NN model_num = 3 learning_rate = 1e-4 epoch = 200 batchsize = 256 seed = 2020 for f_name_idx0 in range(len(file_names)): for f_name_idx1 in range(f_name_idx0+1, len(file_names)): train_loss_normal = np.zeros((ite, model_num)) test_loss_normal = np.zeros((ite, model_num)) auc_normal = np.zeros((ite, model_num)) train_loss_kerulsif = np.zeros((ite, model_num)) test_loss_kerulsif = np.zeros((ite, model_num)) auc_kerulsif = np.zeros((ite, model_num)) train_loss_kerkleip = np.zeros((ite, model_num)) test_loss_kerkleip = np.zeros((ite, model_num)) auc_kerkleip = np.zeros((ite, model_num)) train_loss_pu = np.zeros((ite, model_num)) test_loss_pu = np.zeros((ite, model_num)) auc_pu = np.zeros((ite, model_num)) train_loss_ulsif = np.zeros((ite, model_num)) test_loss_ulsif = np.zeros((ite, model_num)) auc_ulsif = np.zeros((ite, model_num)) train_loss_nnpu = np.zeros((ite, model_num)) test_loss_nnpu = np.zeros((ite, model_num)) auc_nnpu = np.zeros((ite, model_num)) train_loss_nnulsif = np.zeros((ite, model_num)) test_loss_nnulsif = np.zeros((ite, model_num)) auc_nnulsif = np.zeros((ite, model_num)) f_name0 = file_names[f_name_idx0] f_name1 = file_names[f_name_idx1] for i in range(ite): np.random.seed(seed) if f_name0 != f_name1: data0 = pd.read_csv('dataset/%s.csv'%f_name0) data1 = pd.read_csv('dataset/%s.csv'%f_name1) data0 = data0.dropna() data1 = data1.dropna() perm0 = np.random.permutation(len(data0)) perm1 = np.random.permutation(len(data1)) choice0 = np.zeros(len(data0)) choice0[perm0[:num_train_data]] = 1 data0['choice'] = choice0 choice1 = np.zeros(len(data1)) choice1[perm1[:num_test_data]] = 1 data1['choice'] = choice1 data0 = data0.get(['rating', 'text', 'item', 'choice']) data1 = data1.get(['rating', 'text', 'item', 'choice']) data = pd.concat([data0, data1]) else: data =
pd.read_csv('dataset/%s.csv'%f_name0)
pandas.read_csv
from sklearn.preprocessing import StandardScaler import math import pandas as pd import numpy as np import re import pyBigWig import pickle import multiprocessing as mp import time import os import sys from keras.models import load_model class DNArepresent: def __init__(self, sequence, chrom, start, stop, strand, conservation_path): self.sequence = sequence.upper() self.chrom = chrom self.start = start self.stop = stop self.strand = strand self.conservation_path = conservation_path def list_of_zeros(self): x = [0]*len(self.sequence) y = [0]*len(self.sequence) z = [0]*len(self.sequence) return(x, y, z) def DNA_walk(self): x = [] for i, f in enumerate(self.sequence): if i == 0: if f == 'C' or f == 'T': x.append(1) else: x.append(-1) else: if f == 'C' or f == 'T': x.append(x[i-1]+1) else: x.append(x[i-1]-1) return(x) def Z_curve(self): x,y,z = self.list_of_zeros() for i, f in enumerate(self.sequence): if f == 'T' or f == 'G': x[i] = x[i-1] + 1 else: x[i] = x[i-1] - 1 if f == 'A' or f == 'C': y[i] = y[i-1] + 1 else: y[i] = y[i-1] - 1 if f == 'A' or f == 'T': z[i] = z[i-1] + 1 else: z[i] = z[i-1] - 1 return(x, y, z) def paired_numeric(self): x = [] for f in self.sequence: if f == 'A' or f == 'T': x.append(1) else: x.append(-1) return(x) def tetrahedron(self): x,y,z = self.list_of_zeros() for i, f in enumerate(self.sequence): if f == 'T': x[i] = 2*math.sqrt(2)/3 y[i] = 0 z[i] = -1/3 if f == 'C': x[i] = -math.sqrt(2)/3 y[i] = math.sqrt(6)/3 z[i] = -1/3 if f == 'G': x[i] = -math.sqrt(2)/3 y[i] = -math.sqrt(6)/3 z[i] = -1/3 if f == 'A': x[i] = 0 y[i] = 0 z[i] = 1 return(x, y, z) @classmethod def onehot_conversion_sequence(cls, letter): one_hot_map = { "A": np.asarray([1, 0, 0, 0],dtype=np.float32), "a": np.asarray([1, 0, 0, 0],dtype=np.float32), "C": np.asarray([0, 1, 0, 0],dtype=np.float32), "c": np.asarray([0, 1, 0, 0],dtype=np.float32), "G": np.asarray([0, 0, 1, 0],dtype=np.float32), "g": np.asarray([0, 0, 1, 0],dtype=np.float32), "T": np.asarray([0, 0, 0, 1],dtype=np.float32), "t": np.asarray([0, 0, 0, 1],dtype=np.float32), "N": np.asarray([0, 0, 0, 0],dtype=np.float32), "n": np.asarray([0, 0, 0, 0],dtype=np.float32)} return one_hot_map[letter] def one_hot_encoder(self): tmp = [] for letter in self.sequence: tmp.append(self.onehot_conversion_sequence(letter)) out = np.vstack(tmp) return (out) def bendability(self, size=3): out = [0, 0, 0] for x in range(0, len(self.sequence) - size): kmer = self.sequence[x:x + size] if 'N' in kmer: out.append('0') else: out.append(VALS_kmers[COLS_kmers.index(kmer)]) if self.strand == '-': out = out[::-1] out = np.vstack(out).astype(float) return(out) def propellerTwist(self, size=2): out = ['-12.6', '-12.6'] for x in range(0, len(self.sequence) - size): kmer = self.sequence[x:x + size] if 'N' in kmer: out.append('-12.6') else: out.append(VALS_kmers_proptwst[COLS_kmers_proptwst.index(kmer)]) if self.strand == '-': out = out[::-1] out = np.vstack(out).astype(float) return(out) def conservation_calc(self): if self.conservation_path is not None: bw = pyBigWig.open(self.conservation_path) out = bw.values(self.chrom, self.start, self.stop) out = np.vstack(out) if self.strand == '-': out = np.flip(out) bw.close() return(out) else: return(False) def Read_file(infile): with open(infile) as f: lines = f.readlines() cols = [] vals = [] for line in lines: cols.append(line.strip().split("\t")[0]) vals.append(line.strip().split("\t")[1]) return(cols, vals) def read_fasta(path_fasta): fasta = pd.read_csv(path_fasta, header=None, sep="\t") fasta[['chr', 'strand']] = fasta[0].str.split("(", expand=True) fasta['strand'] = fasta['strand'].str[:-1] fasta[0] = fasta[0].str[:-3] fasta[['chr', 'start']] = fasta[0].str.split(":", expand=True) fasta[['start', 'stop']] = fasta['start'].str.split("-", expand=True) fasta['sequence'] = fasta[1] fasta = fasta.drop([0, 1], axis=1) # Cast to int fasta['start'] = fasta['start'].astype(int) fasta['stop'] = fasta['stop'].astype(int) return(fasta) def fix_coords(bed, sequence_len, path_bed): bed['tmp'] = (((bed[1] + bed[2]) / 2) - (sequence_len / 2)).astype(int) bed[2] = (((bed[1] + bed[2]) / 2) + (sequence_len / 2)).astype(int) bed[1] = bed['tmp'] bed = bed.drop(['tmp'], axis=1) bed = bed.rename(columns={0: 'chr', 1: 'start', 2: 'stop', 3: 'id', 4: 'tpm', 5: 'strand'}) # Save pos/neg set (to utilize bedtools getfasta) bed.to_csv(path_bed, sep="\t", header=None, index=False) return(bed) def features(index, row): # Create tss object tss = DNArepresent(row['sequence'], row['chr'], row['start'], row['stop'], row['strand'], conservation_path) # One-hot encoder sequence enc_seq = tss.one_hot_encoder() # Calculate DNA representations dnawalk = tss.DNA_walk() x, y, z = tss.Z_curve() prd_Num = tss.paired_numeric() r, g, b = tss.tetrahedron() # Stack vertically all representations dna_represent = np.vstack([dnawalk, x, y, z, prd_Num, r, g, b]).T # Bendability bend = tss.bendability() # Propeller_Twist propTwist = tss.propellerTwist() if conservation_path is not None: # Conservation conservation = tss.conservation_calc() cur = np.hstack([enc_seq, dna_represent, bend, propTwist, conservation]) else: cur = np.hstack([enc_seq, dna_represent, bend, propTwist]) return( cur ) def split_features_branch(X, conservation_path): # Split features for 3 branches X1 = X[:, :, [0, 1, 2, 3]] # seq x4 X2 = X[:, :, [4, 5, 6, 7, 8, 9, 10, 11]] # features x8 X3 = X[:, :, [12,13]] # bendabillity, PropellerTwist x2 if conservation_path is not None: X4 = X[:, :, [14]] # conservation x1 return(X1, X2, X3, X4) else: return (X1, X2, X3) def standardize_feature(X, scaler=StandardScaler()): X = scaler.fit_transform(X.reshape(-1, X.shape[-1])).reshape(X.shape) return(X) def export_file(result, prediction): cur = result.copy() cur['pred'] = prediction cur['tpm'] = cur['tpm'].round(3) cur['id'] = cur[['id', 'tpm']].astype(str).agg('||'.join, axis=1) cur = cur.drop(['sequence', 'tpm'], axis=1) cols = ['chr', 'start', 'stop', 'id', 'pred', 'strand'] cur = cur[cols] cur['start'] = ((cur['start'].astype(int) + cur['stop'].astype(int))/2).astype(int) cur['stop'] = cur['start'].astype(int) + 1 return(cur) #------------------------------------------##------------------------------------------# #------------------------------------------##------------------------------------------# #------------------------------------------##------------------------------------------# def main_predict(dict, representatives, work_dir): start_time = time.time() global ROOT_DIR global conservation_path global COLS_kmers global VALS_kmers global COLS_kmers_proptwst global VALS_kmers_proptwst out_dir = work_dir cores = dict['threads'] conservation_path = dict['cons'] inputBed_path = representatives hg38_fa = dict['hg38_fa'] sequence_len = 600 ############################################### # Current script dir ROOT_DIR = os.path.abspath(os.path.dirname(sys.argv[0])) scalers_path = os.path.join(ROOT_DIR, 'models', 'scalers') scalers_path_cons = os.path.join(ROOT_DIR, 'models', 'scalers_cons') model_path = os.path.join(ROOT_DIR, 'models', 'model17-10.hdf5') model_path_cons = os.path.join(ROOT_DIR, 'models', 'model28-09.hdf5') COLS_kmers, VALS_kmers = Read_file(f'{ROOT_DIR}/files/bendability.tsv') COLS_kmers_proptwst, VALS_kmers_proptwst = Read_file(f'{ROOT_DIR}/files/Propeller_twist.tsv') # Read representatives file (*.bed) inputBed = pd.read_csv(inputBed_path, header=None, sep="\t") # Fix coordinates start-sequence_len | stop+sequence_len from TSS (in case of coordinate > 1) path_bed = f'{out_dir}/{os.path.basename(inputBed_path).split(".")[0]}_CNN.scored_tmp.bed' inputBed = fix_coords(inputBed, sequence_len, path_bed) # Bedtools getfasta path_fasta = f'{os.path.dirname(path_bed)}/labeled.fasta' cmd = f'bedtools getfasta -fi {hg38_fa} -bed {path_bed} -s -tab -fo {path_fasta}' os.system(cmd) # Read the fasta fasta = read_fasta(path_fasta) # Merge fasta & bed result =
pd.merge(left=inputBed, right=fasta, how='left', left_on=['chr', 'start', 'stop', 'strand'], right_on=['chr', 'start', 'stop', 'strand'])
pandas.merge
#!/usr/bin/env python # coding: utf-8 ##### HELPER FUNCTIONS ##### # import libraries import numpy as np import pandas as pd from datetime import datetime,date from device_detector import DeviceDetector import re ### CLEANING def drop_rows(df): print('Starting dropping rows...') # keep rows where exclude hit is == 0 df = df[df['exclude_hit'] == 0] # keep rows where hit source != 5, 7, 8 or 9 df = df[(df['hit_source'] != 5) | (df['hit_source'] != 7) |(df['hit_source'] != 8) |(df['hit_source'] != 9)] # keep rows where visitor id is not missing (6 missing values) df = df[pd.notnull(df['visitor_id'])] # clean visit page num and keep rows where visit page num is not missing or faulty (118 missing and 269 faulty values) df['visit_page_num'] = df['visit_page_num'].apply(lambda x: np.nan if len(str(x)) > 10 else x) df = df[pd.notnull(df['visit_page_num'])] print('Dropping rows complete.') return df def drop_columns(df): print('Starting dropping columns...') # select columns to keep columns_to_keep = ['visitor_id', 'visit_start_time_gmt', 'hit_time_gmt', 'date_time', # numerical columns 'visit_num', 'visit_page_num', 'purchase_boolean', 'product_view_boolean', 'checkout_boolean', 'cart_addition_boolean', 'cart_removal_boolean', 'cart_view_boolean', 'campaign_view_boolean', 'cart_value', 'page_view_boolean', 'last_purchase_num', 'standard_search_results_clicked', 'standard_search_started', 'suggested_search_results_clicked', # categorical columns 'country', 'cookies', 'persistent_cookie', 'search_page_num', 'connection_type', 'search_engine', 'marketing_channel', 'referrer_type', 'new_visit', 'hourly_visitor', 'daily_visitor', 'weekly_visitor', 'monthly_visitor', 'quarterly_visitor', 'yearly_visitor', 'product_items', 'product_item_price', 'product_categories', 'device_type_user_agent', 'device_brand_name_user_agent', 'device_operating_system_user_agent', 'device_browser_user_agent', 'repeat_orders', 'net_promoter_score', 'hit_of_logged_in_user', 'registered_user', 'user_gender', 'user_age', 'visit_during_tv_spot'] # subset dataframe to select only columns to keep df = df[columns_to_keep] print('Dropping columns complete.') return df def rename_columns(df): print('Starting renaming columns...') df.rename(columns={'va_closer_id' : 'marketing_channel'}, inplace=True) df.rename(columns={'os' : 'operating_system'}, inplace=True) df.rename(columns={'ref_type' : 'referrer_type'}, inplace=True) df.rename(columns={'post_search_engine' : 'search_engine'}, inplace=True) df.rename(columns={'cart_value_(v50)' : 'cart_value'}, inplace=True) df.rename(columns={'int._stand._search_result_clicked_(e16)' : 'standard_search_results_clicked'}, inplace=True) df.rename(columns={'active_stand._search_started_(e17)' : 'standard_search_started'}, inplace=True) df.rename(columns={'sugg._search_result_clicked_(e18)' : 'suggested_search_results_clicked'}, inplace=True) df.rename(columns={'post_cookies' : 'cookies'}, inplace=True) df.rename(columns={'post_persistent_cookie' : 'persistent_cookie'}, inplace=True) df.rename(columns={'repeat_orders_(e9)' : 'repeat_orders'}, inplace=True) df.rename(columns={'net_promoter_score_raw_(v10)_-_user' : 'net_promoter_score'}, inplace=True) df.rename(columns={'hit_of_logged_in_user_(e23)' : 'hit_of_logged_in_user'}, inplace=True) df.rename(columns={'registered_user_(user)_(v34)' : 'registered_user'}, inplace=True) df.rename(columns={'user_gender_(v61)' : 'user_gender'}, inplace=True) df.rename(columns={'user_age_(v62)' : 'user_age'}, inplace=True) df.rename(columns={'visit_during_tv_spot_(e71)' : 'visit_during_tv_spot'}, inplace=True) print('Renaming columns complete') return df def fill_missing_and_faulty_values(df): print('Starting filling missing and faulty values...') df['cart_value'].fillna(0, inplace=True) df['registered_user'] = df['registered_user'].apply(lambda x: 1 if x == 'y' else 0) df['cookies'] = df['cookies'].apply(lambda x: 1 if x == 'Y' else 0) df['persistent_cookie'] = df['persistent_cookie'].apply(lambda x: 1 if x == 'Y' else 0) print('Filling missing and faulty values complete.') return df def cast_data_types(df): print('Starting casting data types...') # datetime columns df['date_time'] = df['date_time'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) df['hit_time_gmt'] = pd.to_datetime(df['hit_time_gmt'], unit='s') df['visit_start_time_gmt'] = pd.to_datetime(df['visit_start_time_gmt'], unit='s') # integer columns integer_columns = ['visit_num', 'visit_page_num', 'purchase_boolean', 'product_view_boolean', 'checkout_boolean', 'cart_addition_boolean', 'cart_removal_boolean', 'cart_view_boolean', 'campaign_view_boolean', 'page_view_boolean', 'last_purchase_num', 'standard_search_results_clicked', 'standard_search_started', 'suggested_search_results_clicked', 'cookies', 'persistent_cookie', 'search_page_num', 'new_visit', 'hourly_visitor', 'daily_visitor', 'weekly_visitor', 'monthly_visitor', 'quarterly_visitor', 'yearly_visitor', 'repeat_orders', 'hit_of_logged_in_user', 'registered_user', 'visit_during_tv_spot'] for column in integer_columns: df[column] = df[column].apply(lambda x: int(float(x))) # float column df['cart_value'] = df['cart_value'].apply(lambda x: float(x)) print('Casting data types complete.') return df ### MAPPING def connection_type_mapping(df): print('Starting connection type mapping...') # load file for connection type mapping and select columns connection_type_mapping = pd.read_csv('../data/mapping_files/connection_type.tsv', sep='\t', header=None) connection_type_mapping.columns = ['connection_type_id', 'connection_type_name'] # create dictionary for connection type mapping connection_type_mapping_dict = dict(zip(connection_type_mapping.connection_type_id, connection_type_mapping.connection_type_name)) # map connection types df['connection_type'] = df['connection_type'].map(connection_type_mapping_dict).fillna(df['connection_type']) print('Connection type mapping complete.') return df def country_mapping(df): print('Starting country mapping...') # load file for country mapping and select columns country_mapping = pd.read_csv('../data/mapping_files/country.tsv', sep='\t', header=None) country_mapping.columns = ['country_id', 'country_name'] # drop dupliate countries country_mapping = country_mapping.drop_duplicates('country_name').reset_index(drop=True) # create dictionary for country mapping country_mapping_dict = dict(zip(country_mapping.country_id, country_mapping.country_name)) # map countries df['country'] = df['country'].map(country_mapping_dict).fillna(df['country']) print('Country mapping complete.') return df def custom_evars_mapping(df): print('Starting custom evars mapping...') # load file for custom evars mapping and select columns evars = pd.read_csv('../data/mapping_files/custom_evars.tsv', sep='\t') evars_mapping = evars[['id', 'name']] # map custom evars evar_cols = [x for x in df.columns if x.lower()[:9] == 'post_evar'] evar_cols = [x.replace('post_', '') for x in evar_cols] evars_mapped = evars[evars['id'].isin(evar_cols)][['id', 'name']] evars_mapped['id'] = evars_mapped['id'].apply(lambda x: 'post_' + x) evars_mapped = evars_mapped.reset_index(drop=True) # rename custom evars for i in range(evars_mapped.shape[0]): df.rename(columns={evars_mapped.iloc[i,0] : str.lower(evars_mapped.iloc[i,1]).replace(' ','_')}, inplace=True) print('Custom evars mapping complete.') return df def custom_marketing_channel_mapping(df): print('Starting custom marketing channel mapping...') # load file for custom marketing channel mapping custom_marketing_channel_mapping = pd.read_csv('../data/mapping_files/custom_marketing_channels.tsv', sep='\t') # create dictionary for marketing channel mapping custom_marketing_channel_mapping_dict = dict(zip(custom_marketing_channel_mapping.channel_id, custom_marketing_channel_mapping.name)) # map custom marketing channels df['va_closer_id'] = df['va_closer_id'].apply(lambda x: float(x)) df['va_closer_id'] = df['va_closer_id'].map(custom_marketing_channel_mapping_dict).fillna(df['va_closer_id']) df['va_closer_id'] = df['va_closer_id'].apply(lambda x: 'Unknown' if x == 0 else x) print('Custom marketing channel mapping complete.') return df def custom_and_standard_events_mapping(df): print('Starting custom and standard events mapping...') # fill missing values in post event list df['post_event_list'] = df['post_event_list'].fillna('Unknown') # load file for standard event mapping and select columns standard_events = pd.read_csv('../data/mapping_files/event.tsv', sep='\t', header=None) standard_events.columns = ['event_id', 'event_name'] # load file for custom event mapping and modify event id for matching custom_events = pd.read_csv('../data/mapping_files/custom_events.tsv', sep='\t') custom_events['event_id'] = custom_events.index + 200 # map standard and custom events events = pd.merge(standard_events, custom_events, how='inner', on='event_id') events_mapping = events[['event_id', 'name']] events_mapping = events_mapping.reset_index(drop=True) # create event dummies for id, event in zip(events_mapping.iloc[:,0], events_mapping.iloc[:,1]): df[str.lower(event).replace(' ','_')] = df['post_event_list'].apply(lambda x: 1 if ','+str(id)+',' in x else 0) # drop internal users df = df[df['internal_user_(e30)'] != 1] print('Standard and custom events mapping complete.') return df def referrer_type_mapping(df): print('Starting referrer type mapping...') # load file for referrer type mapping and select columns referrer_type_mapping = pd.read_csv('../data/mapping_files/referrer_type.tsv', sep='\t', header=None) referrer_type_mapping.columns = ['referrer_type_id', 'referrer_type_name', 'referrer_type'] # create dictionary for referrer type mapping referrer_type_mapping_dict = dict(zip(referrer_type_mapping.referrer_type_id, referrer_type_mapping.referrer_type)) # map referrer types df['ref_type'] = df['ref_type'].map(referrer_type_mapping_dict).fillna(df['ref_type']) print('Referrer type mapping complete.') return df def search_engine_mapping(df): print('Starting search engine mapping...') # load file for search engine mapping and select columns search_engine_mapping =
pd.read_csv('../data/mapping_files/search_engines.tsv', sep='\t', header=None)
pandas.read_csv
import collections import logging import pandas as pd import sklearn.linear_model as slm import core.artificial_signal_generators as sig_gen import core.config as cconfig import core.dataflow as dtf import core.dataframe_modeler as dfmod import helpers.unit_test as hut _LOG = logging.getLogger(__name__) class TestDataFrameModeler(hut.TestCase): def test_dump_json1(self) -> None: df = pd.DataFrame( {"col0": [1, 2, 3], "col1": [4, 5, 6]}, index=pd.date_range("2010-01-01", periods=3), ) oos_start = pd.Timestamp("2010-01-01") info = collections.OrderedDict({"df_info": dtf.get_df_info_as_string(df)}) df_modeler = dfmod.DataFrameModeler(df, oos_start=oos_start, info=info) output = df_modeler.dump_json() self.check_string(output) def test_load_json1(self) -> None: """ Test by dumping json and loading it again. """ df = pd.DataFrame( {"col0": [1, 2, 3], "col1": [4, 5, 6]}, index=pd.date_range("2010-01-01", periods=3), ) oos_start = pd.Timestamp("2010-01-01") info = collections.OrderedDict({"df_info": dtf.get_df_info_as_string(df)}) df_modeler = dfmod.DataFrameModeler(df, oos_start=oos_start, info=info) json_str = df_modeler.dump_json() df_modeler_loaded = dfmod.DataFrameModeler.load_json(json_str)
pd.testing.assert_frame_equal(df_modeler.df, df_modeler_loaded.df)
pandas.testing.assert_frame_equal
import logging as log import os.path import math import pandas as pd import numpy as np # for combinations of metric names from itertools import combinations, chain from PyQt5 import QtCore class Data: def __init__(self): """ Class that stores input data. This class will handle data import using: Data.importFile(filename). Dataframes will be stored as a dictionary with sheet names as keys and pandas DataFrame as values This class will keep track of the currently selected sheet and will return that sheet when getData() method is called. """ self.sheetNames = ["None"] self._currentSheet = 0 self.STATIC_NAMES = ['T', 'FC', 'CFC'] self.STATIC_COLUMNS = len(self.STATIC_NAMES) # 3 for T, FC, CFC columns self.dataSet = {"None": None} # self._numCovariates = 0 self.numCovariates = 0 self._n = 0 self.containsHeader = True self.metricNames = [] self.metricNameCombinations = [] self.metricNameDictionary = {} self._max_interval = 0 self.setupMetricNameDictionary() @property def currentSheet(self): return self._currentSheet @currentSheet.setter def currentSheet(self, index): if index < len(self.sheetNames) and index >= 0: self._currentSheet = index log.info("Current sheet index set to %d.", index) else: self._currentSheet = 0 log.info("Cannot set sheet to index %d since the data does not contain a sheet with that index.\ Sheet index instead set to 0.", index) @property def n(self): self._n = self.dataSet[self.sheetNames[self._currentSheet]]['FC'].size return self._n @property def max_interval(self): return self._max_interval @max_interval.setter def max_interval(self, interval): if interval < 5: self._max_interval = 5 else: self._max_interval = interval def getData(self): """ Returns dataframe corresponding to the currentSheet index """ full_dataset = self.dataSet[self.sheetNames[self._currentSheet]] try: subset = full_dataset[:self._max_interval] except TypeError: # if None type, data hasn't been loaded # cannot subscript None type return full_dataset return subset def getDataSubset(self, fraction): """ Returns subset of dataframe corresponding to the currentSheet index Args: percentage: float between 0.0 and 1.0 indicating percentage of data to return """ intervals = math.floor(self.n * fraction) # need at least 5 data points if intervals < 5: intervals = 5 full_dataset = self.dataSet[self.sheetNames[self._currentSheet]] subset = full_dataset[:intervals] return subset def getFullData(self): return self.dataSet[self.sheetNames[self._currentSheet]] def getDataModel(self): """ Returns PandasModel for the current dataFrame to be displayed on a QTableWidget """ return PandasModel(self.getData()) def setupMetricNameDictionary(self): """ For allocation table. Allows the effort allocation to be placed in correct column. Metric name maps to number of metric (from imported data). """ i = 0 for name in self.metricNames: self.metricNameDictionary[name] = i i += 1 def processFT(self, data): """ Processes raw FT data to fill in any gaps Args: data: Raw pandas dataframe Returns: data: Processed pandas dataframe """ # failure time if 'FT' not in data: data["FT"] = data["IF"].cumsum() # inter failure time elif 'IF' not in data: data['IF'] = data['FT'].diff() data['IF'].iloc[0] = data['FT'].iloc[0] if 'FN' not in data: data['FN'] = pd.Series([i+1 for i in range(data['FT'].size)]) return data def initialNumCovariates(self, data): """ Calculates the number of covariates on a given sheet """ numCov = len(data.columns) - self.STATIC_COLUMNS # log.debug("%d covariates.", self._numCovariates) return numCov def renameHeader(self, data, numCov): """ Renames column headers if covariate metrics are unnamed """ data.rename(columns={data.columns[0]:"Time"}, inplace=True) data.rename(columns={data.columns[1]:"Failures"}, inplace=True) for i in range(numCov): data.rename(columns={data.columns[i+2]:"C{0}".format(i+1)}, inplace=True) # changed from MetricX to CX def importFile(self, fname): """ Imports data file Args: fname : Filename of csv or excel file """ self.filename, fileExtenstion = os.path.splitext(fname) if fileExtenstion == ".csv": if self.hasHeader(fname, fileExtenstion): # data has header, can read in normally data = {} data["None"] = pd.read_csv(fname) else: # data does not have a header, need to specify data = {} data["None"] = pd.read_csv(fname, header=None) else: if self.hasHeader(fname, fileExtenstion): # data has header, can read in normally # *** don't think it takes into account differences in sheets data = pd.read_excel(fname, sheet_name=None, engine="openpyxl") else: data = pd.read_excel(fname, sheet_name=None, header=None, engine="openpyxl") self.sheetNames = list(data.keys()) self._currentSheet = 0 self.setData(data) self.setNumCovariates() self._n = data[self.sheetNames[self._currentSheet]]['FC'].size # self.metricNames = self.dataSet[self.sheetNames[self._currentSheet]].columns.values[2:2+self.numCovariates] self.setMetricNames() self.getMetricNameCombinations() self.setupMetricNameDictionary() def hasHeader(self, fname, extension, rows=2): """ Determines if loaded data has a header Args: fname : Filename of csv or excel file extension : file extension of opened file rows : number of rows of file to compare Returns: bool : True if data has header, False if it does not """ if extension == ".csv": df = pd.read_csv(fname, header=None, nrows=rows) df_header = pd.read_csv(fname, nrows=rows) else: df =
pd.read_excel(fname, header=None, nrows=rows, engine="openpyxl")
pandas.read_excel
from django.test import TestCase from parcels.transform import cleanName import pandas as pd import unittest class TestCleanName(unittest.TestCase): def testLower(self): self.assertEqual(cleanName('This is A test'), 'this is a test') def testLLC(self): self.assertEqual(cleanName('cat llLLC'), 'cat llllc') self.assertEqual(cleanName('Llama LLC'), 'llama') self.assertEqual(cleanName('Frog, LC'), 'frog') self.assertEqual(cleanName('LLC Baboon, LlC'), 'llc baboon') self.assertEqual(cleanName('229 Queen Rental LLC'), '229 queen rental') def testSpaces(self): self.assertEqual(cleanName(' a b c '), 'a b c') class TestOwnerOrApplication(unittest.TestCase): def testMissingOwnerPhone(self): data = [['tom', None], [None, 'sally'], [None, None]] df =
pd.DataFrame(data, columns=['owner', 'applicant'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Main module to """ # Global imports import logging logging.getLogger().setLevel(logging.INFO) import os import pickle import glob import dask.dataframe as dd import pandas as pd import numpy as np import datetime from pathlib import Path from scipy.stats import rankdata # Local imports from ..common import constants from .utils import vert_aggregation, split_event from .rfdefinitions import RandomForestRegressorBC from ..common.utils import perfscores, envyaml from ..common.graphics import plot_crossval_stats dir_path = os.path.dirname(os.path.realpath(__file__)) class RFTraining(object): ''' This is the main class that allows to preparate data for random forest training, train random forests and perform cross-validation of trained models ''' def __init__(self, db_location, input_location = None, force_regenerate_input = False): """ Initializes the class and if needed prepare input data for the training Note that when calling this constructor the input data is only generated for the central pixel (NX = NY = 0 = loc of gauge), if you want to regenerate the inputs for all neighbour pixels, please call the function self.prepare_input(only_center_pixel = False) Parameters ---------- db_location : str Location of the main directory of the database (with subfolders 'reference', 'gauge' and 'radar' on the filesystem) input_location : str Location of the prepared input data, if this data can not be found in this folder, it will computed here, default is a subfolder called rf_input_data within db_location force_regenerate_input : bool if True the input parquet files will always be regenerated from the database even if already present in the input_location folder """ if input_location == None: input_location = str(Path(db_location, 'rf_input_data')) # Check if at least gauge.parquet, refer_x0y0.parquet and radar_x0y0.parquet # are present valid = True if not os.path.exists(input_location): valid = False os.makedirs(input_location) files = glob.glob(str(Path(input_location, '*'))) files = [os.path.basename(f) for f in files] if ('gauge.parquet' not in files or 'reference_x0y0.parquet' not in files or 'radar_x0y0.parquet' not in files): valid = False self.input_location = input_location self.db_location = db_location if not valid : logging.info('Could not find valid input data from the folder {:s}'.format(input_location)) if force_regenerate_input or not valid: logging.info('The program will now compute this input data from the database, this takes quite some time') self.prepare_input() def prepare_input(self, only_center = True): """ Reads the data from the database in db_location and processes it to create easy to use parquet input files for the ML training and stores them in the input_location, the processing steps involve For every neighbour of the station (i.e. from -1-1 to +1+1): - Replace missing flags by nans - Filter out timesteps which are not present in the three tables (gauge, reference and radar) - Filter out incomplete hours (i.e. where less than 6 10 min timesteps are available) - Add height above ground and height of iso0 to radar data - Save a separate parquet file for radar, gauge and reference data - Save a grouping_idx pickle file containing *grp_vertical* index (groups all radar rows with same timestep and station), *grp_hourly* (groups all timesteps with same hours) and *tstamp_unique* (list of all unique timestamps) Parameters ---------- only_center : bool If set to True only the input data for the central neighbour i.e. NX = NY = 0 (the location of the gauge) will be recomputed this takes much less time and is the default option since until now the neighbour values are not used in the training of the RF QPE """ if only_center: nx = [0] ny = [0] else: nx = [0,1,-1] ny = [0,1,-1] gauge = dd.read_csv(str(Path(self.db_location, 'gauge', '*.csv.gz')), compression='gzip', assume_missing=True, dtype = {'TIMESTAMP':int, 'STATION': str}) gauge = gauge.compute().drop_duplicates() gauge = gauge.replace(-9999,np.nan) for x in nx: for y in ny: logging.info('Processing neighbour {:d}{:d}'.format(x, y)) radar = dd.read_parquet(str(Path(self.db_location, 'radar', '*.parquet'))) refer = dd.read_parquet(str(Path(self.db_location, 'reference', '*.parquet'))) # Select only required pixel radar = radar.loc[np.logical_and(radar['NX'] == x, radar['NY'] == y)] refer = refer.loc[np.logical_and(refer['NX'] == x, refer['NY'] == y)] # Convert to pandas and remove duplicates radar = radar.compute().drop_duplicates(subset = ['TIMESTAMP', 'STATION', 'RADAR', 'NX','NY', 'SWEEP']) refer = refer.compute().drop_duplicates(subset = ['TIMESTAMP', 'STATION']) radar = radar.sort_values(by = ['TIMESTAMP','STATION','SWEEP']) refer = refer.sort_values(by = ['TIMESTAMP','STATION']) gauge = gauge.sort_values(by = ['TIMESTAMP','STATION']) # Get only valid precip data gauge = gauge[np.isfinite(gauge['RRE150Z0'])] # Create individual 10 min - station stamps gauge['s-tstamp'] = np.array(gauge['STATION'] + gauge['TIMESTAMP'].astype(str)).astype(str) radar['s-tstamp'] = np.array(radar['STATION'] + radar['TIMESTAMP'].astype(str)).astype(str) refer['s-tstamp'] = np.array(refer['STATION'] + refer['TIMESTAMP'].astype(str)).astype(str) # Get gauge and reference only when radar data available # Find timestamps that are in the three datasets ststamp_common = np.array(pd.Series(list(set(gauge['s-tstamp']) .intersection(set(refer['s-tstamp']))))) ststamp_common = np.array(pd.Series(list(set(radar['s-tstamp']) .intersection(set(ststamp_common))))) radar = radar.loc[radar['s-tstamp'].isin(ststamp_common)] gauge = gauge.loc[gauge['s-tstamp'].isin(ststamp_common)] refer = refer.loc[refer['s-tstamp'].isin(ststamp_common)] # Filter incomplete hours stahour = np.array(gauge['STATION'] + ((gauge['TIMESTAMP'] - 600 ) - (gauge['TIMESTAMP'] - 600 ) % 3600).astype(str)).astype(str) full_hours = np.array(gauge.groupby(stahour)['STATION'] .transform('count') == 6) refer = refer.reindex[full_hours] gauge = gauge.reindex[full_hours] radar = radar.reindex[radar['s-tstamp']. isin(np.array(gauge['s-tstamp']))] stahour = stahour[full_hours] # Creating vertical grouping index _, idx, grp_vertical = np.unique(radar['s-tstamp'], return_inverse = True, return_index = True) # Get original order sta_tstamp_unique = radar['s-tstamp'][np.sort(idx)] # Preserves order and avoids sorting radar_statstamp grp_vertical = idx[grp_vertical] # However one issue is that the indexes are not starting from zero with increment # of one, though they are sorted, they are like 0,7,7,7,15,15,23,23 # We want them starting from zero with step of one grp_vertical = rankdata(grp_vertical,method='dense') - 1 # Repeat operation with gauge hours sta_hourly_unique, idx, grp_hourly = np.unique(stahour, return_inverse = True, return_index = True) grp_hourly = idx[grp_hourly] # Add derived variables height iso0 (HISO) and height above ground (HAG) # Radar stations = constants.METSTATIONS cols = list(stations.columns) cols[1] = 'STATION' stations.columns = cols radar = pd.merge(radar,stations, how = 'left', on = 'STATION', sort = False) radar['HISO'] = -radar['T'] / constants.LAPSE_RATE * 100 radar['HAG'] = radar['HEIGHT'] - radar['Z'] radar['HAG'][radar['HAG'] < 0] = 0 # Gauge gauge['minutes'] = (gauge['TIMESTAMP'] % 3600)/60 # Save all to file refer.to_parquet(str(Path(self.input_location, 'reference_x{:d}y{:d}.parquet'.format(x,y))), compression = 'gzip', index = False) radar.to_parquet(str(Path(self.input_location, 'radar_x{:d}y{:d}.parquet'.format(x,y))), compression = 'gzip', index = False) grp_idx = {} grp_idx['grp_vertical'] = grp_vertical grp_idx['grp_hourly'] = grp_hourly grp_idx['tstamp_unique'] = sta_tstamp_unique pickle.dump(grp_idx, open(str(Path(self.input_location, 'grouping_idx_x{:d}y{:d}.p'.format(x,y))),'wb')) if x == 0 and y == 0: # Save only gauge for center pixel since it's available only there gauge.to_parquet(str(Path(self.input_location, 'gauge.parquet')), compression = 'gzip', index = False) def fit_models(self, config_file, features_dic, tstart = None, tend = None, output_folder = None): """ Fits a new RF model that can be used to compute QPE realizations and saves them to disk in pickle format Parameters ---------- config_file : str Location of the RF training configuration file, if not provided the default one in the ml submodule will be used features_dic : dict A dictionary whose keys are the names of the models you want to create (a string) and the values are lists of features you want to use. For example {'RF_dualpol':['RADAR', 'zh_VISIB_mean', 'zv_VISIB_mean','KDP_mean','RHOHV_mean','T', 'HEIGHT','VISIB_mean']} will train a model with all these features that will then be stored under the name RF_dualpol_BC_<type of BC>.p in the ml/rf_models dir tstart : datetime the starting time of the training time interval, default is to start at the beginning of the time interval covered by the database tend : datetime the end time of the training time interval, default is to end at the end of the time interval covered by the database output_folder : str Location where to store the trained models in pickle format, if not provided it will store them in the standard location <library_path>/ml/rf_models """ if output_folder == None: output_folder = str(Path(dir_path, 'rf_models')) try: config = envyaml(config_file) except: logging.warning('Using default config as no valid config file was provided') config_file = dir_path + '/default_config.yml' config = envyaml(config_file) ####################################################################### # Read data ####################################################################### logging.info('Loading input data') radartab = pd.read_parquet(str(Path(self.input_location, 'radar_x0y0.parquet'))) gaugetab = pd.read_parquet(str(Path(self.input_location, 'gauge.parquet'))) grp = pickle.load(open(str(Path(self.input_location, 'grouping_idx_x0y0.p')),'rb')) grp_vertical = grp['grp_vertical'] vweights = 10**(config['VERT_AGG']['BETA'] * (radartab['HEIGHT']/1000.)) # vert. weights ############################################################################### # Compute additional data if needed ############################################################################### # currently the only supported additional features is zh (refl in linear units) # and DIST_TO_RAD{A-D-L-W-P} (dist to individual radars) # Get list of unique features names features = np.unique([item for sub in list(features_dic.values()) for item in sub]) for f in features: if 'zh' in f: logging.info('Computing derived variable {:s}'.format(f)) radartab[f] = 10**(0.1 * radartab[f.replace('zh','ZH')]) elif 'zv' in f: logging.info('Computing derived variable {:s}'.format(f)) radartab[f] = 10**(0.1 * radartab[f.replace('zv','ZV')]) if 'DIST_TO_RAD' in f: info_radar = constants.RADARS vals = np.unique(radartab['RADAR']) for val in vals: dist = np.sqrt((radartab['X'] - info_radar['X'][val])**2+ (radartab['Y'] - info_radar['Y'][val])**2) / 1000. radartab['DIST_TO_RAD' + str(val)] = dist ############################################################################### # Compute data filter ############################################################################### filterconf = config['FILTERING'] logging.info('Computing data filter') logging.info('List of stations to ignore {:s}'.format(','.join(filterconf['STA_TO_REMOVE']))) logging.info('Start time {:s}'.format(str(tstart))) logging.info('End time {:s}'.format(str(tend))) logging.info('ZH must be > {:f} if R <= {:f}'.format(filterconf['CONSTRAINT_MIN_ZH'][1], filterconf['CONSTRAINT_MIN_ZH'][0])) logging.info('ZH must be < {:f} if R <= {:f}'.format(filterconf['CONSTRAINT_MAX_ZH'][1], filterconf['CONSTRAINT_MAX_ZH'][0])) ZH_agg = vert_aggregation(
pd.DataFrame(radartab['ZH_mean'])
pandas.DataFrame
import logging import time from datetime import datetime, timedelta from pprint import pprint import ccxt import pandas as pd from project.server.main.utils.db import db_insert, db_insert_many, db_fetch, db_aggregate, db_insert_test from project.server.main.utils.utils import f, get_time, transform_time_ccxt, get_json, f_btc, percentage, \ map_portfolio, os_get, integer def portfolio(): start = time.perf_counter() print("TASK: portfolio started") logging.info("TASK: portfolio started") binance = ccxt.binance({ "apiKey": os_get("BINANCE_KEY"), "secret": os_get("BINANCE_SECRET"), 'enableRateLimit': True, }) binance.load_markets() bitmex = ccxt.bitmex({ "apiKey": os_get("BITMEX_KEY"), "secret": os_get("BITMEX_SECRET"), 'options': { 'api-expires': 86400, # 1 day for the sake of experiment }, 'enableRateLimit': True, }) bitmex.load_markets() portfolio_24h = db_fetch("SELECT * FROM db.portfolio WHERE timestamp > '%s' ORDER BY timestamp ASC LIMIT 1;" % str( datetime.utcnow() - timedelta(hours=24))) portfolio_24h = map_portfolio(portfolio_24h)[0] if portfolio_24h else None # pprint(map_portfolio(portfolio_24h)) portfolio_1w = db_fetch("SELECT * FROM db.portfolio WHERE timestamp > '%s' ORDER BY timestamp ASC LIMIT 1;" % str( datetime.utcnow() - timedelta(days=7))) portfolio_1w = map_portfolio(portfolio_1w)[0] if portfolio_1w else None atari = None atari_amount = 1760 atari = get_json("https://api.nomics.com/v1/currencies/ticker?key=" + os_get( 'NOMICS_KEY') + "&ids=ATRI&interval=1d,30d,7d&convert=USD") atari = atari[0] if atari else None # print(atari) # pprint(list(portfolio_1w)) # pprint(map_portfolio(portfolio_1w)) def get_price(exchange, curr: str): if curr == 'USDT': return 1.0 else: try: tick = exchange.fetchTicker(curr + '/USDT') mid_point = tick['bid'] return round(float(mid_point), 2) except: return None def get_price_btc(exchange, curr: str): if curr == 'BTC': return 1.0 else: try: tick = exchange.fetchTicker(curr + '/BTC') mid_point = tick['bid'] return mid_point except: return None btc_usd = binance.fetchTicker('BTC/USDT')['bid'] eth_usd = binance.fetchTicker('ETH/USDT')['bid'] ################################################################################################################## # BINANCE BALANCES ################################################################################################################## def get_binance_balances(exchange): binance_balance = exchange.fetch_balance()['info']['balances'] balances = [] for i, obj in enumerate(binance_balance): used = f(obj['locked']) used = used if (used > 0.001 and obj['asset'] != "BTC") else 0.0 free = f(obj['free']) free = free if (free > 0.001 and obj['asset'] != "BTC") else 0.0 total = f(used + free) if total and total > 0.0: bid_price = get_price(exchange, obj['asset']) if bid_price and round(bid_price * total, 2) > 10.0: bid_price_btc = get_price_btc(exchange, obj['asset']) balance = { 'timestamp': str(get_time()), 'currency': obj['asset'], 'amount': total, 'price': f(bid_price), 'price_btc': f_btc(bid_price_btc), 'balance': f(bid_price * total), 'balance_btc': f_btc((bid_price * total) / btc_usd), 'used': used, 'free': free } used_percentage = percentage(free, total) * -1 if free != 0 else 100 used_percentage = 100 if 100 > used_percentage > 98 else used_percentage balance['used_percentage'] = used_percentage balances.append(balance) return balances binance_balances = get_binance_balances(binance) binance_balances = sorted(binance_balances, key=lambda d: d['balance'], reverse=True) # pprint(binance_balances) db_insert_many('binance_balances', binance_balances) get_binance_balances_df =
pd.DataFrame(binance_balances)
pandas.DataFrame
# Copyright 2018 <NAME> <EMAIL> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import os import warnings from .dataset import DataSet from .dataframe_tools import * from .exceptions import FailedReindexWarning, ReindexMapError class Brca(DataSet): def __init__(self, version="latest"): """Load all of the brca dataframes as values in the self._data dict variable, with names as keys, and format them properly.""" # Set some needed variables, and pass them to the parent DataSet class __init__ function valid_versions = ["3.1", "3.1.1"] # This keeps a record of all versions that the code is equipped to handle. That way, if there's a new data release but they didn't update their package, it won't try to parse the new data version it isn't equipped to handle. data_files = { "3.1": [ "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz", "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-rnaseq-fpkm-log2-row-norm-2comp.gct.gz", "prosp-brca-v3.1-sample-annotation.csv.gz"], "3.1.1": [ "Breast_One_Year_Clinical_Data_20160927.xls", "prosp-brca-v3.0-v1.4.somatic.variants.070918.maf.gz", "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz", "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-rnaseq-fpkm-log2-row-norm-2comp.gct.gz", "prosp-brca-v3.1-sample-annotation.csv.gz"], } super().__init__(cancer_type="brca", version=version, valid_versions=valid_versions, data_files=data_files) # Load the data into dataframes in the self._data dict loading_msg = "Loading dataframes" for file_path in self._data_files_paths: # Loops through files variable # Print a loading message. We add a dot every time, so the user knows it's not frozen. loading_msg = loading_msg + "." print(loading_msg, end='\r') path_elements = file_path.split(os.sep) # Get a list of the levels of the path file_name = path_elements[-1] # The last element will be the name of the file if file_name == "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["GeneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. # Prepare some columns we'll need later for the multiindex df["variableSites"] = df["variableSites"].str.replace(r"[a-z\s]", "") # Get rid of all lowercase delimeters and whitespace in the sites df = df.rename(columns={ "GeneSymbol": "Name", "variableSites": "Site", "sequence": "Peptide", # We take this instead of sequenceVML, to match the other datasets' format "accession_numbers": "Database_ID" # We take all accession numbers they have, instead of the singular accession_number column }) # Some rows have at least one localized acetylation site, but also have other acetylations that aren't localized. We'll drop those rows, if their localized sites are duplicated in another row, to avoid creating duplicates, because we only preserve information about the localized sites in a given row. However, if the localized sites aren't duplicated in another row, we'll keep the row. split_ids = df["id"].str.split('_', expand=True) unlocalized_to_drop = df.index[~split_ids[3].eq(split_ids[4]) & df.duplicated(["Name", "Site", "Peptide", "Database_ID"], keep=False)] # Column 3 of the split "id" column is number of phosphorylations detected, and column 4 is number of phosphorylations localized, so if the two values aren't equal, the row has at least one unlocalized site df = df.drop(index=unlocalized_to_drop) # Give it a multiindex df = df.set_index(["Name", "Site", "Peptide", "Database_ID"]) df = df.drop(columns=["id", "id.description", "geneSymbol", "numColumnsVMsiteObserved", "bestScore", "bestDeltaForwardReverseScore", "Best_scoreVML", "sequenceVML", "accessionNumber_VMsites_numVMsitesPresent_numVMsitesLocalizedBest_earliestVMsiteAA_latestVMsiteAA", "protein_mw", "species", "speciesMulti", "orfCategory", "accession_number", "protein_group_num", "entry_name"]) # We don't need these. The dropped columns include a "geneSymbol" column that is a duplicate of the original GeneSymbol. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["acetylproteomics"] = df elif file_name == "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, index_col=0, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["geneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for geneSymbol, so we'll use that to filter them out. df = df.drop(columns="Cytoband") df["geneSymbol"] = df["geneSymbol"].str.rsplit('|', n=1, expand=True)[0] # Some of the geneSymbols have the gene IDs appended to them, to get rid of duplicates. We're going to create a multiindex with all the gene names and gene IDs, so we can drop the appended IDs. df = df.rename(columns={"geneSymbol": "Name", "Gene.ID": "Database_ID"}) df = df.set_index(["Name", "Database_ID"]) df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["CNV"] = df elif file_name == "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["GeneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. # Prepare some columns we'll need later for the multiindex df["variableSites"] = df["variableSites"].str.replace(r"[a-z\s]", "") # Get rid of all lowercase delimeters and whitespace in the sites df = df.rename(columns={ "GeneSymbol": "Name", "variableSites": "Site", "sequence": "Peptide", # We take this instead of sequenceVML, to match the other datasets' format "accession_numbers": "Database_ID" # We take all accession numbers they have, instead of the singular accession_number column }) # Some rows have at least one localized phosphorylation site, but also have other phosphorylations that aren't localized. We'll drop those rows, if their localized sites are duplicated in another row, to avoid creating duplicates, because we only preserve information about the localized sites in a given row. However, if the localized sites aren't duplicated in another row, we'll keep the row. split_ids = df["id"].str.split('_', expand=True) unlocalized_to_drop = df.index[~split_ids[3].eq(split_ids[4]) & df.duplicated(["Name", "Site", "Peptide", "Database_ID"], keep=False)] # Column 3 of the split "id" column is number of phosphorylations detected, and column 4 is number of phosphorylations localized, so if the two values aren't equal, the row has at least one unlocalized site df = df.drop(index=unlocalized_to_drop) # Give it a multiindex df = df.set_index(["Name", "Site", "Peptide", "Database_ID"]) df = df.drop(columns=["id", "id.description", "geneSymbol", "numColumnsVMsiteObserved", "bestScore", "bestDeltaForwardReverseScore", "Best_scoreVML", "Best_numActualVMSites_sty", "Best_numLocalizedVMsites_sty", "sequenceVML", "accessionNumber_VMsites_numVMsitesPresent_numVMsitesLocalizedBest_earliestVMsiteAA_latestVMsiteAA", "protein_mw", "species", "speciesMulti", "orfCategory", "accession_number", "protein_group_num", "entry_name"]) # We don't need these. The dropped columns include a "geneSymbol" column that is a duplicate of the original GeneSymbol. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["phosphoproteomics"] = df elif file_name == "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["GeneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. df = df.rename(columns={"GeneSymbol": "Name", "accession_numbers": "Database_ID"}) df = df.set_index(["Name", "Database_ID"]) df = df.drop(columns=["id", "id.description", "geneSymbol", "numColumnsProteinObserved", "numSpectraProteinObserved", "protein_mw", "percentCoverage", "numPepsUnique", "scoreUnique", "species", "orfCategory", "accession_number", "subgroupNum", "entry_name"]) # We don't need these. The dropped columns include a "geneSymbol" column that is a duplicate of GeneSymbol. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["proteomics"] = df elif file_name == "prosp-brca-v3.1-rnaseq-fpkm-log2-row-norm-2comp.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, index_col=0, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["geneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. df = df.set_index("geneSymbol") df = df.drop(columns="description") # We don't need this. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["transcriptomics"] = df elif file_name == "prosp-brca-v3.1-sample-annotation.csv.gz": df =
pd.read_csv(file_path, index_col=0)
pandas.read_csv
import pandas as pd import pytest from .. import testing def test_frames_equal_not_frames(): frame = pd.DataFrame({'a': [1]}) with pytest.raises(AssertionError) as info: testing.assert_frames_equal(frame, 1) assert str(info.value) == 'Inputs must both be pandas DataFrames.' def test_frames_equal_mismatched_columns(): expected = pd.DataFrame({'a': [1]}) actual = pd.DataFrame({'b': [2]}) try: testing.assert_frames_equal(actual, expected) except AssertionError: pass else: raise AssertionError def test_frames_equal_mismatched_rows(): expected = pd.DataFrame({'a': [1]}, index=[0]) actual = pd.DataFrame({'a': [1]}, index=[1]) try: testing.assert_frames_equal(actual, expected) except AssertionError: pass else: raise AssertionError def test_frames_equal_mismatched_items(): expected = pd.DataFrame({'a': [1]}) actual = pd.DataFrame({'a': [2]}) try: testing.assert_frames_equal(actual, expected) except AssertionError: pass else: raise AssertionError def test_frames_equal(): frame = pd.DataFrame({'a': [1]}) testing.assert_frames_equal(frame, frame) def test_frames_equal_close(): frame1 = pd.DataFrame({'a': [1]}) frame2 = pd.DataFrame({'a': [1.00000000000002]}) with pytest.raises(AssertionError): testing.assert_frames_equal(frame1, frame2) testing.assert_frames_equal(frame1, frame2, use_close=True) def test_index_equal_order_agnostic(): left = pd.Index([1, 2, 3]) right = pd.Index([3, 2, 1]) testing.assert_index_equal(left, right) def test_index_equal_order_agnostic_raises_left(): left =
pd.Index([1, 2, 3, 4])
pandas.Index
import copy import glob import os import sys import pprint from itertools import groupby from textwrap import wrap import numpy as np import pandas as pd import pylab as plt import tqdm from .. import haven_jobs as hjb from .. import haven_utils as hu from .. import haven_share as hd def get_score_df( exp_list, savedir_base, filterby_list=None, columns=None, score_columns=None, verbose=True, wrap_size=8, hparam_diff=0, flatten_columns=True, show_meta=True, show_max_min=True, add_prefix=False, score_list_name="score_list.pkl", in_latex_format=False, avg_across=None, return_columns=False, show_exp_ids=False, ): """Get a table showing the scores for the given list of experiments Parameters ---------- exp_list : list A list of experiments, each defines a single set of hyper-parameters columns : list, optional a list of columns you would like to display, by default None savedir_base : str, optional A directory where experiments are saved Returns ------- DataFrame a dataframe showing the scores obtained by the experiments Example ------- >>> from haven import haven_results as hr >>> savedir_base='../results/isps/' >>> exp_list = hr.get_exp_list(savedir_base=savedir_base, >>> filterby_list=[{'sampler':{'train':'basic'}}]) >>> df = hr.get_score_df(exp_list, savedir_base=savedir_base, columns=['train_loss', 'exp_id']) >>> print(df) """ if len(exp_list) == 0: if verbose: print("exp_list is empty...") if return_columns: return pd.DataFrame([]), [], [] else: return pd.DataFrame([]) exp_list = hu.filter_exp_list(exp_list, filterby_list, savedir_base=savedir_base, verbose=verbose) # aggregate results hparam_list = set() result_list = [] for exp_dict in exp_list: result_dict = {} exp_id = hu.hash_dict(exp_dict) if avg_across is not None: tmp_dict = copy.deepcopy(exp_dict) del tmp_dict[avg_across] result_dict["_" + avg_across] = hu.hash_dict(tmp_dict) savedir = os.path.join(savedir_base, exp_id) score_list_fname = os.path.join(savedir, score_list_name) exp_dict_fname = os.path.join(savedir, "exp_dict.json") if flatten_columns: exp_dict_flat = hu.flatten_column(exp_dict, flatten_list=True) else: exp_dict_flat = exp_dict hparam_columns = columns or list(exp_dict_flat.keys()) for hc in hparam_columns: hparam_list.add(hc) for k in hparam_columns: if k == "exp_id": continue if add_prefix: k_new = "(hparam) " + k else: k_new = k if k not in exp_dict_flat: continue result_dict[k_new] = exp_dict_flat[k] if os.path.exists(score_list_fname) and show_meta: result_dict["started_at"] = hu.time_to_montreal(exp_dict_fname) result_dict["creation_time"] = os.path.getctime(exp_dict_fname) else: result_dict["creation_time"] = -1 if show_exp_ids or "exp_id" in hparam_columns: result_dict["exp_id"] = exp_id # hparam_columns = [k for k in result_dict.keys() if k not in ['creation_time']] if not os.path.exists(score_list_fname): if verbose: print("%s: %s is missing" % (exp_id, score_list_name)) else: try: score_list = hu.load_pkl(score_list_fname) except Exception: print("%s: %s is corrupt" % (exp_id, score_list_name)) score_df = pd.DataFrame(score_list) metric_columns = score_columns or score_df.columns if len(score_list): for k in metric_columns: if k not in score_df.columns: continue v = np.array(score_df[k]) if "float" in str(v.dtype): v = v[~np.isnan(v)] if len(v): if add_prefix: k_new = "(metric) " + k else: k_new = k if "float" in str(v.dtype): result_dict[k_new] = v[-1] if show_max_min: result_dict[k_new + " (max)"] = v.max() result_dict[k_new + " (min)"] = v.min() else: result_dict[k_new] = v[-1] result_list += [result_dict] # create table df =
pd.DataFrame(result_list)
pandas.DataFrame
"""shell pip install -r https://raw.githubusercontent.com/datamllab/automl-in-action-notebooks/master/requirements.txt """ """ ### Load the California housing price prediction dataset """ from sklearn.datasets import fetch_california_housing house_dataset = fetch_california_housing() # Import pandas package to format the data import pandas as pd # Extract features with their names into the a dataframe format data = pd.DataFrame(house_dataset.data, columns=house_dataset.feature_names) # Extract target with their names into a pd.Series object with name MEDV target =
pd.Series(house_dataset.target, name="MEDV")
pandas.Series
""" This module contains function to plot smooth ROC curves using KFold Examples: result, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6) plot_roc_curve_cv(result) plt.show() plot_specificity_cv(result) plt.show() plot_specificity_cv(result, invert_x=True, invert_y=True) plt.show() print(f"AUC: {np.mean(aucs)} (std:{np.std(aucs)})") Comparing models: result_xgb, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6, n_repeats=4) result_rf, aucs = roc_curve_cv(RandomForestClassifier(), X, y, n_splits=6, n_repeats=4) plot_specificity_cv({'XGB': result_xgb, 'RF':result_rf}) plt.show() Comparing hyperparameters results = [] for max_depth in (3,10): for max_features in (0.5, 0.9): result, _ = roc_curve_cv( RandomForestClassifier(max_depth=max_depth, max_features=max_features), x_full, y_full, n_repeats=4, properties={'max features':max_features, 'max depth':max_depth}) results.append(result) plot_specificity_cv(results, hue='max features', style='max depth', ci=False) plt.show() plot_roc_curve_cv(results, hue='max features', style='max depth', ci=False) plt.show() """ from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold from numpy import interp import numpy as np from sklearn.metrics import roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import label_binarize def roc_curve_simple(model, X, y): y_pred = model.predict_proba(X)[:,1] fpr, tpr, thres = roc_curve(y, y_pred) result_df = pd.DataFrame({'fpr':fpr, 'tpr':tpr, 'threshold':thres}, index=range(len(fpr))) return result_df, auc(fpr,tpr) def roc_curve_cv(model, X, y, n_splits=5, n_repeats=1, properties=None): if n_repeats > 1: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats) else: cv = StratifiedKFold(n_splits=n_splits) auc_list = [] result_df = pd.DataFrame() for i, (train, test) in enumerate(cv.split(X, y)): x_train, x_test = X.iloc[train], X.iloc[test] y_train, y_test = y.iloc[train], y.iloc[test] model.fit(x_train, y_train) y_test_pred = model.predict_proba(x_test)[:,1] fpr, tpr, thres = roc_curve(y_test, y_test_pred) # x_label = "False Positive Rate" # y_label = "True Positive Rate" df = pd.DataFrame({'run':i, 'fpr':fpr, 'tpr':tpr, 'threshold':thres}, index=range(len(fpr))) result_df = pd.concat([result_df, df]) auc_list.append(auc(fpr,tpr)) if properties is not None: for key, value, in properties.items(): result_df[key] = value return result_df, auc_list def plot_roc_curve_cv(result, n_step=100, title=None, **kwargs): """ plot the ROC curve with a confidence interval """ fpr_linspace = np.linspace(0,1,n_step) tpr_df = pd.DataFrame() x_label = "False Positive Rate" y_label = "True Positive Rate" if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) result = result.rename(columns={'tpr':y_label, 'fpr':x_label}) group_cols = list(set(result.columns)-{x_label, y_label,'threshold'}) for name, group in result.groupby(group_cols): df = pd.DataFrame(columns=[y_label, x_label]+group_cols) df[y_label] = interp(fpr_linspace, group[x_label], group[y_label]) df[x_label] = fpr_linspace df[group_cols] = name tpr_df = pd.concat([tpr_df,df]) fig = plt.axes() sns.lineplot(x=x_label, y =y_label, data=tpr_df, **kwargs) if title is None: title = "Roc curve cv" fig.set_title(title) return fig def plot_specificity_cv(result, n_step=100, invert_x=False, invert_y=False, title=None, **kwargs): """ plot the curve of the specificity as a function of the sensibility """ tpr_linspace = np.linspace(0,1,n_step) fpr_df = pd.DataFrame() if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) group_cols = list(set(result.columns)-{'fpr','tpr','threshold'}) for name, group in result.groupby(group_cols): df = pd.DataFrame(columns=['tpr', 'fpr']+group_cols) df['fpr'] = interp(tpr_linspace, group['tpr'], group['fpr'])[:-1] df['tpr'] = tpr_linspace[:-1] df[group_cols]=name fpr_df = pd.concat([fpr_df,df]) if invert_x: x_label = 'False Negative Rate' fpr_df[x_label] = 1-fpr_df['tpr'] else: x_label = 'Sensitivity' fpr_df[x_label] = fpr_df['tpr'] if invert_y: y_label = 'False Positive Rate' fpr_df[y_label] = fpr_df['fpr'] else: y_label = 'Specificity' fpr_df[y_label] = 1-fpr_df['fpr'] fig = plt.axes() sns.lineplot(x=x_label, y =y_label, data=fpr_df) if title is None: title = "Specificity vs Sensitivity" fig.set_title(title) return fig def plot_roc_threshold_cv(result, n_step=101, title=None, tpr=True, fpr=True, tnr=False, fnr=False, **kwargs): """ plot the ROC curve with a confidence interval """ fpr_linspace = np.linspace(0,1,n_step) tpr_df = pd.DataFrame() if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) threshold_dfs = [] group_cols = list(set(result.columns)-{'fpr','tpr','threshold'}) for name, group in result.groupby(group_cols): group = group.sort_values(by='threshold') if fpr: df = pd.DataFrame(columns=['rate', 'metric','threshold']+group_cols) df['rate'] = interp(fpr_linspace, group['threshold'], group['fpr']) df['threshold'] = fpr_linspace df['metric'] = 'FPR' df[group_cols] = name threshold_dfs.append(df) if tpr: df = pd.DataFrame(columns=['rate', 'metric','threshold']+group_cols) df['rate'] = interp(fpr_linspace, group['threshold'], group['tpr']) df['threshold'] = fpr_linspace df['metric'] = 'TPR' df[group_cols] = name threshold_dfs.append(df) if tnr: df = pd.DataFrame(columns=['rate', 'metric','threshold']+group_cols) df['rate'] = 1- interp(fpr_linspace, group['threshold'], group['fpr']) df['threshold'] = fpr_linspace df['metric'] = 'TNR' df[group_cols] = name threshold_dfs.append(df) if fnr: df = pd.DataFrame(columns=['rate', 'metric','threshold']+group_cols) df['rate'] = 1- interp(fpr_linspace, group['threshold'], group['tpr']) df['threshold'] = fpr_linspace df['metric'] = 'FNR' df[group_cols] = name threshold_dfs.append(df) threshold_df =
pd.concat(threshold_dfs)
pandas.concat
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.fixture def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.mark.parametrize( "ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor] ) def test_ufuncs_binary(ufunc): # two BooleanArrays a = pd.array([True, False, None], dtype="boolean") result = ufunc(a, a) expected = pd.array(ufunc(a._data, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s, a) expected = pd.Series(ufunc(a._data, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_series_equal(result, expected) # Boolean with numpy array arr = np.array([True, True, False]) result = ufunc(a, arr) expected = pd.array(ufunc(a._data, arr), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = pd.array(ufunc(arr, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) # BooleanArray with scalar result = ufunc(a, True) expected = pd.array(ufunc(a._data, True), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) result = ufunc(True, a) expected = pd.array(ufunc(True, a._data), dtype="boolean") expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
pandas._testing.assert_extension_array_equal
# -*- coding: utf-8 -*- """ Created on Mon Apr 27 09:57:39 2020 @author: emwe9516 """ #import sklearn from sklearn import svm from sklearn import metrics import pandas as pd # for reading file import numpy as np from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV import rpy2.robjects as robjects from timeit import default_timer as timer robjects.r['load']("C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\dtm_train.RData") dtm_train = robjects.r['dtm_train'] dtm_train = robjects.r['as.matrix'](dtm_train) dtm_train = np.array(dtm_train) robjects.r['load']("C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\dtm_test.RData") dtm_test = robjects.r['dtm_test'] dtm_test = robjects.r['as.matrix'](dtm_test) dtm_test = np.array(dtm_test) #import sys #print("Python version") #print (sys.version) #print('The scikit-learn version is {}.'.format(sklearn.__version__)) # The scikit-learn version is 0.21.3 #data = pd.read_csv('C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\dtm_train.txt', sep=" ") #data_test = pd.read_csv('C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\dtm_test.txt', sep=" ") #dtm_train = data.to_numpy() #dtm_test = data_test.to_numpy() ytrain = pd.read_csv('C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\y.train', sep=" ") ytrain = ytrain['x'].astype('category') ytest = pd.read_csv('C:\\Users\\emwe9516\\Desktop\\master_thesis_stats-master\\y.test', sep=" ") ytest = ytest['x'].astype('category') #def my_kernel(X, Y): # return np.dot(X, Y.T) #lin = svm.LinearSVC() #lin.fit(dtm_train, ytrain) #preds = lin.predict(dtm_test) #metrics.accuracy_score(ytest, preds) ################################################## ## Testing #clf = svm.SVC(decision_function_shape='ovo', kernel=my_kernel) clf = svm.SVC(decision_function_shape='ovo', kernel="linear", C=200, cache_size=800) clf.fit(dtm_train, ytrain) preds = clf.predict(dtm_test) metrics.accuracy_score(ytest, preds) # .4612 # .6476 for C=100 ytest.cat.categories print(classification_report(ytest, preds, target_names=ytest.cat.categories)) ############################################ # using kernel matrix start = timer() gram = np.dot(dtm_train, dtm_train.T) end = timer() print(end - start) kernel_test = dtm_test@dtm_train.T # dot product clfprecom = svm.SVC(decision_function_shape='ovo', kernel='precomputed', C=200, cache_size=800) clfprecom.fit(gram, ytrain) preds = clfprecom.predict(kernel_test) preds = pd.Series(preds) metrics.accuracy_score( ytest , preds) # .6476 for C=100 ################################################## # GRID SEARCH CROSS VALIDATION # https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel # https://stackoverflow.com/questions/24595153/is-it-possible-to-tune-parameters-with-grid-search-for-custom-kernels-in-scikit # Set the parameters by cross-validation #tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], # 'C': [1, 10, 100, 1000]}, # {'kernel': ['linear'], 'C': [2e-4, 2e-3, 2e-2, 2e-1, 2e0, 2e1, 2e2, 2e3, 2e4]}] tuned_parameters = [ {'kernel': ['linear'], 'C': [ 2e-1, 2e0, 2e1, 2e2, 2e3, 2e4]} ] #scores = ['precision', 'recall'] scores = ['precision'] start = timer() for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV( svm.SVC(decision_function_shape='ovo', kernel='precomputed'), tuned_parameters, scoring='%s_macro' % score ) clf.fit(gram, ytrain) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = ytest, clf.predict(kernel_test) print(classification_report(y_true, y_pred)) print() end = timer() print(end - start) clf.best_params_['C'] clfprecom = svm.SVC(decision_function_shape='ovo', kernel='precomputed', C=clf.best_params_['C'], cache_size=800) #clfprecom = svm.SVC(decision_function_shape='ovo', kernel='precomputed', C=200, cache_size=800) #gram = np.dot(dtm_train, dtm_train.T) clfprecom.fit(gram, ytrain) #kernel_test = <EMAIL> # dot product preds = clfprecom.predict(kernel_test) preds = pd.Series(preds) metrics.accuracy_score( ytest , preds) #.6464 confmat = confusion_matrix(ytest, preds) report = classification_report(ytest, preds, target_names=ytest.cat.categories, output_dict=True) print(classification_report(ytest, preds, target_names=ytest.cat.categories) ) report_df = pd.DataFrame(report).transpose() bestC = {'bestC' : [clf.best_params_['C']]}
pd.DataFrame.from_dict(bestC)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) sl_stop = pd.Series([0.4, np.nan, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override', 'overridenan']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 2, 2.0, 3.0, 0.0, 1), (6, 2, 0, 1.0, 5.0, 0.0, 0), (7, 2, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) sl_stop = pd.Series([0.4, 0.4, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 3, 2.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_sl_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 0, 2, 20.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_ts_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([10., 11., 12., 11., 10.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.curr_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 10.0, 10.0, 0.0, 0), (1, 0, 4, 10.0, 10.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_tp_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) @njit def adjust_tp_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=np.inf, adjust_tp_func_nb=adjust_tp_func_nb, adjust_tp_args=(2,)).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_max_orders(self): _ = from_signals_both(close=price_wide) _ = from_signals_both(close=price_wide, max_orders=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_both(close=price_wide, log=True) _ = from_signals_both(close=price_wide, log=True, max_logs=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandomSignals: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='randnx_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples( [(0.25, 0.25), (0.5, 0.5)], names=['rprobnx_entry_prob', 'rprobnx_exit_prob']) ) # ############# from_order_func ############# # @njit def order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size) @njit def log_order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) @njit def flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size) return -1, nb.order_nothing_nb() @njit def log_flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) return -1, nb.order_nothing_nb() class TestFromOrderFunc: @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_one_column(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price.tolist(), order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) @pytest.mark.parametrize("test_use_numba", [False, True]) def test_multiple_columns(self, test_row_wise, test_flexible, test_use_numba): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, vbt.Rep('size'), broadcast_named_args=dict(size=[0, 1, np.inf]), row_wise=test_row_wise, flexible=test_flexible, use_numba=test_use_numba) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 2, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 2, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 1.0, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 1, 4, 1.0, 5.0, 0.0, 0), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 1, 1.0, 2.0, 0.0, 1), (2, 1, 2, 1.0, 3.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 1, 4, 1.0, 5.0, 0.0, 0), (5, 2, 0, 100.0, 1.0, 0.0, 0), (6, 2, 1, 200.0, 2.0, 0.0, 1), (7, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_group_by(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 0, 1, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 2, 1, 200.0, 2.0, 0.0, 1), (6, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (10, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (11, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (12, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (13, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 0, 1, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (5, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (7, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (9, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (10, 2, 0, 100.0, 1.0, 0.0, 0), (11, 2, 1, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_cash_sharing(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def pre_segment_func_nb(c, target_hold_value): order_size = np.copy(target_hold_value[c.i, c.from_col:c.to_col]) order_size_type = np.full(c.group_len, SizeType.TargetValue) direction = np.full(c.group_len, Direction.Both) order_value_out = np.empty(c.group_len, dtype=np.float_) c.last_val_price[c.from_col:c.to_col] = c.close[c.i, c.from_col:c.to_col] nb.sort_call_seq_nb(c, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(c, order_size, order_size_type, direction): col_i = c.call_seq_now[c.call_idx] return nb.order_nb( order_size[col_i], c.close[c.i, col_i], size_type=order_size_type[col_i], direction=direction[col_i] ) pf = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( pf.asset_value(group_by=False), target_hold_value ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_value(self, test_row_wise, test_flexible): @njit def target_val_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_val_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(50., nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetValue) return -1, nb.order_nothing_nb() else: @njit def target_val_order_func_nb(c): return nb.order_nb(50., nb.get_elem_nb(c, c.close), size_type=SizeType.TargetValue) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, pre_segment_func_nb=target_val_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_percent(self, test_row_wise, test_flexible): @njit def target_pct_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_pct_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(0.5, nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetPercent) return -1, nb.order_nothing_nb() else: @njit def target_pct_order_func_nb(c): return nb.order_nb(0.5, nb.get_elem_nb(c, c.close), size_type=SizeType.TargetPercent) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, pre_segment_func_nb=target_pct_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_update_value(self, test_row_wise, test_flexible): if test_flexible: @njit def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: @njit def order_func_nb(c): return nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) @njit def post_order_func_nb(c, value_before, value_now): value_before[c.i, c.col] = c.value_before value_now[c.i, c.col] = c.value_now value_before = np.empty_like(price.values[:, None]) value_now = np.empty_like(price.values[:, None]) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=False, flexible=test_flexible) np.testing.assert_array_equal( value_before, value_now ) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=True, flexible=test_flexible) np.testing.assert_array_equal( value_before, np.array([ [100.0], [97.04930889128518], [185.46988117104038], [82.47853456223025], [104.65775576218027] ]) ) np.testing.assert_array_equal( value_now, np.array([ [98.01980198019803], [187.36243097890815], [83.30331990785257], [105.72569204546781], [73.54075125567473] ]) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_states(self, test_row_wise, test_flexible): close = np.array([ [1, 1, 1], [np.nan, 2, 2], [3, np.nan, 3], [4, 4, np.nan], [5, 5, 5] ]) size = np.array([ [1, 1, 1], [-1, -1, -1], [1, 1, 1], [-1, -1, -1], [1, 1, 1] ]) value_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) value_arr2 = np.empty(size.shape, dtype=np.float_) value_arr3 = np.empty(size.shape, dtype=np.float_) return_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) return_arr2 = np.empty(size.shape, dtype=np.float_) return_arr3 = np.empty(size.shape, dtype=np.float_) pos_record_arr1 = np.empty(size.shape, dtype=trade_dt) pos_record_arr2 = np.empty(size.shape, dtype=trade_dt) pos_record_arr3 = np.empty(size.shape, dtype=trade_dt) def pre_segment_func_nb(c): value_arr1[c.i, c.group] = c.last_value[c.group] return_arr1[c.i, c.group] = c.last_return[c.group] for col in range(c.from_col, c.to_col): pos_record_arr1[c.i, col] = c.last_pos_record[col] if c.i > 0: c.last_val_price[c.from_col:c.to_col] = c.last_val_price[c.from_col:c.to_col] + 0.5 return () if test_flexible: def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: value_arr2[c.i, col] = c.last_value[c.group] return_arr2[c.i, col] = c.last_return[c.group] pos_record_arr2[c.i, col] = c.last_pos_record[col] return col, nb.order_nb(size[c.i, col], fixed_fees=1.) return -1, nb.order_nothing_nb() else: def order_func_nb(c): value_arr2[c.i, c.col] = c.value_now return_arr2[c.i, c.col] = c.return_now pos_record_arr2[c.i, c.col] = c.pos_record_now return nb.order_nb(size[c.i, c.col], fixed_fees=1.) def post_order_func_nb(c): value_arr3[c.i, c.col] = c.value_now return_arr3[c.i, c.col] = c.return_now pos_record_arr3[c.i, c.col] = c.pos_record_now _ = vbt.Portfolio.from_order_func( close, order_func_nb, pre_segment_func_nb=pre_segment_func_nb, post_order_func_nb=post_order_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( value_arr1, np.array([ [100.0, 100.0], [98.0, 99.0], [98.5, 99.0], [99.0, 98.0], [99.0, 98.5] ]) ) np.testing.assert_array_equal( value_arr2, np.array([ [100.0, 99.0, 100.0], [99.0, 99.0, 99.5], [99.0, 99.0, 99.0], [100.0, 100.0, 98.5], [99.0, 98.5, 99.0] ]) ) np.testing.assert_array_equal( value_arr3, np.array([ [99.0, 98.0, 99.0], [99.0, 98.5, 99.0], [99.0, 99.0, 98.0], [100.0, 99.0, 98.5], [98.5, 97.0, 99.0] ]) ) np.testing.assert_array_equal( return_arr1, np.array([ [np.nan, np.nan], [-0.02, -0.01], [0.00510204081632653, 0.0], [0.005076142131979695, -0.010101010101010102], [0.0, 0.00510204081632653] ]) ) np.testing.assert_array_equal( return_arr2, np.array([ [0.0, -0.01, 0.0], [-0.01, -0.01, -0.005], [0.01020408163265306, 0.01020408163265306, 0.0], [0.015228426395939087, 0.015228426395939087, -0.005050505050505051], [0.0, -0.005050505050505051, 0.01020408163265306] ]) ) np.testing.assert_array_equal( return_arr3, np.array([ [-0.01, -0.02, -0.01], [-0.01, -0.015, -0.01], [0.01020408163265306, 0.01020408163265306, -0.010101010101010102], [0.015228426395939087, 0.005076142131979695, -0.005050505050505051], [-0.005050505050505051, -0.020202020202020204, 0.01020408163265306] ]) ) record_arrays_close( pos_record_arr1.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr2.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 1.0, 0.25, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.5, 0.375, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.5, -0.375, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr3.flatten(), np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 3.0, 0, 3.0, 3.0, -1, 4.0, 1.0, 1.0, 0.1111111111111111, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, 4, 5.0, 1.0, -3.0, -0.75, 1, 1, 1), (1, 2, 2.0, 2, 4.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) cash_arr = np.empty((size.shape[0], 2), dtype=np.float_) position_arr = np.empty(size.shape, dtype=np.float_) val_price_arr = np.empty(size.shape, dtype=np.float_) value_arr = np.empty((size.shape[0], 2), dtype=np.float_) return_arr = np.empty((size.shape[0], 2), dtype=np.float_) sim_order_cash_arr = np.empty(size.shape, dtype=np.float_) sim_order_value_arr = np.empty(size.shape, dtype=np.float_) sim_order_return_arr = np.empty(size.shape, dtype=np.float_) def post_order_func_nb(c): sim_order_cash_arr[c.i, c.col] = c.cash_now sim_order_value_arr[c.i, c.col] = c.value_now sim_order_return_arr[c.i, c.col] = c.value_now if c.i == 0 and c.call_idx == 0: sim_order_return_arr[c.i, c.col] -= c.init_cash[c.group] sim_order_return_arr[c.i, c.col] /= c.init_cash[c.group] else: if c.call_idx == 0: prev_i = c.i - 1 prev_col = c.to_col - 1 else: prev_i = c.i prev_col = c.from_col + c.call_idx - 1 sim_order_return_arr[c.i, c.col] -= sim_order_value_arr[prev_i, prev_col] sim_order_return_arr[c.i, c.col] /= sim_order_value_arr[prev_i, prev_col] def post_segment_func_nb(c): cash_arr[c.i, c.group] = c.last_cash[c.group] for col in range(c.from_col, c.to_col): position_arr[c.i, col] = c.last_position[col] val_price_arr[c.i, col] = c.last_val_price[col] value_arr[c.i, c.group] = c.last_value[c.group] return_arr[c.i, c.group] = c.last_return[c.group] pf = vbt.Portfolio.from_order_func( close, order_func_nb, post_order_func_nb=post_order_func_nb, post_segment_func_nb=post_segment_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( cash_arr, pf.cash().values ) np.testing.assert_array_equal( position_arr, pf.assets().values ) np.testing.assert_array_equal( val_price_arr, pf.get_filled_close().values ) np.testing.assert_array_equal( value_arr, pf.value().values ) np.testing.assert_array_equal( return_arr, pf.returns().values ) if test_flexible: with pytest.raises(Exception): pf.cash(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.value(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.returns(in_sim_order=True, group_by=False) else: np.testing.assert_array_equal( sim_order_cash_arr, pf.cash(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_value_arr, pf.value(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_return_arr, pf.returns(in_sim_order=True, group_by=False).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_post_sim_ctx(self, test_row_wise, test_flexible): if test_flexible: def order_func(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( 1., nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) return -1, nb.order_nothing_nb() else: def order_func(c): return nb.order_nb( 1., nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) def post_sim_func(c, lst): lst.append(deepcopy(c)) lst = [] _ = vbt.Portfolio.from_order_func( price_wide, order_func, post_sim_func_nb=post_sim_func, post_sim_args=(lst,), row_wise=test_row_wise, update_value=True, max_logs=price_wide.shape[0] * price_wide.shape[1], use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) c = lst[-1] assert c.target_shape == price_wide.shape np.testing.assert_array_equal( c.close, price_wide.values ) np.testing.assert_array_equal( c.group_lens, np.array([2, 1]) ) np.testing.assert_array_equal( c.init_cash, np.array([100., 100.]) ) assert c.cash_sharing if test_flexible: assert c.call_seq is None else: np.testing.assert_array_equal( c.call_seq, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) np.testing.assert_array_equal( c.segment_mask, np.array([ [True, True], [True, True], [True, True], [True, True], [True, True] ]) ) assert c.ffill_val_price assert c.update_value if test_row_wise: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 2, 0, 1.0, 1.01, 1.0101, 0), (3, 0, 1, 1.0, 2.02, 1.0202, 0), (4, 1, 1, 1.0, 2.02, 1.0202, 0), (5, 2, 1, 1.0, 2.02, 1.0202, 0), (6, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (7, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (8, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (9, 0, 3, 1.0, 4.04, 1.0404, 0), (10, 1, 3, 1.0, 4.04, 1.0404, 0), (11, 2, 3, 1.0, 4.04, 1.0404, 0), (12, 0, 4, 1.0, 5.05, 1.0505, 0), (13, 1, 4, 1.0, 5.05, 1.0505, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) else: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 0, 1, 1.0, 2.02, 1.0202, 0), (3, 1, 1, 1.0, 2.02, 1.0202, 0), (4, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (5, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (6, 0, 3, 1.0, 4.04, 1.0404, 0), (7, 1, 3, 1.0, 4.04, 1.0404, 0), (8, 0, 4, 1.0, 5.05, 1.0505, 0), (9, 1, 4, 1.0, 5.05, 1.0505, 0), (10, 2, 0, 1.0, 1.01, 1.0101, 0), (11, 2, 1, 1.0, 2.02, 1.0202, 0), (12, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (13, 2, 3, 1.0, 4.04, 1.0404, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) if test_row_wise: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 2), (3, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 4), (5, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 5), (6, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 6), (7, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 7), (8, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 8), (9, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 9), (10, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 10), (11, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 11), (12, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 12), (13, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) else: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 2), (3, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 4), (5, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 5), (6, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 6), (7, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 7), (8, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 8), (9, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 9), (10, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 10), (11, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 11), (12, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 12), (13, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) np.testing.assert_array_equal( c.last_cash, np.array([59.39700000000002, 79.69850000000001]) ) np.testing.assert_array_equal( c.last_position, np.array([5., 5., 5.]) ) np.testing.assert_array_equal( c.last_val_price, np.array([5.0, 5.0, 5.0]) ) np.testing.assert_array_equal( c.last_value, np.array([109.39700000000002, 104.69850000000001]) ) np.testing.assert_array_equal( c.second_last_value, np.array([103.59800000000001, 101.799]) ) np.testing.assert_array_equal( c.last_return, np.array([0.05597598409235705, 0.028482598060884715]) ) np.testing.assert_array_equal( c.last_debt, np.array([0., 0., 0.]) ) np.testing.assert_array_equal( c.last_free_cash, np.array([59.39700000000002, 79.69850000000001]) ) if test_row_wise: np.testing.assert_array_equal( c.last_oidx, np.array([12, 13, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([12, 13, 14]) ) else: np.testing.assert_array_equal( c.last_oidx, np.array([8, 9, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([8, 9, 14]) ) assert c.order_records[c.last_oidx[0]]['col'] == 0 assert c.order_records[c.last_oidx[1]]['col'] == 1 assert c.order_records[c.last_oidx[2]]['col'] == 2 assert c.log_records[c.last_lidx[0]]['col'] == 0 assert c.log_records[c.last_lidx[1]]['col'] == 1 assert c.log_records[c.last_lidx[2]]['col'] == 2 @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_free_cash(self, test_row_wise, test_flexible): if test_flexible: def order_func(c, size): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( size[c.i, col], nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: def order_func(c, size): return nb.order_nb( size[c.i, c.col], nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) def post_order_func(c, debt, free_cash): debt[c.i, c.col] = c.debt_now if c.cash_sharing: free_cash[c.i, c.group] = c.free_cash_now else: free_cash[c.i, c.col] = c.free_cash_now size = np.array([ [5, -5, 5], [5, -5, -10], [-5, 5, 10], [-5, 5, -10], [-5, 5, 10] ]) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [93.8995, 94.0005, 93.8995], [82.6985, 83.00150000000001, 92.70150000000001], [96.39999999999999, 81.55000000000001, 80.8985], [115.002, 74.998, 79.5025], [89.0045, 48.49550000000001, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide.vbt.wrapper.wrap(price_wide.values[::-1]), order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 24.75, 0.0], [0.0, 44.55, 19.8], [0.0, 22.275, 0.0], [0.0, 0.0, 9.9], [4.95, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [73.4975, 74.0025, 73.4975], [52.0955, 53.00449999999999, 72.1015], [65.797, 81.25299999999999, 80.0985], [74.598, 114.60199999999998, 78.9005], [68.5985, 108.50149999999998, 87.49949999999998] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty((price_wide.shape[0], 2), dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [87.9, 93.8995], [65.70000000000002, 92.70150000000001], [77.95000000000002, 80.8985], [90.00000000000001, 79.5025], [37.500000000000014, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_init_cash(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=[1., 10., np.inf], flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 1.0, 0.0, 0), (2, 2, 0, 10.0, 1.0, 0.0, 0), (3, 0, 1, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 2, 1, 10.0, 2.0, 0.0, 1), (6, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 0, 3, 10.0, 4.0, 0.0, 1), (10, 1, 3, 10.0, 4.0, 0.0, 1), (11, 2, 3, 10.0, 4.0, 0.0, 1), (12, 0, 4, 8.0, 5.0, 0.0, 0), (13, 1, 4, 8.0, 5.0, 0.0, 0), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 2.0, 0.0, 1), (2, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (3, 0, 3, 10.0, 4.0, 0.0, 1), (4, 0, 4, 8.0, 5.0, 0.0, 0), (5, 1, 0, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 1, 3, 10.0, 4.0, 0.0, 1), (9, 1, 4, 8.0, 5.0, 0.0, 0), (10, 2, 0, 10.0, 1.0, 0.0, 0), (11, 2, 1, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 2, 3, 10.0, 4.0, 0.0, 1), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(pf._init_cash) == np.ndarray base_pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=np.inf, flexible=test_flexible) pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.Auto, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.Auto pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 56 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [56] assert list(pre_group_lst) == [2, 34] assert list(post_group_lst) == [33, 55] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 35, 39, 43, 47, 51] assert list(post_segment_lst) == [8, 14, 20, 26, 32, 38, 42, 46, 50, 54] assert list(order_lst) == [4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 36, 40, 44, 48, 52] assert list(post_order_lst) == [5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 45, 49, 53] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 38 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [38] assert list(pre_group_lst) == [2, 22] assert list(post_group_lst) == [21, 37] assert list(pre_segment_lst) == [3, 5, 7, 13, 19, 23, 25, 29, 31, 35] assert list(post_segment_lst) == [4, 6, 12, 18, 20, 24, 28, 30, 34, 36] assert list(order_lst) == [8, 10, 14, 16, 26, 32] assert list(post_order_lst) == [9, 11, 15, 17, 27, 33] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 26 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [26] assert list(pre_group_lst) == [2, 16] assert list(post_group_lst) == [15, 25] assert list(pre_segment_lst) == [3, 9, 17, 21] assert list(post_segment_lst) == [8, 14, 20, 24] assert list(order_lst) == [4, 6, 10, 12, 18, 22] assert list(post_order_lst) == [5, 7, 11, 13, 19, 23] def test_func_calls_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 66 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [66] assert list(pre_group_lst) == [2, 39] assert list(post_group_lst) == [38, 65] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 40, 45, 50, 55, 60] assert list(post_segment_lst) == [9, 16, 23, 30, 37, 44, 49, 54, 59, 64] assert list(order_lst) == [ 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 41, 43, 46, 48, 51, 53, 56, 58, 61, 63 ] assert list(post_order_lst) == [5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 42, 47, 52, 57, 62] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 42 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [42] assert list(pre_group_lst) == [2, 24] assert list(post_group_lst) == [23, 41] assert list(pre_segment_lst) == [3, 5, 7, 14, 21, 25, 27, 32, 34, 39] assert list(post_segment_lst) == [4, 6, 13, 20, 22, 26, 31, 33, 38, 40] assert list(order_lst) == [8, 10, 12, 15, 17, 19, 28, 30, 35, 37] assert list(post_order_lst) == [9, 11, 16, 18, 29, 36] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 30 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [30] assert list(pre_group_lst) == [2, 18] assert list(post_group_lst) == [17, 29] assert list(pre_segment_lst) == [3, 10, 19, 24] assert list(post_segment_lst) == [9, 16, 23, 28] assert list(order_lst) == [4, 6, 8, 11, 13, 15, 20, 22, 25, 27] assert list(post_order_lst) == [5, 7, 12, 14, 21, 26] def test_func_calls_row_wise(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst): call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst): call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst): call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst): call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst): call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst): call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst): call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 62 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [62] assert list(pre_row_lst) == [2, 14, 26, 38, 50] assert list(post_row_lst) == [13, 25, 37, 49, 61] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 33, 39, 45, 51, 57] assert list(post_segment_lst) == [8, 12, 20, 24, 32, 36, 44, 48, 56, 60] assert list(order_lst) == [4, 6, 10, 16, 18, 22, 28, 30, 34, 40, 42, 46, 52, 54, 58] assert list(post_order_lst) == [5, 7, 11, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 55, 59] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 44 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [44] assert list(pre_row_lst) == [2, 8, 16, 26, 38] assert list(post_row_lst) == [7, 15, 25, 37, 43] assert list(pre_segment_lst) == [3, 5, 9, 11, 17, 23, 27, 33, 39, 41] assert list(post_segment_lst) == [4, 6, 10, 14, 22, 24, 32, 36, 40, 42] assert list(order_lst) == [12, 18, 20, 28, 30, 34] assert list(post_order_lst) == [13, 19, 21, 29, 31, 35] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 32 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [32] assert list(pre_row_lst) == [2, 4, 10, 18, 30] assert list(post_row_lst) == [3, 9, 17, 29, 31] assert list(pre_segment_lst) == [5, 11, 19, 25] assert list(post_segment_lst) == [8, 16, 24, 28] assert list(order_lst) == [6, 12, 14, 20, 22, 26] assert list(post_order_lst) == [7, 13, 15, 21, 23, 27] def test_func_calls_row_wise_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 72 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [72] assert list(pre_row_lst) == [2, 16, 30, 44, 58] assert list(post_row_lst) == [15, 29, 43, 57, 71] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 38, 45, 52, 59, 66] assert list(post_segment_lst) == [9, 14, 23, 28, 37, 42, 51, 56, 65, 70] assert list(order_lst) == [ 4, 6, 8, 11, 13, 18, 20, 22, 25, 27, 32, 34, 36, 39, 41, 46, 48, 50, 53, 55, 60, 62, 64, 67, 69 ] assert list(post_order_lst) == [5, 7, 12, 19, 21, 26, 33, 35, 40, 47, 49, 54, 61, 63, 68] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 48 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [48] assert list(pre_row_lst) == [2, 8, 17, 28, 42] assert list(post_row_lst) == [7, 16, 27, 41, 47] assert list(pre_segment_lst) == [3, 5, 9, 11, 18, 25, 29, 36, 43, 45] assert list(post_segment_lst) == [4, 6, 10, 15, 24, 26, 35, 40, 44, 46] assert list(order_lst) == [12, 14, 19, 21, 23, 30, 32, 34, 37, 39] assert list(post_order_lst) == [13, 20, 22, 31, 33, 38] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 36 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [36] assert list(pre_row_lst) == [2, 4, 11, 20, 34] assert list(post_row_lst) == [3, 10, 19, 33, 35] assert list(pre_segment_lst) == [5, 12, 21, 28] assert list(post_segment_lst) == [9, 18, 27, 32] assert list(order_lst) == [6, 8, 13, 15, 17, 22, 24, 26, 29, 31] assert list(post_order_lst) == [7, 14, 16, 23, 25, 30] @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_orders(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=14, flexible=test_flexible) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_logs(self, test_row_wise, test_flexible): log_order_func = log_flex_order_func_nb if test_flexible else log_order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=14, flexible=test_flexible) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'both'] group_by = pd.Index(['first', 'first', 'second'], name='group') pf = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # independent pf_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # grouped pf_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D', attach_call_seq=True ) # shared class TestPortfolio: def test_config(self, tmp_path): pf2 = pf.copy() pf2._metrics = pf2._metrics.copy() pf2.metrics['hello'] = 'world' pf2._subplots = pf2.subplots.copy() pf2.subplots['hello'] = 'world' assert vbt.Portfolio.loads(pf2['a'].dumps()) == pf2['a'] assert vbt.Portfolio.loads(pf2.dumps()) == pf2 pf2.save(tmp_path / 'pf') assert vbt.Portfolio.load(tmp_path / 'pf') == pf2 def test_wrapper(self): pd.testing.assert_index_equal( pf.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf.wrapper.columns, price_na.columns ) assert pf.wrapper.ndim == 2 assert pf.wrapper.grouper.group_by is None assert pf.wrapper.grouper.allow_enable assert pf.wrapper.grouper.allow_disable assert pf.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_grouped.wrapper.columns, price_na.columns ) assert pf_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_grouped.wrapper.grouper.group_by, group_by ) assert pf_grouped.wrapper.grouper.allow_enable assert pf_grouped.wrapper.grouper.allow_disable assert pf_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_shared.wrapper.columns, price_na.columns ) assert pf_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_shared.wrapper.grouper.group_by, group_by ) assert not pf_shared.wrapper.grouper.allow_enable assert pf_shared.wrapper.grouper.allow_disable assert not pf_shared.wrapper.grouper.allow_modify def test_indexing(self): assert pf['a'].wrapper == pf.wrapper['a'] assert pf['a'].orders == pf.orders['a'] assert pf['a'].logs == pf.logs['a'] assert pf['a'].init_cash == pf.init_cash['a'] pd.testing.assert_series_equal(pf['a'].call_seq, pf.call_seq['a']) assert pf['c'].wrapper == pf.wrapper['c'] assert pf['c'].orders == pf.orders['c'] assert pf['c'].logs == pf.logs['c'] assert pf['c'].init_cash == pf.init_cash['c'] pd.testing.assert_series_equal(pf['c'].call_seq, pf.call_seq['c']) assert pf[['c']].wrapper == pf.wrapper[['c']] assert pf[['c']].orders == pf.orders[['c']] assert pf[['c']].logs == pf.logs[['c']] pd.testing.assert_series_equal(pf[['c']].init_cash, pf.init_cash[['c']]) pd.testing.assert_frame_equal(pf[['c']].call_seq, pf.call_seq[['c']]) assert pf_grouped['first'].wrapper == pf_grouped.wrapper['first'] assert pf_grouped['first'].orders == pf_grouped.orders['first'] assert pf_grouped['first'].logs == pf_grouped.logs['first'] assert pf_grouped['first'].init_cash == pf_grouped.init_cash['first'] pd.testing.assert_frame_equal(pf_grouped['first'].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped[['first']].wrapper == pf_grouped.wrapper[['first']] assert pf_grouped[['first']].orders == pf_grouped.orders[['first']] assert pf_grouped[['first']].logs == pf_grouped.logs[['first']] pd.testing.assert_series_equal( pf_grouped[['first']].init_cash, pf_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(pf_grouped[['first']].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped['second'].wrapper == pf_grouped.wrapper['second'] assert pf_grouped['second'].orders == pf_grouped.orders['second'] assert pf_grouped['second'].logs == pf_grouped.logs['second'] assert pf_grouped['second'].init_cash == pf_grouped.init_cash['second'] pd.testing.assert_series_equal(pf_grouped['second'].call_seq, pf_grouped.call_seq['c']) assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].wrapper == pf_grouped.wrapper[['second']] assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].logs == pf_grouped.logs[['second']] pd.testing.assert_series_equal( pf_grouped[['second']].init_cash, pf_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(pf_grouped[['second']].call_seq, pf_grouped.call_seq[['c']]) assert pf_shared['first'].wrapper == pf_shared.wrapper['first'] assert pf_shared['first'].orders == pf_shared.orders['first'] assert pf_shared['first'].logs == pf_shared.logs['first'] assert pf_shared['first'].init_cash == pf_shared.init_cash['first'] pd.testing.assert_frame_equal(pf_shared['first'].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].wrapper == pf_shared.wrapper[['first']] assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].logs == pf_shared.logs[['first']] pd.testing.assert_series_equal( pf_shared[['first']].init_cash, pf_shared.init_cash[['first']]) pd.testing.assert_frame_equal(pf_shared[['first']].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared['second'].wrapper == pf_shared.wrapper['second'] assert pf_shared['second'].orders == pf_shared.orders['second'] assert pf_shared['second'].logs == pf_shared.logs['second'] assert pf_shared['second'].init_cash == pf_shared.init_cash['second'] pd.testing.assert_series_equal(pf_shared['second'].call_seq, pf_shared.call_seq['c']) assert pf_shared[['second']].wrapper == pf_shared.wrapper[['second']] assert pf_shared[['second']].orders == pf_shared.orders[['second']] assert pf_shared[['second']].logs == pf_shared.logs[['second']] pd.testing.assert_series_equal( pf_shared[['second']].init_cash, pf_shared.init_cash[['second']]) pd.testing.assert_frame_equal(pf_shared[['second']].call_seq, pf_shared.call_seq[['c']]) def test_regroup(self): assert pf.regroup(None) == pf assert pf.regroup(False) == pf assert pf.regroup(group_by) != pf pd.testing.assert_index_equal(pf.regroup(group_by).wrapper.grouper.group_by, group_by) assert pf_grouped.regroup(None) == pf_grouped assert pf_grouped.regroup(False) != pf_grouped assert pf_grouped.regroup(False).wrapper.grouper.group_by is None assert pf_grouped.regroup(group_by) == pf_grouped assert pf_shared.regroup(None) == pf_shared with pytest.raises(Exception): _ = pf_shared.regroup(False) assert pf_shared.regroup(group_by) == pf_shared def test_cash_sharing(self): assert not pf.cash_sharing assert not pf_grouped.cash_sharing assert pf_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( pf.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_orders(self): record_arrays_close( pf.orders.values, np.array([ (0, 0, 1, 0.1, 2.02, 0.10202, 0), (1, 0, 2, 0.1, 2.9699999999999998, 0.10297, 1), (2, 0, 4, 1.0, 5.05, 0.1505, 0), (3, 1, 0, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 1, 3, 0.1, 4.04, 0.10404000000000001, 0), (6, 1, 4, 1.0, 4.95, 0.14950000000000002, 1), (7, 2, 0, 1.0, 1.01, 0.1101, 0), (8, 2, 1, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 2, 3, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.orders.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.orders.count(), result ) pd.testing.assert_series_equal( pf_shared.orders.count(), result ) def test_logs(self): record_arrays_close( pf.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, np.nan, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 0, 0, 1, 100.0, 0.0, 0.0, 100.0, 2.0, 100.0, 0.1, 2.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.69598, 0.1, 0.0, 99.69598, 2.0, 100.0, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 0, 0, 2, 99.69598, 0.1, 0.0, 99.69598, 3.0, 99.99598, -1.0, 3.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 3.0, 99.99598, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 0, 0, 3, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, -0.1, 4.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 0, 0, 4, 99.89001, 0.0, 0.0, 99.89001, 5.0, 99.89001, 1.0, 5.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 94.68951, 1.0, 0.0, 94.68951, 5.0, 99.89001, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 1, 1, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.8801, -1.0, 0.99, 98.9001, 1.0, 100.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 0.99, 98.9001, 2.0, 98.8801, 0.1, 2.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.8801, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 1, 1, 2, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, -1.0, np.nan, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 1, 1, 3, 100.97612, -1.1, 1.188, 98.60011999999999, 4.0, 96.57611999999999, -0.1, 4.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.46808, -1.0, 1.08, 98.30807999999999, 4.0, 96.57611999999999, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 1, 1, 4, 100.46808, -1.0, 1.08, 98.30807999999999, 5.0, 95.46808, 1.0, 5.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 105.26858, -2.0, 6.03, 93.20857999999998, 5.0, 95.46808, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 2, 2, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.8799, 1.0, 0.0, 98.8799, 1.0, 100.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 2, 2, 1, 98.8799, 1.0, 0.0, 98.8799, 2.0, 100.8799, 0.1, 2.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 2.0, 100.8799, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 3.0, 101.87588000000001, -1.0, 3.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 3.0, 101.87588000000001, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 2, 2, 3, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 4.0, 101.81618000000002, -0.1, 4.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.81618000000002, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 2, 2, 4, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, 1.0, np.nan, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.logs.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.logs.count(), result ) pd.testing.assert_series_equal( pf_shared.logs.count(), result ) def test_entry_trades(self): record_arrays_close( pf.entry_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 1.0, 0, 0.99, 0.10990000000000001, 4, 4.954285714285714, 0.049542857142857145, -4.12372857142857, -4.165382395382394, 1, 0, 2), (3, 1, 0.1, 1, 1.98, 0.10198, 4, 4.954285714285714, 0.004954285714285714, -0.4043628571428571, -2.0422366522366517, 1, 0, 2), (4, 1, 1.0, 4, 4.95, 0.14950000000000002, 4, 4.954285714285714, 0.049542857142857145, -0.20332857142857072, -0.04107647907647893, 1, 0, 2), (5, 2, 1.0, 0, 1.01, 0.1101, 3, 3.0599999999999996, 0.21241818181818184, 1.727481818181818, 1.71037803780378, 0, 1, 3), (6, 2, 0.1, 1, 2.02, 0.10202, 3, 3.0599999999999996, 0.021241818181818185, -0.019261818181818203, -0.09535553555355546, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 3, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_entry_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_entry_trades(group_by=False).count(), result ) result = pd.Series( np.array([5, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_entry_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.entry_trades.count(), result ) def test_exit_trades(self): record_arrays_close( pf.exit_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_exit_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_exit_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_exit_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.exit_trades.count(), result ) def test_positions(self): record_arrays_close( pf.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0, 2), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.positions.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.positions.count(), result ) pd.testing.assert_series_equal( pf_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( pf.drawdowns.values, np.array([ (0, 0, 0, 1, 4, 4, 100.0, 99.68951, 99.68951, 0), (1, 1, 0, 1, 4, 4, 99.8801, 95.26858, 95.26858, 0), (2, 2, 2, 3, 3, 4, 101.71618000000001, 101.70822000000001, 101.70822000000001, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(pf.close, price_na) pd.testing.assert_frame_equal(pf_grouped.close, price_na) pd.testing.assert_frame_equal(pf_shared.close, price_na) def test_get_filled_close(self): pd.testing.assert_frame_equal( pf.get_filled_close(), price_na.ffill().bfill() ) def test_asset_flow(self): pd.testing.assert_frame_equal( pf.asset_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_flow(), result ) pd.testing.assert_frame_equal( pf_shared.asset_flow(), result ) def test_assets(self): pd.testing.assert_frame_equal( pf.assets(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.assets(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.assets(), result ) pd.testing.assert_frame_equal( pf_grouped.assets(), result ) pd.testing.assert_frame_equal( pf_shared.assets(), result ) def test_position_mask(self): pd.testing.assert_frame_equal( pf.position_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.position_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.position_mask(), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.position_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(), result ) def test_position_coverage(self): pd.testing.assert_series_equal( pf.position_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('position_coverage') ) pd.testing.assert_series_equal( pf.position_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('position_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( pf.cash_flow(free=True), pd.DataFrame( np.array([ [0.0, -1.0998999999999999, -1.1201], [-0.30402, -0.2999800000000002, -0.3040200000000002], [0.19402999999999998, 0.0, 2.8402999999999996], [0.0, -0.2920400000000002, 0.29204000000000035], [-5.2005, -5.0995, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( pf.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( pf.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.init_cash, result ) pd.testing.assert_series_equal( pf_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( pf.cash(free=True), pd.DataFrame( np.array([ [100.0, 98.9001, 98.8799], [99.69598, 98.60011999999999, 98.57588000000001], [99.89001, 98.60011999999999, 101.41618000000001], [99.89001, 98.30807999999999, 101.70822000000001], [94.68951, 93.20857999999998, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash(), result ) pd.testing.assert_frame_equal( pf_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash(), result ) pd.testing.assert_frame_equal( pf_shared.cash(), result ) def test_asset_value(self): pd.testing.assert_frame_equal( pf.asset_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., 2.2, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., -2.2, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_value(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [-2.2, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( pf.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0.0, 0.01000999998999, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.03909759620159034, 0.0], [0.0, 0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0.0, -0.010214494162927312, 0.010012024441354066], [0.00200208256628545, -0.022821548354919067, 0.021830620581035857], [0.0, -0.022821548354919067, 0.002949383274126105], [0.0, -0.04241418126633477, 0.0], [0.050155728521486365, -0.12017991413866216, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.00505305454620791, 0.010012024441354066], [0.0010005203706447724, -0.011201622483733716, 0.021830620581035857], [0.0, -0.011201622483733716, 0.002949383274126105], [0.0, -0.020585865497718882, 0.0], [0.025038871596209537, -0.0545825965137659, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00505305454620791, 0.010012024441354066], [-0.010188689433972452, 0.021830620581035857], [-0.0112078992458765, 0.002949383274126105], [-0.02059752492931316, 0.0], [-0.027337628293439265, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0.0, -0.01000999998999, 0.010012024441354066], [0.00200208256628545, -0.021825370842812494, 0.021830620581035857], [0.0, -0.021825370842812494, 0.002949383274126105], [0.0, -0.03909759620159034, 0.0], [0.050155728521486365, -0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.net_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.005002498748124688, 0.010012024441354066], [0.0010005203706447724, -0.010956168751293576, 0.021830620581035857], [0.0, -0.010956168751293576, 0.002949383274126105], [0.0, -0.019771825228137207, 0.0], [0.025038871596209537, -0.049210520540028384, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005002498748124688, 0.010012024441354066], [-0.009965205542937988, 0.021830620581035857], [-0.010962173376438594, 0.002949383274126105], [-0.019782580537729116, 0.0], [-0.0246106361476199, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, 98.77612, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.value(), result ) pd.testing.assert_frame_equal( pf_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, 198.77612, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [198.66613, 198.6721, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [198.66613, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.value(), result ) pd.testing.assert_frame_equal( pf_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(), result ) pd.testing.assert_series_equal( pf_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(), result ) pd.testing.assert_series_equal( pf_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.final_value(), result ) pd.testing.assert_series_equal( pf_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_return(), result ) pd.testing.assert_series_equal( pf_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.023366376407576966, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.returns(), result ) pd.testing.assert_frame_equal( pf_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.011611253907159497, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [-3.0049513746473233e-05, 0.0, 9.33060570e-03], [0.0, -0.011617682390048093, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [-3.0049513746473233e-05, 9.33060570e-03], [-0.011617682390048093, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.returns(), result ) pd.testing.assert_frame_equal( pf_shared.returns(), result ) def test_asset_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, 0.0, 0.42740909], [0., -1.0491090909090908, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [-0.0029850000000000154, 0.42740909], [-1.0491090909090908, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(), result ) def test_benchmark_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(), result ) def test_benchmark_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(), result ) def test_total_benchmark_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( pf_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.000599499999999975, -0.0012009999999998966], [-0.006639499999999909, 0.007758800000000177], [-0.006669349999999907, 0.017161800000000005], [-0.01820955000000002, 0.017082199999999936], [-0.025209550000000136, 0.017082199999999936] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( pf_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0.0, -0.000599499999999975, -0.0012009999999998966], [-0.0005201000000001343, -0.006119399999999886, 0.007758800000000177], [-0.0005499500000001323, -0.006119399999999886, 0.017161800000000005], [-0.0005499500000001323, -0.017659599999999886, 0.017082199999999936], [-0.0015524500000001495, -0.023657099999999875, 0.017082199999999936] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-59.62258787402645, -23.91718815937344]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-13.30950646054953, -19.278625117344564, 12.345065267401496]), index=price_na.columns ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.information_ratio(group_by=False), pd.Series( np.array([-0.9988561334618041, -0.8809478746008806, -0.884780642352239]), index=price_na.columns ).rename('information_ratio') ) with pytest.raises(Exception): _ = pf_shared.information_ratio(pf_shared.benchmark_returns(group_by=False) * 2) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Start Value', 'End Value', 'Total Return [%]', 'Benchmark Return [%]', 'Max Gross Exposure [%]', 'Total Fees Paid', 'Max Drawdown [%]', 'Max Drawdown Duration', 'Total Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'Sharpe Ratio', 'Calmar Ratio', 'Omega Ratio', 'Sortino Ratio' ], dtype='object') pd.testing.assert_series_equal( pf.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 98.88877000000001, -1.11123, 283.3333333333333, 2.05906183131983, 0.42223000000000005, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), 2.0, 1.3333333333333333, 0.6666666666666666, -1.5042060606060605, 33.333333333333336, -98.38058805880588, -100.8038553855386, 143.91625412541256, -221.34645964596464, pd.Timedelta('2 days 12:00:00'), pd.Timedelta('2 days 00:00:00'), np.inf, 0.10827272727272726, -6.751008013903537, 10378.930331014584, 4.768700318817701, 31.599760994679134 ]), index=stats_index, name='agg_func_mean') ) pd.testing.assert_series_equal( pf.stats(column='a'), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, -13.30804491478906, -65.40868619923044, 0.0, -11.738864633265454 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(freq='10 days', year_freq='200 days')), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('50 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('40 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('10 days 00:00:00'), 0.0, -0.10999000000000003, -3.1151776875290866, -3.981409131683691, 0.0, -2.7478603669149457 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(trade_type='positions')), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, -13.30804491478906, -65.40868619923044, 0.0, -11.738864633265454 ]), index=pd.Index([ 'Start', 'End', 'Period', 'Start Value', 'End Value', 'Total Return [%]', 'Benchmark Return [%]', 'Max Gross Exposure [%]', 'Total Fees Paid', 'Max Drawdown [%]', 'Max Drawdown Duration', 'Total Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'Sharpe Ratio', 'Calmar Ratio', 'Omega Ratio', 'Sortino Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(required_return=0.1, risk_free=0.01)), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, -227.45862849586334, -65.40868619923044, 0.0, -19.104372472268942 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(use_asset_returns=True)), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, np.nan, np.nan, 0.0, np.nan ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(incl_open=True)), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -3.9702970297029667, -54.450495049504966, np.nan, -29.210396039603964, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.1552449999999999, -13.30804491478906, -65.40868619923044, 0.0, -11.738864633265454 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf_grouped.stats(column='first'), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 200.0, 194.95809, -2.520955, 275.0, -0.505305454620791, 0.82091, 2.46248125751388, pd.Timedelta('4 days 00:00:00'), 4, 2, 2, -4.512618181818182, 0.0, -54.450495049504966, -388.2424242424243, np.nan, -221.34645964596461, pd.NaT, pd.Timedelta('2 days 00:00:00'), 0.0, -0.2646459090909091, -20.095906945591288, -34.312217430388344, 0.0, -14.554511690523578 ]), index=stats_index, name='first') ) pd.testing.assert_series_equal( pf.stats(column='a', tags='trades and open and not closed', settings=dict(incl_open=True)), pd.Series( np.array([ 1, -0.20049999999999982 ]), index=pd.Index([ 'Total Open Trades', 'Open Trade PnL' ], dtype='object'), name='a') ) max_winning_streak = ( 'max_winning_streak', dict( title='Max Winning Streak', calc_func=lambda trades: trades.winning_streak.max(), resolve_trades=True ) ) pd.testing.assert_series_equal( pf.stats(column='a', metrics=max_winning_streak), pd.Series([0.0], index=['Max Winning Streak'], name='a') ) max_winning_streak = ( 'max_winning_streak', dict( title='Max Winning Streak', calc_func=lambda self, group_by: self.get_trades(group_by=group_by).winning_streak.max() ) ) pd.testing.assert_series_equal( pf.stats(column='a', metrics=max_winning_streak), pd.Series([0.0], index=['Max Winning Streak'], name='a') ) max_winning_streak = ( 'max_winning_streak', dict( title='Max Winning Streak', calc_func=lambda self, settings: self.get_trades(group_by=settings['group_by']).winning_streak.max(), resolve_calc_func=False ) ) pd.testing.assert_series_equal( pf.stats(column='a', metrics=max_winning_streak), pd.Series([0.0], index=['Max Winning Streak'], name='a') ) vbt.settings.portfolio.stats['settings']['my_arg'] = 100 my_arg_metric = ('my_arg_metric', dict(title='My Arg', calc_func=lambda my_arg: my_arg)) pd.testing.assert_series_equal( pf.stats(my_arg_metric, column='a'), pd.Series([100], index=['My Arg'], name='a') ) vbt.settings.portfolio.stats.reset() pd.testing.assert_series_equal( pf.stats(my_arg_metric, column='a', settings=dict(my_arg=200)), pd.Series([200], index=['My Arg'], name='a') ) my_arg_metric = ('my_arg_metric', dict(title='My Arg', my_arg=300, calc_func=lambda my_arg: my_arg)) pd.testing.assert_series_equal( pf.stats(my_arg_metric, column='a', settings=dict(my_arg=200)), pd.Series([300], index=['My Arg'], name='a') ) pd.testing.assert_series_equal( pf.stats(my_arg_metric, column='a', settings=dict(my_arg=200), metric_settings=dict(my_arg_metric=dict(my_arg=400))), pd.Series([400], index=['My Arg'], name='a') ) trade_min_pnl_cnt = ( 'trade_min_pnl_cnt', dict( title=vbt.Sub('Trades with PnL over $$${min_pnl}'), calc_func=lambda trades, min_pnl: trades.apply_mask( trades.pnl.values >= min_pnl).count(), resolve_trades=True ) ) pd.testing.assert_series_equal( pf.stats( metrics=trade_min_pnl_cnt, column='a', metric_settings=dict(trade_min_pnl_cnt=dict(min_pnl=0))), pd.Series([0], index=['Trades with PnL over $0'], name='a') ) pd.testing.assert_series_equal( pf.stats( metrics=[ trade_min_pnl_cnt, trade_min_pnl_cnt, trade_min_pnl_cnt ], column='a', metric_settings=dict( trade_min_pnl_cnt_0=dict(min_pnl=0), trade_min_pnl_cnt_1=dict(min_pnl=10), trade_min_pnl_cnt_2=dict(min_pnl=20)) ), pd.Series([0, 0, 0], index=[ 'Trades with PnL over $0', 'Trades with PnL over $10', 'Trades with PnL over $20' ], name='a') ) pd.testing.assert_frame_equal( pf.stats(metrics='total_trades', agg_func=None, settings=dict(trades_type='entry_trades')), pd.DataFrame([2, 2, 2], index=price_na.columns, columns=['Total Trades']) ) pd.testing.assert_frame_equal( pf.stats(metrics='total_trades', agg_func=None, settings=dict(trades_type='exit_trades')), pd.DataFrame([2, 2, 2], index=price_na.columns, columns=['Total Trades']) ) pd.testing.assert_frame_equal( pf.stats(metrics='total_trades', agg_func=None, settings=dict(trades_type='positions')), pd.DataFrame([2, 2, 2], index=price_na.columns, columns=['Total Trades']) ) pd.testing.assert_series_equal( pf['c'].stats(), pf.stats(column='c') ) pd.testing.assert_series_equal( pf['c'].stats(), pf_grouped.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( pf_grouped['second'].stats(), pf_grouped.stats(column='second') ) pd.testing.assert_series_equal( pf_grouped['second'].stats(), pf.stats(column='second', group_by=group_by) ) pd.testing.assert_series_equal( pf.replace(wrapper=pf.wrapper.replace(freq='10d')).stats(), pf.stats(settings=dict(freq='10d')) ) stats_df = pf.stats(agg_func=None) assert stats_df.shape == (3, 28) pd.testing.assert_index_equal(stats_df.index, pf.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_returns_stats(self): pd.testing.assert_series_equal( pf.returns_stats(column='a'), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), -0.3104900000000077, 150.0, -20.30874297799884, 1.7044081500801351, 0.3104900000000077,
pd.Timedelta('4 days 00:00:00')
pandas.Timedelta
def rd_kinLL(): from pandas import read_csv fname='/home/sespub/teds90_camx/REAS/line/df_kinLL.csv' df_kin=read_csv(fname) utme=list(df_kin['x97']) utmn=list(df_kin['y97']) DICT=list(df_kin['D']) subX=[44,50,51] for i in range(len(DICT)): cntyi=int(DICT[i]/100) if cntyi in subX:utme[i]=utme[i]-201 return (utme,utmn,list(df_kin['R']),DICT) def rd_kin(): fname='/home/sespub/teds90_camx/REAS/line/LE-loc12.KIN' with open(fname) as text_file: d=[line.strip('\n').split()[0] for line in text_file] d=d[1:] cnty=[int(i[0:2]) for i in d] DICT=[i[0:4] for i in d] utme=[int(i[4:7]) for i in d] rd_typ=[int(i[-1]) for i in d] utmn=[int(i[7:11]) for i in d] subX=[44,50,51] for i in range(len(d)): if cnty[i] in subX:utme[i]=utme[i]-201 return (utme,utmn,rd_typ,cnty) def rd_EM(): from scipy.io import FortranFile import numpy as np NVTYP=13;NVEH=NVTYP;NPOL=10;NREC=33012 fname='/home/sespub/teds90_camx/REAS/line/cl102.bin' f=FortranFile(fname, 'r') EM=f.read_record(dtype=np.float32) f.close() EM=np.reshape(EM,[NREC,NPOL,NVEH]) return (NVTYP,NPOL,NREC,EM) def rd_BIN(NC,LTYP,N,M): from scipy.io import FortranFile import numpy as np fname='/home/sespub/teds90_camx/REAS/line/102LVOC.BIN' f=FortranFile(fname, 'r') VOCB=f.read_record(dtype=np.float32) f.close() VOCB=np.reshape(VOCB,[NC,LTYP,N,M]) VOCB[:,0,:,:]=0. return VOCB def rd_hwcsv(): from pandas import read_csv fname='105_LINE_HW.csv' df_t=read_csv(fname) df_t['DICT']=[int(i/100) for i in list(df_t['DICT'])] s1=list(set(df_t['DICT'])) s1.sort() sdf2csv={x:y for x,y in zip(s1,s1)} sdf2csv.update({36:17,41:21,42:2}) return (df_t,sdf2csv) def rd_cems(): from pandas import read_csv fname='105_point_cems.csv' df_t=
read_csv(fname)
pandas.read_csv
import numpy as np import pandas as pd data = np.array([1,2,3,5,6]) df = pd.Series(data) data[0] obj = pd.Series([1,2,-3,4,-5], index=['d', 'b', 'c', 'a', 'e']) obj[obj > 0] obj ** 2 cities = {'Bangalore': 2000, 'Mysore':4000} obj = pd.Series(cities) cities_list = ['Mandya'] obj = pd.Series(cities, index = cities_list) df = pd.DataFrame({'city': ['Bangalore', 'Mysore'], 'state': ['Karnataka', 'Karnataka']}) data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}] df1 =
pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])
pandas.DataFrame
import itertools from typing import List, Optional, Union import numpy as np import pandas._libs.algos as libalgos import pandas._libs.reshape as libreshape from pandas._libs.sparse import IntIndex from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_extension_array_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import notna import pandas.core.algorithms as algos from pandas.core.arrays import SparseArray from pandas.core.arrays.categorical import factorize_from_iterable from pandas.core.construction import extract_array from pandas.core.frame import DataFrame from pandas.core.indexes.api import Index, MultiIndex from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_compressed_ids, get_group_index, ) class _Unstacker: """ Helper class to unstack data / pivot with multi-level index Parameters ---------- index : object Pandas ``Index`` level : int or str, default last level Level to "unstack". Accepts a name for the level. fill_value : scalar, optional Default value to fill in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN. constructor : object Pandas ``DataFrame`` or subclass used to create unstacked response. If None, DataFrame will be used. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ def __init__( self, index, level=-1, constructor=None, ): if constructor is None: constructor = DataFrame self.constructor = constructor self.index = index.remove_unused_levels() self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.codes[self.level] else 0 # Note: the "pop" below alters these in-place. self.new_index_levels = list(self.index.levels) self.new_index_names = list(self.index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self.removed_level_full = index.levels[self.level] # Bug fix GH 20601 # If the data frame is too big, the number of unique index combination # will cause int32 overflow on windows environments. # We want to check and raise an error before this happens num_rows = np.max([index_level.size for index_level in self.new_index_levels]) num_columns = self.removed_level.size # GH20601: This forces an overflow if the number of cells is too high. num_cells = np.multiply(num_rows, num_columns, dtype=np.int32) if num_rows > 0 and num_columns > 0 and num_cells <= 0: raise ValueError("Unstacked DataFrame is too big, causing int32 overflow") self._make_selectors() @cache_readonly def _indexer_and_to_sort(self): v = self.level codes = list(self.index.codes) levs = list(self.index.levels) to_sort = codes[:v] + codes[v + 1 :] + [codes[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1 :] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer =
libalgos.groupsort_indexer(comp_index, ngroups)
pandas._libs.algos.groupsort_indexer
"""Genetic evaluation of individuals.""" import os import sys # import time from collections import Counter from itertools import compress from numba import njit import pkg_resources import numpy as np import pandas as pd import scipy.linalg import scipy.stats def example_data(): """Provide data to the package.""" cwd = os.getcwd() stream = pkg_resources.resource_stream(__name__, 'data/chr.txt') chrmosomedata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/group.txt') groupdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/effects.txt') markereffdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/phase.txt') genodata = pd.read_table(stream, header=None, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/ped.txt') ped = pd.read_table(stream, header=None, sep=" ") os.chdir(cwd) return chrmosomedata, markereffdata, genodata, groupdata, ped if __name__ == "__main__": example_data() @njit def fnrep2(gen, aaxx, aaxx1): """Code phased genotypes into 1, 2, 3 and 4.""" qqq = np.empty((int(gen.shape[0]/2), gen.shape[1]), np.int_) for i in range(qqq.shape[0]): for j in range(qqq.shape[1]): if gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx: qqq[i, j] = 1 elif gen[2*i, j] == aaxx1 and gen[2*i+1, j] == aaxx1: qqq[i, j] = 2 elif gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx1: qqq[i, j] = 3 else: qqq[i, j] = 4 return qqq def haptogen(gen, progress=False): """Convert haplotypes to coded genotypes.""" if progress: print("Converting phased haplotypes to genotypes") if gen.shape[1] == 2: gen = np.array(gen.iloc[:, 1]) # del col containing ID # convert string to 2D array of integers gen = [list(gen[i].rstrip()) for i in range(gen.shape[0])] gen = np.array(gen, int) # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) elif gen.shape[1] > 2: gen = gen.iloc[:, 1:gen.shape[1]] # del col containing ID # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) return gen class Datacheck: """Check the input data for errors and store relevant info as an object.""" def __init__(self, gmap, meff, gmat, group, indwt, progress=False): """ Check input data for errors and store relevant info as class object. Parameters ---------- gmap : pandas.DataFrame Index: RangeIndex Columns: Name: CHR, dtype: int64; chromosome number Name: SNPName, dtype: object; marker name Name: Position: dtype: int64; marker position in bp Name: group: dtype: float64; marker distance (cM) or reco rates meff : pandas.DataFrame Index: RangeIndex Columns: Name: trait names: float64; no. of columns = no of traits gmat : pandas.DataFrame Index: RangeIndex Columns: Name: ID, dtype: int64 or str; identification of individuals Name: haplotypes, dtype: object; must be biallelic group : pandas.DataFrame Index: RangeIndex Columns: Name: group, dtype: object; group code of individuals, e.g., M, F Name: ID, dtype: int64 or str; identification of individuals indwt : list of index weights for each trait progress : bool, optional; print progress of the function if True Returns stored input files ------- """ # check: ensures number of traits match size of index weights indwt = np.array(indwt) if (meff.shape[1]-1) != indwt.size: sys.exit('no. of index weights do not match marker effects cols') # check: ensure individuals' genotypes match group and ID info id_indgrp = pd.Series(group.iloc[:, 1]).astype(str) # no of inds if not pd.Series( pd.unique(gmat.iloc[:, 0])).astype(str).equals(id_indgrp): sys.exit("ID of individuals in group & genotypic data don't match") # check: ensure marker names in marker map and effects match if not (gmap.iloc[:, 1].astype(str)).equals(meff.iloc[:, 0].astype(str)): print("Discrepancies between marker names") sys.exit("Check genetic map and marker effects") # check: ensure marker or allele sub effect are all numeric meff = meff.iloc[:, 1:meff.shape[1]] test = meff.apply( lambda s: pd.to_numeric(s, errors='coerce').notnull().all()) if not test.all(): sys.exit("Marker or allele sub effects contain non-numeric values") # check: ensure unique maps match no of groups if map more than 1 grpg = pd.unique(group.iloc[:, 0]) # groups of individuals grp_chrom = gmap.shape[1]-3 # no of unique maps gmat = haptogen(gmat, progress) if grp_chrom > 1 and grp_chrom != grpg.size: sys.exit("no. of unique maps does not match no. of groups") # check no of markers in genotype and map and marker effects match no_markers = gmap.shape[0] # no of markers if no_markers != gmat.shape[1] or no_markers != meff.shape[0]: sys.exit("markers nos in gen, chrm or marker effects don't match") # check: ordered marker distance or recombination rates for grn in range(grp_chrom): for chrm in pd.unique(gmap.iloc[:, 0]): mpx = np.array(gmap.iloc[:, 3+grn][gmap.iloc[:, 0] == chrm]) if not (mpx == np.sort(sorted(mpx))).any(): sys.exit( f"Faulty marker map on chr {chrm} for grp {grpg[grn]}") if progress: print('Data passed the test!') print("Number of individuals: ", len(id_indgrp)) print("Number of groups: ", len(grpg), ": ", grpg) print("Number of specific maps:", grp_chrom) print("Number of chromosomes: ", len(pd.unique(gmap.iloc[:, 0]))) print("Total no. markers: ", no_markers) print("Number of trait(s): ", meff.columns.size) print("Trait name(s) and Index weight(s)") if meff.columns.size == 1: print(meff.columns[0], ": ", indwt[0]) elif meff.columns.size > 1: for i in range(meff.columns.size): print(meff.columns[i], ": ", indwt[i]) self.gmap = gmap self.meff = meff self.gmat = gmat self.group = group self.indwt = indwt def elem_cor(mylist, mprc, ngp, mposunit, method, chrm): """Derive pop cov matrix.""" if method == 1: # Bonk et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = np.exp(-2*(np.abs(mprc - mprc[:, None])/100))/4 elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (1-(2*mprc))/4 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] elif method == 2: # Santos et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = (-1*(np.abs(mprc - mprc[:, None])/200))+0.25 cutoff = (-1*(50/200))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (-1*(mprc/2))+0.25 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] cutoff = (-1*(0.5/2))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) # append chromosome-specific covariance matrix to list mylist[int(ngp)].append(tmp) return mylist def popcovmat(info, mposunit, method): """ Derive population-specific covariance matrices. Parameters ---------- info : class object A class object created using the function "datacheck" mposunit : string A sting with containing "cM" or "reco". method : int An integer with a value of 1 for Bonk et al.'s approach or 2 for Santos et al's approach' Returns ------- mylist : list A list containing group-specific pop covariance matrices for each chr. """ if mposunit not in ("cM", "cm", "CM", "Cm", "reco", "RECO"): sys.exit("marker unit should be either cM or reco") # unique group name for naming the list if map is more than 1 probn = pd.unique(info.group.iloc[:, 0].astype(str)).tolist() chromos = pd.unique(info.gmap.iloc[:, 0]) # chromosomes no_grp = info.gmap.shape[1]-3 # no of maps mylist = [] # list stores chromosome-wise covariance matrix for ngp in range(no_grp): mylist.append([]) # marker position in cM or recombination rates grouprecodist = info.gmap.iloc[:, 3+ngp] for chrm in chromos: mpo = np.array(grouprecodist[info.gmap.iloc[:, 0] == (chrm)]) elem_cor(mylist, mpo, ngp, mposunit, method, chrm) if no_grp > 1: # if map is more than one, name list using group names mylist = dict(zip(probn, mylist)) return mylist @njit def makemems(gmat, meff): """Set up family-specific marker effects (Mendelian sampling).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 4: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 3: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq @njit def makemebv(gmat, meff): """Set up family-specific marker effects (GEBV).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 2: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 1: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq def traitspecmatrices(gmat, meff): """Store trait-specific matrices in a list.""" notr = meff.shape[1] # number of traits slist = [] # list stores trait-specific matrices slist.append([]) for i in range(notr): # specify data type for numba mefff = np.array(meff.iloc[:, i], float) matrix_ms = makemems(gmat, mefff) slist[0].append(matrix_ms) return slist def namesdf(notr, trait_names): """Create names of dataframe columns for Mendelian co(var).""" tnn = np.zeros((notr, notr), 'U20') tnn = np.chararray(tnn.shape, itemsize=30) for i in range(notr): for trt in range(notr): if i == trt: tnn[i, trt] = str(trait_names[i]) elif i != trt: tnn[i, trt] = "{}_{}".format(trait_names[i], trait_names[trt]) colnam = tnn[np.tril_indices(notr)] return colnam def mrmmult(temp, covmat): """Matrix multiplication (MRM' or m'Rm).""" return temp @ covmat @ temp.T def dgmrm(temp, covmat): """Matrix multiplication (MRM') for bigger matrices.""" temp1111 = scipy.linalg.blas.dgemm(alpha=1.0, a=temp, b=covmat) return scipy.linalg.blas.dgemm(alpha=1.0, a=temp1111, b=temp.T) def progr(itern, total): """Print progress of a task.""" fill, printend, prefix, suffix = '█', "\r", 'Progress:', 'Complete' deci, length = 0, 50 percent = ("{0:." + str(deci) + "f}").format(100 * (itern / float(total))) filledlen = int(length * itern // total) bars = fill * filledlen + '-' * (length - filledlen) print(f'\r{prefix} |{bars}| {percent}% {suffix}', end=printend) if itern == total: print() def subindcheck(info, sub_id): """Check if inds provided in pd.DataFrame (sub_id) are in group data.""" sub_id = pd.DataFrame(sub_id).reset_index(drop=True) if sub_id.shape[1] != 1: sys.exit("Individuals' IDs (sub_id) should be provided in one column") numbers = info.group.iloc[:, 1].astype(str).tolist() sub_id = sub_id.squeeze().astype(str).tolist() aaa = [numbers.index(x) if x in numbers else None for x in sub_id] aaa = np.array(aaa) if len(aaa) != len(sub_id): sys.exit("Some individual ID could not be found in group data") return aaa def msvarcov_g_st(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for single trait.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding msvmsc = np.empty((matsub.shape[0], 1)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr, notr)) # Mendelian co(var) mat for ind i for chrm in pd.unique(info.gmap.iloc[:, 0]): # snp index for chromosome chrm s_ind = np.array(snpindexxx[info.gmap.iloc[:, 0] == (chrm)]) # family-specific marker effects for ind i temp = np.zeros((notr, len(s_ind))) for trt in range(notr): temp[trt, :] = slist[0][trt][i, s_ind] if info.gmap.shape[1]-3 == 1: mscov = mscov + mrmmult(temp, covmat[0][chrm-1]) else: mscov = mscov + mrmmult(temp, covmat[groupsex[i]][chrm-1]) msvmsc[i, 0] = mscov if progress: progr(i + 1, matsub.shape[0]) # print progress bar msvmsc = pd.DataFrame(msvmsc) msvmsc.columns = info.meff.columns msvmsc.insert(0, "ID", idn, True) msvmsc.insert(1, "Group", groupsex, True) # insert group return msvmsc def msvarcov_g_mt(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for multiple traits.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding mad = len(np.zeros((notr+1, notr+1))[np.tril_indices(notr+1)]) msvmsc = np.empty((matsub.shape[0], mad)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr+1, notr+1)) # Mendelian co(var) mat for ind i for chrm in
pd.unique(info.gmap.iloc[:, 0])
pandas.unique
""" Utilities to get a call tree (from the output of ``cube_dump -w``). A call tree is represented as a tree of ``(function_name,cnode_id,parent,[list of children])`` named tuples (of class ``CubeTreeNode``) """ import logging from tree_parsing import collect_hierarchy,level_fun from box import Box import pandas as pd import re from cube_file_utils import get_lines, get_cube_dump_w_text class CubeTreeNode(Box): """ Holds attributes of a tree node read from cube commands such as cube dump. For a node of the cube call tree, the following attributes are available: .. py:attribute:: fname The name of the function; .. py:attribute:: cnode_id The unique ID related to the node in the call tree, read from id=value in string; .. py:attribute:: parent A binding to the parent node (can be ``None``); .. py:attribute:: children A list of bindings to child nodes. And others from cube_dump output. """ def __repr__(root): """ An implementation for '__repr__'. Prints only the beginning and the end of the call tree. """ lines = calltree_to_string(root).split("\n") res = lines[:5] + ["..."] + lines[-6:] l = max(len(line) for line in res) res = ["", "=" * l] + res + ["=" * l, ""] return "\n".join(res) def __init__(self,*args,**kwargs): if 'frozen_box' in kwargs: del kwargs['frozen_box'] super().__init__(*args, frozen_box = True, **kwargs) def iterate_on_call_tree(root, maxlevel=None): """Iterator on a tree (Generator). Can be used for searching in the tree, depth-first. Parameters ---------- root: CubeTreeNode a CubeTreeNode representing the root of the tree; maxlevel : int or None the maximum depth of the recursion (``None`` means unlimited). Returns ------- res : CubeTreeNode Iterator yielding ``CubeTreeNode`` s. """ yield root new_maxlevel = maxlevel - 1 if maxlevel is not None else None if len(root.children) != 0 and (maxlevel is None or maxlevel > 0): for child in root.children: yield from iterate_on_call_tree(child, new_maxlevel) def calltree_to_df(call_tree, full_path=False): """Convert a call tree into a DataFrame. Parameters ---------- call_tree : CubeTreeNode Recursive representation of a call tree full_path : bool Whether or not the full path needs to be in the output as a column Returns ------- df : DataFrame A dataframe with "Function Name", "Cnode ID", "Parent Cnode ID", "Level" and optionally "Full Callpath" as columns. """ tuples = [ (n.fname, n.cnode_id, n.parent.cnode_id if n.parent is not None else pd.NA) for n in iterate_on_call_tree(call_tree) ] df = pd.DataFrame( data=tuples, columns=["Function Name", "Cnode ID", "Parent Cnode ID"] ) if full_path: # full callpath vs cnode id for convenience data = get_fpath_vs_id(call_tree) fullpath_vs_id =
pd.DataFrame(data, columns=["Cnode ID", "Full Callpath"])
pandas.DataFrame
import sys import pandas as pd import numpy as np from scipy import sqrt from shapely.geometry import Point from shapely.geometry.polygon import Polygon from .CostModule import CostModule from .WeatherDelay import WeatherDelay import traceback # constants km_per_m = 0.001 hr_per_min = 1/60 m_per_ft = 0.3048 class ErectionCost(CostModule): """ ErectionCost.py Created by <NAME> and <NAME> on Mar. 16, 2018 Created by <NAME> and <NAME> on 01 June 2019 Calculates the costs for erecting the tower and rotor nacelle assembly for land-based wind projects (items in brackets are not yet implemented) [Get terrain complexity] [Get site complexity] Get number of turbines Get duration of construction Get rate of deliveries Get daily hours of operation Get turbine rating Get component specifications [Get crane availability] Get price data Get labor mobilization_prices by crew type Get labor prices by crew type Get equipment mobilization prices by equipment type Get fuel prices Get equipment prices by equipment type Calculate operational time for lifting components Estimate potential time delays due to weather Calculate required labor and equip for erection (see equip_labor_by_type method below) Calculate number of workers by crew type Calculate man hours by crew type Calculate number of equipment by equip type Calculate equipment hours by equip type Calculate erection costs by type (see methods below) Calculate mobilization costs as function of number of workers by crew type, number of equipment by equipment type, labor_mobilization_prices, and equip_mobilization_prices Calculate labor costs as function of man_hours and labor prices by crew type Calculate fuel costs as function of equipment hours by equipment type and fuel prices by equipment type Calculate equipment costs as function of equipment hours by equipment type and equipment prices by equipment type Sum erection costs over all types to get total costs Find the least cost option Return total erection costs Keys in the input dictionary are the following: construct_duration (int) duration of construction (in months) rate_of_deliveries (int) rate of deliveries (number of turbines per week) weather_window (pd.DataFrame) window of weather data for project of interest. wind_shear_exponent - (float) The exponent of the power law wind shear calculation overtime_multiplier: (float) multiplier for overtime work (working 60 hr/wk vs 40 hr/wk) allow_same_flag (bool) boolean flag to indicate whether choosing same base and topping crane is allowed. operational_construction_time (int) Number of hours per day when construction can happen. time_construct (int) 'normal' (10 hours per day) or 'long' (24 hours per day) project_data (dict) dictionary of pd.DataFrame for each of the csv files loaded for the project. In turn, the project_data dictionary contains key value pairs of the following: crane_specs: (pd.DateFrame) Specs about the cranes for the cost calculations. equip (pd.DataFrame) Equipment needed for various tasks crew (pd.DataFrame) Crew configurations needed for various tasks components (pd.DataFrame) components to build a wind turbine project (pd.DataFrame) The project of the project to calculate. equip_price (pd.DatFrame) Prices to operate various pieces of equipment. crew_price (pd.DataFrame) THe prices for various crews material_price (pd.DatFrame) Prices for various materials used during erection. rsmeans (p.DataFrame) RSMeans data """ def __init__(self, input_dict, output_dict, project_name): """ Parameters ---------- input_dict : dict The input dictionary with key value pairs described in the class documentation output_dict : dict The output dictionary with key value pairs as found on the output documentation. """ self.input_dict = input_dict self.output_dict = output_dict self.project_name = project_name def run_module(self): """ Runs the ErectionCost model and populates the IO dictionaries with calculated values. Returns ------- int 0 if the module ran successfully. 1 if the module did not run successfully """ try: self.calculate_costs() self.outputs_for_detailed_tab() self.output_dict['erection_module_type_operation'] = self.outputs_for_costs_by_module_type_operation( input_df=self.output_dict['total_erection_cost'], project_id=self.project_name, total_or_turbine=True ) return 0, 0 # Module ran successfully except Exception as error: traceback.print_exc() return 1, error # Module did not run successfully def outputs_for_detailed_tab(self): """ Creates a list of dictionaries which can be used on their own or used to make a dataframe. Must be called after self.run_module() Returns ------- list(dict) A list of dicts, with each dict representing a row of the data. """ result =[] for row in self.output_dict['component_name_topvbase'].itertuples(): dashed_row = '{} - {}'.format(row[1], row[2]) result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'component_name_topvbase: Operation - Top or Base', 'value': dashed_row }) for row in self.output_dict['crane_choice'].itertuples(): dashed_row = '{} - {} - {}'.format(row[1], row[2], row[3]) result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'crane_choice: Crew name - Boom system - Operation', 'value': dashed_row }) for _, row in self.output_dict['crane_data_output'].iterrows(): dashed_row = '{} - {} - {}'.format(row[0], row[1], row[2]) result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'crane_data_output: crane_boom_operation_concat - variable - value', 'value': dashed_row, 'last_number': row[2] }) for _, row in self.output_dict['crane_cost_details'].iterrows(): dashed_row = '{} - {} - {}'.format(row[0], row[1], row[2]) result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'crane_cost_details: Operation ID - Type of cost - Cost', 'value': dashed_row, 'last_number': row[2] }) for _, row in self.output_dict['total_erection_cost'].iterrows(): dashed_row = '{} - {} - {}'.format(row[0], row[1], row[2]) result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'total_erection_cost: Phase of construction - Type of cost - Cost USD', 'value': dashed_row, 'last_number': row[2] }) for _, row in self.output_dict['erection_selected_detailed_data'].iterrows(): value = row['Labor cost USD'] operation = row['Operation'] result.append({ 'unit': 'usd', 'type': 'dataframe', 'variable_df_key_col_name': f'erection_selected_detailed_data: crew cost', 'value': value, 'non_numeric_value': operation }) for _, row in self.output_dict['erection_selected_detailed_data'].iterrows(): value = row['Mobilization cost USD'] crane_boom_operation_concat = row['crane_boom_operation_concat'] result.append({ 'unit': 'usd', 'type': 'dataframe', 'variable_df_key_col_name': 'erection_selected_detailed_data: mobilization', 'value': value, 'non_numeric_value': crane_boom_operation_concat }) for _, row in self.output_dict['erection_selected_detailed_data'].iterrows(): value = row['Wind multiplier'] operation = row['Operation'] result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': f'erection_selected_detailed_data: wind multiplier', 'value': value, 'non_numeric_value': operation }) result.append({ 'unit': 'usd', 'type': 'variable', 'variable_df_key_col_name': 'total_cost_summed_erection', 'value': float(self.output_dict['total_cost_summed_erection']) }) for _, row in self.output_dict['management_crews_cost'].iterrows(): result.append({ 'unit': '', 'type': 'dataframe', 'variable_df_key_col_name': 'management_crews_cost: {}'.format(' <-> '.join(row.index)), 'value': ' <-> '.join(list(str(x) for x in row)[1:]) }) module = type(self).__name__ for _dict in result: _dict['project_id_with_serial'] = self.project_name _dict['module'] = module self.output_dict['erection_cost_csv'] = result return result def calculate_erection_operation_time(self): """ Calculates operation time required for each type of equipment included in project data. self.output_dict['possible_cranes'] = possible_cranes self.output_dict['erection_operation_time'] = erection_operation_time_dict self.input_dict keys --------------------- construct_duration : int int duration of construction (in months) operational_construction_time : int Number of hours each day that are available for construction hours. self.output_dict keys --------------------- self.output_dict['possible_cranes'] : possible_cranes (with geometry) self.output_dict['erection_operation_time'] : Operation time for each crane. Returns ------- pd.DataFrame, pd.DataFrame Dataframe of possible_cranes (with geometry) and operational time for cranes """ project_data = self.input_dict['project_data'] construct_duration = self.input_dict['construct_duration'] operational_construction_time = self.input_dict['operational_construction_time'] erection_construction_time = 1 / 3 * construct_duration breakpoint_between_base_and_topping_percent = self.input_dict['breakpoint_between_base_and_topping_percent'] hub_height_m = self.input_dict['hub_height_meters'] rotor_diameter_m = self.input_dict['rotor_diameter_m'] num_turbines = float(self.input_dict['num_turbines']) turbine_spacing_rotor_diameters = self.input_dict['turbine_spacing_rotor_diameters'] # for components in component list determine if base or topping project_data['components']['Operation'] = project_data['components']['Lift height m'] > ( float(hub_height_m * breakpoint_between_base_and_topping_percent)) boolean_dictionary = {True: 'Top', False: 'Base'} project_data['components']['Operation'] = project_data['components']['Operation'].map(boolean_dictionary) # For output to a csv file self.output_dict['component_name_topvbase'] = project_data['components'][['Component', 'Operation']] # create groups for operations top_v_base = project_data['components'].groupby(['Operation']) # group crane data by boom system and crane name to get distinct cranes crane_grouped = project_data['crane_specs'].groupby( ['Equipment name', 'Equipment ID', 'Crane name', 'Boom system', 'Crane capacity tonne']) # Calculate the crane lift polygons crane_poly = self.calculate_crane_lift_polygons(crane_grouped=crane_grouped) # loop through operation type (topping vs. base) component_max_speed = pd.DataFrame() for name_operation, component_group in top_v_base: lift_max_wind_speed = self.calculate_component_lift_max_wind_speed(component_group=component_group, crane_poly=crane_poly, component_max_speed=component_max_speed, operation=name_operation) crane_poly = lift_max_wind_speed['crane_poly'] component_max_speed = lift_max_wind_speed['component_max_speed'] # Sorting can help for some operations, but isn't strictly necessary, so it can be turned # off when not debugging # component_max_speed = component_max_speed.sort_values(by=['Crane name', 'Boom system', 'Component']) # join crane polygon to crane specs crane_component = pd.merge(crane_poly, component_max_speed, on=['Crane name', 'Boom system']) # select only cranes that could lift the component possible_cranes = crane_component.where(crane_component['crane_bool'] == True).dropna(thresh=1).reset_index( drop=True) # calculate travel time per cycle turbine_spacing = float( turbine_spacing_rotor_diameters * rotor_diameter_m * km_per_m) possible_cranes['Travel time hr'] = turbine_spacing / possible_cranes['Speed of travel km per hr'] * num_turbines # CRANE BREAKDOWNS: This is where you could add time for breakdown. # calculate erection time possible_cranes['Operation time hr'] = ((possible_cranes['Lift height m'] / possible_cranes[ 'Hoist speed m per min'] * hr_per_min) + (possible_cranes['Cycle time installation hrs']) ) * num_turbines # store setup time possible_cranes['Setup time hr'] = possible_cranes['Setup time hr'] * num_turbines # check that crane can lift all components within a group (base vs top) crane_lift_entire_group_for_operation = crane_component.groupby(by=['Crane name', 'Boom system', 'Operation'])[ 'crane_bool'].all() # if it can't then we need to remove it. # otherwise we end up with an option for a crane to perform an operation without lifting all of the corresponding components testcranenew = possible_cranes.merge(crane_lift_entire_group_for_operation, on=['Crane name', 'Boom system', 'Operation']) possible_cranes = testcranenew.loc[testcranenew['crane_bool_y']] erection_time = possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system', 'Operation'])['Operation time hr'].sum() travel_time = possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system', 'Operation'])['Travel time hr'].max() setup_time = possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system', 'Operation'])['Setup time hr'].max() rental_time_without_weather = erection_time + travel_time + setup_time operation_time = rental_time_without_weather.reset_index() operation_time = operation_time.rename(columns={0: 'Operation time all turbines hrs'}) operation_time['Operational construct days'] = (operation_time['Operation time all turbines hrs'] / operational_construction_time) # if more than one crew needed to complete within construction duration then assume that all construction happens # within that window and use that time frame for weather delays; if not, use the number of days calculated operation_time['time_construct_bool'] = (operation_time['Operational construct days'] > erection_construction_time * 30) boolean_dictionary = {True: erection_construction_time * 30, False: np.NAN} operation_time['time_construct_bool'] = operation_time['time_construct_bool'].map(boolean_dictionary) operation_time['Time construct days'] = operation_time[ ['time_construct_bool', 'Operational construct days']].min(axis=1) # print(possible_cranes[['Crane name', 'Component', 'Operation time hr', 'Operation']]) for operation, component_group in top_v_base: unique_component_crane = possible_cranes.loc[possible_cranes['Operation'] == operation][ 'Component'].unique() for component in component_group['Component']: if component not in unique_component_crane: raise Exception( 'Error: Unable to find installation crane for {} operation and {} component'.format(operation, component)) erection_operation_time_dict = dict() erection_operation_time_dict['possible_cranes'] = possible_cranes erection_operation_time_dict['operation_time'] = operation_time self.output_dict['possible_cranes'] = possible_cranes self.output_dict['erection_operation_time'] = erection_operation_time_dict return possible_cranes, operation_time def calculate_offload_operation_time(self): """ Calculates time for the offload operation. self.input_dict keys -------------------- project_data : dict dict of data frames for each of the csv files loaded for the project operational_construction_time : int operational hours of construction rate_of_deliveries : int rate of deliveries of turbines ready for erection. self.output_dict key -------------------- possible_cranes : pd.DataFrame Dataframe of cranes possibly available for the operation operation_time : int Integer of number of hours per day construction can proceed. """ project_data = self.input_dict['project_data'] operational_construction_time = self.input_dict['operational_construction_time'] rate_of_deliveries = self.input_dict['rate_of_deliveries'] rotor_diameter_m = self.input_dict['rotor_diameter_m'] num_turbines = float(self.input_dict['num_turbines']) turbine_spacing_rotor_diameters = self.input_dict['turbine_spacing_rotor_diameters'] offload_cranes = project_data['crane_specs'].where( project_data['crane_specs']['Equipment name'] == 'Offload crane') # group crane data by boom system and crane name to get distinct cranes crane_grouped = offload_cranes.groupby( ['Equipment name', 'Equipment ID', 'Crane name', 'Boom system', 'Crane capacity tonne']) crane_poly = self.calculate_crane_lift_polygons(crane_grouped=crane_grouped) component_group = project_data['components'] component_max_speed = pd.DataFrame() lift_max_wind_speed = self.calculate_component_lift_max_wind_speed(component_group=component_group, crane_poly=crane_poly, component_max_speed=component_max_speed, operation='offload') component_max_speed = lift_max_wind_speed['component_max_speed'] crane_poly = lift_max_wind_speed['crane_poly'] if len(crane_poly) != 0: # join crane polygon to crane specs crane_component = pd.merge(crane_poly, component_max_speed, on=['Crane name', 'Boom system']) # select only cranes that could lift the component possible_cranes = crane_component.where(crane_component['crane_bool'] == True).dropna(thresh=1).reset_index( drop=True) # calculate travel time per cycle turbine_spacing = float( turbine_spacing_rotor_diameters * rotor_diameter_m * km_per_m) turbine_num = float(self.input_dict['num_turbines']) possible_cranes['Travel time hr'] = turbine_spacing / possible_cranes['Speed of travel km per hr'] * num_turbines # calculate erection time possible_cranes['Operation time hr'] = ((possible_cranes['Lift height m'] / possible_cranes[ 'Hoist speed m per min'] * hr_per_min) + (possible_cranes['Offload cycle time hrs']) ) * turbine_num # store setup time possible_cranes['Setup time hr'] = possible_cranes['Setup time hr'] * turbine_num erection_time = \ possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system'])['Operation time hr'].sum() travel_time = \ possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system'])['Travel time hr'].max() setup_time = \ possible_cranes.groupby(['Crane name', 'Equipment name', 'Crane capacity tonne', 'Crew type ID', 'Boom system'])['Setup time hr'].max() rental_time_without_weather = erection_time + travel_time + setup_time operation_time = rental_time_without_weather.reset_index() operation_time = operation_time.rename(columns={0: 'Operation time all turbines hrs'}) operation_time['Operational construct days'] = (operation_time['Operation time all turbines hrs'] / operational_construction_time) # if more than one crew needed to complete within construction duration # then assume that all construction happens within that window and use # that timeframe for weather delays; if not, use the number of days calculated operation_time['time_construct_bool'] = (turbine_num / operation_time['Operational construct days'] * 6 > float(rate_of_deliveries)) boolean_dictionary = {True: (float(turbine_num) / (float(rate_of_deliveries) / 6)), False: np.NAN} operation_time['time_construct_bool'] = operation_time['time_construct_bool'].map(boolean_dictionary) operation_time['Time construct days'] = operation_time[ ['time_construct_bool', 'Operational construct days']].max( axis=1) possible_cranes['Operation'] = 'Offload' operation_time['Operation'] = 'Offload' else: possible_cranes = [] operation_time = [] # print(possible_cranes[['Crane name', 'Component', 'Operation time hr']]) unique_components = project_data['components']['Component'].unique() unique_component_crane = possible_cranes['Component'].unique() for component in unique_components: if component not in unique_component_crane: raise Exception('Error: Unable to find offload crane for {}'.format(component)) return possible_cranes, operation_time def calculate_crane_lift_polygons(self, crane_grouped): """ Here we associate polygons with each crane. However, these polygons are not shapes for the lift. Rather, they define functions f(x), where x is a crane lift load and f(x) is the height to which that load can be lifted. To find out whether the crane can lift a particular load, one just needs to check whether a point x (lift mass in tonnes) and y (lift height in m) lies within the crane's polygon. Parameters ---------- crane_grouped : pandas.core.groupby.generic.DataFrameGroupBy The aggregation of the cranes to compute the lift polygons for. The columns in the aggregation are assume to be 'Equipment name', 'Crane name', 'Boom system', 'Crane capacity tonne' Returns ------- pd.DataFrame A dataframe of the cranes and their lifting polygons. """ crane_poly = pd.DataFrame( columns=['Equipment name', 'Equipment ID', 'Crane name', 'Boom system', 'Crane capacity tonne', 'Crane poly']) for (equipment_name, equipment_id, crane_name, boom_system, crane_capacity_tonne), crane in crane_grouped: crane = crane.reset_index(drop=True) x = crane['Max capacity tonne'] y = crane['Hub height m'] wind_speed = min(crane['Max wind speed m per s']) hoist_speed = min(crane['Hoist speed m per min']) travel_speed = min(crane['Speed of travel km per hr']) setup_time = max(crane['Setup time hr']) crew_type = crane.loc[0, 'Crew type ID'] # For every crane/boom combo the crew is the same, so we can just take first crew. polygon = Polygon([(0, 0), (0, max(y)), (min(x), max(y)), (max(x), min(y)), (max(x), 0)]) df = pd.DataFrame([[equipment_name, equipment_id, crane_name, boom_system, crane_capacity_tonne, wind_speed, setup_time, hoist_speed, travel_speed, crew_type, polygon]], columns=['Equipment name', 'Equipment ID', 'Crane name', 'Boom system', 'Crane capacity tonne', 'Max wind speed m per s', 'Setup time hr', 'Hoist speed m per min', 'Speed of travel km per hr', 'Crew type ID', 'Crane poly']) crane_poly = crane_poly.append(df, sort=True) return crane_poly def calculate_component_lift_max_wind_speed(self, *, component_group, crane_poly, component_max_speed, operation): """ First, using the height and mass of the component being lifted, this method determines if a component can be lifted to the necessary height by each crane. Also, creates a dataframe that has the maximum wind speeds to lift particular components, given the component data and crane lift data given in the arguments. For the maximum wind speed calculations, we use these equations to calculation vmax, which is the maximum permissible wind speed: vmax = max_TAB * sqrt(1.2 * mh / aw), where mh = hoist load aw = area exposed to wind = surface area * coeff drag 1.2 = constant in m^2 / t vmax_tab = maximum load speed per load chart (source: pg. 33 of Liebherr) See the source code for this method on how this calculation is used. Parameters ---------- component_group : pd.DataFrame Dataframe with component data. crane_poly : pd.DataFrame Data about cranes doing the lifting. The polygons are specifications of functions that define lift height f(x) as a function of component mass x. component_max_speed : pd.DataFrame The dataframe into which maximum wind speeds for lifting each component will be accumulated. For the first call into this method, pass in an empty dataframe created with pd.DataFrame operation : str The name of the operation ("base", "top" or "offload") that the cranes are performing for this calculation. If the operation is "Offload" the 'Mass tonne' is divided by two when making the lift polygons. This created the assumption that there are always 2 offload cranes during offload operations. (See the calculate_crane_lift_polygons() method above for more about calculating the lift polygons. Returns ------- dict Returns a dict of pd.DataFrame values. The key "component_max_speed" is the the dataframe of max component speeds. The key "crane_poly" is a COPY of the crane_poly dataframe passed as a parameter to this function and with a column of "Crane bool {operation}" attached. """ for idx, crane in crane_poly.iterrows(): polygon = crane['Crane poly'] # calculate polygon for crane capacity and check if component can be lifted by each crane without wind loading for component in component_group['Component']: # get weight and height of component in each component group component_only = component_group.where(component_group['Component'] == component).dropna(thresh=1) # See docstring for "operation" parameter above about mass calculations for offloading if operation == 'offload': point = Point(component_only['Mass tonne'] / 2, (component_only['Section height m'] + component_only['Offload hook height m'])) else: point = Point(component_only['Mass tonne'], (component_only['Lift height m'] + component_only['Offload hook height m'])) crane['Lift boolean {component}'.format(component=component)] = polygon.contains(point) # Transform the "Lift boolean" indexes in the series to a list of booleans # that signify if the crane can lift a component. bool_list = list() for component in component_group['Component']: if crane['Lift boolean {component}'.format(component=component)] is False: crane_bool = False else: crane_bool = True bool_list.append(crane_bool) # mh is an effective mass (it should be the mass of the entire component for both offload and other cranes, not just 1/2 that's used above for determining whether the part can be lifted) mh = component_group['Mass tonne'] aw = component_group['Surface area sq m'] * component_group['Coeff drag'] vmax_tab = crane['Max wind speed m per s'] vmax_calc = vmax_tab * np.sqrt(1.2 * mh / aw) # if vmax_calc is less than vmax_tab then vmax_calc, otherwise vmax_tab (based on pg. 33 of Liebherr) component_group_new = pd.DataFrame(component_group, columns=list(component_group.columns.values) + ['vmax', 'Crane name', 'Boom system', 'crane_bool']) component_group_new['vmax'] = np.minimum(vmax_tab, vmax_calc) component_group_new['Crane name'] = crane['Crane name'] component_group_new['Boom system'] = crane['Boom system'] component_group_new['crane_bool'] = bool_list component_max_speed = component_max_speed.append(component_group_new, sort=True) crane_poly_new = crane_poly.copy() crane_poly_new['Crane bool {}'.format(operation)] = min(bool_list) result = { 'component_max_speed': component_max_speed, 'crane_poly': crane_poly_new } return result def calculate_wind_delay_by_component(self): """ Calculates wind delay for each component in the project. Returns ------- pd.DataFrame crane specifications and component properties joined with wind delays for each case. """ # Get necessary values from input_dict crane_specs = self.output_dict['crane_specs_withoffload'] weather_window = self.input_dict['weather_window'] # calculate wind delay for each component and crane combination crane_specs = crane_specs.reset_index() crane_specs['Wind delay percent'] = np.nan # pull global inputs for weather delay from input_dict weather_data_keys = {'wind_shear_exponent', 'weather_window'} # specify collection-specific weather delay inputs weather_delay_global_inputs = {i: self.input_dict[i] for i in self.input_dict if i in weather_data_keys} # Iterate over every crane + boom combination for i, row in crane_specs.iterrows(): # assume we don't know when the operation occurs operation_window = len(weather_window.index) # operation window = entire construction weather window operation_start = 0 # start time is at beginning of construction weather window # extract critical wind speed critical_wind_operation = row['vmax'] # extract height of interest (differs for offload cranes) if (row['Crane bool offload'] == 1) is True: height_interest = row['Section height m'] + row['Offload hook height m'] else: height_interest = row['Lift height m'] + row['Offload hook height m'] # compute weather delay weather_delay_input_dict = weather_delay_global_inputs weather_delay_output_dict = dict() weather_delay_input_dict['start_delay_hours'] = operation_start weather_delay_input_dict['critical_wind_speed_m_per_s'] = critical_wind_operation weather_delay_input_dict['wind_height_of_interest_m'] = height_interest weather_delay_input_dict['mission_time_hours'] = operation_window WeatherDelay(weather_delay_input_dict, weather_delay_output_dict) wind_delay = np.array(weather_delay_output_dict['wind_delays']) # if greater than 4 hour delay, then shut down for full day (10 hours) wind_delay[(wind_delay > 4)] = 10 wind_delay_time = float(wind_delay.sum()) # store weather delay for operation, component, crane, and boom combination crane_specs.loc[i, 'Wind delay percent'] = wind_delay_time / len(weather_window) self.output_dict['enhanced_crane_specs'] = crane_specs return crane_specs def aggregate_erection_costs(self): """ Aggregates labor, equipment, mobilization and fuel costs for erection. Returns ------- (pd.DataFrame, pd.DataFrame) Two dataframes: First, utilizing the same crane for base and topping. Second, utilizing separate cranes for base and topping """ join_wind_operation = self.output_dict['join_wind_operation'] overtime_multiplier = self.input_dict['overtime_multiplier'] time_construct = self.input_dict['time_construct'] project_data = self.input_dict['project_data'] hour_day = self.input_dict['hour_day'] # TODO: consider removing equipment name and crane capacity from crane_specs tab (I believe these data are unused here and they get overwritten later with equip information from equip tab) join_wind_operation = join_wind_operation.drop(columns=['Equipment name', 'Crane capacity tonne']) possible_crane_cost_with_equip = pd.merge(join_wind_operation, project_data['equip'], on=['Equipment ID', 'Operation']) equip_crane_cost = pd.merge(possible_crane_cost_with_equip, project_data['equip_price'], on=['Equipment name', 'Crane capacity tonne']) equip_crane_cost['Equipment rental cost USD'] = equip_crane_cost['Total time per op with weather'] * \ equip_crane_cost['Equipment price USD per hour'] * \ equip_crane_cost['Number of equipment'] equipment_cost_to_merge = equip_crane_cost[['Crane name', 'Boom system', 'Equipment ID', 'Operation', 'Equipment price USD per hour', 'Number of equipment', 'Equipment rental cost USD', 'Fuel consumption gal per day']] equipment_cost_to_merge = equipment_cost_to_merge.groupby(['Crane name', 'Boom system', 'Equipment ID', 'Operation']).sum().reset_index() possible_crane_cost = pd.merge(join_wind_operation, equipment_cost_to_merge, on=['Crane name', 'Boom system', 'Equipment ID', 'Operation']) # Merge crew and price data for non-management crews only (base, topping, and offload only) crew_cost =
pd.merge(project_data['crew'], project_data['crew_price'], on=['Labor type ID'])
pandas.merge
"""Web interface""" import re import base64 import numpy as np import os import pandas as pd from sklearn.manifold import TSNE import spacy import streamlit as st from textblob import TextBlob import src.analyzer as az import src.constants as cts import src.doc_similarity as ds import src.get_handler as gh import src.json_util as ju import src.markdown as md import src.summarizer as sz import src.topic_modeling as tm import src.visualization as vis # resources/sample_reflections/lab1, resources/sample_reflections/lab2 # initialize main_df and preprocessed_Df SPACY_MODEL_NAMES = ["en_core_web_sm", "en_core_web_md"] preprocessed_df = pd.DataFrame() main_df = pd.DataFrame() assignments = None assign_text = None stu_id = None success_msg = None debug_mode = False def main(): """main streamlit function""" # Title st.sidebar.title("Welcome to GatorMiner!") data_retreive_method = st.sidebar.selectbox( "Choose the data retrieving method", [ "Local file system", "AWS", ], ) if retreive_data(data_retreive_method): analysis_mode = st.sidebar.selectbox( "Choose the analysis mode", [ "Home", "Frequency Analysis", "Sentiment Analysis", "Document Similarity", "Summary", "Topic Modeling", "Interactive", ], ) if debug_mode: st.write(main_df) if analysis_mode == "Home": readme() else: if analysis_mode == "Frequency Analysis": st.title(analysis_mode) frequency() elif analysis_mode == "Sentiment Analysis": st.title(analysis_mode) sentiment() elif analysis_mode == "Document Similarity": st.title(analysis_mode) doc_sim() elif analysis_mode == "Summary": st.title(analysis_mode) summary() elif analysis_mode == "Topic Modeling": st.title(analysis_mode) tpmodel() elif analysis_mode == "Interactive": st.title(analysis_mode) interactive() success_msg.empty() def readme(): """function to load and configurate readme source""" with open("README.md") as readme_file: readme_src = readme_file.read() for file in os.listdir("resources/images"): if file.endswith(".png"): img_path = f"resources/images/{file}" with open(img_path, "rb") as f: img_bin = base64.b64encode(f.read()).decode() readme_src = readme_src.replace(img_path, f"data:image/png;base64,{img_bin}") st.markdown(readme_src, unsafe_allow_html=True) def landing_pg(): """landing page""" landing = st.sidebar.selectbox("Welcome", ["Home", "Interactive"]) if landing == "Home": readme() else: interactive() def retreive_data(data_retreive): """pipeline to retrieve data from user input to output""" global preprocessed_df global main_df if data_retreive == "Local file system": input_assignments = st.sidebar.text_input( "Enter path(s) to markdown documents (seperate by comma)" ) else: input_assignments = st.sidebar.text_input( "Enter assignment names of the markdown \ documents(seperate by comma)" ) st.sidebar.info( "You will need to store keys and endpoints in the \ environment variables") if not input_assignments: landing_pg() else: input_assignments = re.split(r"[;,\s]\s*", input_assignments) try: main_df, preprocessed_df = import_data( data_retreive, input_assignments) except TypeError: st.sidebar.warning( "No data imported. Please check the reflection document input") readme() else: global success_msg success_msg = None if main_df.empty is not True: success_msg = st.sidebar.success("Sucessfully Loaded!!") global assign_id assign_id = preprocessed_df.columns[0] global assignments assignments = st.sidebar.multiselect( label="Select assignments below:", options=main_df[assign_id].unique(), ) global assign_text assign_text = ", ".join(assignments) global stu_id stu_id = preprocessed_df.columns[1] return True @st.cache(allow_output_mutation=True) def load_model(name): """load spacy model""" return spacy.load(name) @st.cache(allow_output_mutation=True, suppress_st_warning=True) def import_data(data_retreive_method, paths): """pipeline to import data from local or aws""" json_lst = [] if data_retreive_method == "Local file system": try: for path in paths: json_lst.append(md.collect_md(path)) except FileNotFoundError as err: st.sidebar.text(err) readme() else: passbuild = st.sidebar.checkbox( "Only retreive build success records", value=True) try: configs = gh.auth_config() for path in paths: response = gh.get_request(path, passbuild, **configs) json_lst.append(ju.clean_report(response)) except (EnvironmentError, Exception) as err: st.sidebar.error(err) readme() # when data is retreived if json_lst: raw_df = pd.DataFrame() for item in json_lst: single_df = pd.DataFrame(item) raw_df = pd.concat([raw_df, single_df]).fillna("") tidy_df = df_preprocess(raw_df) return tidy_df, raw_df def df_preprocess(df): """build and preprocess (combine, normalize, tokenize) text""" # filter out first two columns -- non-report content cols = df.columns[2:] # combining text into combined column df["combined"] = df[cols].apply( lambda row: "\n".join(row.values.astype(str)), axis=1 ) # normalize df[cts.NORMAL] = df["combined"].apply(lambda row: az.normalize(row)) # tokenize df[cts.TOKEN] = df[cts.NORMAL].apply(lambda row: az.tokenize(row)) return df def frequency(): """main function for frequency analysis""" freq_type = st.sidebar.selectbox( "Type of frequency analysis", ["Overall", "Student", "Question"] ) if freq_type == "Overall": freq_range = st.sidebar.slider( "Select a range of Most frequent words", 1, 50, value=25 ) st.sidebar.success( 'To continue see individual frequency analysis select "Student"' ) st.header(f"Overall most frequent words in **{assign_text}**") overall_freq(freq_range) elif freq_type == "Student": freq_range = st.sidebar.slider( "Select a range of Most frequent words", 1, 20, value=10 ) st.header( f"Most frequent words by individual students in **{assign_text}**" ) student_freq(freq_range) elif freq_type == "Question": freq_range = st.sidebar.slider( "Select a range of Most frequent words", 1, 20, value=10 ) st.header( f"Most frequent words in individual questions in **{assign_text}**" ) question_freq(freq_range) def overall_freq(freq_range): """page fore overall word frequency""" plots_range = st.sidebar.slider( "Select the number of plots per row", 1, 5, value=3 ) freq_df = pd.DataFrame(columns=["assignments", "word", "freq"]) # calculate word frequency of each assignments for item in assignments: # combined text of the whole assignment combined_text = " ".join( main_df[main_df[assign_id] == item][cts.NORMAL] ) item_df = pd.DataFrame( az.word_frequency(combined_text, freq_range), columns=["word", "freq"], ) item_df["assignments"] = item freq_df = freq_df.append(item_df) # plot all the subplots of different assignments st.altair_chart( vis.facet_freq_barplot( freq_df, assignments, "assignments", plots_per_row=plots_range ) ) def student_freq(freq_range): """page for individual student's word frequency""" students = st.multiselect( label="Select specific students below:", options=main_df[stu_id].unique(), ) plots_range = st.sidebar.slider( "Select the number of plots per row", 1, 5, value=3 ) freq_df = pd.DataFrame(columns=["student", "word", "freq"]) stu_assignment = main_df[ (main_df[stu_id].isin(students)) & main_df[assign_id].isin(assignments) ] if len(students) != 0: for student in students: for item in assignments: individual_freq = az.word_frequency( stu_assignment[ (stu_assignment[assign_id] == item) & (stu_assignment[stu_id] == student) ] .loc[:, ["combined"]] .to_string(), freq_range, ) ind_df = pd.DataFrame(individual_freq, columns=["word", "freq"]) ind_df["assignments"] = item ind_df["student"] = student freq_df = freq_df.append(ind_df) st.altair_chart( vis.facet_freq_barplot( freq_df, students, "student", color_column="assignments", plots_per_row=plots_range, ) ) def question_freq(freq_range): """page for individual question's word frequency""" # drop columns with all na select_preprocess = preprocessed_df[ preprocessed_df[assign_id].isin(assignments) ].dropna(axis=1, how="all") questions = st.multiselect( label="Select specific questions below:", options=select_preprocess.columns[2:], ) plots_range = st.sidebar.slider( "Select the number of plots per row", 1, 5, value=1 ) freq_question_df = pd.DataFrame(columns=["question", "word", "freq"]) select_text = {} for question in questions: select_text[question] = main_df[question].to_string( index=False, na_rep="" ) question_df = pd.DataFrame( select_text.items(), columns=["question", "text"] ) if len(questions) != 0: for question in questions: quest_freq = az.word_frequency( question_df[question_df["question"] == question] .loc[:, ["text"]] .to_string(), freq_range, ) ind_df =
pd.DataFrame(quest_freq, columns=["word", "freq"])
pandas.DataFrame
import numpy as np import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt from accessibility_analyzing.accessibility_calculator import accessibility_calculator as AC #作为程序入口,暂时写成绝对引用 from accessibility_analyzing import utlis as ut def deprived_changed(mintime, maxtime, timegap, deprived_boundary, entro_type, research_area_file, npy_file=r"D:\pyprojectlbw\odtime_generate\datarep\2198_2197_night_sz.npy", delete_shp_file=r'D:\multicities\data\深圳分区\水库_Clip.shp', is_timefeecost_model=False, demography_index='Sum_PEO', target_index='index'): """ 查询随着时间变化到底有多少人会被剥夺 deprived_boundary: 被剥夺的可达性边界 type: 选择何种机会 """ for each in range(mintime, maxtime+timegap,timegap): #TODO 这里可以解耦,单独再写一个模块,后面同样的逻辑会用到很多次 ac = AC(target_index=target_index,npy_file=npy_file,research_area_file=research_area_file,demography_index=demography_index, delelte_shp_file=delete_shp_file,opportunity_index=entro_type,time_boundary=each, deprived_boundary=deprived_boundary,is_timefeecost_model=is_timefeecost_model) df_temp = ac.to_dataframe() temp = df_temp['deprived_pop'].sum() #查看有多少人被剥夺 temp1 = df_temp[demography_index].sum() print(temp,temp1,temp/temp1) yield each, temp/temp1 # print(temp) def plot_comparison(mintime_range,maxtime_range,time_gap,deprived_boundary=0.05, is_timefeecost_model=False,delete_shp_file=None, filepath=r'C:\Users\43714\Desktop\temp.png', npy_file=r"D:\pyprojectlbw\odtime_generate\datarep\2198_2197_night_sz.npy", npy_file1 = r"D:\pyprojectlbw\odtime_generate\datarep\2198_2197_night_sz.npy", oppor_index_list=['entr_0_per','entr_1_per','entr_2_1_p'], color_list=['cornflowerblue','orangered','lightgreen'], color_list1 = ['mediumblue','darkred','forestgreen'], research_area_file=r'D:\multicities\data\深圳分区\sz_10_acc_entro.shp', demo_index="Sum_PEO", target_index='index'): """ 两期时间节点下的,剥夺人群对比绘图模块 """ fig = plt.figure() axe = plt.subplot() # color = color_list entroy_index = oppor_index_list for each, each1, each1_1 in zip(entroy_index, color_list, color_list1): x_label = [] y_label = [] for each2 in deprived_changed(mintime_range, maxtime_range, time_gap, deprived_boundary, each, delete_shp_file=delete_shp_file, is_timefeecost_model=is_timefeecost_model, npy_file=npy_file, research_area_file=research_area_file, demography_index=demo_index, target_index=target_index): x_label.append(each2[0] / 60) y_label.append(each2[1]) l, = axe.plot(x_label, y_label, color=each1, linestyle=':',linewidth=1) l.set_label(' ') x_label = [] y_label = [] for each2 in deprived_changed(mintime_range, maxtime_range, time_gap, deprived_boundary, each, delete_shp_file=delete_shp_file, is_timefeecost_model=is_timefeecost_model, npy_file=npy_file1, research_area_file=research_area_file, demography_index=demo_index, target_index=target_index): x_label.append(each2[0] / 60) y_label.append(each2[1]) l, = axe.plot(x_label, y_label, color=each1_1,linewidth=1,) l.set_label(' ') axe.axvline(x=55, ls='-.', c='grey') axe.grid(True) plt.legend() plt.yticks([x for x in np.arange(0, 1.2, 0.2)], ('0', '20%', '40%', '60%', '80%', '100%')) plt.xticks([x for x in np.arange(mintime_range / 60, (maxtime_range + time_gap) / 60, time_gap / 60)], ('30', '35', '40', '45', '50', '55', '60', '65', '70', '75' , '80', '85', '90',)) plt.savefig(filepath, dpi=300) plt.show() def plot(mintime_range,maxtime_range,time_gap,deprived_boundary=0.05, is_timefeecost_model=False,delete_shp_file=None, filepath=r'C:\Users\43714\Desktop\temp.png', npy_file=r"D:\pyprojectlbw\odtime_generate\datarep\2198_2197_night_sz.npy", oppor_index_list=['entr_0_per','entr_1_per','entr_2_1_p'], color_list=['cornflowerblue','orangered','lightgreen'], research_area_file=r'D:\multicities\data\深圳分区\sz_10_acc_entro.shp', demo_index="Sum_PEO", target_index='index'): """ 绘图模块 """ fig = plt.figure() axe = plt.subplot() color = color_list entroy_index = oppor_index_list for each,each1 in zip(entroy_index,color): x_label = [] y_label = [] for each2 in deprived_changed(mintime_range,maxtime_range,time_gap,deprived_boundary,each, delete_shp_file=delete_shp_file, is_timefeecost_model=is_timefeecost_model, npy_file=npy_file, research_area_file=research_area_file, demography_index=demo_index, target_index=target_index): x_label.append(each2[0]/60) y_label.append(each2[1]) l, =axe.plot(x_label,y_label,color = each1,) l.set_label(' ') axe.axvline(x=55,ls='-.',c='grey') axe.grid(True) plt.legend() plt.yticks([x for x in np.arange(0,1.2,0.2)],('0','20%','40%','60%','80%','100%')) plt.xticks([x for x in np.arange(mintime_range/60,(maxtime_range+time_gap)/60, time_gap/60)],('30','35','40','45','50','55','60','65','70','75' ,'80','85','90',)) plt.savefig(filepath,dpi=300) plt.show() def deprived_stat_cal(shp_file_dir='./datarep/sz_access_dir',target_index = 'index',panda_dic=dict(), deprived_index='deprived_p',demo_index="Sum_PEO", excel_save_path=r'./datarep/', divided_region_dir=r'D:\multicities\data\深圳分区\分区去重结果\最终结果1', divided_rigion_index=2, reindex_index = None, excel_file_name = 'results_deprived' ): ''' shp_file_dir 为存放已经完成可达性计算的shp文件之路径名称 ''' for shp_file, _ in ut.iter_shpfile(shp_file_dir, ['.shp']): temp_str = '剥夺占比'+_ temp_str1 = '名称'+_ panda_dic[temp_str] = [] panda_dic[temp_str1] = [] AC_result = ut.read_file(shp_file) panda_dic[temp_str].append(AC_result[deprived_index].sum()/AC_result[demo_index].sum()) panda_dic[temp_str1].append('全市') for each,file_name in ut.generate_district_indexlist(dir_name=divided_region_dir,target_index=divided_rigion_index): t = AC_result[AC_result[target_index].isin(each)] #按行政区进行划分的最主要逻辑, t = t[deprived_index].sum()/t[demo_index].sum() panda_dic[temp_str].append(t) panda_dic[temp_str1].append(file_name) df =
pd.DataFrame.from_dict(panda_dic)
pandas.DataFrame.from_dict
###### GET THE MUSIC VIDEOS FROM YOUTUBE AND SAVE TO GOOGLE SHEET ###### import config from requests import get import math import pandas as pd import gspread_pandas as gspd import logging logging.basicConfig(filename='similarbands.log', level=logging.INFO, format='%(levelname)s:%(name)s:%(asctime)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log = logging.getLogger(__name__) def get_yt_likes(playlists=config.playlists,yt_key=config.yt_key,debug=0): ###### PARSE VIDEOS ###### def parse_videos(page,df,response): # loop through all videos for item in response['items']: #put id, title, description into df video_id = item['snippet']['resourceId']['videoId'] video_url = config.yt_baseurl + item['snippet']['resourceId']['videoId'] video_title = item['snippet']['title'] video_description = item['snippet']['description'] df_video = pd.DataFrame.from_dict({'id':[video_id], 'url':[video_url], 'title':[video_title], 'description':[video_description]}) df = df.append(df_video, ignore_index=True) return df ########################### df =
pd.DataFrame()
pandas.DataFrame
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pandas from pandas.compat import string_types from pandas.core.dtypes.cast import find_common_type from pandas.core.dtypes.common import ( is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, ) from pandas.core.index import ensure_index from pandas.core.base import DataError from modin.engines.base.frame.partition_manager import BaseFrameManager from modin.error_message import ErrorMessage from modin.backends.base.query_compiler import BaseQueryCompiler class PandasQueryCompiler(BaseQueryCompiler): """This class implements the logic necessary for operating on partitions with a Pandas backend. This logic is specific to Pandas.""" def __init__( self, block_partitions_object, index, columns, dtypes=None, is_transposed=False ): assert isinstance(block_partitions_object, BaseFrameManager) self.data = block_partitions_object self.index = index self.columns = columns if dtypes is not None: self._dtype_cache = dtypes self._is_transposed = int(is_transposed) # Index, columns and dtypes objects _dtype_cache = None def _get_dtype(self): if self._dtype_cache is None: def dtype_builder(df): return df.apply(lambda row:
find_common_type(row.values)
pandas.core.dtypes.cast.find_common_type
import numpy as np import pandas as pd from pywt import wavedec from zipfile import ZipFile from statsmodels.robust.scale import mad as medianAD def get_class_and_frequence(path: str) -> (int, int): ''' `path` é uma str no modelo: 'pasta/subpasta/arquivo'. O retorno é uma tupla contendo `(classe, frequência)`, onde os valores estão presentes nos nomes da subpasta e arquivo, respectivamente. ''' _, class_str, freq_str = path.split('/') # A classe é o ultimo caractere da string class_int = int(class_str[-1]) # O nome do arquivo separa 4 valores pelo char 'c' (V0cV1cV2cV3.csv) # No qual a frequência é o terceiro valor, V2 freq_int = int(freq_str.split('c')[2]) return (class_int, freq_int) def energy(vec:np.ndarray) -> np.float64: return np.square(vec).sum() def create_fs20(vec:np.ndarray, file_path:str) -> pd.DataFrame: ''' Dado um sinal (`vec`) e o nome do arquivo de origem (`file_path`), retorna um dataframe de 1 linha com os atributos do "Feature Set 20" extraidos. Feature Set 20: --- + MeanAD D3, MeanAD D4, MeanAD A5; + MedianAD D3, MedianAD D4, MedianAD D5, MedianAD A5; + Energia D3, Energia D4, Energia D5, Energia A5; + Kurt D5, Kurt A5; + Skew D4 + Frequency; ''' result_df = pd.DataFrame() # tupla de coeficientes: (A5, D5, D4, ..., D1) dwt_coefs = wavedec(data=vec, wavelet='db2', level=5) # meanAD A5, D4, D3 for index, coef in zip([0, 2, 3], ['A5', 'D4', 'D3']): result_df[f'MeanAD-{coef}'] = pd.DataFrame(dwt_coefs[index]).mad() # medianAD A5, D5, D4, D3 e Energia A5, D5, D4, D3 for index, coef in zip([0, 1, 2, 3], ['A5', 'D5', 'D4', 'D3']): result_df[f'MedianAD-{coef}'] = medianAD(dwt_coefs[index]) result_df[f'Energy-{coef}'] = energy(dwt_coefs[index]) # Kurtosis A5 result_df['Kurt-A5'] = pd.DataFrame(dwt_coefs[0]).kurt() # Kurtosis D5 result_df['Kurt-D5'] =
pd.DataFrame(dwt_coefs[1])
pandas.DataFrame
import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(svd_topic_vectors, sms.spam, test_size=0.5, random_state=271828) lda = LDA(n_components=1) lda = lda.fit(X_train, y_train) sms['svd16_spam'] = lda.predict(pca_topic_vectors) from nlpia.data.loaders import get_data sms = get_data('sms-spam') from sklearn.feature_extraction.text import TfidfVectorizer from nltk.tokenize import casual_tokenize tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=sms.text).toarray() tfidf_cov = tfidf_docs.dot(tfidf_docs.T) from sklearn.decomposition import TruncatedSVD from seaborn import plt svd = TruncatedSVD(16) svd = svd.fit(tfidf_cov) svd_topic_vectors = svd.transform(tfidf_cov) import pandas as pd svd_topic_vectors = pd.DataFrame(svd_topic_vectors, columns=['topic{}'.format(i) for i in range(16)]) from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(svd_topic_vectors, sms.spam, test_size=0.5, random_state=271828) lda = LDA(n_components=1) lda = lda.fit(X_train, y_train) sms['svd16_spam'] = lda.predict(svd_topic_vectors) round(float(lda.score(X_test, y_test)), 3) hist - o - p hist svd_topic_vectors # %paste # >>> svd = TruncatedSVD(16) # <1> # >>> svd = svd.fit(tfidf_cov) # >>> svd_topic_vectors = svd.transform(tfidf_cov) # >>> svd_topic_vectors = pd.DataFrame(svd_topic_vectors, # columns=['topic{}'.format(i) for i in range(16)]) svd_topic_vectors.head() tfidf_cov pd.DataFrame(tfidf_cov, columns=['doc{}'.format(i) for i in range(len(tfidf_cov))]) columns = ['doc{}'.format(i) for i in range(len(tfidf_cov))] pd.DataFrame(tfidf_cov, columns=columns, index=index) pd.DataFrame(tfidf_cov, columns=columns, index=columns)
pd.DataFrame(tfidf_cov, columns=columns, index=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = pd.unique(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), Series([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), Series(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = pd.date_range('20130101', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = pd.timedelta_range('1 day', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = pd.date_range('20000101', periods=2000000, freq='s').values result = algos.isin(s, s[0:2]) expected = np.zeros(len(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Series(Categorical(1).from_codes(vals, cats)) St = Series(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.isin(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.isin(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_value_counts(self): np.random.seed(1234) from pandas.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert isinstance(factor, n) result = algos.value_counts(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True)) expected = Series([1, 1, 1, 1], index=index) tm.assert_series_equal(result.sort_index(), expected.sort_index()) def test_value_counts_bins(self): s = [1, 2, 3, 4] result = algos.value_counts(s, bins=1) expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_series_equal(result, expected) result = algos.value_counts(s, bins=2, sort=False) expected = Series([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_series_equal(result, expected) def test_value_counts_dtypes(self): result = algos.value_counts([1, 1.]) assert len(result) == 1 result = algos.value_counts([1, 1.], bins=1) assert len(result) == 1 result = algos.value_counts(Series([1, 1., '1'])) # object assert len(result) == 2 pytest.raises(TypeError, lambda s: algos.value_counts(s, bins=1), ['1', 1]) def test_value_counts_nat(self): td = Series([np.timedelta64(10000), pd.NaT], dtype='timedelta64[ns]') dt = pd.to_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.value_counts(s) vc_with_na = algos.value_counts(s, dropna=False) assert len(vc) == 1 assert len(vc_with_na) == 2 exp_dt = Series({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_series_equal(algos.value_counts(dt), exp_dt) # TODO same for (timedelta) def test_value_counts_datetime_outofbounds(self): # GH 13663 s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.value_counts() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Series([3, 2, 1], index=exp_index) tm.assert_series_equal(res, exp) # GH 12424 res = pd.to_datetime(Series(['2362-01-01', np.nan]), errors='ignore') exp = Series(['2362-01-01', np.nan], dtype=object) tm.assert_series_equal(res, exp) def test_categorical(self): s = Series(Categorical(list('aaabbc'))) result = s.value_counts() expected = Series([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.value_counts() expected.index = expected.index.as_ordered() tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Series(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_series_equal(result, expected, check_index_type=True) # out of order s = Series(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Series(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.value_counts() expected = Series([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_dropna(self): # https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328 tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=False), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=False), Series([2, 1, 1], index=[True, False, np.nan])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=False), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5., None]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Series([10.3, 5., 5., None]).value_counts(dropna=False) expected = Series([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_series_equal(result, expected) def test_value_counts_normalized(self): # GH12558 s = Series([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.astype(t) result = s_typed.value_counts(normalize=True, dropna=False) expected = Series([0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) result = s_typed.value_counts(normalize=True, dropna=True) expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) def test_value_counts_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Series([1], index=[2**63]) result = algos.value_counts(arr) tm.assert_series_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Series([1, 1], index=[-1, 2**63]) result = algos.value_counts(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit():
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import json import datetime import numpy as np import pandas as pd from pandas import json_normalize import sqlalchemy as sq import requests from oanda.oanda import Account # oanda_v20_platform. import os.path import logging from utils.fileops import get_abs_path # TODO add updated to the database and have a check to update each day class MarketData(Account): """Creates a sqlite database of current market information - for use by the trading strategies. DB Browser https://sqlitebrowser.org/ can be used for easy viewing and filtering. Focused on daily data it incudes for every tradable instrument in a table with: The Last 60 days of data Yesterdays Volume, Open, High, Low, and Close The 55 day Vol, O, H, L, C The 20 day Vol, O, H, L, C The 10 day Vol, O, H, L, C True Range for each day - a volatility measure that captures gaps N the 20 day average True Range - like ATR(20) And a summary table of market data (called marketdata) required for trading effectively, which includes the following information: Trading costs such as financing rates and the days they are applied. Pip positions (decimal points) for each instrument Margin rates Max and Min Trailing stop distances Maximum order sizes The average spread The volatility (as N) The spread percentage of N - enabling the selection of a trading range where trade costs are minimised e.g. if spread is 20 and stop loss (SP) and take profit (TP) are 100 your trading edge has to be able to overcome that ~20% cost to have any chance of succeeding - some of the instruments with high spread % N are very hard (impossible) to trade profitably without a crystall ball. The N per 100X spread provides a quick way to get the target trading range where the spread cost will be ~1% e.g. US30_USD currently has a Nper100Spread of 1.92 and an N of 380 so if TP and SP are set to 380/1.92=198 pips you will only lose ~1% in spread cost and with the daily range at 380 you should hit one of the targets in a day or so. Compared to say USD_JPY which currently has a N of 0.60 and a Nper100Spread of 0.4 so if spread cost is kept to ~1% it will be a move of 1.5 (0.6/0.4) more like 3-4 days before a target will be hit. This column can be sorted to get a top 10 of instruments that are efficeint to trade. The asset class and base currency Args: db_path str, default='data/marketdata.db': The path to the database from the directory where this class is being run. """ def __init__(self, db_path=get_abs_path(['oanda_v20_platform','data', 'marketdata.db']), **kwargs): super().__init__(**kwargs) self.logger = logging.getLogger(__name__) # setup connection to the database self.db_path=db_path self.engine = sq.create_engine(f'sqlite:///{self.db_path}') # does the db exist if not create it by connecting if not os.path.isfile(self.db_path): conn = self.engine.connect() conn.execute("commit") conn.close() self.logger.info(f"Empty MarketData database created at: {self.db_path}") # get todays date self.today = datetime.datetime.now().strftime('%Y-%m-%d') try: # do we need to update marketdata? sql = """SELECT DISTINCT(Updated) FROM marketdata;""" data_date= pd.read_sql_query(sql, con=self.engine) except: # only an empty db exists - build db self.instruments = self.get_instruments() self.build_db() self.logger.info("Market data added to the database") # is marketdata out of date? if data_date.loc[0].item() != self.today: self.instruments = self.get_instruments() self.build_db() self.logger.info("Market data updated in the database") else: # get the marketdata df = pd.read_sql_query(sql="""SELECT name, type, marginRate, N, avgSpread, "financing.longRate", "financing.shortRate", "Spread % N" FROM marketdata """, con=self.engine) self.marketdata = df[['name', 'type', 'marginRate', 'N', 'avgSpread', 'financing.longRate', 'financing.shortRate', 'Spread % N']].sort_values(by='Spread % N') def get_core_assets(self): pass self.core = pd.read_sql_query(sql="""SELECT DISTINCT Base Currency, Asset FROM marketdata""", con=self.engine) self.core_list = self.core['Instrument'].to_list() def build_db(self): # add data to the instruments for i in self.instruments['instruments']: ix = i['name'] self.logger.info(f"Collecting market data for {ix}") # add the spread data for each instrument i['avgSpread'] = self.avg_spread(self.spreads(ix)) # get the price data df = self.make_dataframe(self.get_daily_candles(ix)) i['volume'] = df.iloc[0, 0] i['open'] = df.iloc[0, 1] i['high'] = df.iloc[0, 2] i['low'] = df.iloc[0, 3] i['close'] = df.iloc[0, 4] i['True Range'] = df.iloc[0, 5] i['N'] = df.iloc[0, 6] i['55DayHigh'] = df.iloc[0, 7] i['20DayHigh'] = df.iloc[0, 8] i['10DayHigh'] = df.iloc[0, 9] i['55DayLow'] = df.iloc[0, 10] i['20DayLow'] = df.iloc[0, 11] i['10DayLow'] = df.iloc[0, 12] tags = pd.DataFrame() for n, i in enumerate(self.instruments['instruments']): x = i['tags'] for l in x: tags.loc[n, 'Asset Class'] = l['name'] fDayWeek = pd.DataFrame() for n, i in enumerate(self.instruments['instruments']): x = i['financing']['financingDaysOfWeek'] for d in x: fDayWeek.loc[n, d['dayOfWeek'] + '-financing'] = d['daysCharged'] tags = tags.merge(fDayWeek, left_index=True, right_index=True) df = json_normalize(self.instruments['instruments']) df.drop(['tags', 'financing.financingDaysOfWeek'], inplace=True, axis=1) df = df.merge(tags, left_index=True, right_index=True) df['Spread % N'] = round(((df['avgSpread'] * 10.00**df['pipLocation']) / df['N'])*100, 2) df['Nper100spread'] = df['N'] / ((df['avgSpread'] * 10.00**df['pipLocation']) * 100) df['Base Currency'] = df.apply(lambda x: self.base(x), axis=1) df['Asset'] = df.apply(lambda x: self.asset(x), axis=1) df['Updated'] = self.today df.to_sql('marketdata', con=self.engine, if_exists='replace') def base(self, x): return x['name'].split('_')[1] def asset(self, x): return x['name'].split('_')[0] def get_instruments(self, params=None): """Get instruments and there associated static data. By default gets the core instruments stored in a csv. These core instruments are the unique available instruments. Returns: json: contains data that describes the available instruments """ url = self.base_url + '/v3/accounts/' + self.account + '/instruments' r = requests.get(url, headers=self.headers) self.logger.debug(f"Get Instruments returned {r} status code") data = r.json() return data def avg_spread(self, spreads_json): """Calculate the average spread from the json returned by spreads Args: spreads_json: json produced by spreads function Returns: float: average of the average spreads """ spreads = [] for li in spreads_json['avg']: spreads.append(li[1]) return np.mean(spreads) def spreads(self, instrument, period=86400): """Returns a json with timestamps for every 15min with the min, max and average spread. Args: instrument: str, required, e.g. "EUR_USD" period: int, time period in seconds e.g. 86400 for day Returns: json: { "max": [[1520028000, 6], .....], "avg": [[1520028000, 3.01822], ......], "min": [[1520028000, 1.7], ......] } """ params = { "instrument": instrument, "period": period } url = self.base_url + '/labs/v1/spreads/' r = requests.get(url, headers=self.headers, params=params) self.logger.debug(f"Spreads function returned {r} status code") data = r.json() return data def get_daily_candles(self, instrument): """Request the daily candle data from the API get 60 candles from yesterday Args: instrument: string describing the instrument in API Returns: json: candle data """ yesterday = (datetime.datetime.now() - pd.DateOffset(days=1)).strftime("%Y-%m-%d") last_candle = yesterday + 'T22:00:00.000000000Z' params = { "to": last_candle, "count": 60, "granularity": "D", # "includeFirst": True, } url = self.base_url + f'/v3/instruments/{instrument}/candles/' r = requests.get(url, headers=self.headers, params=params) self.logger.debug(f"Get daily candles returned {r} status code") data = r.json() return data def make_dataframe(self, candles_data): """Take a json of candle data - convert to a dataframe, calculate volatility, max and min prices Args: candles_data ([json]): takes the json returned from get_candles Returns: sends data to sql table pandas df: the last line of data """ df = json_normalize(candles_data.get('candles')) df.rename(columns={'mid.c': 'close', 'mid.h': 'high', 'mid.l': 'low', 'mid.o': 'open'}, inplace=True) df.set_index('time', inplace=True) # the API returns strings these need to be converted to floats df.volume = pd.to_numeric(df.volume) df.close =
pd.to_numeric(df.close)
pandas.to_numeric
# Copyright (c) Microsoft Corporation and contributors. # Licensed under the MIT License. import pandas as pd import numpy as np from .moment import ClassificationMoment from .moment import _GROUP_ID, _LABEL, _PREDICTION, _ALL, _EVENT, _SIGN from fairlearn._input_validation import _MESSAGE_RATIO_NOT_IN_RANGE from .error_rate import ErrorRate _UPPER_BOUND_DIFF = "upper_bound_diff" _LOWER_BOUND_DIFF = "lower_bound_diff" _MESSAGE_INVALID_BOUNDS = "Only one of difference_bound and ratio_bound can be used." _DEFAULT_DIFFERENCE_BOUND = 0.01 class ConditionalSelectionRate(ClassificationMoment): """Generic fairness moment for selection rates. This serves as the base class for both :class:`DemographicParity` and :class:`EqualizedOdds`. The two are distinguished by the events they define, which in turn affect the `index` field created by :meth:`load_data()`. The `index` field is a :class:`pandas:pandas.MultiIndex` corresponding to the rows of the DataFrames either required as arguments or returned by several of the methods of the `ConditionalSelectionRate` class. It is the cartesian product of: - The unique events defined for the particular object - The unique values for the sensitive feature - The characters `+` and `-`, corresponding to the Lagrange multipliers for positive and negative violations of the constraint The `ratio` specifies the multiple at which error(A = a) should be compared with total_error and vice versa. The value of `ratio` has to be in the range (0,1] with smaller values corresponding to weaker constraint. The `ratio` equal to 1 corresponds to the constraint where error(A = a) = total_error """ def __init__(self, *, difference_bound=None, ratio_bound=None, ratio_bound_slack=0.0): """Initialize with the ratio value.""" super(ConditionalSelectionRate, self).__init__() if (difference_bound is None) and (ratio_bound is None): self.eps = _DEFAULT_DIFFERENCE_BOUND self.ratio = 1.0 elif (difference_bound is not None) and (ratio_bound is None): self.eps = difference_bound self.ratio = 1.0 elif (difference_bound is None) and (ratio_bound is not None): self.eps = ratio_bound_slack if not (0 < ratio_bound <= 1): raise ValueError(_MESSAGE_RATIO_NOT_IN_RANGE) self.ratio = ratio_bound else: raise ValueError(_MESSAGE_INVALID_BOUNDS) def default_objective(self): """Return the default objective for moments of this kind.""" return ErrorRate() def load_data(self, X, y, event=None, utilities=None, **kwargs): """Load the specified data into this object. This adds a column `event` to the `tags` field. The `utilities` is a 2-d array which correspond to g(X,A,Y,h(X)) as mentioned in the paper `Agarwal et al. (2018) <https://arxiv.org/abs/1803.02453>`. The `utilities` defaults to h(X), i.e. [0, 1] for each X_i. The first column is G^0 and the second is G^1. Assumes binary classification with labels 0/1. .. math:: utilities = [g(X,A,Y,h(X)=0), g(X,A,Y,h(X)=1)] """ super().load_data(X, y, **kwargs) self.tags[_EVENT] = event if utilities is None: utilities = np.vstack([np.zeros(y.shape, dtype=np.float64), np.ones(y.shape, dtype=np.float64)]).T self.utilities = utilities self.prob_event = self.tags.groupby(_EVENT).size() / self.total_samples self.prob_group_event = self.tags.groupby( [_EVENT, _GROUP_ID]).size() / self.total_samples signed = pd.concat([self.prob_group_event, self.prob_group_event], keys=["+", "-"], names=[_SIGN, _EVENT, _GROUP_ID]) self.index = signed.index self.default_objective_lambda_vec = None # fill in the information about the basis event_vals = self.tags[_EVENT].dropna().unique() group_vals = self.tags[_GROUP_ID].unique() # The matrices pos_basis and neg_basis contain a lower-dimensional description of # constraints, which is achieved by removing some redundant constraints. # Considering fewer constraints is not required for correctness, but it can dramatically # speed up GridSearch. self.pos_basis = pd.DataFrame() self.neg_basis = pd.DataFrame() self.neg_basis_present = pd.Series(dtype='float64') zero_vec =
pd.Series(0.0, self.index)
pandas.Series
import torch.optim as optim import torch.nn as nn import numpy as np import pandas as pd import configparser import os import torch from cfr_net import CFRNet, WrappedDataLoader def init(path=None): config = configparser.ConfigParser() if path is None: config['data'] = {'input_dir': './data/IBM', 'output_dir': './results', 'val_ratio': 0.3, 'n_test_samples': 10000, 'use_input': 'all', } config['model'] = {'repre_layers': '[200,200,200]', 'pred_layers': '[100,100,100]', 'cuda': 0, 'bn': False } config['loss'] = {'alpha': 1, 'eps': 1e-3, 'max_iter': 10 } config['training'] = {'max_epochs': 3000, 'min_lr': 1e-6 + 1e-7, 'train_batch_size': 1000, 'test_batch_size': 1000, 'optimizer': 'sgd', 'lr': 1e-3, 'weight_decay': 1e-4, 'momentum': 0.9, 'nesterov': True, 'verbose': 1, 'patience': 20, 'cooldown': 20 } config['query'] = {'strategy': 'random', 'n_init': 1000, 'n_query_per_turn': 1000, 'n_query_max': 20000, 'n_set_size': 1, 'use_phi': False } config['log'] = {'n_epochs_print': 50} else: config.read('config.ini') return config def get_inputs(config): files = os.listdir(config['data']['input_dir']) list.sort(files) if config['data']['use_input'] != 'all': s, e = eval(config['data']['use_input']) files = files[s:min(e, len(files))] return files def get_test_loader(test_data, test_batch_size): test_X = test_data.iloc[:, 5:].values test_y0, test_y1 = test_data['mu0'].values, test_data['mu1'].values test_treated_dl = WrappedDataLoader(test_X, np.ones(test_X.shape[0]), test_y1, test_batch_size, False) test_control_dl = WrappedDataLoader(test_X, np.zeros(test_X.shape[0]), test_y0, test_batch_size, False) return test_treated_dl, test_control_dl def get_train_loader(train_data, train_batch_size): t = train_data['treatment'] == 1 train_all_treated_dl = WrappedDataLoader(train_data[t].iloc[:, 5:].values, t.values.nonzero()[0], np.ones(t.sum()), train_batch_size, False) t = train_data['treatment'] == 0 train_all_control_dl = WrappedDataLoader(train_data[t].iloc[:, 5:].values, t.values.nonzero()[0], np.ones(t.sum()), train_batch_size, False) return train_all_treated_dl, train_all_control_dl def get_budgets(n_init, n_query_per_turn, n_query_max): tmp = list(range(n_init + n_query_per_turn, n_query_max + 1, n_query_per_turn)) if type(n_query_per_turn) == int else n_query_per_turn budgets = [n_init] + [k for k in tmp if n_init < k <= n_query_max] return budgets def get_models(input_dim, config): lr = eval(config['training']['lr']) n_repre_layers = eval(config['model']['repre_layers']) n_pred_layers = eval(config['model']['pred_layers']) bn = eval(config['model']['bn']) model = CFRNet(input_dim, n_repre_layers, n_pred_layers, bn) weight_decay = eval(config['training']['weight_decay']) if config['training']['optimizer'] == 'adam': optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) else: optimizer = optim.SGD(model.parameters(), lr=lr, momentum=eval(config['training']['momentum']), nesterov=eval(config['training']['nesterov']), weight_decay=weight_decay) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, cooldown=10) return model, optimizer, scheduler def compute_rmse(model, dl, device): model.eval() with torch.no_grad(): criterion = nn.MSELoss(reduction='sum') mse = sum(criterion(model(xb.to(device), tb.to(device)), yb.to(device)) for xb, tb, yb in dl) / dl.get_X_size()[0] return np.sqrt(mse.item()) def compute_sqrt_pehe(model, treated_dl, control_dl, device): model.eval() n_samples = treated_dl.get_X_size()[0] with torch.no_grad(): criterion = nn.MSELoss(reduction='sum') mse_treated = sum(criterion(model(xb.to(device), tb.to(device)), yb.to(device)) for xb, tb, yb in treated_dl) / n_samples mse_control = sum(criterion(model(xb.to(device), tb.to(device)), yb.to(device)) for xb, tb, yb in control_dl) / n_samples pehe2 = sum( criterion(model(xy1[0].to(device), xy1[1].to(device)) - model(xy0[0].to(device), xy0[1].to(device)), xy1[2].to(device) - xy0[2].to(device)) for xy1, xy0 in zip(treated_dl, control_dl)) / n_samples return np.sqrt(pehe2.item()), np.sqrt(mse_treated.item()), np.sqrt(mse_control.item()) def choose_new_idx(start, end, selected, length): return list(np.random.choice(list(set(range(start,end))-set(selected)),min(length,end-start-len(selected)),replace=False)) def save_cont_results(model, test_treated_dl, test_control_dl, device, file, results, predictions, num_data, output_path): sqrt_pehe, rmse_treated, rmse_control = compute_sqrt_pehe(model, test_treated_dl, test_control_dl, device) print('test set: treated_rmse = {} control_rmse = {} sqrt_pehe = {}'.format(rmse_treated, rmse_control, sqrt_pehe)) results.append([file, num_data, sqrt_pehe, rmse_treated, rmse_control])
pd.DataFrame(results, columns=['file_name', 'budget', 'sqrt_pehe', 'rmse_treated', 'rmse_control'])
pandas.DataFrame
import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal from ..cheval import LinkedDataFrame vehicles_data = { 'household_id': [0, 0, 1, 2, 3], 'vehicle_id': [0, 1, 0, 0, 0], 'manufacturer': ['Honda', 'Ford', 'Ford', 'Toyota', 'Honda'], 'model_year': [2009, 2005, 2015, 2011, 2013], 'km_travelled': [103236, 134981, 19015, 75795, 54573] } households_data = { 'household_id': [0, 1, 2, 3], 'dwelling_type': ['house', 'apartment', 'house', 'house'], 'drivers': [4, 1, 2, 3] } def test_link_to(): vehicles = LinkedDataFrame(vehicles_data) households = LinkedDataFrame(households_data) vehicles.link_to(households, 'household', on='household_id') households.link_to(vehicles, 'vehicles', on='household_id') test_result = households.vehicles.sum("km_travelled") expected_result = pd.Series({0: 238217, 1: 19015, 2: 75795, 3: 54573}) assert_series_equal(test_result, expected_result) def test_slicing(): vehicles = LinkedDataFrame(vehicles_data) households = LinkedDataFrame(households_data) vehicles.link_to(households, 'household', on='household_id') households.link_to(vehicles, 'vehicles', on='household_id') mask = vehicles['household_id'] == 0 vehicles_subset = vehicles.loc[mask].copy() vehicles_subset['dwelling_type'] = vehicles_subset.household.dwelling_type test_result = vehicles_subset['dwelling_type'] expected_result = pd.Series({0: 'house', 1: 'house'}, name='dwelling_type') assert_series_equal(test_result, expected_result) def test_evaluate(): vehicles = LinkedDataFrame(vehicles_data) households = LinkedDataFrame(households_data) vehicles.link_to(households, 'household', on='household_id') households.link_to(vehicles, 'vehicles', on='household_id') vehicles['multiple_drivers'] = False vehicles.evaluate('where(household.drivers > 1, True, False)', out=vehicles['multiple_drivers']) test_result = vehicles['multiple_drivers'] expected_result =
pd.Series({0: True, 1: True, 2: False, 3: True, 4: True}, name='multiple_drivers')
pandas.Series
""" Logistic Regression based upon sklearn. """ import datatable as dt import numpy as np import random import pandas as pd import os import copy import codecs from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.impute import SimpleImputer from sklearn.metrics import roc_auc_score, make_scorer from h2oaicore.models import CustomModel from h2oaicore.systemutils import config, physical_cores_count, save_obj_atomically, load_obj, DefaultOrderedDict from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning from h2oaicore.transformers import CatOriginalTransformer, FrequentTransformer, CVTargetEncodeTransformer from h2oaicore.transformer_utils import Transformer from h2oaicore.transformers_more import CatTransformer, LexiLabelEncoderTransformer from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.ensemble import VotingClassifier class LogisticRegressionModel(CustomModel): """ Logistic Regression Useful when weak or no interactions between features, or large inherent number of levels in categorical features Other useful DAI options if want to only use feature made internally by this model: config.prob_prune_genes = False config.prob_prune_by_features = False # Useful if want training to ultimately see all data with validated max_iter config.fixed_ensemble_level=0 Recipe to do: 1) Add separate LogisticRegressionEarlyStopping class to use warm start to take iterations a portion at a time, and score with known/given metric, and early stop to avoid overfitting on validation. 2) Improve bisection stepping for search 3) Consider from deployml.sklearn import LogisticRegressionBase 4) Implement LinearRegression/ElasticNet (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) 5) Implement other categorical missing encodings (same strategies as numerics) 6) Implement other scorers (i.e. checking score_f_name -> sklearn metric or using DAI metrics) """ _kaggle = False # some kaggle specific optimizations for https://www.kaggle.com/c/cat-in-the-dat # with _kaggle_features=False and no catboost features: # gives 0.8043 DAI validation for some seeds/runs, # which leads to 0.80802 public score after only 2 minutes of running on accuracy=2, interpretability=1 # with _kaggle_features=False and catboost features: # gives 0.8054 DAI validation for some seeds/runs, # which leads to 0.80814 public score after only 10 minutes of running on accuracy=7, interpretability=1 # whether to generate features for kaggle # these features do not help the score, but do make sense as plausible features to build _kaggle_features = False # whether to use validation and train together (assumes test with sample_weight=0 already part of train+valid) for features _kaggle_mode = False # numerical imputation for all columns (could be done per column chosen by mutations) _impute_num_type = 'sklearn' # best for linear models # _impute_num_type = 'oob' # risky for linear models, but can be used for testing _impute_int_type = 'oob' _impute_bool_type = 'oob' _oob_bool = False # categorical imputation for all columns (could be done per column chosen by mutations) _impute_cat_type = 'oob' _oob_cat = "__OOB_CAT__" # unique identifier for OHE feature names _ohe_postfix = "_*#!^()^{}" # not required to be this strict, but good starting point to only use this recipe's features _included_transformers = ['CatOriginalTransformer', 'OriginalTransformer', 'CatTransformer'] if _kaggle and 'CatTransformer' in _included_transformers: # Just handle all cats directly _included_transformers.remove('CatTransformer') _can_handle_non_numeric = True # tell DAI we can handle non-numeric (i.e. strings) _can_handle_categorical = True # tell DAI we can handle numerically encoded categoricals for use as categoricals _num_as_cat = False or _kaggle # treating numeric as categorical best handled per column, but can force all numerics as cats _num_as_num = False _mutate_all = True # tell DAI we fully control mutation _mutate_by_one = False # tell our recipe only changes one key at a time, can limit exploration if set as True _mutate_by_one_sometimes = True _always_defaults = False _randomized_random_state = False _overfit_limit_iteration_step = 10 # tell DAI want to keep track of self.params changes during fit, and to average numeric values across folds (if any) _used_return_params = True _average_return_params = True # other DAI vars _regression = False _binary = True _multiclass = True _parallel_task = True # set to False may lead to faster performance if not doing grid search or cv search (should also set expert batch_cpu_tuning_max_workers to number of cores) _fit_by_iteration = True _fit_iteration_name = 'max_iter' _display_name = "LR" _description = "Logistic Regression" _allow_basis_of_default_individuals = False _fs_permute_must_use_self = True _check_stall = False # avoid stall check, joblib loky stuff detatches sometimes _testing_can_skip_failure = False # ensure tested as if shouldn't fail # recipe vars for encoding choices _use_numerics = True _use_ohe_encoding = True _use_target_encoding = False _use_target_encoding_other = False _use_ordinal_encoding = False _use_catboost_encoding = False or _kaggle # Note: Requires data be randomly shuffled so target is not in special order _use_woe_encoding = False # tell DAI what pip modules we will use _modules_needed_by_name = ['category_encoders'] if _use_target_encoding_other: _modules_needed_by_name.extend(['target_encoding']) # _modules_needed_by_name.extend(['git+https://github.com/h2oai/target_encoding#egg=target_encoding']) # whether to show debug prints and write munged view to disk _debug = True # wehther to cache feature results, only by transformer instance and X shape, so risky to use without care. _cache = False _ensemble = False def set_default_params(self, accuracy=10, time_tolerance=10, interpretability=1, **kwargs): # Fill up parameters we care about self.params = {} self.mutate_params(get_default=True, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs) def mutate_params(self, accuracy=10, time_tolerance=10, interpretability=1, **kwargs): get_default = 'get_default' in kwargs and kwargs['get_default'] or self._always_defaults params_orig = copy.deepcopy(self.params) # control some behavior by how often the model was mutated. # Good models that improve get repeatedly mutated, bad models tend to be one-off mutations of good models if get_default: self.params['mutation_count'] = 0 else: if 'mutation_count' in self.params: self.params['mutation_count'] += 1 else: self.params['mutation_count'] = 0 # keep track of fit count, for other control over hyper parameter search in this recipe if 'fit_count' not in self.params: self.params['fit_count'] = 0 self.params['random_state'] = kwargs.get("random_state", 1234) if self._randomized_random_state: self.params['random_state'] = random.randint(0, 32000) self.params['n_jobs'] = self.params_base.get('n_jobs', max(1, physical_cores_count)) # Modify certain parameters for tuning if self._kaggle: C_list = [0.095, 0.1, 0.115, 0.11, 0.105, 0.12, 0.125, 0.13, 0.14] else: C_list = [0.05, 0.075, 0.1, 0.15, 0.2, 1.0, 5.0] self.params["C"] = float(np.random.choice(C_list)) if not get_default else 0.12 tol_list = [1e-4, 1e-3, 1e-5] if accuracy < 5: default_tol = 1e-4 elif accuracy < 6: default_tol = 1e-5 elif accuracy <= 7: default_tol = 1e-6 else: default_tol = 1e-7 if self._kaggle: default_tol = 1e-8 if default_tol not in tol_list: tol_list.append(default_tol) self.params["tol"] = float(np.random.choice(tol_list)) if not (self._kaggle or get_default) else default_tol # solver_list = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'] # newton-cg too slow # sag too slow # solver_list = ['lbfgs', 'liblinear', 'saga'] solver_list = ['lbfgs'] self.params["solver"] = str(np.random.choice(solver_list)) if not get_default else 'lbfgs' if self._kaggle: max_iter_list = [300, 350, 400, 450, 500, 700, 800, 900, 1000, 1500] else: max_iter_list = [150, 175, 200, 225, 250, 300] self.params["max_iter"] = int(np.random.choice(max_iter_list)) if not get_default else 700 # self.params["max_iter"] = 37 if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']: penalty_list = ['l2', 'none'] elif self.params["solver"] in ['saga']: penalty_list = ['l1', 'l2', 'none'] elif self.params["solver"] in ['liblinear']: penalty_list = ['l1'] else: raise RuntimeError("No such solver: %s" % self.params['solver']) self.params["penalty"] = str(np.random.choice(penalty_list)) if not (self._kaggle or get_default) else 'l2' if self.params["penalty"] == 'elasticnet': l1_ratio_list = [0, 0.25, 0.5, 0.75, 1.0] self.params["l1_ratio"] = float(np.random.choice(l1_ratio_list)) else: self.params.pop('l1_ratio', None) if self.params["penalty"] == 'none': self.params.pop('C', None) else: self.params['C'] = float(np.random.choice(C_list)) if not get_default else 0.12 if self.num_classes > 2: self.params['multi_class'] = 'auto' strategy_list = ['mean', 'median', 'most_frequent', 'constant'] self.params['strategy'] = str(np.random.choice(strategy_list)) if not get_default else 'mean' if self._use_target_encoding: min_samples_leaf_list = [1, 10, 50, 100] self.params['min_samples_leaf'] = float(np.random.choice(min_samples_leaf_list)) smoothing_list = [1.0, 0.5, 10.0, 50.0] self.params['smoothing'] = float(np.random.choice(smoothing_list)) if self._use_catboost_encoding: if self._kaggle: sigma_list = [None, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9] else: sigma_list = [None, 0.01, 0.05, 0.1, 0.5] self.params['sigma'] = random.choice(sigma_list) if self._use_woe_encoding: randomized_list = [True, False] self.params['randomized'] = random.choice(randomized_list) sigma_woe_list = [0.05, 0.001, 0.01, 0.1, 0.005] self.params['sigma_woe'] = random.choice(sigma_woe_list) regularization_list = [1.0, 0.1, 2.0] self.params['regularization'] = random.choice(regularization_list) # control search in recipe self.params['grid_search_iterations'] = accuracy >= 8 # cv search for hyper parameters, can be used in conjunction with _grid_search_by_iterations = True or False self.params['cv_search'] = accuracy >= 9 if self._mutate_by_one_sometimes: if np.random.random() > 0.5: do_mutate_by_one = True else: do_mutate_by_one = False else: do_mutate_by_one = self._mutate_by_one if do_mutate_by_one and not get_default and params_orig: pick_key = str(np.random.choice(list(self.params.keys()), size=1)[0]) value = self.params[pick_key] self.params = copy.deepcopy(params_orig) self.params[pick_key] = value # validate parameters to avoid single key leading to invalid overall parameters if pick_key == 'penalty': # has restrictions need to switch other keys if mismatched if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']: penalty_list = ['l2', 'none'] elif self.params["solver"] in ['saga']: penalty_list = ['l1', 'l2', 'none'] elif self.params["solver"] in ['liblinear']: penalty_list = ['l1'] if not self.params['penalty'] in penalty_list: self.params['penalty'] = penalty_list[0] # just choose first def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs): if self._kaggle_mode and eval_set is not None: new_X = dt.rbind([X, eval_set[0][0]]) new_sample_weight = np.concatenate([sample_weight, sample_weight_eval_set[0]]) new_sample_weight[X.shape[0]:X.shape[0] + eval_set[0][0].shape[0]] = 0 new_y = np.concatenate([y, eval_set[0][1]]) X = new_X y = new_y sample_weight = new_sample_weight orig_dir = os.getcwd() os.chdir(self.context.experiment_tmp_dir) # for joblib os.makedirs(self.context.experiment_tmp_dir, exist_ok=True) # another copy for DAI transformers orig_cols = list(X.names) if self.num_classes >= 2: lb = LabelEncoder() lb.fit(self.labels) y = lb.transform(y) min_count = np.min(np.unique(y, return_counts=True)[1]) if min_count < 9: self.params['cv_search'] = False if min_count < 3: self.params['grid_search_iterations'] = False self.params['cv_search'] = False if self._ensemble: self.params['grid_search_iterations'] = False self.params['cv_search'] = False # save pre-datatable-imputed X X_dt = X # Apply OOB imputation self.oob_imputer = OOBImpute(self._impute_num_type, self._impute_int_type, self._impute_bool_type, self._impute_cat_type, self._oob_bool, self._oob_cat) X = self.oob_imputer.fit_transform(X) # convert to pandas for sklearn X = X.to_pandas() X_orig_cols_names = list(X.columns) if self._kaggle_features: self.features = make_features(cache=self._cache) X = self.features.fit_transform(X, y, **kwargs) else: self.features = None # print("LR: pandas dtypes: %s" % (str(list(X.dtypes)))) # FEATURE GROUPS # Choose which features are numeric or categorical cat_features = [x for x in X_orig_cols_names if CatOriginalTransformer.is_me_transformed(x)] catlabel_features = [x for x in X_orig_cols_names if CatTransformer.is_me_transformed(x)] # can add explicit column name list to below force_cats force_cats = cat_features + catlabel_features actual_numerical_features = (X.dtypes == 'float') | (X.dtypes == 'float32') | ( X.dtypes == 'float64') # | (X.dtypes == 'int') | (X.dtypes == 'int32') | (X.dtypes == 'int64') | (X.dtypes == 'bool') # choose if numeric is treated as categorical if not self._num_as_cat or self._num_as_num: # treat (e.g.) binary as both numeric and categorical numerical_features = copy.deepcopy(actual_numerical_features) else: # no numerics numerical_features = X.dtypes == 'invalid' if self._num_as_cat: # then can't have None sent to cats, impute already up front # force oob imputation for numerics self.oob_imputer = OOBImpute('oob', 'oob', 'oob', self._impute_cat_type, self._oob_bool, self._oob_cat) X = self.oob_imputer.fit_transform(X_dt) X = X.to_pandas() if self._kaggle_features: X = self.features.fit_transform(X, y, **kwargs) if self._kaggle_features: numerical_features = self.features.update_numerical_features(numerical_features) if not self._num_as_cat: # then cats are only things that are not numeric categorical_features = ~actual_numerical_features else: # then everything is a cat categorical_features = ~numerical_features # (X.dtypes == 'invalid') # below can lead to overlap between what is numeric and what is categorical more_cats = (pd.Series([True if x in force_cats else False for x in list(categorical_features.index)], index=categorical_features.index)) categorical_features = (categorical_features) | (more_cats) if self._kaggle_features: categorical_features = self.features.update_categorical_features(categorical_features) cat_X = X.loc[:, categorical_features] num_X = X.loc[:, numerical_features] if self._debug: print("LR: Cat names: %s" % str(list(cat_X.columns))) print("LR: Num names: %s" % str(list(num_X.columns))) # TRANSFORMERS lr_params = copy.deepcopy(self.params) lr_params.pop('grid_search_by_iterations', None) lr_params.pop('cv_search', None) grid_search = False # WIP full_features_list = [] transformers = [] if self._use_numerics and any(numerical_features.values): impute_params = {} impute_params['strategy'] = lr_params.pop('strategy', 'mean') full_features_list.extend(list(num_X.columns)) transformers.append( (make_pipeline(SimpleImputer(**impute_params), StandardScaler()), numerical_features) ) # http://contrib.scikit-learn.org/categorical-encoding/ if self._use_ordinal_encoding and any(categorical_features.values): ord_params = dict(handle_missing='value', handle_unknown='value') full_features_list.extend(list(cat_X.columns)) # Note: OrdinalEncoder doesn't handle unseen features, while CategoricalEncoder used too import category_encoders as ce transformers.append( (ce.OrdinalEncoder(**ord_params), categorical_features) ) if self._use_catboost_encoding and any(categorical_features.values): cb_params = dict(handle_missing='value', handle_unknown='value') cb_params['sigma'] = lr_params.pop('sigma') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.CatBoostEncoder(**cb_params), categorical_features) ) if self._use_woe_encoding and any(categorical_features.values): woe_params = dict(handle_missing='value', handle_unknown='value') woe_params['randomized'] = lr_params.pop('randomized') woe_params['sigma'] = lr_params.pop('sigma_woe') woe_params['regularization'] = lr_params.pop('regularization') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.WOEEncoder(**woe_params), categorical_features) ) if self._use_target_encoding and any(categorical_features.values): te_params = dict(handle_missing='value', handle_unknown='value') te_params['min_samples_leaf'] = lr_params.pop('min_samples_leaf') te_params['smoothing'] = lr_params.pop('smoothing') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.TargetEncoder(**te_params), categorical_features) ) if self._use_target_encoding_other and any(categorical_features.values): full_features_list.extend(list(cat_X.columns)) cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=self.params['random_state']) split_cv = [cv] # split_cv = [3, 3] ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug) from target_encoding import TargetEncoder transformers.append( (TargetEncoder(alpha=ALPHA, max_unique=MAX_UNIQUE, split_in=split_cv), categorical_features) ) if self._use_ohe_encoding and any(categorical_features.values): transformers.append( (OneHotEncoder(handle_unknown='ignore', sparse=True), categorical_features) ) assert len(transformers) > 0, "should have some features" preprocess = make_column_transformer(*transformers) # ESTIMATOR lr_defaults = dict(penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) allowed_lr_kwargs_keys = lr_defaults.keys() lr_params_copy = copy.deepcopy(lr_params) for k, v in lr_params_copy.items(): if k not in allowed_lr_kwargs_keys: lr_params.pop(k, None) del lr_params_copy can_score = self.num_classes == 2 and 'AUC' in self.params_base['score_f_name'].upper() # print("LR: can_score: %s" % str(can_score)) if can_score: scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_proba=True) else: scorer = None if not ('C' in lr_params or 'l1_ratios' in lr_params): # override self.params['cv_search'] = False if not self.params['cv_search']: estimator = LogisticRegression(**lr_params) estimator_name = 'logisticregression' else: lr_params_cv = copy.deepcopy(lr_params) if 'C' in lr_params: lr_params_cv['Cs'] = self.get_param_range(self.params['C'], self.params['fit_count'], func_type='log') # print("LR: CV: Cs: %s" % str(lr_params_cv['Cs'])) if 'l1_ratios' in lr_params: lr_params_cv['l1_ratios'] = self.get_param_range(self.params['l1_ratio'], self.params['fit_count'], func_type='linear') # print("LR: CV: l1_ratios: %s" % str(lr_params_cv['l1_ratios'])) lr_params_cv.pop('n_jobs', None) lr_params_cv.pop('C', None) lr_params_cv.pop('l1_ratio', None) if lr_params_cv['penalty'] == 'none': lr_params_cv['penalty'] = 'l2' estimator = LogisticRegressionCV(n_jobs=self.params['n_jobs'], cv=3, refit=True, scoring=scorer, **lr_params_cv) estimator_name = 'logisticregressioncv' # PIPELINE if not self._ensemble: model = make_pipeline( preprocess, estimator, memory="./") else: ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug) from target_encoding import TargetEncoderClassifier te_estimator = TargetEncoderClassifier(alpha=ALPHA, max_unique=MAX_UNIQUE, used_features=FEATURES_COUNT) estimators = [(estimator_name, estimator), ('teclassifier', te_estimator)] model = make_pipeline( preprocess, VotingClassifier(estimators)) # FIT if self.params['grid_search_iterations'] and can_score: # WIP FIXME for multiclass and other scorers from sklearn.model_selection import GridSearchCV max_iter_range = self.get_param_range(self.params['max_iter'], self.params['fit_count'], range_limit=self._overfit_limit_iteration_step, func_type='log') # print("LR: max_iter_range: %s" % str(max_iter_range)) param_grid = { '%s__max_iter' % estimator_name: max_iter_range, } grid_clf = GridSearchCV(model, param_grid, n_jobs=self.params['n_jobs'], cv=3, iid=True, refit=True, scoring=scorer) fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight grid_clf.fit(X, y, **fitkwargs) model = grid_clf.best_estimator_ # print("LR: best_index=%d best_score: %g best_params: %s" % ( # grid_clf.best_index_, grid_clf.best_score_, str(grid_clf.best_params_))) elif grid_search: # WIP from sklearn.model_selection import GridSearchCV param_grid = { 'columntransformer__pipeline__simpleimputer__strategy': ['mean', 'median'], '%s__C' % estimator_name: [0.1, 0.5, 1.0], } grid_clf = GridSearchCV(model, param_grid, cv=10, iid=False) fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight grid_clf.fit(X, y, **fitkwargs) model = grid_clf.best_estimator_ # self.best_params = grid_clf.best_params_ else: fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight X = X.replace([np.inf, -np.inf], np.nan) X = X.fillna(value=0) model.fit(X, y, **fitkwargs) # get actual LR model lr_model = model.named_steps[estimator_name] # average importances over classes importances = np.average(np.fabs(np.array(lr_model.coef_)), axis=0) # average iterations over classes (can't take max_iter per class) iterations = int(np.average(lr_model.n_iter_)) # print("LR: iterations: %d" % iterations) if self._debug: full_features_list_copy = copy.deepcopy(full_features_list) # reduce OHE features to original names ohe_features_short = [] if self._use_ohe_encoding and any(categorical_features.values): input_features = [x + self._ohe_postfix for x in cat_X.columns] ohe_features = pd.Series( model.named_steps['columntransformer'].named_transformers_['onehotencoder'].get_feature_names( input_features=input_features)) def f(x): return '_'.join(x.split(self._ohe_postfix + '_')[:-1]) # identify OHE features ohe_features_short = ohe_features.apply(lambda x: f(x)) full_features_list.extend(list(ohe_features_short)) if self._debug: full_features_list_copy.extend(list(ohe_features)) imp = pd.Series(importances, index=full_features_list_copy).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("prepreimp_%s.csv" % struuid) if self._debug: imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("preimp_%s.csv" % struuid) # aggregate our own features if self._kaggle_features: full_features_list = self.features.aggregate(full_features_list, importances) msg = "LR: num=%d cat=%d : ohe=%d : imp=%d full=%d" % ( len(num_X.columns), len(cat_X.columns), len(ohe_features_short), len(importances), len(full_features_list)) if self._debug: print(msg) assert len(importances) == len(full_features_list), msg if self._debug: imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("imp_%s.csv" % struuid) # aggregate importances by dai feature name importances = pd.Series(np.abs(importances), index=full_features_list).groupby(level=0).mean() assert len(importances) == len( X_orig_cols_names), "lenimp=%d lenorigX=%d msg=%s : X.columns=%s dtypes=%s : full_features_list=%s" % ( len(importances), len(X_orig_cols_names), msg, str(list(X.columns)), str(list(X.dtypes)), str(full_features_list)) # save hyper parameter searched results for next search self.params['max_iter'] = iterations if self.params['cv_search']: self.params['C'] = np.average(lr_model.C_, axis=0) if 'l1_ratios' in lr_params and self.params['cv_search']: self.params['l1_ratio'] = np.average(lr_model.l1_ratio_, axis=0) if 'fit_count' in self.params: self.params['fit_count'] += 1 else: self.params['fit_count'] = 0 importances_list = importances.tolist() importances_list = list(np.array(importances_list) / np.max(importances_list)) self.set_model_properties(model=(model, self.features), features=orig_cols, importances=importances_list, iterations=iterations) self.features = None os.chdir(orig_dir) def get_param_range(self, param, fit_count, range_limit=None, func_type='linear'): if func_type == 'log': f = np.log inv_f = np.exp bottom = 1.0 top = 1.0 else: f = np.abs inv_f = np.abs top = bottom = 1.0 # bisect toward optimal param step_count = 3 params_step = 2 + fit_count start_range = param * (1.0 - bottom / params_step) end_range = param * (1.0 + top / params_step) if range_limit is not None: if end_range - start_range < range_limit: # if below some threshold, don't keep refining to avoid overfit return [param] start = f(start_range) end = f(end_range) step = 1.0 * (end - start) / step_count param_range = np.arange(start, end, step) if type(param) == int: param_range = [int(inv_f(x)) for x in param_range if int(inv_f(x)) > 0] else: param_range = [inv_f(x) for x in param_range if inv_f(x) > 0] if param not in param_range: param_range.append(param) param_range = sorted(param_range) return param_range def predict(self, X, **kwargs): orig_dir = os.getcwd() os.chdir(self.context.experiment_tmp_dir) # for joblib X = dt.Frame(X) X = self.oob_imputer.transform(X) model_tuple, _, _, _ = self.get_model_properties() model, features = model_tuple X = X.to_pandas() if self._kaggle_features and features is not None: X = features.transform(X) X = X.replace([np.inf, -np.inf], np.nan) X = X.fillna(value=0) if self.num_classes == 1: preds = model.predict(X) else: preds = model.predict_proba(X) os.chdir(orig_dir) return preds class OOBImpute(object): def __init__(self, impute_num_type, impute_int_type, impute_bool_type, impute_cat_type, oob_bool, oob_cat): self._impute_num_type = impute_num_type self._impute_int_type = impute_int_type self._impute_bool_type = impute_bool_type self._impute_cat_type = impute_cat_type self._oob_bool = oob_bool self._oob_cat = oob_cat def fit(self, X: dt.Frame): # just ignore output self.fit_transform(X) def fit_transform(self, X: dt.Frame): # IMPUTE # print("LR: types number of columns: %d : %d %d %d %d" % (len(X.names), len(X[:, [float]].names), len(X[:, [int]].names), len(X[:, [bool]].names), len(X[:, [str]].names))) for col in X[:, [float]].names: XX = X[:, col] XX.replace(None, np.nan) X[:, col] = XX if self._impute_num_type == 'oob': # Replace missing values with a value smaller than all observed values self.min = dict() for col in X[:, [float]].names: XX = X[:, col] self.min[col] = XX.min1() if self.min[col] is None or np.isnan(self.min[col]): self.min[col] = -1e10 else: self.min[col] -= 1 XX.replace(None, self.min[col]) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_int_type == 'oob': # Replace missing values with a value smaller than all observed values self.min_int = dict() for col in X[:, [int]].names: XX = X[:, col] self.min_int[col] = XX.min1() if self.min_int[col] is None or np.isnan(self.min_int[col]): self.min_int[col] = 0 XX.replace(None, self.min_int[col]) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_bool_type == 'oob': for col in X[:, [bool]].names: XX = X[:, col] XX.replace(None, self._oob_bool) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_cat_type == 'oob': for col in X[:, [str]].names: XX = X[:, col] XX.replace(None, self._oob_cat) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 return X def transform(self, X: dt.Frame): if self._impute_num_type == 'oob': for col in X[:, [float]].names: XX = X[:, col] XX.replace(None, self.min[col]) X[:, col] = XX if self._impute_int_type == 'oob': for col in X[:, [int]].names: XX = X[:, col] XX.replace(None, self.min_int[col]) X[:, col] = XX if self._impute_bool_type == 'oob': for col in X[:, [bool]].names: XX = X[:, col] XX.replace(None, self._oob_bool) X[:, col] = XX if self._impute_cat_type == 'oob': for col in X[:, [str]].names: XX = X[:, col] XX.replace(None, self._oob_cat) X[:, col] = XX return X class make_features(object): _postfix = "@%@(&#%@))){}#" def __init__(self, cache=False): self.cache = cache self.dai_te = False self.other_te = True self.new_names_dict = {} self.raw_names_dict = {} self.raw_names_dict_reversed = {} self.spring = None self.summer = None self.fall = None self.winter = None self.monthcycle1 = None self.monthcycle2 = None self.weekend = None self.daycycle1 = None self.daycycle2 = None self.lexi = None self.ord5sorted = None self.ord5more1 = None self.ord5more2 = None def apply_clone(self, src): for k, v in src.__dict__.items(): setattr(self, k, v) def fit_transform(self, X: pd.DataFrame, y=None, transform=False, **kwargs): if not transform: self.orig_cols = list(X.columns) if 'IS_LEAKAGE' in kwargs or 'IS_SHIFT' in kwargs: self.raw_names_dict = {v: v for v in list(X.columns)} self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()} else: self.raw_names_dict = {Transformer.raw_feat_name(v): v for v in list(X.columns)} self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()} file = "munged_%s_%s_%d_%d.csv" % (__name__, transform, X.shape[0], X.shape[1]) file = file.replace("csv", "pkl") file2 = file.replace("munged", "clone") if self.cache and os.path.isfile(file) and os.path.isfile(file2): # X = pd.read_csv(file, sep=',', header=0) X = load_obj(file) X = X.drop("target", axis=1, errors='ignore') if not transform: self.apply_clone(load_obj(file2)) return X if 'bin_0' in self.raw_names_dict: X.drop(self.raw_names_dict['bin_0'], errors='ignore') if 'bin_3' in self.raw_names_dict: X.drop(self.raw_names_dict['bin_3'], errors='ignore') # use circular color wheel position for nom_0 def nom12num(x): # use number of sides d = {'Circle': 0, 'Polygon': -1, 'Star': 10, 'Triangle': 3, 'Square': 4, 'Trapezoid': 5} return d[x] X, self.sides = self.make_feat(X, 'nom_1', 'sides', nom12num) def nom22num(x): # use family level features expanded encoding or relative size for nom_2 # ordered by height d = {'Snake': 0, 'Axolotl': 1, 'Hamster': 2, 'Cat': 3, 'Dog': 4, 'Lion': 5} return d[x] X, self.animal = self.make_feat(X, 'nom_2', 'animal', nom22num) # def has_char(x, char): # x_str = str(x) # return 1 if char.upper() in x_str.upper() else 0 # self.haschars = [None] * len(self.orig_cols) # for ni, c in enumerate(self.orig_cols): # X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len) def get_len(x): x_str = str(x) return len(x_str) self.lenfeats = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len) # def get_first(x): x_str = str(x) return x_str[0] if len(x_str) > 0 else "" self.firstchar = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.firstchar[ni] = self.make_feat(X, c, 'firstc', get_first, is_float=False) # def get_last(x): x_str = str(x) return x_str[-1] if len(x_str) > 0 else "" self.lastchar = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.lastchar[ni] = self.make_feat(X, c, 'lastc', get_last, is_float=False) # hex_strings = ['nom_5', 'nom_6', 'nom_7', 'nom_8', 'nom_9'] # if True: # convert hex to binary and use as 8-feature (per hex feature) encoding def get_charnum(x, i=None): return str(x)[i] width = 9 self.hexchar = [None] * len(hex_strings) * width for ni, c in enumerate(hex_strings): for nii in range(0, width): X, self.hexchar[ni * width + nii] = self.make_feat(X, c, 'hexchar%d' % nii, get_charnum, is_float=False, i=nii) # def hex_to_int(x): x_int = int(eval('0x' + str(x))) return x_int self.hexints = [None] * len(hex_strings) for ni, c in enumerate(hex_strings): X, self.hexints[ni] = self.make_feat(X, c, 'hex2int', hex_to_int) # if False: # ValueError: could not convert string to float: b'\x05\x0f\x11k\xcf' def hex_to_string(x): try: x_str = codecs.decode('0' + x, 'hex') except: x_str = codecs.decode(x, 'hex') return x_str self.hexstr = [None] * len(hex_strings) for ni, c in enumerate(hex_strings): X, self.hexstr[ni] = self.make_feat(X, c, 'hex2str', hex_to_string, is_float=False) def bin012a(x): return bool(x[0]) & bool(x[1]) & bool(x[2]) X, self.bin012a = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012a', bin012a) def bin012b(x): return (bool(x[0]) ^ bool(x[1])) ^ bool(x[2]) X, self.bin012b = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012b', bin012b) def bin012c(x): return bool(x[0]) ^ (bool(x[1]) ^ bool(x[2])) X, self.bin012c = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012c', bin012c) # TODO: manual OHE fixed width for out of 16 digits always (not sure all rows lead to all values) # one-hot encode text by each character # use geo-location for nom_3 # use static mapping encoding for ord_2 and ord_1 def ord12num1(x): # ordered label d = {'Novice': 0, 'Contributor': 1, 'Expert': 2, 'Master': 3, 'Grandmaster': 4} return d[x] X, self.kaggle1 = self.make_feat(X, 'ord_1', 'kaggle1', ord12num1) def ord12num2(x): # medals total d = {'Novice': 0, 'Contributor': 0, 'Expert': 2, 'Master': 3, 'Grandmaster': 6} return d[x] X, self.kaggle2 = self.make_feat(X, 'ord_1', 'kaggle2', ord12num2) def ord1master(x): return 1 if 'master' in x or 'Master' in x else 0 X, self.kaggle3 = self.make_feat(X, 'ord_1', 'kaggle3', ord1master) def ord22num(x): # ordered label d = {'Freezing': 0, 'Cold': 1, 'Warm': 2, 'Hot': 3, 'Boiling Hot': 4, 'Lava Hot': 5} return d[x] X, self.temp1 = self.make_feat(X, 'ord_2', 'temp1', ord22num) def ord22num2(x): # temp in F d = {'Freezing': 32, 'Cold': 50, 'Warm': 80, 'Hot': 100, 'Boiling Hot': 212, 'Lava Hot': 1700} return d[x] X, self.temp2 = self.make_feat(X, 'ord_2', 'temp2', ord22num2) def ord2hot(x): return 1 if 'hot' in x or 'Hot' in x else 0 X, self.temp4 = self.make_feat(X, 'ord_2', 'temp4', ord2hot) # lower ord_5 def ord5more0(x): return x.lower() X, self.ord5more0 = self.make_feat(X, 'ord_5', 'more0', ord5more0, is_float=False) # 1st char, keep for OHE def ord5more1(x): return x[0] X, self.ord5more1 = self.make_feat(X, 'ord_5', 'more1', ord5more1, is_float=False) # 2nd char, keep for OHE def ord5more2(x): return x[1] X, self.ord5more2 = self.make_feat(X, 'ord_5', 'more2', ord5more2, is_float=False) # 1st char, keep for OHE def ord5more3(x): return x[0].lower() X, self.ord5more3 = self.make_feat(X, 'ord_5', 'more3', ord5more3, is_float=False) # 2nd char, keep for OHE def ord5more4(x): return x[1].lower() X, self.ord5more4 = self.make_feat(X, 'ord_5', 'more4', ord5more4, is_float=False) # 1st word, keep for OHE def ord2more1(x): return x.split(" ")[0] X, self.ord2more1 = self.make_feat(X, 'ord_2', 'more1', ord2more1, is_float=False) # 2nd word, keep for OHE def ord2more2(x): a = x.split(" ") if len(a) > 1: return a[1] else: return a[0] X, self.ord2more2 = self.make_feat(X, 'ord_2', 'more2', ord2more2, is_float=False) # use lexi LE directly as integers for alphabetical (ord_5, ord_4, ord_3) orig_feat_names = ['ord_5', 'ord_4', 'ord_3', 'nom_0', 'nom_1', 'nom_2', 'nom_3', 'nom_4', 'nom_5', 'nom_6', 'nom_7', 'nom_8', 'nom_9', 'ord_1', 'ord_2'] orig_feat_names = [self.raw_names_dict_reversed[x] for x in list(self.orig_cols)] # try just encoding all columns new_names = ['lexi%d' % x for x in range(len(orig_feat_names))] if not transform: self.lexi = [None] * len(orig_feat_names) self.lexi_names = [None] * len(orig_feat_names) for ni, (new_name, orig_feat_name) in enumerate(zip(new_names, orig_feat_names)): if orig_feat_name in self.raw_names_dict and self.raw_names_dict[orig_feat_name] in X.columns: dai_feat_name = self.raw_names_dict[orig_feat_name] if transform: Xnew = self.lexi[ni].transform(X[[dai_feat_name]]) else: self.lexi[ni] = LexiLabelEncoderTransformer([dai_feat_name]) Xnew = self.lexi[ni].fit_transform(X[[dai_feat_name]]) extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(pd.isnull(Xnew).values.ravel()) X = pd.concat([X, Xnew], axis=1) self.new_names_dict[new_feat_name] = [dai_feat_name] self.lexi_names[ni] = new_feat_name if False: # already done by lexi encoding # sorted label encoding of ord_5, use for numeric orig_feat_name = 'ord_5' new_name = 'ord5sorted' if orig_feat_name in self.raw_names_dict and self.raw_names_dict[orig_feat_name] in X.columns: dai_feat_name = self.raw_names_dict[orig_feat_name] extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name if not transform: self.ord_5_sorted = sorted(list(set(X[dai_feat_name].values))) self.ord_5_sorted = dict(zip(self.ord_5_sorted, range(len(self.ord_5_sorted)))) X.loc[:, new_feat_name] = X[dai_feat_name].apply( lambda x: self.ord_5_sorted[x] if x in self.ord_5_sorted else -1).astype(np.float32) self.new_names_dict[new_feat_name] = [dai_feat_name] self.ord5sorted = new_feat_name # frequency encode everything # keep as cat for OHE if not transform: self.freq = [None] * len(self.orig_cols) self.freq_names = [None] * len(self.orig_cols) for ni, c in enumerate(list(self.orig_cols)): new_name = "freq%d" % ni dai_feat_name = c if transform: Xnew = self.freq[ni].transform(X[[dai_feat_name]].astype(str)).to_pandas() else: self.freq[ni] = FrequentTransformer([dai_feat_name]) Xnew = self.freq[ni].fit_transform(X[[dai_feat_name]].astype(str)).to_pandas() extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(pd.isnull(Xnew).values.ravel()) X = pd.concat([X, Xnew], axis=1) self.new_names_dict[new_feat_name] = [dai_feat_name] self.freq_names[ni] = new_feat_name if self.dai_te: # target encode everything # use as numeric and categorical if not transform: self.te = [None] * len(self.orig_cols) self.te_names = [None] * len(self.orig_cols) for ni, c in enumerate(list(self.orig_cols)): new_name = "te%d" % ni dai_feat_name = c if transform: Xnew = self.te[ni].transform(X[[dai_feat_name]].astype(str), y).to_pandas() else: self.te[ni] = CVTargetEncodeTransformer([dai_feat_name]) Xnew = self.te[ni].fit_transform(X[[dai_feat_name]].astype(str), y).to_pandas() extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(pd.isnull(Xnew).values.ravel()) X = pd.concat([X, Xnew], axis=1) self.new_names_dict[new_feat_name] = [dai_feat_name] self.te_names[ni] = new_feat_name if self.other_te: # target encode lexilabel encoded features # use as numeric and categorical if not transform: self.teo = [None] * len(self.lexi_names) self.teo_names = [None] * len(self.lexi_names) for ni, c in enumerate(self.lexi_names): if c is None: continue new_name = "teo%d" % ni dai_feat_name = c X_local = X.loc[:, [dai_feat_name]].astype(str) if transform: Xnew = pd.DataFrame(self.teo[ni].transform_test(X_local)) else: from target_encoding import TargetEncoder ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(X_local, debug=False) self.teo[ni] = TargetEncoder(alpha=ALPHA, max_unique=MAX_UNIQUE, split_in=[3]) Xnew = pd.DataFrame(self.teo[ni].transform_train(X=X_local, y=y)) extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(
pd.isnull(Xnew)
pandas.isnull
#!/usr/bin/env python # # analysis.py # # Copyright (c) 2018 <NAME>. All rights reserved. import argparse import time import sys import random from sort import * import pandas as pd import matplotlib.pyplot as plt # Utility def print_err(*args, **kwargs): print(*args, **kwargs, file=sys.stderr) def parse_int(n): try: return int(n) except ValueError: return None # Analysis def analyze(sort_func, array, order=Order.LE): """ Sorting method wrapper. Execute sorting method on specified array. Return Stats object filled with statistics. """ stats = Stats(len(array)) start = time.time() sort_func(array, order=order, stats=stats) end = time.time() stats.time = end - start return stats def analyze_random(count, output=None, input=None): """ Perform analysis using random arrays of sizes in 100...10000, and plot them. input -- input csv file output -- output file name """ print_err('Random analysis started...') if input is None: row_list = [] alg_list = [(merge_sort, Algorithm.MERGE), (quicksort, Algorithm.QUICK), (dual_pivot_quicksort, Algorithm.DPQUICK), (radix_sort, Algorithm.RADIX), (hybrid_sort, Algorithm.HYBRID)] for n in range(100, 10100, 100): for func, alg in alg_list: for _ in range(count): arr = random.sample(range(n), n) d = vars(analyze(func, arr)) d['algorithm'] = alg.name.lower() row_list.append(d) del arr print_err("COMPLETED {} OK".format(n)) df = pd.DataFrame(row_list) if not output is None: df.to_csv(output) print("File saved") else: df = pd.read_csv(input) df['ncomp/n'] = np.where(df['length'] < 1, df['length'], df['ncomp']/df['length']) df['nswap/n'] = np.where(df['length'] < 1, df['length'], df['nswap']/df['length']) grouped = df.groupby(['length', 'algorithm']).mean(numeric_only=True) ncomp_g = grouped.loc[:, ['ncomp']] ncomp_g = pd.pivot_table(ncomp_g, values='ncomp', index='length', columns='algorithm') nswap_g = grouped.loc[:, ['nswap']] nswap_g =
pd.pivot_table(nswap_g, values='nswap', index='length', columns='algorithm')
pandas.pivot_table
#from matplotlib.pyplot import title import streamlit as st import streamlit.components.v1 as components import pandas as pd import plotly.express as px from modzy import ApiClient from modzy._util import file_to_bytes import json from sklearn.manifold import TSNE import numpy as np from pyvis.network import Network from sklearn.cluster import KMeans from wordcloud import WordCloud import matplotlib.pyplot as plt st.set_option('deprecation.showPyplotGlobalUse', False) st.sidebar.image('text.png') #col1,col2 = st.columns([1,6]) st.image('subtext.png') #df=pd.read_csv("https://raw.githubusercontent.com/pupimvictor/NetworkOfThrones/master/stormofswords.csv") df = pd.read_csv("https://raw.githubusercontent.com/napoles-uach/Data/main/got1.csv") df=df[['Source','Target','weight']] #st.write(df) #weigths=df['weight'].tolist() def got_func(): got_net = Network(height="600px", width="100%", heading='A song of Ice and Fire (Book 1) Graph')#,bgcolor='#222222', font_color='white') # set the physics layout of the network #got_net.barnes_hut() got_net.force_atlas_2based() #got_net.show_buttons(filter_=True) #got_data = pd.read_csv("https://www.macalester.edu/~abeverid/data/stormofswords.csv") got_data = pd.read_csv("https://raw.githubusercontent.com/napoles-uach/Data/main/got1.csv") #got_data = pd.read_csv("stormofswords.csv") #got_data.rename(index={0: "Source", 1: "Target", 2: "Weight"}) sources = got_data['Source'] targets = got_data['Target'] weights = got_data['weight'] edge_data = zip(sources, targets, weights) for e in edge_data: src = e[0] dst = e[1] w = e[2] got_net.add_node(src, src, title=src, color='red') got_net.add_node(dst, dst, title=dst,color='red') got_net.add_edge(src, dst, value=w) neighbor_map = got_net.get_adj_list() # add neighbor data to node hover data for node in got_net.nodes: node["title"] += " Neighbors:<br>" + "<br>".join(neighbor_map[node["id"]]) node["value"] = len(neighbor_map[node["id"]]) got_net.show("gameofthrones.html") got_func() HtmlFile = open("gameofthrones.html", 'r', encoding='utf-8') source_code = HtmlFile.read() #check_graph = st.sidebar.checkbox('Show Graph') #if check_graph: with st.expander('Show Graph'): components.html(source_code, width=670,height=700) text = open("edges.txt","w") text.write('graph') for i in range(len(df)): text.write('\n%s' % str(df.iloc[i][0]).replace(" ", "")+" "+str(df.iloc[i][1]).replace(" ", "")+" "+str(df.iloc[i][2])) text.close() f = open('edges.txt','r',encoding='utf-8') client = ApiClient(base_url="https://app.modzy.com/api", api_key="<KEY>") sources = {} sources["my-input"] = { "edges.txt": f.read(), } @st.cache() def res(sources): job = client.jobs.submit_text("sixvdaywy0", "0.0.1", sources) result = client.results.block_until_complete(job, timeout=None) return result #job = client.jobs.submit_text("sixvdaywy0", "0.0.1", sources) #result = client.results.block_until_complete(job, timeout=None) result = res(sources) #st.button('Download') #st.balloons() #st.stop() results_json = result.get_first_outputs()['results.json'] x = results_json['Node Embeddings'] names_dict = [] vec_dict = [] for names in x: names_dict.append(names) v=x[names].split() vec_dict.append(v) # convert a list of string numbers to a list of float numbers def convert_to_float(l): return [float(i) for i in l] vec_dict = [convert_to_float(i) for i in vec_dict] chart_data=pd.DataFrame(vec_dict) #traspose of the dataframe chart_data=chart_data.T #column names are the names of the nodes chart_data.columns=names_dict #st.bar_chart(chart_data['Aegon']) #st.bar_chart(chart_data['Worm']) @st.cache() def do_tsne(vector,randomst,perp): tsne = TSNE(random_state=randomst,perplexity=perp) return tsne.fit_transform(vector) digits_tsne = do_tsne(vec_dict,42,50) #st.write('aqui') #st.write(digits_tsne) with st.sidebar.expander('TSNE'): clusters_n = st.slider('Number of clusters for TSNE', min_value=3, max_value=10, value=3) kmeans = KMeans(n_clusters=clusters_n, random_state=0).fit(digits_tsne) #st.write(kmeans.labels_) ejex = [] ejey = [] indice=[] for i in range(len( digits_tsne )): ejex.append( digits_tsne[i][0] ) ejey.append( digits_tsne[i][1] ) indice.append(i) dic = {'ejex':ejex,'ejey':ejey,'indice':indice} df = pd.DataFrame(dic) #add a column with the name of the node df['nombre']=names_dict df['labels']=kmeans.labels_ #st.write(df) fig = px.scatter(df,x='ejex',y='ejey',hover_data=['nombre'],color='labels') #with st.sidebar.expander('TSNE'): #check_tsne = st.sidebar.checkbox('Show TSNE plot') #if check_tsne: with st.expander('Modzi app 1'): ''' ### Graph Embeddings #### Description This model can be used to explore possible relationships between entities, such as finding people who share similar interests or finding biological interactions between pairs of proteins. Graphs are particularly useful for describing relational entities, and graph embedding is an approach used to transform a graph’s structure into a format digestible by an AI model, whilst preserving the graph’s properties. Graph structures can widely vary in terms of their scale, specificity, and subject, making graph embedding a difficult task. ''' with st.expander('Graph Embedings'): st.write(chart_data) with st.expander('Show TSNE plot'): st.plotly_chart(fig) text = open("text.txt","r") paragraph = text.read().split('\n\n') paragraphs_df =
pd.DataFrame(paragraph)
pandas.DataFrame